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Abstract

Quantum information processing has attracted a lot of attention in recent years be-

cause of the promise it holds for faster, better, and more secure future communi-

cations. The most advanced field in quantum information processing is quantum

cryptography, also referred to as quantum key distribution (QKD), which uses the

quantum properties of light to ensure the unconditionally secure transmission of a

secret message between two parties. Despite the significant progress achieved in the

performance of quantum cryptography systems, the communication distance has been

limited to a few tens of kilometers and the communication speed remains very low,

preventing the integration of these systems into current telecommunication networks.

The main limiting factors are the vulnerability of existing QKD algorithms to pow-

erful eavesdropping attacks, and the characteristics of the single-photon detectors

employed in the system.

This work addresses both of these limiting factors. We introduce and prove the

security of a new quantum cryptography algorithm, the differential phase shift QKD

protocol, which requires a very simple system architecture and only standard telecom-

munication components, such as lasers, detectors, and linear optics. The security

proof against the most general attacks allowed by quantum mechanics reveals that

this protocol is very robust to powerful eavesdropping attacks. Furthermore, we de-

velop a new single-photon detector, which combines frequency up-conversion in a

periodically poled lithium niobate waveguide and a silicon avalanche photodiode to

achieve high speed and efficient single-photon detection in the telecommunication

wavelength band. By combining these key elements of a quantum cryptography sys-

tem, we demonstrate the experimental realization of practical and efficient fiber-optic
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QKD systems, with which we achieved communication at a rate of 2 Mbit/s over

10 km, and transmission of secure messages over 100 km of optical fiber. Compared

to existing systems, these results represent an improvement of more than two orders

of magnitude in communication speed and a factor of two in communication distance.

Thus, they demonstrate that high speed and long distance secure quantum communi-

cation is possible with currently available technology, and open the way for real-world

applications of quantum information processing.
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Chapter 1

Introduction

The theory of quantum mechanics has profoundly changed our vision and under-

standing of the physical world that surrounds us. This theory predicts effects that

cannot be explained by classical mechanics, and may even run counter to our intuition

of physical phenomena. For example, aspects of quantum mechanics such as quan-

tum uncertainty and nonlocal correlations, are extremely difficult to comprehend and

have had a radical impact on our conceptual view of the world. However, despite

its surprising predictions, the results of numerous elaborate experiments over the

last decades have shown that quantum mechanics accurately models physical reality,

leaving little doubt about its validity.

Although the quantum mechanical effects were thought provoking, it was thought

for many years that they did not have practical applications as they could only be

observed in very controlled physical environments. Intense research efforts, however,

revealed that the properties of quantum mechanical systems can be harnessed to

perform computationally significant tasks. This observation led to the emergence of

a new field of research, namely quantum information processing, which investigates

the technological applications of quantum mechanics. This research area has attracted

a lot of attention both from researchers and the general public due to the promise it

holds for faster, better, and more secure future communications. Two very important

fields of quantum information processing are quantum computation and quantum

cryptography, which we discuss below.

1
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In complex quantum mechanical systems, the information is encoded in the non-

local correlations between different parts of the system. These correlations have no

classical analogue. Quantum information theory, which studies the properties of these

correlations between coupled quantum systems, has revolutionized the field of com-

putation, revealing that quantum technology can support entirely news modes of

computation. Indeed, quantum computational algorithms have been invented that

utilize these properties to achieve exponential speedup of computational tasks, such

as prime factorization [1] and database search [2].

In order to implement a quantum computer, a quantum system that serves as

the building block for more complex systems is required. This system is referred to

as the quantum bit, or qubit. Ideally, a qubit should be easily decoupled from its

environment to exhibit quantum properties, but at the same time it should interact

with other qubits in a controlled way. The task of achieving a precise and strong

control over a system that maintains its quantum nature has proven to be an enormous

experimental challenge. This task becomes even harder when decoherence, that is

the degradation of quantum information due to the interaction of the system with

its environment, becomes significant and prohibits the scaling of the system to larger

dimensions. Since the power of quantum computing stems from its scaling properties,

a useful quantum technology must be scalable, which imposes even more stringent

restrictions on the possible candidates for qubit systems.

Proposals for quantum computation schemes most often use trapped ions [3],

atoms in cavities [4], or nuclear spins [5] as qubit systems. Photons, which are a par-

ticularly attractive candidate system because they exhibit strong quantum mechanical

effects and are very robust to environmental noise, were also shown to be useful for

quantum computation when they are combined with linear optics and single-photon

detectors [6]. Despite the enormous progress in experimental efforts toward the re-

alization of a quantum computer, however, only simple computational tasks have

been performed [7, 8], and a scalable quantum computer capable of performing large

computations is beyond reach in the foreseeable future.

The second important field of quantum information processing, quantum cryptog-

raphy, utilizes quantum properties such as quantum uncertainty, and is some cases
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nonlocal correlations, to perform unconditionally secure communication. The task of

implementing a quantum cryptography system is inherently easier than implement-

ing a quantum computation system. Indeed, quantum cryptography only requires

manipulation of simple quantum systems, and, most importantly, qubits only need to

be isolated from the environment but not to interact with each other. Consequently,

quantum cryptography is today the most advanced field in the area of quantum in-

formation processing.

Due to their resilience to environmental noise both in free space and in optical

fibers, the photons are the exclusive carriers of information in quantum cryptography.

Since the first proposal to use the quantum properties of light to ensure the uncondi-

tional security of the transmission of a secret message between two parties by Bennett

and Brassard in 1984 [9], and the first demonstration of a quantum cryptography sys-

tem in 1992, where information was transmitted over 32 cm of free space [10], the

field has seen an unprecedented progress. The research efforts during these years have

focused both on theoretical and experimental aspects of quantum cryptography.

On the theoretical side, following the quantum cryptography algorithm proposed

by Bennett and Brassard, which is called the BB84 protocol, many more protocols

were suggested, utilizing different aspects of the theory of quantum mechanics and

encoding of the quantum information in various properties of the photons. The

need to prove the security of these protocols for practical applications led to a new

field in quantum information theory, which has the difficult task of investigating

the security requirements of a certain protocol and rigorously proving that it can

withstand the most sophisticated attacks allowed by quantum mechanics launched by

a potential malevolent eavesdropper. Because of the difficulty of this task, although

security of some protocols has been conclusively established, the proof of security of

many others remains elusive. This theoretical field has solidified our understanding

of quantum cryptography, and in particular of the fundamental concepts of quantum

measurement and nonlocality that are required for quantum cryptography. It has

also revealed what are the main limiting factors that practical components needed in

most protocols, such as single-photon sources and single-photon detectors, impose on

quantum cryptography systems and how these affect their performance. For example,
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we know that nonclassical light generated from a single-photon source is much more

suitable for secure communication than classical light generated from a laser source

when the BB84 protocol is implemented. However, the engineering of single-photon

sources is a hard experimental task, thus an interesting challenge in the field of

theoretical quantum cryptography is to invent and prove the security of quantum

cryptography protocols that can provide unconditional security using more practical

resources.

On the experimental side, the development of better components and the use of

more sophisticated techniques, often borrowed from the very advanced field of clas-

sical optical communications, has led to a rapid progress in both the speed and the

communication distance of quantum cryptography systems. Today, quantum cryp-

tography prototypes are commercially available, quantum cryptography experiments

have been performed outside the research laboratory, over installed optical fibers,

and efforts toward performing earth to satellite quantum cryptography are under-

way. Despite these advancements, however, the communication distance of quantum

cryptography has been limited to only a few tens of kilometers and the communica-

tion speed remains very low, preventing the integration of these systems into current

telecommunication networks. Therefore, a very important challenge in the field of

experimental cryptography is to invent ways of extending the distance and increasing

the speed of quantum cryptography systems, in order to develop practical and imple-

mentable systems.

This thesis work concentrates on the field of quantum cryptography, and addresses

both of the theoretical and experimental challenges that were previously discussed.

The main goal is to achieve a practical and efficient quantum cryptography sys-

tem that will enable high speed and long-distance secure quantum communication,

and will open the way to real-world applications of quantum information processing.

Although the focus of this work is quantum cryptography, the concepts and tools

developed can be used to enable and enhance the interface between quantum theory

and telecommunication technology in other fields of quantum information processing

developing in parallel, such as quantum computation.
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Chapter 2 provides all the background information required to comprehend the

concept of quantum cryptography as a means for two parties to share an uncondi-

tionally secure secret message. It discusses the encoding of quantum information in

photonic qubits, and shows that the unique properties of quantum mechanics and the

results of classical and quantum information theory can be used to perform a quan-

tum cryptography algorithm. We present the most well-known of these algorithms,

we discuss their security, and we compare the performance of quantum cryptography

systems implementing these protocols with practical components. The concepts and

analysis presented in this chapter will be useful for the rest of the thesis.

Chapter 3 introduces a new quantum cryptography protocol, the differential phase

shift protocol, which requires a very simple system architecture and only standard

telecommunication components, such as lasers, detectors, and linear optics. We prove

the security of this protocol against several types of eavesdropping attacks. The se-

curity proof reveals that the differential phase shift protocol is robust to powerful

eavesdropping attacks, a characteristic that significantly enhances the performance

of a quantum cryptography system implementing this protocol in terms of both com-

munication speed and distance. It therefore has a great potential for enabling the

implementation of a practical quantum cryptography system.

Chapter 4 studies the main characteristics of single-photon detectors that are

commonly implemented in quantum cryptography systems and play a very important

role in their performance. It presents the experimental demonstration of a new single-

photon detector, the up-conversion single-photon detector, which provides increased

speed and efficiency at telecommunication wavelengths compared to current detectors.

This detector is based on frequency conversion in a periodically poled lithium niobate

waveguide, and a silicon avalanche photodiode. Numerical calculations in this chapter

demonstrate that the use of the up-conversion detector can considerably enhance the

performance of a quantum cryptography system.

Chapter 5 presents the experimental realization of a quantum cryptography system

that implements the differential phase shift protocol with up-conversion single-photon

detectors and operates at a repetition rate of 1 GHz. Due to the good characteris-

tics of the two key elements of the system, the protocol and the detectors, we can
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achieve communication at a practical rate of 1 Mbit/s over 20 km, and transmis-

sion of secure information over 75 km of optical fiber, when the security analysis

against the most general eavesdropping attacks is taken into account. Furthermore,

by using newly developed silicon avalanche photodiodes with improved characteris-

tics, we demonstrate a simple and practical quantum cryptography system capable of

achieving communication at a rate of 2 Mbits/s over 10 km, and transmitting secure

messages over 100 km of optical fiber. Compared to the best experiments reported to

date, these results constitute an improvement of more than two orders of magnitude

in communication speed and a factor of two in communication distance.

Chapter 6 presents the experimental realization of a quantum cryptography system

that implements the differential phase shift protocol with up-conversion single-photon

detectors and operates at a repetition rate of 10 GHz. We show that this system im-

poses very strict requirements on the characteristics of the single-photon detectors,

and thus reaches the limits of today’s technological capabilities. Even the best de-

tectors currently available cannot guarantee the secure transmission of information

with this system. We explain the limiting factors demonstrated by the experimental

results and we discuss possible solutions.

Finally, chapter 7 diverges from the main topic of this thesis, and discusses a clas-

sical application of the up-conversion single-photon detector, namely photon-counting

optical time domain reflectometry. It explains how this application can benefit from

the characteristics of the detector and presents the experimental realization of a

photon-counting optical time domain reflectometry system with the up-conversion

detector. This system has a very simple control system and achieves a good trade-off

between spatial resolution and dynamic range.



Chapter 2

Theory of quantum cryptography

2.1 Introduction

The problem of transmitting securely secret messages between two parties is a very old

one. Human imagination has come up with clever ways of overcoming the difficulties

associated with this problem, in particular preventing a malevolent eavesdropper from

obtaining information about the secret message exchanged over the communication

channel.

In today’s communications, cryptographic systems are based on codes that ensure

computational security. This means that we are mainly concerned with the compu-

tational difficulty required to break the code, that is a cryptographic system is secure

if it requires the eavesdropper to perform a computationally intractable task in or-

der to break the code. An intractable algorithm is one which scales exponentially

in execution time as the size of the problem increases. For example, the factoring

problem, i.e., the problem of finding the prime factors of a large composite integer, is

generally believed to be intractable and is the basis of the RSA public key cryptog-

raphy system. The main hurdle of computational security is contained in the phrase

‘generally believed’ in the previous sentence: it is extremely hard to prove that a

mathematical problem is intractable. We need to prove that, even in principle, no

algorithm exists that can find a solution. Since this is nearly impossible we often

consider the best currently available algorithms for computational security. Thus, if

7
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Figure 2.1: Schematic of system for unconditionally secure cryptography.

a new algorithm is discovered that can efficiently break the code all communication

over the cryptographic system becomes insecure. The same would be true if a quan-

tum factoring machine, capable of executing Shor’s algorithm to efficiently solve the

prime factorization problem [1], was developed.

As technology is rapidly advancing, there is a pressing need for a system that can

provide unconditional security and not just computational security. A cryptographic

system is unconditionally secure when an eavesdropper, often referred to as Eve,

cannot obtain enough information from the encrypted message to reconstruct the

original message, even if she has infinite computational and time resources. Fig. 2.1

shows the basic model for unconditionally secure cryptography. The sender of the

message, referred to as Alice, wants to communicate with the receiver, referred to as

Bob, over a public channel that can be potentially eavesdropped. To ensure secrecy

of the communication, Alice will also generate a random string of bits, the secret key

K, which she uses to encrypt the message M . This generates the encrypted message

S, the cryptogram, which is sent over the public channel. Alice must also send a

copy of the secret key to Bob, so that he can decrypt the cryptogram. In classical

cryptography the exchange of the secret key is only possible using a channel that

cannot be eavesdropped or a trusted courier.

One algorithm that provides unconditional security is the Vernam cipher. Accord-

ing to this algorithm, the key has to be as long as the message and the cryptogram is

formed by taking the bitwise exclusive (XOR) of each bit of the key with each bit of
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the message. The key has to be discarded after each transmission, since by reusing

it Eve can obtain information about the secret message. This is the reason why the

Vernam cipher is often referred to as the one-time pad. The problem of exchang-

ing a secret key, i.e., the key distribution problem, is the reason why this algorithm

has not been used in cryptographic systems, especially considering the overhead of a

trusted courier needed for the exchange of a new key after each transmission. The

advent of quantum cryptography, however, gave a solution to the key distribution

problem. The quantum key distribution (QKD) algorithms allow the exchange of

secret keys between Alice and Bob without the need of a trusted courier. Security

is guaranteed by the laws of quantum mechanics, ensuring that the key can be used

afterwards to encrypt and decrypt messages as a one-time pad for unconditionally

secure cryptography.

In the following sections, we will first make an introduction to the principles of

encoding quantum information, we will then describe the basic elements of a quantum

key distribution algorithm, and finally we will discuss the security of the two most

well-known QKD protocols and compare their performance.

2.2 Encoding quantum information

2.2.1 The photonic qubit

In quantum communication, information is encoded in quantum bits, which are the

quantum mechanical analog of the classical bits used in classical communication.

Quantum bits, or qubits, are two-state systems. The two states representing binary 0

and 1 are used to encode information in the same way as classical bits. Qubits have

the additional unique property that they can be placed in a superposition state, and

can exhibit quantum mechanical coherence properties. Because of this, although all

classical information protocols can be implemented with qubits, there are quantum

information protocols which cannot be implemented using classical bits. One example

is quantum cryptography, which is a method of sharing unconditionally secure secret

keys as we discussed in the previous section.
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Figure 2.2: The Bloch sphere.

A qubit is a two dimensional quantum system, which means that its Hilbert space

is spanned by two basis states. The two orthogonal states of the system, denoted as

|0〉 and |1〉, form a complete basis for the Hilbert space of the qubit. This basis is

referred to as the computational basis. Any other basis can be expressed by linear

combinations of the computational basis. All states of the qubit can be expressed in

the computational basis as:

|ψqubit〉 = cos θ |0〉+ eiφ sin θ |1〉 (2.1)

The angles θ and φ are two independent degrees of freedom and they define a point

on the unit sphere in a three dimensional space. Thus, we can visualize the state of

a qubit as a vector pointing from the origin to the unit sphere, as shown in Fig. 2.2.

This sphere is referred to as the Bloch sphere.

In order for a qubit to be useful, we must be able to perform three fundamental

operations on it: prepare it in a well defined state, apply controlled unitary opera-

tions on it, and be able to measure it. Physical systems that are suitable as qubits
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in quantum information and quantum computation applications are primarily atoms,

nuclei and photons. One additional requirement especially important for quantum

communication is the ability to exchange qubits over long distances. For such appli-

cations the photon is the only practical information carrier because it is extremely

robust to environmental noise and can be transmitted over long distances in optical

fibers. Below we discuss the qubit requirements for the photonic qubit, which inter-

ests us in this work.

State preparation: There are several ways to implement a qubit using a single

photon. The spatial mode, polarization mode and time slot implementations are

illustrated in Fig. 2.3(a)-(c). In the first case, the single photon in mode 1 is split

into two spatially separated modes 2 and 3 using a beamsplitter and a phase shifter,

hence:

|1〉1 → |ψqubit〉 = cos θ |1〉2 |0〉3 + eiφ sin θ |0〉2 |1〉3 (2.2)

Thus, binary information can be encoded in the presence of the photon in one of the

modes:

|0〉 = |1〉2 |0〉3
|1〉 = |0〉2 |1〉3 (2.3)

By properly selecting the beamsplitter ratio and phase shift any qubit state can be

prepared. An alternative way to implement a qubit is using the polarization, as shown

in Fig. 2.3(b). This is fundamentally equivalent to the first method except that the

two spatial modes are replaced by the two polarization states of a single spatial mode.

In this case, binary information is encoded in the horizontal or vertical polarization

of the single photon:

|0〉 = |H〉

|1〉 = |V 〉 (2.4)
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Any qubit state can be prepared by appropriately using a quarter-wave and a half-

wave plate. Both implementations are not well suited for long-distance fiber-optic

quantum communication systems because they are very sensitive to polarization drifts

and phase instability in long optical fibers. A very practical implementation for such

systems utilizes time bin encoding [11], and is shown in Fig. 2.3(c). A single photon

in mode 1, which defines a transform-limited wavepacket in space and time, is sent

through an unbalanced interferometer, which has a short and a long arm. The long

arm introduces a delay relative to the short arm, which is greater than the coherence

length of the input photon. Thus, the output of the interferometer is two pulses

separated in time. Assuming this time separation is sufficiently long so that the two

time slots can be treated as orthogonal modes, we can define the modes corresponding

to time slots t1 and t2. We can then write the qubit state after the unbalanced

interferometer as:

|ψqubit〉 = cos θ |t1〉+ eiφ sin θ |t2〉 (2.5)

The information in this case is encoded in the relative phase of the two time slots.

This information remains undisturbed during propagation in an optical fiber because

the time separation of the two pulses is usually very short, on the order of a nanosec-

ond, while the phase and polarization drifts occur at long time scales, so the pulses

undergo exactly the same distortion in the fiber. This fact makes time slot imple-

mentation advantageous for long-distance quantum communication.

Unitary operations: To manipulate quantum information we must be able to per-

form controlled unitary evolution, which means that we should be able to transform

the qubit from its initial state to any other state on the Bloch sphere. This transfor-

mation must conserve probability, hence it must be described by unitary operators,

which can be thought of as rotations or combinations of rotations on the Bloch sphere.

Performing unitary evolution is particularly easy in the case of the photonic qubit

because standard optical components such as beamsplitters, quarter-wave plates, half-

wave plates, and phase shifters are sufficient to apply all required operations.
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Measurement: The ability to observe the qubit and determine its state is essential

in any quantum information application. Quantum measurement is a particularly

subtle theory, where the differences between classical bits and qubits become strongly

pronounced. When a classical bit is observed, it is found to be either 0 or 1, the

answer is unambiguous. In contrast, a quantum bit will not give an unambiguous

answer unless the basis in which it was prepared is known. More formally, the theory

of quantum measurement is described by the following postulates [12]:

• Postulate 1: The wavefunction of a quantum particle is represented by a vec-

tor in a normalized Hilbert space which is spanned by an orthonormal basis

|0〉, |1〉,..., |n− 1〉, where n is the dimensionality of the Hilbert space. Every

measurement is represented by a projection onto a complete orthonormal basis

which spans the Hilbert space. Define this basis as |P0〉, |P1〉,..., |Pn−1〉. The

probability of measuring the qubit in the state |Pi〉 is simply given by |〈Pi|ψ〉|2,
where |ψ〉 is the wavefunction of the qubit.

• Postulate 2: Define the wavefunction of a quantum system before a measure-

ment as |ψ〉. Define the measurement basis as |P0〉,..., |Pn−1〉. Given that the

system was measured in the state |Pi〉, the wavefunction of the system after the

measurement is also |Pi〉.

The first postulate states that if the qubit is prepared in one of the states |Pi〉,
the measurement will identify this state with 100% probability. If, however, the state

qubit is prepared in a superposition state of the measurement basis, the measurement

result will be ambiguous. A qubit repeatedly prepared in the same state and measured

in the same basis will yield a different measurement result from shot to shot. The

second postulate, known as the projection postulate, states than unless a quantum

system is prepared in one of the eigenstates |Pi〉, the measurement process will destroy

the state of the system. The combination of the two postulates reveals one of the

most important aspects of quantum measurement, which is fundamental for quantum

cryptography: the wavefunction of a single quantum system cannot be determined

unless the preparation basis is known. If the system is measured in the wrong basis, an

ambiguous answer will be obtained. Furthermore, due to the projection postulate we
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cannot go back and measure the state again because it has already been destroyed.

In quantum communication, any basis can be used for encoding the information.

However, error-free communication can only occur if the sender and the receiver use

the same basis to encode and measure the qubit.

In Fig. 2.3(a)-(c) the measurement apparatus for the projective measurement on

the qubit system in the case of each of the possible implementations of the photonic

qubit is shown. Adjustment of the beamsplitter ratio, phase shift or quarter-wave

and half-wave plates allows the measurement of the qubit in any desired basis. The

measurement result is indicated by a counting event on the photon detectors at each

output port of the beamsplitter in the measurement apparatus. In the time slot

implementation, the two pulses interfere with each other at time t2 on the beamsplitter

of the second unbalanced interferometer, thus the measurement result is conditional

on a detection at this time slot. The main difficulty in the practical implementation

of this system is that it requires two unbalanced interferometers whose relative phase

shift needs to be stabilized. We will see solutions to this problem in the context of

quantum key distribution in Chapter 5.

To conclude the discussion on quantum measurement, we would like to briefly

mention a mathematical tool that is very useful for describing general quantum mea-

surements, the Positive Operator Value Measure (POVM) formalism [13]. A POVM

measurement on an n-dimensional Hilbert space has n possible measurement out-

comes, and each outcome is associated with an operator on the Hilbert space of the

measured quantum system. The operators of a POVM for a quantum system are

implemented by embedding the system in a larger Hilbert space and making mea-

surements on the total system. It is important to note that POVMs do not represent

any new physics relative to the projective measurements discussed before. They are

merely a useful mathematical tool, which allows us to generalize the measurement

concept to cases where the external environment has an effect on the system. The

formalism can also be extended to describe generalized delayed measurements. Such

measurements, which involve attaching a probe state to the system state, applying

a unitary evolution to the collective system and finally measuring the probe state

to obtain information about the system state, can be a very powerful eavesdropping
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technique, hence they are of interest for the security analysis of quantum key distribu-

tion protocols. Because POVMs are simply a convenient mathematical tool allowing

the treatment of the most general quantum measurements, it is often not obvious or

intuitive what physical systems can be used to apply these operators.

2.2.2 Single-photon generation

In the previous section we discussed extensively the properties of the photonic qubit.

A natural question that arises is how to generate the single photons that implement

these qubits. The source of single photons is actually of great importance in quantum

cryptography with crucial implications in the performance of the system, as we will

see in detail in the following sections. Light sources can be generally categorized

into two classes, classical and nonclassical. To rigorously define these two classes, we

introduce the coherent state, which is defined as the eigenstate of the annihilation

operator a:

a |α〉 = α |α〉 (2.6)

In the previous expression, α = |α|eiφ, where |α| and φ are the amplitude and phase

of the coherent state, respectively. An alternative definition of this state is its repre-

sentation in the Fock state basis:

|α〉 = e−
|α|2
2

∞∑
n=0

αn

√
n
|n〉 (2.7)

where |n〉 is the n photon Fock state. Several important properties follow from this

expression, for example that the probability of detecting n photons in the field follows

a Poisson distribution:

P (n) = e−µµ
n

n!
(2.8)

where µ =
〈
a†a

〉
= |α|2 is the average number of photons in the field. The set of

coherent states forms a complete basis, that is:∫
α

|α〉 〈α| = I (2.9)
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However, two different coherent states are not orthogonal to each other:

〈α|β〉 = e−
1
2
(|α|2+|β|2−2α∗β) 6= δ(α− β) (2.10)

Thus, coherent states form an overcomplete basis, in which the field emitted by a

light source can be diagonally decomposed [14]. This is the premise of the coherent

state representation of the field, which takes the following form:

ρfield =

∫
α

P (α) |α〉 〈α| (2.11)

where ρfield is the reduced density matrix of a light field spanning the Fock state basis.

The function P (α) is known as the distribution function of the emitted field. This

function is always real and obeys the normalization condition:∫
α

P (α) = 1 (2.12)

For many sources, such as lasers and LEDs, this function is non-negative, it therefore

satisfies all the properties of a probability distribution. Any source whose P distri-

bution function is a valid probability distribution is referred to as classical source.

The reason for this name is that all photon counting statistics exhibited by a classical

source do not require quantization of the electromagnetic field. We could instead

work with classical field amplitudes and use Maxwell’s equations to determine their

dynamics. The detection statistics can be attributed to the photon counters, which

are made of a collection of atoms with quantized energy levels. This type of de-

scription, known as the semiclassical theory of photon counting, is adequate in many

cases.

Some sources emit fields whose P distribution function becomes negative. Such

sources can exhibit effects that cannot be predicted by the semiclassical detection

theory. Examples of these effects include photon anti-bunching, negativity of the

Wigner function, and nonclassical effects such as violation of Bell’s inequality [14].
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These sources are referred to as nonclassical sources, because quantization of the elec-

tromagnetic field is required to explain the counting statistics they generate. Non-

classical sources play an important role in many quantum information processing

applications.

An ideal single-photon source emits exactly one photon, which is a nonclassical

field. It has been shown that such a nonclassical source can significantly improve

the security of a quantum cryptography system [15, 16, 17, 18]. The engineering of

a single-photon source, however, is an experimentally challenging task and although

very promising implementations exist [19, 20, 21], they are not yet practical nor are

they ideal, which has important effects on the performance of a quantum cryptography

system [22]. This is the reason why most quantum cryptography experiments employ

attenuated Poisson sources, such as weak laser light, to simulate a single-photon

source [23]. As we will see in Sec. 2.4, these implementations are generally vulnerable

to certain types of eavesdropping attacks, which significantly compromise the security

of a quantum cryptography system [15, 16]. An important part of this thesis work is

to show that practical and secure quantum key distribution is in fact possible using

Poisson light sources.

2.2.3 Entangled qubits

So far, we have considered the encoding of quantum information in single qubits, as

well as their generation, preparation and transmission over a quantum channel. How-

ever, quantum information can also be encoded in entangled qubits. Entanglement

is one of the most fascinating aspects of quantum mechanics. Considering a system

composed of two qubits, the Hilbert space is described by the product space of each

individual qubit. This product space is spanned by four basis states, |0〉 |0〉, |0〉 |1〉,
|1〉 |0〉, and |1〉 |1〉, which represent the computation basis of the two-qubit system.

The system can exist in any complex superposition of these basis states. For example,

consider the following state:

|ψentangled〉 =
1√
2
(|0〉 |0〉+ |1〉 |1〉) (2.13)
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This state cannot be factorized into a product state of the two qubits. Any quantum

state that satisfies this property is referred to as an entangled state. Such states have

the unique property that even if the individual qubits are separated by great distances

we cannot describe their behavior independently. Eq. (2.13) may not initially seem

counterintuitive, since it simply expresses the fact that both qubits will take the value

0 with 50% probability, otherwise they will both take the value 1. The interesting

properties of this state become apparent when the system is measured in a basis other

than the computational basis. Define the notation:

|0θ〉 = cos θ |0〉+ sin θ |1〉

|1θ〉 = sin θ |0〉 − cos θ |1〉 (2.14)

This change of basis is performed by a rotation of 2θ across the horizontal equator of

the Bloch sphere. It is easy to verify that:

|ψentangled〉 =
1√
2
(|0θ〉 |0θ〉+ |1θ〉 |1θ〉) (2.15)

The above expression shows that the computation basis is not a preferred basis for

the system; there is actually a perfect correlation between the two qubits regardless

of which value of θ is chosen.

Suppose that two qubits are prepared in an entangled state. One of the qubits

is sent to Alice in the North Pole and the other to Bob in the South Pole. Alice

picks an angle θ and measures her qubit in the corresponding basis. Eq. (2.15) then

indicates that if Alice’s qubit is measured in state |0θ〉, Bob’s qubit wavefunction

becomes |0θ〉 as well. This seemingly counterintuitive action at a distance lies at the

heart of quantum entanglement. If two systems are entangled, then measuring one

system will have an instantaneous effect on the wavefunction of the other system.

We may speculate from the above discussion that superluminal communication

is possible. For example, consider the protocol where Alice encodes a binary 0 by

measuring her photonic qubit in the computation basis (θ = 0). This will prepare

Bob’s qubit in one of the states |00〉 or |10〉, although Alice cannot control which
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one of these states is generated. To encode binary 1, Alice measures her photon

in the basis defined by θ = π/2, thus Bob’s qubit is prepared in the state
∣∣0π/2

〉
or

∣∣1π/2

〉
again with equal probability. To decode Alice’s transmission, Bob simply

needs to determine if his qubit is in the state |00〉 or |10〉 for binary 0, and
∣∣0π/2

〉
or∣∣1π/2

〉
for binary 1. But the measurement Bob must perform is physically impossible

because any measurement he performs is described by a projection onto an orthonor-

mal basis. Thus, regardless of which basis he chooses to measure, the measurement

is completely unaffected by the basis which Alice measures her qubit in. This means

that no communication is possible. Bob’s inability to decode Alice’s message stems

from the fundamental principle discussed in Sec. 2.2.1: the wavefunction of a single

quantum system cannot be determined unless the preparation basis is known. Alice

can instantaneously modify the wavefunction of Bob’s qubit but since the wavefunc-

tion is not a physical quantity non-locality cannot be used to perform superluminal

communication.

Nonlocal states, however, can lead to measurement results which deviate from the

natural concept of local realism. These effects become apparent when the correlations

between Alice’s and Bob’s measurement are considered. Suppose, for example, that

Alice measures her qubit in the θ basis, while Bob measures his qubit in the φ basis.

There are four possible measurement results, 00, 01, 10, and 11, which occur with

probabilities:

P (0, 0) = P (1, 1) =
1

2
cos2(θ − φ)

P (0, 1) = P (1, 0) =
1

2
sin2(θ − φ) (2.16)

If θ = φ, Alice and Bob’s measurement results have perfect correlation, they will

both measure either 0 or 1. If instead θ − φ = π/4, there is no correlation between

the measurement results. All measurement combinations are equally likely. This

behavior is inconsistent with the concept of local reality. The probabilities described

in Eq. (2.16) cannot be reproduced by statistical mixtures of qubits whose states are

well defined. Theories that restrict the individual qubit states to be well defined are

known as local hidden variable theories. All measurement statistics produced by such
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theories must satisfy a relationship known as Bell’s inequality [24]. The measurement

statistics in Eq. (2.16), however, predict that this inequality can be violated, thus

this inequality gives us a measurable test of the validity of local hidden variable

theories. Violations of Bell’s inequality have been conclusively demonstrated under

many different experimental conditions and using various types of qubits [25, 26, 27].

Except for their use in fundamental tests of basic physical principles such as Bell’s

inequality, entangled states are an extremely useful tool in quantum information and

quantum computation applications. In particular in quantum cryptography, encod-

ing the quantum information in entangled qubits and verifying the security of the

transmission using criteria based on Bell’s inequality can improve the performance

of a system significantly, as we will see in Sec. 2.5. The generation of entangled

qubits, however, is a rather difficult task. Although proposals for creating an ideal

entangled-photon source, that is a source that emits exactly one pair of photons per

clock cycle, exist [28], no successful implementation has been reported to date. A

more practical way of generating entangled photons is to use the spontaneous emis-

sion of a non-degenerate parametric amplifier. This technique, known as parametric

down-conversion, is extensively used to generate entanglement in polarization as well

as other degrees of freedom such as energy and momentum, and is employed as a

source in entanglement-based quantum cryptography experiments.

2.3 A general quantum key distribution algorithm

In the previous sections we introduced the concept of quantum cryptography, or more

accurately quantum key distribution, and discussed the encoding of quantum infor-

mation in single or entangled photonic qubits. Let us now show how a quantum key

distribution (QKD) algorithm can achieve the goal of securely exchanging a random

string of bits, referred to as the key, between the sender and the receiver, by using en-

coded quantum information in conjunction with the results of classical and quantum

information theory. Fig. 2.4 illustrates the general steps that a QKD algorithm has

to follow. These are the quantum transmission, sifting, error correction, and privacy

amplification steps, and they are discussed in the following sections.
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Figure 2.4: Schematic of a general quantum key distribution algorithm.

2.3.1 Quantum transmission

In the quantum transmission step, Alice and Bob share a random string of bits trans-

mitted over a quantum channel. Most quantum key distribution protocols belong to

one of two categories, single qubit protocols and entangled qubit protocols.

Single qubit protocols make use of the measurement uncertainty properties dis-

cussed in Sec. 2.2.1 to ensure secrecy. Important examples of single qubit protocols

are the BB84, B92, Koashi01 and six-state protocols [9, 29, 30, 31]. We are going to

focus on the BB84 protocol in Sec. 2.4. In this type of protocol, Alice chooses ran-

domly a basis usually among two nonorthogonal bases as well as the bit value of her

single photons and sends them to Bob over a quantum channel. Bob measures each

photon also in a randomly chosen basis. This concludes the quantum transmission

step.

Entangled qubit protocols use the nonlocal correlations discussed in Sec. 2.2.3

to achieve security. They rely on the fact that if any local variable exists which

can predict the state of an entangled qubit pair, then nonlocal correlations are not
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observed. Important examples of entangled qubit protocols are the Ekert91 and

BBM92 protocols [32, 33]. We are going to discuss the BBM92 protocol in more

detail in Sec. 2.5. In this type of protocol, in the quantum transmission step, Alice

and Bob each receive a photon from an entangled-photon pair and measure its state

in a randomly chosen basis.

The outcome of the first step is an ensemble of bits called the raw key. The raw

key generation rate Rraw is simply equal to the product of the repetition rate of the

transmission and the probability of a photodetection event registered by the detectors

in the measurement setup.

2.3.2 Sifting

In the sifting step, Alice and Bob use a public channel to communicate information

related to their measurement, in particular what basis they used to prepare or measure

their qubits and at what times they registered a detection event. They do not disclose

the measurement result. From our discussion in Sec. 2.2 it follows that whenever Alice

and Bob used the same basis, they should get perfectly correlated bits. The process

of discarding the bits in the cases where they used different bases is called sifting.

The ensemble of bits remaining after this basis reconciliation forms the sifted key.

The sifted key generation rate is given by:

Rsifted = sRraw (2.17)

where s is the sifting parameter, that is the fraction of bits for which the bases were

the same.

If the are no errors in the quantum cryptography system, then a potential eaves-

dropper, referred to as Eve, cannot intercept the transmission and make a measure-

ment that will yield information on the quantum state of the system without causing

an unavoidable backaction. This will introduce errors in the transmission and will

therefore reveal the presence of the eavesdropper. In this case, the sifted key is uncon-

ditionally secure. In any practical communication system, however, errors naturally

occur due to imperfections in the individual components, such as the transmission
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line or the detectors. Errors caused by the system cannot be distinguished from errors

due to eavesdropping. Thus, in practical systems, the statement that any eavesdrop-

ping will unavoidably cause errors and reveal the eavesdropping, is not a sufficient

security proof. There is always a baseline system error rate, so we must take into

account that some information about the quantum transmission has been leaked.

Consequently, we must be able to put a bound on the amount of information leakage

given the error rate. Practical QKD systems handle system errors and eavesdropping

by complementing raw quantum transmission and sifting with two important addi-

tional steps: error correction and privacy amplification. Processing in both of these

steps can be performed using a public channel, it does not require the exchange of

additional qubits. These steps are described below.

2.3.3 Error correction

The error correction step serves the dual purpose of correcting all erroneously re-

ceived bits and giving an estimate of the error rate. In particular, Alice reveals some

additional information to Bob about her key that will allow him to find and correct

all of the error bits. For example, Alice and Bob can group their bits in segments and

check the parity of each segment, optimizing the segment size as the error correction

process continues. Because this information is sent over a public channel, error correc-

tion unavoidably leaks additional information to an eavesdropper. This information

leakage has to be as small as possible. The minimum number κ of bits that Alice and

Bob have to exchange publicly to correct their strings is given by a central result of

classical information theory, Shannon’s noiseless coding theorem [34]. In the case we

are interested in, where each bit is transmitted incorrectly with an error probability

e independently for each bit transmitted, the theorem asserts that:

lim
n→∞

κ

n
= −e log2 e− (1− e) log2(1− e) ≡ h(e) (2.18)

where n is the length of the sifted key. Unfortunately, Shannon’s theorem has a non-

constructive proof, which means that we know there exists an error correction scheme

disclosing only κ bits but the theorem does not provide an explicit procedure for this
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scheme. An error correcting algorithm should ideally operate very close to this limit.

At the same time the algorithm should be computationally efficient otherwise the

execution time may become prohibitively long.

Error correction algorithms can usually be divided into two classes, unidirectional

and bidirectional. In a unidirectional algorithm information flows only from Alice to

Bob. Alice provides Bob with an additional string which he uses to try to find his

errors. This makes it difficult to design algorithms that are both computationally

efficient and operate near the Shannon limit [35, 36]. In a bidirectional algorithm

information can flow both ways, and Alice can use the feedback from Bob to deter-

mine what additional information she should provide him, which makes it easier to

approach the Shannon limit. These two error correction algorithms classes can be

further subdivided into algorithms that discard errors and algorithms that correct

them. Discarding errors is usually done to prevent additional side information from

leaking to Eve. By correcting the errors we allow for this additional flow of side

information, which can be accounted for during privacy amplification. Since privacy

amplification is typically a very efficient process, algorithms which correct the errors

tend to perform better.

In subsequent sections, we will estimate the communication rate of QKD systems

based on system parameters such as channel loss and detector dark counts. These

estimations strongly depend on how well we assume the error correction algorithm

works. In the corresponding calculations we will assume the algorithm given in [35],

which is bidirectional and corrects the errors. This algorithm works within 15%-35%

of the Shannon limit, even with substantial error rates.

2.3.4 Privacy amplification

In order to account for the information leaked in the raw quantum transmission and

during error correction, the final step of privacy amplification is performed. In privacy

amplification, the error corrected key is compressed into a final secure key that can

be made as secure as desired. The amount of compression required depends on how

much information may have leaked to the eavesdropper in the previous phases of the
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transmission.

For a security proof to be useful, it must bound the amount of information leaked

during quantum transmission and error correction, and relate it to how much compres-

sion must be applied in privacy amplification. The formulation of a complete security

proof of this type is a complex subject with several open questions remaining. For

the most well studied protocol, the BB84 protocol, the earliest work on the subject

considered the simplest type of attacks, called intercept and resend attacks [37, 38].

Later work considered the problem of the generalized delayed measurements discussed

in Sec. 2.2.1. There are three categories of generalized attacks that have been consid-

ered: individual, collective, and coherent attacks. Figure 2.5 illustrates these attacks

for the case a single qubit QKD system. In an individual attack the eavesdropper is

restricted to entangling a quantum probe to each qubit independently. The probes

are stored in a quantum memory until the measurements bases are announced, and

then each probe is measured independently. Any measurement which is not forbidden

by quantum mechanics is allowed. For the BB84 protocol, security against this type

of attacks has been proven in [36, 39, 40], and these proofs were extended to practical

photon sources in [15]. Collective attacks are similar to individual attacks, but Eve is

now allowed to make a global generalized measurement on all probes considered as a

single quantum system using a quantum computer. This allows her to take advantage

of correlations introduced during error correction and privacy amplification by infor-

mation exchange. Such correlations can potentially refine an eavesdropper’s quantum

measurement. Security against collective attacks has been shown for BB84 in [41].

The most general type of attack is the coherent attack where the eavesdropper treats

the entire quantum transmission as one system, which she entangles with a probe

of very large dimensionality in any initial state. Proofs of security for BB84 against

this most general scenario exist for an ideal [42] and a practical qubit source [43].

Security proofs against individual, collective or coherent attacks with several kinds

of assumptions also exist for the BBM92 protocol [44, 45, 46, 47, 48] and the B92

protocol [49, 50, 51, 52].

In this work, we are interested in practical quantum communication systems. The

ability to perform collective or coherent attacks is well beyond today’s technological
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Figure 2.5: (a) Individual, (b) collective, and (c) coherent eavesdropping attacks
considered in security proofs for the case of a single qubit quantum key distribution
system.
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capabilities or even those of the foreseeable future. Since the future technology cannot

be used to eavesdrop on today’s quantum transmission, we will restrict our discussion

in this thesis only to individual attacks. Even these attacks assume very advanced

capabilities because Alice and Bob can delay the public bases announcement for an

arbitrarily long time, thus Eve is assumed to possess a quantum memory with an

infinitely long coherence time, which is not available today. Nevertheless, general

individual attacks are close to being realistic so it is very important to prove the

security of a quantum key distribution algorithm against these attacks. Thus, in

the following, Eve will be restricted to attack individual qubits, and she will not be

allowed to perform a coherent attack consisting of collective quantum operations and

measurements of many qubits with quantum computers. This not only corresponds

to a realistic scenario but it also makes the mathematical treatment of the problems

we will consider simpler and more intuitive.

As we mentioned in the beginning of this section, the role of the privacy amplifi-

cation step is to deduce the shrinking factor τ by which the error corrected key has

to be compressed, given the error rate calculated in the error correction step and

the bound on the amount of information leaked during the previous phases of the

transmission, so that Eve’s information about the final key is lower than a specified

value. This calculation is performed using the methods of the generalized privacy

amplification theory [53], which makes the worst case assumption that all errors are

potentially caused by eavesdropping. The result of this theory states that the length

of the final key should be set to:

r = nτ − κ− t (2.19)

where n is the length of the sifted key, κ is the number of bits disclosed during

error correction, t is a security parameter, and the shrinking factor τ is given by the

expression:

τ = − log2 pc

n
(2.20)

In the above expression, pc is the average collision probability, an important quantity
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Table 2.1: Benchmark performance of a bidirectional error correction algorithm.

e f(e)

0.01 1.16
0.05 1.16
0.1 1.22
0.15 1.35

in the analysis of privacy amplification, which is a measure of Eve’s mutual informa-

tion with Alice and Bob. As we will see in subsequent sections, a security proof for a

specific QKD protocol against specific types of attacks finds a bound on pc, and thus

determines the shrinking factor τ . This factor is a function of the error rate and the

parameters of the quantum cryptography system.

Instead of the length of the final secure key given in Eq. (2.19), it is more useful

to calculate the normalized communication rate in units of bits/s. If N is the length

of the transmission, then n = NRsifted = NsRraw, and the communication rate, or

else secure key generation rate, is defined as:

R = lim
N→∞

r

N
= lim

n→∞
Rsifted

(
τ − κ

n
− t

n

)
(2.21)

where Eq. (2.19) was used in the right part of the equation. It can be shown that

in the limit of long strings, t/n = 0. Furthermore, as we discussed in Sec. 2.3.3, the

term κ/n is the fraction of additional information disclosed during error correction.

If the error correction algorithm works at the Shannon limit, then Eq. (2.18) is valid.

However, an algorithm that is computationally feasible and works at this ideal limit

does not exist. All practical algorithms are inefficient to some extent, and this is

accounted for by introducing a function f(e), defined as the ratio of the algorithm

performance to that of the Shannon limit. Thus,

lim
n→∞

κ

n
= −f(e) [e log2 e+ (1− e) log2(1− e)] = f(e)h(e) (2.22)
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where f(e) ≥ 1 and h(e) is defined in Eq. (2.18). The function f(e) can be deter-

mined by benchmark testing the algorithm under a broad range of strings. In all

relevant calculations in this thesis we will assume that the algorithm being used is

the bidirectional algorithm proposed in [35]. This algorithm works within 35% of

the Shannon limit, even with large error rates. Table 2.1 shows values of f(e) for

several different error rates, produced by benchmark tests. These values are linearly

interpolated to determine intermediate values of f(e). Putting everything together,

the final expression for the secure key generation rate is:

R = Rsifted {τ + f(e) [e log2 e+ (1− e) log2(1− e)]} (2.23)

where Rsifted and τ depend on the QKD protocol and system parameters.

2.4 The BB84 protocol

2.4.1 The standard BB84 protocol

The previous sections have provided us with all the information necessary to examine

a quantum key distribution protocol in more detail. We will start with a protocol

that was proposed by Bennett and Brassard in 1984, the BB84 protocol [9]. In this

protocol Alice encodes information in single qubits. Although any implementation

of the photonic qubit is possible, we will consider in the following discussion the

polarization mode implementation illustrated in Fig. 2.3(b). Then, Fig. 2.6 shows a

possible way to perform the standard BB84 QKD protocol. In this implementation,

Alice uses an electro-optic modulator to encode the information in one of two bases.

The first basis is the computational basis, that is Alice uses the states |0〉 = |H〉 and

|1〉 = |V 〉 to encode binary 0 and 1, respectively. The second is the basis defined

by θ = π/4, which is referred to as the diagonal basis and is nonorthogonal to the

computational basis. From Eq. (2.14) we see that this means that in this basis Alice

uses the states
∣∣0π/4

〉
= (|H〉+ |V 〉) /

√
2 and

∣∣1π/4

〉
= (|H〉 − |V 〉) /

√
2 to encode

binary 0 and 1, respectively. Alice randomly chooses one of the two bases with equal

probability for each photon, and then randomly chooses a binary 0 or 1 again with
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Figure 2.6: Quantum key distribution system for the implementation of the BB84
protocol. BS, beamsplitter; PBSs, polarizing beamsplitters.

equal probability. Thus, she transmits the four possible states |0〉, |1〉,
∣∣0π/4

〉
, and∣∣1π/4

〉
each with probability 0.25.

Bob receives each qubit and measures it to learn the value of the bit. Because he

does not know the preparation basis, he randomly selects one of the computational

or diagonal basis with equal probability for each qubit. In the implementation shown

in Fig. 2.6, Bob uses a so called passive modulation detection apparatus to randomly

select the measurement basis and perform the corresponding measurement in that

basis. This setup uses a 50/50 beamsplitter to partition the photons into two different

polarization analyzers. An active modulation setup using an electro-optic modulator

is also possible but we will consider the passive setup because it is easier to implement

and because this setup was assumed in the security analysis of [15], whose results we

will use to calculate the communication rate for BB84. When Bob measures in the

correct basis, he learns the value of the bit with 100% probability, which means

he gets complete information. When he measures in the wrong basis, his result

is completely uncorrelated with Alice’s transmission, so he obtains no information.

After the quantum transmission has concluded, during the sifting process, Alice and

Bob reveal the bases they used without disclosing the measurement result and they

discard all bits that were measured in the wrong basis. Since Bob chooses the wrong

basis with 50% probability, the sifting parameter in this case is s = 1/2.

As we discussed in Sec. 2.3.2, if there are no errors in the system, the sifted key
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created by the previous procedure is unconditionally secure. The security relies on

the fact that an eavesdropper does not know which basis the qubit was encoded in.

She learns this information only after the qubit has been received by Bob, and at

that point it is too late to modify her measurement. Consider first the simplest pos-

sible attack Eve may perform, known as the intercept and resend attack, which is

illustrated in Fig. 2.7. Eve simply intercepts each qubit from the quantum channel,

measures its state, and then sends a qubit to Bob prepared in the same state that

was measured. But Eve does not know the preparation basis, so she must guess the

measurement basis. She can, for example, randomly choose between the computa-

tional and diagonal basis, exactly in the same way as Bob. With 50% probability she

will have a wrong guess and resend the wrong state to Bob, which will cause a 50%

error rate. Thus, the intercept and resend attacks will create an overall 25% error

rate in the transmission. This increase in errors can be used to detect the presence of

an eavesdropper. Alice and Bob can simply sacrifice a small fraction of their key over

the public channel to estimate the error rate. If errors are detected they will discard

the key.

Of course, Eve may choose to make her measurement in a basis other than the

computational basis, but it is not difficult to show that this would also result in a

25% error rate. Furthermore, the intercept and resend strategy is clearly not the

most general attack strategy. In the most general case, the eavesdropper can perform
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a generalized delayed measurement of the form discussed in Sec. 2.3.4 and illustrated

in Fig. 2.8, where she applies an optimal Positive Operator Value Measure (POVM)

on the combined system of a single qubit and her probe and subsequently makes a

delayed measurement on the probe state to obtain information about the qubit state.

Although such a general individual attack is more effective than the intercept and

resend attack, it is still true that no such measurement can yield information about

the quantum state without causing some amount of error. Any practical commu-

nication system, however, has a baseline error rate, so error correction and privacy

amplification are in practice absolutely essential.

In the case of the BB84 protocol with an ideal single-photon source, and consid-

ering general individual attacks, that is any optimal measurement on single photons

allowed by quantum mechanics, it was shown in [15] that the collision probability for

each bit pc0 is bounded as follows:

pc0 ≤
1

2
+ 2e− 2e2 (2.24)

The above expression shows that when e = 0 the collision probability is 1/2, which

means that Eve gets no information about the key, while when e = 1/2 the collision

probability is 1 and Eve can learn the entire string, for example Eve could intercept

each photon Alice sends, store it, and then send an unpolarized photon to Bob.
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Figure 2.9: Illustration of the photon number splitting eavesdropping attack.

The average collision probability for the n-bit string is calculated from Eq. (2.24) as

pc = pn
c0

, so the shrinking factor in this case is derived using Eq. (2.20):

τ = − log2 pc

n
= − log2 pc0 = − log2

(
1

2
+ 2e− 2e2

)
(2.25)

The result of Eq. (2.25) applies only in the case of an ideal single-photon source.

In practice, however, all sources sometimes generate vacuum instead of one photon,

or, most importantly, multi-photon states. For example, as we saw in Sec. 2.2.2, the

light emitted from a classical source such as a laser follows a Poisson distribution,

which means that even when the light is highly attenuated and the average photon

number is much smaller than 1 there is always a probability that the field will con-

tain more than one photon. Multi-photon states are vulnerable to photon number

splitting attacks, which can cause a security loophole in the communication [16]. As

illustrated in Fig. 2.9, in a photon number splitting (PNS) attack, Eve performs a

quantum non-demolition (QND) measurement of the photon number for each qubit

individually, and when she measures for example two photons she splits one photon

off and stores it coherently in a quantum memory, letting the second photon reach

Bob’s detection apparatus undisturbed. After the public bases announcement, Eve

measures her photon in the correct basis and therefore learns the value of the bit

with 100% probability, without causing any errors in the communication. Even if
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the probability of a multi-photon state is very small, it can still cause a significant

security problem, if the quantum channel used for the transmission is lossy. In this

case, Eve can split off one photon at the beginning of the channel, and replace the

lossy channel with a lossless one to ensure that the second photon will reach Bob, as

shown in Fig. 2.9. She can subsequently block a fraction of the single-photon states

to conserve the overall communication rate. This gives her complete information over

a large fraction of the key. At some some sufficiently high loss, Eve can resend to Bob

only the multi-photon states while blocking all single-photon states. This will render

the entire key completely insecure. Thus, the multi-photon states put an upper limit

on the amount of channel loss a system can have for secure communication to be

possible.

Photon number splitting attacks can be accounted for by appropriately modifying

the shrinking factor τ defined in Eq. (2.25). If we define β as the fraction of single-

photon states emitted by the source then τ is redefined for the case of practical sources

as:

τ = −β log2 pc0

(
e

β

)
= −β log2

[
1

2
+ 2

e

β
− 2

(
e

β

)2
]

(2.26)

The above expression shows that PNS attacks have two effects on the shrinking fac-

tor. First, each multi-photon state reveals one bit of information to Eve, which is

accounted for by the outer factor of β in the expression. Second, because Eve learns

a fraction of the key without causing errors, she can create a larger error rate on

the remainder of the key while maintaining the same overall bit error rate, which is

accounted for by normalizing e by β in the above expression.

Eqs. (2.25) and (2.26) give the privacy amplification shrinking factor for the BB84

protocol in the cases of an ideal and a practical single-photon source, respectively.

In order to evaluate the performance of the quantum key distribution system in each

case we would like to calculate the secure key generation rate given in Eq. (2.23) as

a function of several system parameters. For this, we need to define the following

quantities.

Let us first define pclick as the probability that Bob detects a photon in a given

clock cycle. Detection events may be triggered by photons sent from Alice or by dark
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counts in Bob’s detectors. These two sources are assumed independent. Thus,

pclick = psignal + pdark − psignalpdark (2.27)

If pdark and psignal are sufficiently small the probability of a simultaneous signal and

dark count detection in the same clock cycle is negligible, so we can write:

pclick ≈ psignal + pdark (2.28)

Assuming relatively high channel loss, the signal contribution to the detection events

is approximately given by the following expression:

psignal ≈ µT (2.29)

In this expression, µ is the average photon number in a clock cycle, which is 1 for an

ideal single-photon source while for a Poisson source it becomes a free variable that

needs to be optimized, as we will see below. T is the total transmission efficiency

of the quantum channel and Bob’s detection setup. If the quantum channel is an

optical fiber with loss coefficient α dB/km and length L km, the quantum efficiency

of Bob’s detector is η, and the loss of his detection setup is Ls dB, T is given by the

expression:

T = η10−(αL+Ls)/10 (2.30)

The dark count contribution to the detection events is given by:

pdark = 4d (2.31)

where the coefficient 4 is due to the presence of four detectors in the passive modu-

lation setup of Fig. 2.6. The dark counts per measurement time window d are given

by:

d = Dtw (2.32)

where D is the dark count rate of the detectors and tw is the measurement time
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window of the system. Defining ν as the repetition rate of the transmission, we can

use Eq. (2.17) and the definition of Rraw given in Sec. 2.3.1 to write the sifted key

generation rate as:

Rsifted =
1

2
Rraw =

1

2
νpclick (2.33)

where pclick is given by Eqs. (2.28)-(2.32). The error rate e includes contributions

from both the signal and dark count components. Errors from the signal component

occur because of imperfect state preparation, channel decoherence, and imperfect

polarization optics at Bob’s detection unit. The baseline system error rate b accounts

for all these effects. A second error component comes from the dark counts of Bob’s

detectors. Each dark count is completely uncorrelated with Alice’s signal and thus

causes a 50% error rate. Using the above definitions, we can write:

e =
1
2
pdark + bpsignal

pclick

(2.34)

Finally, the parameter β, which is the fraction of single-photon states emitted by the

source, is given by:

β =
pclick − pmulti

pclick

(2.35)

where pmulti is the probability that the source emits a multi-photon state. For an

ideal single-photon source, pmulti = 0 (i.e., β = 1), while for a Poisson source [22]:

pmulti ≈
µ2

2
(2.36)

Combining Eqs. (2.23) and (2.33), we can write the secure key generation rate as:

RBB84 =
1

2
νpclick{τ + f(e)[e log2 e+ (1− e) log2(1− e)]} (2.37)

where pclick is given by Eqs. (2.28)-(2.32), τ by Eq. (2.25) or Eq. (2.26) depending

on the source, e by Eq. (2.34), and β by Eq. (2.35). We have thus expressed the

secure key generation rate as a function of the fixed system parameters ν, α, L, Ls,

η, d, and b. The rate is also a function of the average photon number µ, which is

an adjustable parameter in the case of a Poisson source. From the expressions for
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psignal and pmulti given by Eqs. (2.29) and (2.36) respectively, we can observe that

psignal reduces linearly with µ while pmulti reduces quadratically. This means that

if µ is set too high, the communication rate will drop due to the increase in the

probability of multi-photon states. If it is instead set too low, the rate will again

drop and secure communication will quickly become impossible due to a decrease in

signal counts relative to the dark counts, which will dominate. It turns out that there

is a unique optimal µ which maximizes the secure key generation rate. Therefore, for

given system parameters the rate must be optimized with respect to µ to achieve the

best possible performance of the QKD system.

Before continuing with numerical calculations and comparison of the various cases,

we would like to make an initial estimation of the difference in the performance of a

QKD system employing the BB84 protocol with an ideal single-photon source and an

attenuated Poisson source. For the case of negligible error rate and pdark � psignal � 1,

Eq. (2.37) becomes:

Rpoisson ≈
1

2
ν (pclick − pmulti) (2.38)

The average photon number that maximizes this expression is given by:

µopt ∼ T (2.39)

This leads to:

Rpoisson ≈
1

4
νT 2 (2.40)

This calculation simply expresses the fact that in order for Alice and Bob to overcome

the hybrid attack launched by Eve, in which she blocks more and more single-photon

states as the channel loss increases, the average photon number must be reduced along

with the fiber loss. As a result, the secure key generation rate decreases quadratically

with the transmission of the quantum channel, as Eq. (2.40) shows. On the contrary,

for an ideal single-photon source implementation, under the same conditions we find:

Rideal ≈
1

2
νT (2.41)

which means that the rate decreases only linearly with the fiber transmission due to
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Figure 2.10: Secure key generation rate as a function of fiber length for the standard
BB84 protocol employing a Poisson or an ideal single-photon source.

the absence of PNS attacks in this case.

Fig. 2.10 shows the communication rate for fiber-optic implementations of the

standard BB84 QKD protocol employing an ideal single-photon source or an atten-

uated Poisson source, as a function of fiber length. For these calculations, the loss

coefficient of the optical fiber is set to α = 0.2 dB/km for the telecommunication

window around 1.55 µm that is of interest for long-distance QKD, the baseline sys-

tem error rate is set to b = 0.01, and in addition to the fiber losses we assume an

extra loss of Ls = 1 dB at the receiver site. The choice of the single-photon detector

is extremely important because the detector’s characteristics, namely the quantum

efficiency and dark counts, play a crucial role in the performance of the QKD sys-

tem. This will become very clear in Chapter 4, where we will describe different

single-photon detectors. In the calculations of the remainder of this chapter and in

Chapter 3, we will consider an InGaAs/InP avalanche photodiode (APD), which is

usually employed in fiber-optic QKD experiments. The typical characteristics of this

single-photon detector at 1.55 µm are a quantum efficiency of η = 10% and a dark
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count rate of D = 104 counts/s [54]. The measurement time window tw is ultimately

limited by the timing jitter of the detector, and it is set to 1 ns, thus from Eq. (2.32)

we have d = 10−5 counts/time window. The repetition rate of the experiment is set

to ν = 10 MHz, which is the best rate achieved with these detectors to date [55].

Finally, in the case of a Poisson source the average photon number µ is numerically

optimized for each value of the fiber length.

As we observe in Fig. 2.10, each curve features a cut-off distance, beyond which

secure communication is no longer possible. This is due to the increasing contribution

of the dark counts with fiber length. Furthermore, in the case of a Poisson source,

we see that the quadratic decrease of the rate with the fiber length predicted by

Eq. (2.40) is a dominant factor, making this implementation of the standard BB84

protocol unsuitable for long-distance quantum cryptography. On the contrary, the

use of an ideal single-photon source allows for a significantly better performance in

terms of both communication distance and secure key generation rate.

2.4.2 The decoy state BB84 protocol

Recent studies have shown that modifications of the BB84 protocol, such as changing

the sifting procedure [56] or introducing decoy states [54, 57, 58, 59, 60], can make

the protocol a lot more robust against the photon number splitting attacks and, con-

sequently, extend the secure key distribution distance of BB84 with Poisson sources

significantly. Although a detailed analysis of these variations is beyond the scope of

this work, we will briefly discuss the vacuum + weak decoy state protocol described

in [59] and compare it with the standard BB84 protocol, due to its importance as an

alternative for a practical quantum key distribution system.

The basic idea of the decoy state BB84 protocol is that in addition to the single-

photon pulse sequence that Alice uses to encode the quantum information, she also

sends a decoy state pulse sequence which contains no useful information. Because

Alice chooses randomly whether to send a decoy or a signal state, Eve has no way of

distinguishing the two types of states. Alice and Bob can then use the decoy states

to test the quality of the transmission and derive a lower bound for the gain and an



2.4. THE BB84 PROTOCOL 41

upper bound for the error rate of the signal single-photon states, which are the only

states used for the formation of the secret key. This procedure significantly increases

the robustness of the protocol against PNS attacks. It can be shown that the optimal

signal average photon number is in this case independent of the quantum channel

transmission, contrary to the case of the standard BB84 protocol with a Poisson

source. This means that the secure key generation rate decreases only linearly with

the fiber length, as in the case of the standard BB84 protocol with an ideal single-

photon source.

The vacuum + weak decoy state protocol uses two decoy pulse sequences, a vac-

uum decoy state that is used to estimate the background detection rate, and a weak

decoy state that is used to derive the appropriate bounds. The security of this pro-

tocol against general attacks is proven in [59], where it is shown that the secure key

generation rate is given by the following expression:

Rdecoy =
1

2
ν {−Qµf(eµ)h(eµ) +Q1[1− h(e1)]} (2.42)

where Qµ, Q1 and eµ, e1 are the gain and the error rate due to all signal states and

only the single-photon states, respectively. The values for f(e) are given in Table 2.1

and h(e) is defined in Eq. (2.18). Defining q as the average photon number of the

decoy states and T as in Eq. (2.30), the following equations relate the quantities in

Eq. (2.42) with the system parameters, assuming that Bob’s detection setup is the

one shown in Fig. 2.6 [59]:

Qµ = 1− e−µT + 4d (2.43)

Qq = 1− e−qT + 4d (2.44)

eµ =
2d+ b

(
1− e−µT

)
Qµ

(2.45)

eq =
2d+ b

(
1− e−qT

)
Qq

(2.46)

Y1 =
µ

µq − q2

(
Qqe

q −Qµe
µ q

2

µ2
− µ2 − q2

µ2
4d

)
(2.47)

Q1 = Y1µe
−µ (2.48)
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Figure 2.11: Secure key generation rate as a function of fiber length for the standard
BB84 protocol employing a Poisson or an ideal single-photon source, and the vacuum
+ weak decoy state BB84 protocol.

e1 =
eqQqe

q − 2d

Y1q
(2.49)

The optimal signal average photon number is only a function of the baseline system

error rate and is determined by the equation:

(1− µopt)e
−µopt =

f(b)h(b)

1− h(b)
(2.50)

For example, for b = 0.01, which is the value we used in our calculation in Sec. 2.4.1,

we find µopt = 0.77. This value is much higher than the average photon number

corresponding to the BB84 with a Poisson source in Fig. 2.10, which ranges between

0.02 and 0.07. This is a direct consequence of the use of decoy states to increase the

robustness to PNS attacks, and leads to a higher communication rate.

In Fig. 2.11 we compare the performance of a QKD system implementing the

standard BB84 protocol with an ideal single-photon source or a Poisson source, and

the vacuum + weak decoy state BB84 protocol, which uses a Poisson source to produce
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signal states with µ = 0.77 and weak decoy states with q = 0.05. The parameters ν, α,

Ls, η, d, and b are the same as in Sec. 2.4.1. Clearly, the decoy state protocol achieves a

much better performance than the standard BB84 protocol with a Poisson source, the

result actually closely follows the performance achieved with an ideal single-photon

source. This protocol is therefore a promising candidate for the implementation of a

practical quantum cryptography system.

2.5 The BBM92 protocol

The most well studied entangled qubit quantum key distribution protocol is the

BBM92 protocol, which was proposed by Bennett, Brassard, and Mermin in 1992 [33].

This protocol is the two-photon variant of BB84. To describe it, we consider again

the polarization mode implementation of the photonic qubit. Alice and Bob each

share a photon of an entangled photon pair, in the ideal case described by Eq. (2.13),

and generated by a source presumed to be somewhere between the two parties. Sub-

sequently, they measure the polarization state of their photon in a randomly chosen

basis, either the computational basis {|0〉 , |1〉} or the diagonal basis
{∣∣0π/4

〉
,
∣∣1π/4

〉}
,

with equal probability for each qubit, using the detection apparatus shown in Fig. 2.6.

When Alice and Bob measure their qubits in the same basis, their results should be

perfectly correlated and in the absence of errors they share an identical bit. When

they choose different bases, their results are uncorrelated, so they discard the bits that

correspond to these cases during the sifting process. This happens with probability

50%, that is the sifting parameter is s = 1/2, as in BB84.

If there are no errors in the transmission, the sifted key is unconditionally secure.

In this case, Eve cannot gain information about the key without inducing some er-

rors that can be detected by Alice and Bob and reveal her presence. In a practical

communication system, however, there is always a baseline error rate, so privacy am-

plification is required to derive a bound on the information that may have leaked to

an eavesdropper and thus calculate the shrinking factor τ . The security proof of the

BBM92 protocol, which considers general individual attacks and allows Eve to have

full control of the entangled qubit source, is presented in [48], and shows that the
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collision probability for each bit pc0 is bounded as follows:

pc0 ≤
1

2
+ 2e− 2e2 (2.51)

This result is exactly the same as for the case of the BB84 protocol with an ideal

single-photon source, as shown in Eq. (2.24). Thus, as in Eq. (2.25), the privacy

amplification shrinking factor becomes:

τ = − log2

(
1

2
+ 2e− 2e2

)
(2.52)

This indicates that there is no analog to a photon number splitting attack in BBM92.

The error rate is sufficient to calculate the privacy amplification factor. In order

to compare the performance of a QKD system implementing the BB84 and BBM92

protocols, we need to express the secure key generation rate given by Eq. (2.23) for

BBM92 as a function of the system parameters.

Defining pcoin as the probability of a coincidence in the detections between Alice

and Bob, ptrue and pfalse as the probability of a true and a false coincidence, respec-

tively, assuming that the sources of true and false coincidences are independent, and

that the probability of simultaneous detections in one clock cycle is negligible, we can

write:

pcoin = ptrue + pfalse (2.53)

In [48] it is shown that pfalse is minimized if the entangled-photon source is placed

halfway between Alice and Bob. Thus, if L is the total distance between them, the

transmission efficiency for each party is defined similarly to Eq. (2.30) as:

TL/2 = η10−(αL+2Ls)/20 (2.54)

Then, for an ideal entangled-photon source, that is a source that deterministically

generates one pair of entangled photons per clock cycle, we can write the following
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expressions:

ptrue = T 2
L/2 (2.55)

pfalse = 16d2 + 8dTL/2 (2.56)

where the last expression shows that in the case of an ideal source a false coincidence

can only occur from a photon and a dark count or from two dark counts.

In the case of a practical entangled-photon source such as the parametric down-

converter (PDC) that we discussed in Sec. 2.2.3, we need to take into account addi-

tional factors related to the parametric down-conversion process. The expressions for

ptrue and pfalse are thus modified as follows [48]:

ptrue = c1 (2.57)

pfalse = 16d2c2 + 8dc3 + c4 (2.58)

where

c1 =
1

cosh4 χ

2T 2
L/2 tanh2 χ[

1− tanh2 χ(1− TL/2)2
]4 (2.59)

c2 =
1

cosh4 χ

1[
1− tanh2 χ(1− TL/2)2

]2 (2.60)

c3 =
1

cosh4 χ

2TL/2(1− TL/2) tanh2 χ[
1− tanh2 χ(1− TL/2)2

]3 (2.61)

c4 =
1

cosh4 χ

4T 2
L/2(1− TL/2)

2 tanh4 χ[
1− tanh2 χ(1− TL/2)2

]4 (2.62)

In the above equations, c1 is the probability that Alice and Bob share an entangled

photon pair, c2 is the probability that neither receives a photon, either because the

source failed to generate a pair or because all photons were lost, c3 is the probability

that one receives a photon while the other does not, and c4 is the probability that

they both receive a photon but these photons are unpolarized and uncorrelated. The

parameter χ is a function of the nonlinear coefficient, the pump energy, and the
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interaction time of the down-conversion process, and determines the average number

of photon pairs per clock cycle. This adjustable parameter plays the same role as

the average number of photons µ in BB84 with a Poisson source. As we see from

Eqs. (2.59) and (2.62), c1 which is the probability of a real coincidence increases

with χ, and c4 which contributes to false coincidences also increases with χ, but

is of higher order. Thus, we cannot make c1 arbitrarily large without getting an

increased contribution from c4. This leads to an optimum value for χ for given

system parameters.

Finally, similarly to Eq. (2.34) the error rate is given by the expression:

e =
1
2
pfalse + bptrue

pcoin

(2.63)

Putting everything together, we can write the secure key generation rate as:

RBBM92 =
1

2
νpcoin{τ + f(e)[e log2 e+ (1− e) log2(1− e)]} (2.64)

where pcoin is given by Eqs. (2.53)-(2.62) depending on the source, τ by Eq. (2.52),

and e by Eq. (2.63).

For the case of negligible error rate and pfalse � ptrue, the above expression shows

that the secure key generation rate of BBM92 decreases linearly with the transmission

of the quantum channel, similarly to the case of the BB84 protocol with an ideal

single-photon source, as we see from Eq. (2.41). Eqs. (2.37) and (2.64) are used to

compare the performance of a quantum key distribution system implementing the

BB84 and BBM92 protocols using both ideal and practical sources. The result is

shown in Fig. 2.12. The parameters ν, α, Ls, η, d, and b are assumed the same

as in the calculations of Sec. 2.4, while in the case of a parametric down-conversion

source the parameter χ is numerically optimized for each value of the fiber length.

As we observe in Fig. 2.12, the curves for BBM92 feature a much longer cut-off

distance than their BB84 counterparts, albeit at a lower communication rate. This

is due to the absence of photon number splitting attacks in BBM92, as well as the

inherent robustness of this protocol. For example, BBM92 is less vulnerable to errors
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Figure 2.12: Comparison of the BB84 and the BBM92 protocols using both ideal and
practical sources.

caused by dark counts, since one dark count alone cannot produce an error in this

entanglement-based protocol.

2.6 Summary

In this chapter, we introduced the concept of quantum cryptography as a means for

two parties to share an unconditionally secure secret message. We discussed how we

can encode quantum information in single and entangled photons, and we then showed

that we can cleverly use the unique properties of quantum measurement together with

the results of classical and quantum information theory to perform a quantum key

distribution algorithm. Finally, we discussed in detail two prominent algorithms, the

standard and decoy state versions of the BB84 protocol, and the BBM92 protocol.

We showed the limits that practical components impose on the performance of a

quantum cryptography system implementing these protocols, and we compared such

systems. Efforts toward the experimental realization of these systems will be discussed
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in Chapter 5.

In the next chapter, we will introduce a new quantum key distribution algorithm,

the differential phase shift QKD protocol. We will prove the security of this protocol

against several types of attacks, we will compare it with the BB84 protocol, and

we will show that it opens the way to the implementation of a simple and practical

quantum cryptography system.



Chapter 3

Differential phase shift quantum

key distribution

3.1 Introduction

The quantum key distribution protocols that we described in Chapter 2 use encoding

of quantum information in two nonorthogonal bases, or else four nonorthogonal single-

photon states, as in BB84, or in entangled two-photon states, as in BBM92. The

security relies on the fact that an eavesdropper does not know the basis the qubits

were encoded in, so in principle she cannot perform a measurement without causing

disturbance in the communication system.

The possibility that encoding quantum information in only two nonorthogonal

quantum states may be sufficient to perform secure quantum key distribution was

first discussed by Bennett in 1992, who proposed the B92 protocol [29]. A system

that implements the B92 protocol using attenuated Poisson light is shown in Fig. 3.1.

In this implementation, Alice uses an unbalanced interferometer to divide a bright

coherent pulse into two pulses: a bright reference pulse that travels through the short

path of the interferometer, and a weak signal pulse that travels through the long path

and is randomly phase modulated by 0 or π. Bob receives each pair of sequential pulses

and measures it using an unbalanced interferometer identical to the one on Alice’s

site, that is an interferometer that introduces a time delay equal to the separation of

49
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Figure 3.1: Quantum key distribution system for the implementation of the B92
protocol. PM, phase modulator; UBS, unbalanced beamsplitter; DET, detector.

the two pulses as well as a random phase modulation of 0 or π to the pulse that goes

through the long path. A single-photon detector is placed at one of the interferometer

output ports. As shown in Fig. 3.1, the detector can record an event at 3 time slots.

The first slot corresponds to the bright reference pulse, which has taken the short

path in both Alice’s and Bob’s interferometers. The second slot corresponds either to

the attenuated pulse taking the short path in Bob’s interferometer or the bright pulse

taking the long path in Bob’s interferometer. Finally, the third slot corresponds to a

very weak pulse that has been attenuated twice, and is of no interest for the protocol.

The security of this protocol is based on the fact that Alice randomly prepares

and sends to Bob two nonorthogonal states. In particular, coherent states of light

with an average photon number less than 1 are highly nonorthogonal when they have

opposite phases. This is shown from Eq. (2.10), which becomes in this case:

〈α| − α〉 = e−2|α|2 (3.1)

where |α|2 = µ � 1 is the average photon number per pulse. The information is

encoded in the phase between the weak signal pulse and the accompanying reference

pulse, for example phase differences 0 and π are used to encode binary 0 and 1,

respectively. When Bob applies his measurement on the two pulses, the second time

slot corresponds to the interference between the reference pulse taking the long path

and the signal pulse taking the short path in his interferometer. If the phases of the
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interferometers of Alice and Bob are matched, constructive interference occurs and

the detector records an event, while in the opposite case destructive interference leads

to no detection event. Subsequently, Bob announces the time instances at which he

recorded an event. From her modulation data, Alice knows which phase value he has

applied, so they share in this way an identical bit string. Clearly, only the second slot

contains important key information in this protocol. The first time slot contains no

phase information, but serves to confirm that the reference pulse has actually arrived.

Therefore, it protects against an intercept and resend type of attack, in which Eve

measures each pulse pair using an apparatus similar to Bob, resends a pair in the case

of a successful measurement result, and suppresses both signal and reference pulses in

the case of an unsuccessful result, thereby eavesdropping on the transmission without

creating errors. Due to the existence of the bright reference pulse, Eve is obliged to

send a signal pulse together with the reference pulse even when her measurement was

unsuccessful. She thus creates errors which reveal her presence. The security of the

B92 protocol against more elaborate attacks, such as general individual and coherent

attacks has been studied [49, 50, 51, 52].

In the following sections, we will describe and prove the security of the differential

phase shift quantum key distribution protocol (DPS-QKD), which was proposed by

Inoue, Waks, and Yamamoto in 2002 [61, 62]. Similarly to the B92 protocol, in

the DPS-QKD protocol quantum information is encoded in the differential phase of

attenuated coherent states of light. However, this protocol does not require a bright

reference pulse, and it is a simpler and more efficient protocol compared to the B92

protocol.

3.2 The DPS-QKD protocol

A quantum key distribution system that implements the DPS-QKD protocol using

attenuated Poisson light is shown in Fig. 3.2. Alice generates a train of coherent

pulses, which are attenuated such that the average photon number per pulse is less

than 1, randomly phase modulated by 0 or π, and sent over the quantum channel
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Figure 3.2: Quantum key distribution system for the implementation of the DPS-
QKD protocol. PM, phase modulator; ATT, attenuator; BS, beamsplitter; DET,
detector.

to Bob. Each photon coherently spreads over many pulses with a fixed phase modu-

lation pattern. In the receiver side, Bob divides the incoming pulses into two paths

and recombines them using 50/50 beamsplitters. The time delay introduced by his

interferometer is equal to the inverse of the clock frequency, or else equal to the time

separation between the sequential pulses. Single-photon detectors are placed at the

output ports of the second beamsplitter. After passing through Bob’s interferometer,

consecutive pulses interfere at the output beamsplitter, and which detector records

a detection event depends on the phase difference of the two pulses. If the interfer-

ometer is appropriately adjusted, detector 1 in Fig. 3.2 records an event when the

phase difference is 0 and detector 2 records an event when the phase difference is π.

Because the average photon number per pulse is less than one, Bob observes detection

events only occasionally and at random time instances. Bob announces publicly the

time instances at which a photon was detected, but he does not reveal which detector

detected it. From her modulation data, Alice knows which detector in Bob’s site

recorded the event. Thus, by designating detection events recorded by detector 1 and

2 as bits 0 and 1, respectively, they can share an identical bit string. Since all bits

are used during the key formation, the sifting parameter in the case of the DPS-QKD

protocol is s = 1.

If there are no errors in the system, the sifted key created by the described proce-

dure is unconditionally secure. However, as we discussed in Chapter 2, all practical
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systems have a baseline error rate, and therefore error correction and privacy amplifi-

cation are essential. For a QKD protocol to be useful, it is crucial to prove its security

against several types of eavesdropping attacks, that is to derive the privacy amplifi-

cation shrinking factor that ensures the generation of a secure key. Such a security

analysis for the DPS-QKD protocol is the subject of the remainder of this chapter,

and it is extremely important, since from Fig. 3.2 it is clear that this protocol requires

a very simple system architecture and mainly components that are extensively used

in current telecommunication systems. It therefore has a great potential for enabling

the implementation of a simple and practical QKD system.

3.3 Security proof against restricted attacks

In general terms, the security of the DPS-QKD protocol stems from the nondeter-

ministic collapse of a wavefunction in a quantum measurement. In particular, if the

number of pulses in the coherence time of Alice’s source is np, then each of Alice’s

photons is in a superposition of all the states that correspond to the np time instances

with the appropriate phase applied to each one of them. The overall wavefunction

is a product state of these individual photon states. At Bob’s site, a detection event

at a certain time instance n reveals the phase difference between the pulses in time

instances n and n + 1, which corresponds to one bit of information. However, these

detection events occur completely randomly, so an eavesdropper cannot determinis-

tically collapse the wavefunction in the same time instance and obtain the same bit

of information as Bob.

The above argument will become more clear in the next section where we consider

the beamsplitter attack. In this attack, Eve obtains coherent copies of the quantum

state of the pulses sent by Alice by inserting a beamsplitter in the transmission line.

As we will see, this attack does not introduce any errors in the transmission and cannot

be distinguished from channel loss. Along with the beamsplitter attack, Eve can also

undertake an intercept and resend attack as long as the bit error rate induced by this

attack is kept smaller than the baseline system error rate. In the following, we analyze

the security of the DPS-QKD protocol against this set of restricted eavesdropping
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attacks, where we only allow Eve to perform specific actions and measurements. In

order to derive the secure key generation rate for the DPS-QKD protocol in this

case, we calculate the privacy amplification shrinking factor τ , defined in Eq. (2.20)

as a function of the average collision probability pc, for the hybrid beamsplitter and

intercept and resend attack.

3.3.1 The beamsplitter attack

In the beamsplitter attack, which is illustrated in Fig. 3.3, Eve uses a beamsplitter

to obtain coherent copies of the quantum state of the pulses that Alice sends to Bob.

She also replaces the lossy quantum channel with a lossless one, and the imperfect

detectors at Bob’s receiver unit with perfect ones. The assumption that Eve can

replace Bob’s imperfect detectors with perfect ones may seem unrealistic. However,

there are some ways that Eve can improve the characteristics of Bob’s detectors.

For example, Eve can change the wavelength of the photons to a region of higher

detection efficiency. A similar argument can be applied to the dark count rate. In

order to account for this, this security analysis is based on the conservative assumption

that Eve has control of the quantum efficiency and dark count rate of Bob’s detectors.

Without Eve’s intervention, Bob’s probability of detecting a signal photon is identical

to the one given in Eq. (2.29) and repeated here:

psignal ≈ µT (3.2)

where µ is the average number of photons per pulse and T is the total transmission

efficiency of the quantum channel and Bob’s detection setup. As in Eq. (2.30), if the

quantum channel is an optical fiber with loss coefficient α dB/km and length L km,

the quantum efficiency of Bob’s detector is η, and the loss of his detection setup is Ls

dB, T is given by the expression:

T = η10−(αL+Ls)/10 (3.3)
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Figure 3.3: Illustration of the beamsplitter eavesdropping attack in DPS-QKD.

In order for Eve to avoid being revealed due to a decrease in the count rate, she has to

leave the probability of signal detection unaltered, so she has to set the beamsplitter

transmission equal to T . Then, one beam with an average photon number of npµT ,

where np is again the number of pulses in the coherence time of the source, is sent to

Bob through her lossless fiber, while the other beam with an average photon number

of npµ(1 − T ) is used by Eve. One possibility for Eve is to measure the pulses that

she picks up with an interferometer identical to Bob’s. Each photon in her np-slot

wavefunction is detected completely randomly at one of np different time instances.

Thus, the probability that she obtains the phase modulation data at a desired time

instance, that is the probability that she obtains the value of a bit at a certain time

given that Bob has detected a photon at that time is equal to µ(1− T ).

The above result gives Eve’s information gain relative to Bob when we assume

that Eve is not equipped with a quantum memory with an infinitely long coherence

time. However, if we allow Eve to have such a quantum memory, her strategy can be

changed in order to increase her information gain. In this case, she stores the pulses

in her quantum memory, as shown in Fig. 3.3, and waits for Bob’s announcement. It

is important to note that Alice and Bob can delay the public announcement for an ar-

bitrarily long time, so Eve’s quantum memory must have an infinitely long coherence

time. After Bob announces the time instances at which he recorded detection events,
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Eve applies her measurement using an interferometer with an optical switch instead

of a 50/50 beamsplitter at the input side, which allows her to interfere only the pulses

for which she is aware that Bob has obtained the differential phase information. This

strategy increases Eve’s probability of gaining bit information to 2µ(1− T ).

It is clear from this analysis that the beamsplitter attack does not cause any error

in the communication between Alice and Bob. Hence, it gives full information, which

corresponds to a collision probability for each bit of pc0 = 1, to Eve for a fraction of

bits equal to 2µ(1 − T ). For the remaining 1 − 2µ(1 − T ) fraction of the bits, Eve

does not obtain any information, which means that pc0 = 1/2 for these bits. This

result shows that the mutual information between Eve and Bob is independent of the

system transmission efficiency T , if T � 1. Therefore, in the case of T � 1, the

mutual information between Eve and Bob can be made small simply by choosing a

small µ that is independent of T .

3.3.2 The intercept and resend attack

Taking advantage of the system’s inherent error rate, Eve can also apply an intercept

and resend attack to some of the pulses that are sent to Bob after her beamsplitter.

In this attack, which is illustrated in Fig. 3.4, Eve intercepts some pulses, lets them

pass through an interferometer identical to Bob’s, measures the phase differences,

and according to her measurement result she resends an appropriate state to Bob.

In the case of an inconclusive or vacuum outcome she sends the vacuum state, while

when she measures a single photon she sends a photon split into two pulses with the

correct phase difference 0 or π applied between them. When this photon arrives at

Bob’s site, he counts the photon possibly at three time instances, as shown in Fig. 3.4.

When Bob measures the central time instance, he does not detect the eavesdropping

because he obtains the correct phase difference. However, with 50% probability he

measures the side time instances, which yield random, uncorrelated results, and with

50% probability these lead in error. Consequently, this attacks induces an overall 25%

bit error rate in the communication between Alice and Bob. This means that if the

error rate of the system is e, Eve can apply her attack to a fraction 4e of the photons
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Figure 3.4: Illustration of the intercept and resend eavesdropping attack in DPS-
QKD.

in order not to exceed this error rate. With 50% probability, which is the probability

that Bob measures the central time instance for a resent photon, Eve obtains full

information for these intercepted photons, which means that pc0 = 1 for a fraction 2e

of the bits. Eve does not obtain any information on the remaining bits.

To summarize the above arguments, taking into account the hybrid attack con-

sisting of the beamsplitter and intercept and resend attacks, we find that the fraction

of bits for which Eve has no information, that is for which pc0 = 1/2, is equal to

1− 2µ(1−T )− 2e, while she obtains full information for the rest of the bits. Thus, if

n is the length of the sifted key, the average collision probability between bits owned

by Bob and Eve is given by the expression:

pc = pn
c0

=

(
1

2

)n[1−2µ(1−T )−2e]

(3.4)

Then, the privacy amplification shrinking factor in this case is derived using Eq. (2.20):

τ = − log2 pc

n
= 1− 2µ(1− T )− 2e (3.5)

This result concludes the security analysis of the DPS-QKD protocol against the

beamsplitter and intercept and resend attacks. Before continuing with a comparison



58 CHAPTER 3. DIFFERENTIAL PHASE SHIFT QKD

of the DPS-QKD and BB84 protocols, we would like to briefly mention a security con-

cern that was pointed out in [63], where it was reported that the security of a QKD

system implementing the BB84 protocol with an attenuated Poisson source without

phase randomization is seriously compromised if Eve obtains phase reference informa-

tion of the source. Although a careful analysis in the case of the DPS-QKD protocol

is required, such an attack is possibly inefficient for this protocol for two reasons.

First, in most implementations of the phase-encoded BB84 protocol a strong pulse

is required [64, 65, 66], so the phase reference can be easily obtained by measuring

the phase of this pulse. However, the retrieval of the phase reference for homodyne

detection is hard for the DPS-QKD protocol, which employs a weak binary PSK sig-

nal, because of the intrinsic quantum noise of a local oscillator. Second, even if such

a reference local oscillator wave is reconstructed, adaptive homodyne detection has a

lower bound of bit error rate due to the intrinsic overlap of two coherent states with

an average photon number of 0.2 or less.

After completing the derivation of the privacy amplification shrinking factor in

Eq. (3.5), we would now like to express the secure key generation rate given in

Eq. (2.23) as a function of the system parameters for the DPS-QKD protocol, as

we did for the BB84 and BBM92 protocols in Chapter 2. Following the discussion in

Sec. 2.4, the probability that Bob detects a photon in a given clock cycle is given by

the expression:

pclick ≈ psignal + pdark (3.6)

where the signal contribution the detection events is given by Eq. (3.2), while the

dark count contribution is given by the expression:

pdark = 2d (3.7)

In the above equation, the coefficient 2 is due to the presence of two detectors in the

receiver unit of Fig. 3.2, and the dark counts per measurement time window d are

given by Eq. (2.32). If ν is the repetition rate of the transmission, because the sifting

parameter is 1 in the DPS-QKD protocol as we discussed in Sec. 3.2, similarly to
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Eq. (2.33) we can write the sifted key generation rate as follows:

Rsifted = νpclick (3.8)

Finally, the error rate is given by the expression:

e =
1
2
pdark + bpsignal

pclick

(3.9)

where b is the baseline system error rate. Based on the above definitions, we can write

the equation for the secure key generation rate of the DPS-QKD protocol against the

hybrid beamsplitter and intercept and resend attack as:

RDPS-QKD = νpclick{τ + f(e)[e log2 e+ (1− e) log2(1− e)]} (3.10)

where τ is given by Eq. (3.5) and f(e) characterizes the performance of the error

correction algorithm.

For the case of negligible error rate and pdark � psignal � 1, Eq. (3.10) becomes:

RDPS-QKD ≈ νµT (1− 2µ) (3.11)

This means that the secure key generation rate for the DPS-QKD protocol decreases

linearly with the fiber transmission. This characteristic illustrates the robustness of

this protocol to the photon number splitting attacks, and is identical to the cases

of the standard BB84 protocol with an ideal single-photon source and the decoy

state BB84 protocol as we discussed in Sec. 2.4, as well as a slightly modified B92

protocol [52].

In Fig. 3.5 we compare the performance of a fiber-optic QKD system implementing

the standard BB84 protocol with an ideal or a Poisson source, the decoy state BB84

protocol, and the DPS-QKD protocol. The calculations for the BB84 protocol are

based on the analysis of Sec. 2.4, while for the DPS-QKD protocol we use Eq. (3.10).

All the fixed parameters of the system are assumed the same as in Sec. 2.4, that is

ν = 10 MHz, α = 0.2 dB/km for 1.55 µm, Ls = 1 dB, η = 10%, d = 10−5 counts/time



60 CHAPTER 3. DIFFERENTIAL PHASE SHIFT QKD

0 20 40 60 80 100 120 140 160
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Fiber length (km)

S
ec

ur
e 

ke
y 

ge
ne

ra
tio

n 
ra

te
 (

bi
ts

/s
)

BB84 − Poisson
BB84 − Decoy
BB84 − Ideal
DPS−QKD

Figure 3.5: Secure key generation rate as a function of fiber length for the standard
and decoy state BB84 protocol, and the DPS-QKD protocol.

window, and b = 0.01. For the decoy state protocol the average number of photons per

pulse is set to µ = 0.77, while the rate is numerically optimized with respect to µ for

each value of the fiber length in the case of the BB84 protocol with a Poisson source

and the DPS-QKD protocol in order to achieve the best possible performance of the

QKD system. As we expect from the security analysis of the DPS-QKD protocol,

this protocol features characteristics very similar to the standard BB84 protocol with

an ideal single-photon source and the decoy state BB84 protocol, and significantly

outperforms the standard BB84 protocol with Poisson light. This is a very important

conclusion because the DPS-QKD protocol can be implemented with conventional

lasers, detectors and linear optics, and has a very simple system architecture. This

protocol is therefore a very practical and appealing candidate for a long-distance

quantum cryptography system. Indeed, we will describe the implementation of such

a system in Chapter 5.
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3.3.3 A small modification

An interesting improvement in the performance of the DPS-QKD protocol, especially

in the realistic case where Eve is not allowed to possess a quantum memory with an

infinitely long coherence time, occurs when we consider a slight modification to the

protocol. In particular, let us assume that Bob does not use an interferometer that

introduces a time delay equal to the time separation between sequential pulses ∆t

as shown in Fig. 3.2, but rather he randomly modulates the delay time N∆t in his

interferometer by randomly choosing a positive integer N . In this case, after passing

through Bob’s interferometer, the pulses interfere at Bob’s output beam splitter, and

which detector clicks depends on the phase difference of the two pulses separated by a

time N∆t and not on the phase difference between two consecutive pulses. During the

sifting phase, Bob announces the time instances at which a photon was detected as

well as the randomly chosen positive integer N . When this modification is assumed,

the beamsplitter and intercept and resend attacks are also modified as follows.

When Eve is not equipped with a quantum memory with an infinitely long coher-

ence time, we calculated in Sec. 3.3.1 that the probability that she obtains the phase

modulation data at a desired time instance by applying the beamsplitter attack is

equal to µ(1 − T ). But because of the modification in the protocol, Eve also has to

choose independently from Bob a positive integer M so that the delay time in her

interferometer is equal to M∆t. Then, the probability that Eve’s randomly chosen

M matches Bob’s N is equal to 1/N . Thus, in this case the probability that Eve

gains bit information relative to Bob is µ(1 − T )/N . On the other hand, when Eve

is equipped with an ideal quantum memory, the modification in the protocol does

not give Bob any advantage over Eve, and so in this case the information gain is the

one calculated in Sec. 3.3.1, that is 2µ(1− T ). In summary, Eve does not obtain any

information for a fraction 1 − µ(1 − T )/N of the bits when she does not possess a

quantum memory, and a fraction 1− 2µ(1− T ) of the bits when she does.

In the modified intercept and resend attack, Eve intercepts pulses with a time

interval M∆t, lets them pass through an interferometer with a delay M∆t, mea-

sures the differential phase, and according to her measurement result she sends an

appropriate state to Bob, as described in Sec. 3.3.2. In this case, when Bob picks



62 CHAPTER 3. DIFFERENTIAL PHASE SHIFT QKD

up an identical delay, N = M , and measures the central time instance, he does not

detect the eavesdropping. However, with probability 1 − 1/2N he chooses another

delay, N 6= M , or measures the side time instances, which yield uncorrelated results,

and with probability 1/2 these lead in error. Hence, this attack causes a bit error of

(1− 1/2N)/2 in the communication between Alice and Bob. If the error rate of the

system is e, Eve is allowed to apply her attack to a fraction 2e/(1 − 1/2N) of the

photons in order not to exceed this error rate. With probability 1/2N , which is the

probability that Bob chooses the same delay as Eve and measures the central time

instance, Eve obtains full bit information for these intercepted photons. Thus, she

obtains full information for a fraction e/(N − 1/2) of the bits.

Summarizing the above discussion, we find that taking into account the modified

hybrid beamsplitter and intercept and resend attack the fraction of bits for which Eve

has no information, that is for which pc0 = 1/2, is equal to 1−µ(1−T )/N−e/(N−1/2)

when she is not equipped with an ideal quantum memory, and 1−2µ(1−T )−e/(N−
1/2) when she is. Thus, similarly to Eqs. (3.4) and (3.5) we have derived the privacy

amplification shrinking factor:

τ =

{
1− µ(1−T )

N
− e

N−1/2
without quantum memory

1− 2µ(1− T )− e
N−1/2

with quantum memory
(3.12)

The above result and Eq. (3.10) are used to compare the performance of a QKD

system implementing the DPS-QKD protocol under the assumptions that Eve does

and does not possess a quantum memory with an infinitely long coherence time,

and with various values for the time delay parameter N . The parameters for the

numerical calculations are exactly the same as in the previous section, and the result

is shown in Fig. 3.6. The curve for the case of a quantum memory and N = 1

corresponds to the curve for the DPS-QKD protocol in Fig. 3.5. As we observe in

Fig. 3.6, when Eve is equipped with an ideal quantum memory introducing a time

delay parameter N does not have a significant effect on the performance of the system.

The beamsplitter attack term in Eq. (3.12), which is independent of N in this case,

dominates. However, when a realistic scenario is assumed, where Eve does not possess

a quantum memory with an infinitely long coherence time, we observe a significant
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Figure 3.6: Secure key generation rate as a function of fiber length for the DPS-QKD
protocol employing time delay parameters N = 1 or 10 when Eve is equipped with
an ideal quantum memory and N = 1, 10 or, 100 when she is not.

effect on the performance of the system. Indeed, in this case introducing a time

delay parameter N greater than 1 enhances both the secure key generation rate and

the communication distance of the system considerably. Nevertheless, the advantage

becomes comparatively smaller as N increases to values greater than 10. This result

complements the conclusion of the previous section that the DPS-QKD protocol offers

the prospect of a simple and practical quantum cryptography system.

3.4 Security proof against general individual at-

tacks

The security proof for the DPS-QKD protocol against restricted attacks gave us all

the basic information and intuition required to comprehend the nature of this protocol

and the reason why it is secure. However, it is important to prove the security of
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the protocol against a more general set of eavesdropping attacks. As we discussed in

Sec. 2.3.4, in this work we are interested in practical communication systems, we will

therefore restrict our discussion only to individual attacks, such as the ones illustrated

in Figs. 2.5(a) and 2.8. In these attacks, Eve is assumed to attack individually each

photon, which in the DPS-QKD protocol spreads over many pulses with a fixed phase

modulation pattern.

We start our analysis by giving a mathematical description of individual attacks.

In the DPS-QKD protocol, Alice prepares a state, denoted as |ψ〉, which is a train of

coherent pulses. These pulses are phase modulated by 0 or π, and we denote φn the

phase induced by the phase modulator on a pulse in time slot n. Then, if Alice sends

np coherent pulses, state |ψ〉 is written as:

|ψ〉 =

np−1⊗
n=0

∣∣αei(φ+φn)
〉

(3.13)

where φ is the initial phase of the coherent state. In order to rewrite this state so

that it describes a series of photons generated at certain time instances rather than

a series of coherent state pulses, we define the operator:

ψ̂† =
1
√
np

np−1∑
n=0

eiφn â†n (3.14)

where â†n is the creation operator for a photon in time slot n. We assume that the

time slots do not overlap, so these operators commute with each other. Then, using

the representation of the coherent state in the Fock state basis shown in Eq. (2.7)

and the properties of the creation operators [14] we can rewrite Eq. (3.13) as follows:

|ψ〉 =
∞∑

j=0

√
P (j)eijφ

(
ψ̂†

)j

√
j!

|0〉 =
∞∑

j=0

√
P (j)eijφ |ψj〉 (3.15)

In the second part of the above equation we have defined |ψj〉 =
(
ψ̂†

)j

/
√
j!. P (j)

is a Poisson distribution such as in Eq. (2.8) with an average photon number npµ,
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where µ = |α|2:

P (j) = e−npµ (npµ)j

j!
(3.16)

Because we assume that Eve does not possess the phase reference of the source, the

state that she actually observes is the state in Eq. (3.15) averaged over the different

values of the phase φ, which results in the mixed state:

ρeve =
∞∑

j=0

P (j) |ψj〉 〈ψj| (3.17)

We consider now the following eavesdropping strategy. Eve measures the photon

number in the np-slot wavefunction using a quantum non-demolition (QND) mea-

surement. Then, she sends to Bob npµT photons, where T is the total transmission

efficiency of the quantum channel and Bob’s detection setup, and she stores npµ(1−T )

photons coherently to be measured after Alice and Bob have revealed all classical in-

formation. In the presence of system errors, Eve can also attack the fraction of

photons that she has transmitted to Bob by entangling the photons with a probe

state. The first component of the eavesdropping strategy corresponds to the photon

number splitting attacks in the BB84 protocol, and we will formally show below that

the information that Eve can extract from this attack is exactly the same as the one

we derived using simple arguments for the beamsplitter attack in Sec. 3.3.1. The

second component of the strategy is equivalent to the general optimal measurement

attack on single-photon states illustrated in Fig. 2.8 for the BB84 protocol. One

simplified attack in this category is the intercept and resend attack we discussed in

Sec. 3.3.2. The amount of information that Eve can gain from the general optimal

measurement attack was studied in [67], and we will use the result of this study to

complete our discussion of the security of the DPS-QKD protocol against general

individual attacks.

Our analysis for the photon splitting attack assumes that Eve attacks each pho-

ton individually, that is the photons that she has kept are individually stored and

measured. This assumption implies that Eve cannot use the measurement result of

one photon to refine her measurement on the rest of the photons. Thus, since she
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has kept npµ(1−T ) photons, she has npµ(1−T ) copies of the state ψ̂† |0〉, which she

stores coherently until the detection time instance information is publicly disclosed

by Bob. Then, if B is the set of all time instances in which a detection event was

observed, and B̄ is the set of all other time instances, we can write the state ψ̂† |0〉
using Eq. (3.14) as follows:

ψ̂† |0〉 =
1
√
np

np−1∑
n=0

eiφn â†n |0〉

=
1
√
np

∑
m∈B

eiφm

(
â†m + ei∆φm â†m+1

)
+

∑
n∈B̄,n6=m+1

eiφn â†n

 |0〉 (3.18)

In the above equation, ∆φm is the phase difference between two pulses that is re-

vealed from the time instance announcement and can either take the value 0, which

corresponds to the detection event recorded by detector 1 and encodes bit 0, or

the value π, which corresponds to the event recorded by detector 2 and encodes

bit 1. Subsequently, we assume that Eve can apply the unitary transformation

â†m →
(
0̂†m + 1̂†m

)
/
√

2 and â†m+1 →
(
0̂†m − 1̂†m

)
/
√

2, where 0̂†m and 1̂†m are orthog-

onal modes. In this case, the term in parentheses in the first summation of Eq. (3.18)

becomes:

â†m + ei∆φm â†m+1 → 1√
2

(
0̂†m + 1̂†m

)
+ ei∆φm

1√
2

(
0̂†m − 1̂†m

)
→ 1√

2

(
1 + ei∆φm

)
0̂†m +

1√
2

(
1− ei∆φm

)
1̂†m

→

{ √
2 0̂†m when ∆φm = 0 (bit 0)

√
2 1̂†m when ∆φm = π (bit 1)

(3.19)

Then, the state of each of the photons that Eve has kept is given by the expression:

ψ̂† |0〉 =
1
√
np

∑
m∈B

eiφmx̂†m +
∑

n∈B̄,n6=m+1

eiφn â†n

 |0〉
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=
1
√
np

∑
m∈B

eiφm |xm〉+
∑

n∈B̄,n6=m+1

eiφn |an〉

 (3.20)

In this equation x̂†m is equal to 0̂†m when Alice has sent bit 0 and 0̂†m when she has sent

bit 1. Also, in the second part we have defined |xm〉 = x̂†m |0〉 and |an〉 = â†n |0〉. This

expression shows that Eve’s photons are in a superposition of all the bits of the secret

key, plus some irrelevant time instances where no photons were detected. Because Eve

does not have a phase reference, her state is actually the state in Eq. (3.20) averaged

over the different values of the phases φm, which similarly to Eq. (3.17) leads in the

mixed state:

ρeve =
1

np

2
∑
m∈B

|xm〉 〈xm|+
∑

n∈B̄,n6=m+1

|an〉 〈an|

 (3.21)

From the above result, we see that each of the photons that Eve has kept reveals bit

information to Eve for each of Bob’s detection events with probability 2/np. Then,

given that she has kept npµ(1 − T ) photons and she has transmitted to Bob npµT

photons, we find that Eve’s information gain relative to Bob is equal to (2/np) ×
npµ(1−T )×npµT/npµT = 2µ(1−T ). We have therefore derived the result that using

the photon splitting attack Eve gains bit information for a fraction 2µ(1− T ) of the

bits, which is exactly the same result we found for the beamsplitter attack in Sec. 3.3.1.

As we noted in the discussion of that section, for small T the amount of information

that Eve gains with the photon splitting attack is independent of the quantum channel

loss, contrary to the case of the BB84 protocol with a Poisson source. This indicates

robustness of the DPS-QKD protocol to photon number splitting attacks. In other

words, this protocol is a lot less sensitive to the photon statistics of the source.

We showed that due to photon splitting Eve can obtain complete information for

a fraction 2µ(1 − T ) of the sifted key. When T � 1 and µ is small this attack is

relatively ineffective for the DPS-QKD protocol. However, as we discussed earlier, in

the presence of channel loss Eve can also apply an optimal measurement attack on

some of the photons transmitted to Bob. This case was analyzed in [67], where only

individual attacks were considered, that is Eve is assumed to attach an individual

probe state to each single photon, and then measures the probes independently after



68 CHAPTER 3. DIFFERENTIAL PHASE SHIFT QKD

all classical information has been revealed. In this analysis, it was shown that the

collision probability for each bit pc0 is bounded as follows:

pc0 ≤ 1− e2 − (1− 6e)2

2
(3.22)

This equation applies when the error rate is in the range [0, 6/38]. The value e = 6/38

is the point at which the equation is maximized. When the error rate exceeds this

value the collision probability saturates, which means that there is no attack that

allows Eve to have complete information on the key. This is in contrast to the BB84

protocol, where from Eq. (2.24) we see that Eve can learn the entire string for example

by intercepting each photon Alice sends, storing it and then sending an unpolarized

photon to Bob, simultaneously inducing an error rate of e = 1/2.

Taking into account the results of the photon splitting and general individual

attacks analysis, we find that the average collision probability for the n-bit string is

given by the expression:

pc = pn
c0

=

[
1− e2 − (1− 6e)2

2

]n[1−2µ(1−T )]

(3.23)

The privacy amplification shrinking factor in this case is derived using Eq. (2.20):

τ = − log2 pc

n
= − [1− 2µ(1− T )] log2

[
1− e2 − (1− 6e)2

2

]
(3.24)

As we observe in the above equation, the factor due to the photon number splitting

attack does not enter into the expression due to the optimal measurement attack.

This is in contrast to the BB84 protocol, where as we see in Eq. (2.26), the error rate

in the optimal measurement attack term is normalized by the fraction of single-photon

states β to account for the fact that Eve obtains bit information for the multi-photon

states without creating any errors. In the case of the DPS-QKD protocol, however,

detection events due to the photon splitting attack occur probabilistically, so Eve

cannot increase the error rate on the remainder of the key because she only knows
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Figure 3.7: Comparison of restricted and general individual attacks in DPS-QKD.

which detection events have given her bit information after the quantum transmission

has ended.

The result of Eq. (3.24) completes the security proof of the DPS-QKD protocol

against general individual attacks. Using this equation for the general individual at-

tacks, Eq. (3.5) for the restricted attacks, and Eq. (3.10) for the secure key generation

rate as a function of the system parameters, we can compare the performance of a

QKD system implementing the DPS-QKD protocol for the two types of attacks we

have considered. All the system parameters for the numerical calculations are as-

sumed the same as in the previous sections, and the result is shown in Fig. 3.7. This

figure shows that the communication rate is always lower for the general individual

attacks than it is for the restricted attacks. This is expected because the security

proof for the first type of attacks allows Eve to use more sophisticated measurement

techniques and gives her the full advantages that quantum mechanics allows; she

therefore obtains more bit information and Alice and Bob need to compress their key
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by a larger fraction in order to guarantee the security of the transmission. Never-

theless, the difference in the performance is not very large. This is due to the fact

that the system performance is mostly determined by the robustness of the DPS-

QKD protocol to the photon number splitting attacks, which was accounted for in

the security analysis against both restricted and general individual attacks.

3.5 Security proof against sequential attacks

In this last section of our security analysis of the DPS-QKD protocol, we consider

another type of eavesdropping attack, which we call sequential attack. This type of

attack is not an individual attack, that is it does not satisfy the major assumption

of the previous section that Eve measures each photon individually and does not

use the measurement result on one photon to refine her measurement on the other

photons. Thus, the sequential attacks are not accounted for in the security analysis

of Sec. 3.4. However, it is a conceptually simple attack and raises a security concern

for the DPS-QKD protocol especially at high channel losses, so it is important to

analyze the security of the protocol against this type of attack.

The sequential attack is an extension of the intercept and resend attack shown in

Fig. 3.4. In this attack, which is illustrated in Fig. 3.8, Eve uses an interferometer

identical to Bob’s to intercept the pulses that Alice sends to Bob. But now instead

of waiting until she measures a single photon and then sending the appropriately

prepared state to Bob as she did in the intercept and resend attack, she waits for k

consecutive detection events. Whenever such an event occurs, Eve can reconstruct

a k + 1 time-slot state with the correct phase differences applied between the pulses

and send it to Bob, as shown in Fig. 3.8 for the case of k = 3 consecutive detec-

tion events. Of course, the probability of observing k consecutive detection events

decreases exponentially with k. If µ is the average number of photons per pulse, then

the probability of k consecutive events is µk. In order for Eve to avoid being revealed

due to a decrease in the count rate, she has to keep this probability as large as Bob’s

detection probability µT , so:
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Figure 3.8: Illustration of the sequential eavesdropping attack in DPS-QKD.

µk = µT (3.25)

which means that the following condition must be satisfied:

k = logµ T + 1 (3.26)

When the reconstructed state arrives at Bob’s site, he counts photons possible

at k + 2 time instances, as shown in Fig. 3.8. When Bob measures the central time

instances, he does not observe the eavesdropping because he obtains the correct phase

difference results. However, with a probability of 1/(k+1) he measures the side time

instances, which yield uncorrelated results and lead in error with probability 1/2.

Consequently, this attacks induces an overall error rate of:

eseq =
1

2(k + 1)
(3.27)

This means that if the system error rate is e, Eve can apply her attack to a fraction

e/eseq = 2(k+ 1)e of the bits in order not to exceed this error rate. With probability

k/(k+ 1), which is the probability that Bob measures the central time instances, she

obtains full information for these intercepted bits, hence pc0 = 1 for a fraction 2ke

of the bits. On the other hand, Eve does not gain any information on the remaining



72 CHAPTER 3. DIFFERENTIAL PHASE SHIFT QKD

0 20 40 60 80 100 120 140
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Fiber length (km)

S
ec

ur
e 

ke
y 

ge
ne

ra
tio

n 
ra

te
 (

bi
ts

/s
)

Sequential attcks
Individual attacks

Figure 3.9: Comparison of sequential and general individual attacks in DPS-QKD.

bits, that is pc0 = 1/2 for a fraction 1 − 2ke of the bits. Thus, the average collision

probability for the n-bit long sifted key is given by the expression:

pc = pn
c0

=

(
1

2

)n(1−2ke)

(3.28)

Then, the privacy amplification shrinking factor in the case of the sequential attack

is derived using Eq. (2.20):

τ = − log2 pc

n
= 1− 2ke = 1− 2e

(
logµ T + 1

)
(3.29)

where for the second part of the above equation we have used the condition of

Eq. (3.26). In Fig. 3.9 we compare the performance of a QKD system implementing

the DPS-QKD protocol for the cases of general individual and sequential attacks,

based on Eqs. (3.24), (3.29), and (3.10). We use the same values for the system pa-

rameters as in the previous sections. For the individual attacks, the average photon

number per pulse µ is optimized as before for each value of the fiber length. Then,
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the same optimal value of µ is used to evaluate the secure key generation rate for

sequential attacks, in order to compare the effectiveness of the two types of attacks

under the same operating conditions. As we can see in Fig. 3.9, the rate for general

individual attacks is always lower than the one for sequential attacks, indicating that

it is more advantageous for Eve to perform individual attacks rather than sequen-

tial attacks. This means that the security against individual attacks implies security

against sequential attacks as well. Of course, we do not know if the sequential at-

tacks are optimal, or if a more sophisticated eavesdropping scheme could produce

better results for Eve. To answer this question, a more general security proof will be

required.

3.6 Summary

In this chapter, we introduced the differential phase shift quantum key distribution

protocol, and we discussed the security of this protocol against a set of restricted

attacks, general individual attacks including photon splitting attacks, and sequential

attacks. The security proofs revealed that the most crucial characteristic of the DPS-

QKD protocol is its robustness to photon number splitting attacks. This feature

significantly enhances the performance of a QKD system implementing this proto-

col in terms of both secure key generation rate and communication distance. Most

importantly, the DPS-QKD protocol achieves this using a very simple system archi-

tecture and practical telecommunication components such as lasers, detectors and

linear optics. Thus, it opens the way to the implementation of a simple and practical

quantum cryptography system. We will describe the implementation of such systems

in Chapters 5 and 6.

The security analysis of the different protocols that we have considered has clearly

highlighted the important role that the characteristics of the components of the QKD

system play in its performance. On the sender side, we have seen that using an ideal

single-photon source can improve the performance of a QKD system implementing

the standard BB84 protocol considerably, while a Poisson source such as a laser is

sufficient for security in the case of the DPS-QKD protocol. On the receiver side,
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the dark counts and the quantum efficiency of the single-photon detectors determine

the cut-off distance, beyond which secure communication is no longer possible. The

single-photon detectors also determine the repetition rate of the experiment, and

so the achievable communication rate as well. In all the numerical calculations of

Chapters 2 and 3 we have assumed the characteristics of the InGaAs/InP avalanche

photodiode (APD), which is usually employed in fiber-optic QKD systems. In the

next chapter, we will introduce a new single-photon detector, the up-conversion single-

photon detector, and will we show that it presents characteristics more favorable for

quantum cryptography than the InGaAs/InP APD.



Chapter 4

The up-conversion single-photon

detector

4.1 Introduction

Fast and efficient single-photon detection is essential in many quantum information

processing applications that use photonic qubits. Especially in quantum cryptogra-

phy systems, as we demonstrated in the previous chapters, in addition to the QKD

protocol that is being implemented and the photon statistics of the light source, the

characteristics of the single-photon detectors, namely the quantum efficiency, the dark

counts and the operation mode of the detectors, play a crucial role in determining

the performance of the system.

A single-photon detector absorbs a single photon and via an avalanche process

produces a macroscopic current that can be detected by subsequent digital circuits.

Photomultiplier tubes (PMTs) are often used as single-photon detectors but avalanche

photodiodes (APDs) in Geiger mode are the most commonly used detectors. In this

mode, the APD is operated with a reverse bias above the device’s breakdown voltage

in order to achieve very high gain, which enables the detection of single photons. In

this case, the signal current of the APD needs to be quickly limited and diminished to

control the avalanche and achieve a stable gain. Passive or active current quenching

circuits are employed in the device for this purpose. Depending on the semiconductor

75
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material used to create the pn junction of the photodiode, the detector is sensitive

to different wavelength regions. For example, Si has an appropriate bandgap for

detection of light in the visible and near-infrared, while Ge and InGaAs/InP are

appropriate for detection in the infrared wavelength band.

In the following sections, we will first discuss and compare the characteristics of

the most commonly used single-photon detectors, the InGaAs/InP and Si APDs. We

will then show that we can use nonlinear optical frequency conversion in waveguides to

take advantage of the good characteristics of the Si APDs and achieve fast and efficient

single-photon detection in the infrared communication band. We will demonstrate

the implementation of the resulting device, the up-conversion single-photon detector,

we will discuss its characteristics, and we will show that the use of this detector can

considerably enhance the performance of a quantum key distribution system.

4.2 InGaAs/InP and Si avalanche photodiodes

InGaAs/InP avalanche photodiodes are sensitive to light in the infrared wavelength

region around 1.5 µm and 1.3 µm, where the standard optical fiber presents its min-

imum loss and all current telecommunication networks operate. Thus, because of

their importance as single-photon detectors in long-distance fiber-optic quantum key

distribution systems, these detectors have been the subject of thorough investigation

over the last decade.

Although considerable progress has been achieved in the performance of these de-

tectors [55, 68, 69, 70, 71, 72], they present several drawbacks. One such drawback

is that they exhibit low quantum efficiency, which is typically on the order of 10%.

This number indicates the external quantum efficiency of the device, that is it does

not correspond to the percentage of photons generating an electron-hole pair inside

the device, which can be very high for InGaAs, but to the percentage of photons

triggering a detected avalanching event and so a measurable current outside the de-

vice. Therefore, the quantum efficiency depends on both the absorption of light and

the collection of charge carriers. In addition to the low quantum efficiency, a serious

drawback of InGaAs/InP APDs is that they suffer from after-pulse effects caused by
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Figure 4.1: Comparison of (a) gated and (b) nongated mode operation of single-
photon detectors.

trapped charge carriers, which produce large dark count rates during a relatively long

time. The high dark count probability imposes gated Geiger mode operation, which

is schematically illustrated in Fig. 4.1(a). When operated in gated mode, the APD

device is raised above breakdown threshold for a few nanoseconds, which ensures low

probability of a dark count and high efficiency for detecting light. Subsequently, the

device is returned to below breakdown for a time long enough for any trapped charge

carrier to leak away. Given that the trapping lifetime is on the order of a microsec-

ond, this mode allows operation at megahertz rates. The maximum gate frequency

that has been achieved to date with these detectors is 10 MHz [55]. In a QKD ap-

plication, this gate frequency, or else the inverse of the gate period, determines the

repetition rate of the signal pulses. In particular, the detection rate, which is the raw

key generation rate in a QKD system, is given by the expression:

Rraw = fgpclick (4.1)

where, as in Chapters 2 and 3, pclick is defined as the probability of a detection event

in a given clock cycle, and fg is the gate frequency. Thus, fg is the repetition rate
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of the transmission ν that appears for example in Eqs. (2.37) and (3.10), and so it

limits the attainable secure key generation rate.

With gated mode operation of the InGaAs/InP APDs, the after-pulse probability

is reduced by the ratio of the gate width to the gate period. Even with this im-

provement, however, the dark count rate remains high in these devices with a typical

value of 104 counts/s. The dark count rate per measurement time window, a crit-

ical parameter for the communication distance in QKD systems, is determined by

the gate width, which is limited by the response time of the semiconductor material.

Typically, gate widths of 1 ns are used with resulting dark counts on the order of

10−5 counts/time window.

Contrary to single-photon detection in the infrared communication band, con-

ventional single-photon detection at visible and near-infrared wavelengths is a very

mature technology. Commercially available Si APDs feature very high quantum ef-

ficiencies and low dark count rates, typically on the order of 70% at 700 nm and

50 counts/s, respectively. Most importantly, these detectors have very small after-

pulse effects, which enables free-running or nongated Geiger mode operation. This

operation mode is illustrated in Fig. 4.1(b). In this case, the detection rate of the

device, and thus the attainable secure key generation rate in a QKD system, is limited

by the dead time of the Si APD, which is on the order of 50 ns for commercial de-

vices. During this time period that follows a detection event, the photodiode cannot

respond to subsequent events, and, eventually, a very large photon flux saturates the

device. If td is the dead time of the detector, the raw key generation rate is written

in this case as:

Rraw = νpclicke
−νpclicktd (4.2)

In the above equation, we have assumed that the photodetection events follow a

Poisson process, so the probability of two events occurring in a time period larger than

td is given by the exponential term in the expression. As we will see in the numerical

calculations in Sec. 4.4, this saturation factor limits the secure key generation rate at

low fiber losses. The nongated mode operation, however, does not impose any severe

limitation on the clock frequency ν of the QKD system, which is now only determined
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Table 4.1: Comparison of InGaAs/InP and Si APD detector characteristics.

InGaAs/InP APD Si APD

Wavelength 1300-1600 nm 500-900 nm
Quantum efficiency (η) ∼ 10% ∼ 70%
Dark count rate (D) ∼ 104 counts/s ∼ 50 counts/s
After-pulse probability Large → gated mode Small → nongated mode

by the speed of the electronic equipment and the Si APD timing jitter. The use of

this detector therefore offers the potential of very fast communication.

The basic characteristics of the two types of single-photon detectors we discussed

are summarized in Table 4.1. It is clear that Si APD is much more suitable as a single-

photon detector in a quantum key distribution system. Unfortunately, this device is

not sensitive to light in the wavelength region of interest for long-distance quantum

cryptography, so instead InGaAs/InP APDs have been invariably used in such ap-

plications. In the next section, we will describe a new detector, the up-conversion

single-photon detector, which achieves fast and efficient single-photon detection at

telecommunication wavelengths by combining guided-wave frequency up-conversion

in a nonlinear crystal and detection by a Si APD.

4.3 The up-conversion single-photon detector

4.3.1 Principle of operation

The idea of using highly efficient nonlinear optical frequency converters in order to

achieve single-photon detection in the infrared while taking advantage of the good

properties of near-infrared single-photon detectors is the basic principle of the up-

conversion single-photon detector. A schematic of this detector for the case of 1.5 µm

single-photon detection is shown in Fig. 4.2(a). In this figure we see that a single-

photon signal at 1.5 µm interacts with a strong laser beam at 1.3 µm in a waveguide

device to produce a 700 nm single-photon idler, which is subsequently detected by

a Si APD. The frequency conversion is achieved by the nonlinear process of sum
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Figure 4.2: Elements of the up-conversion single-photon detector: (a) Basic schematic
of the detector; (b) Sum frequency generation nonlinear process; (c) Poling of a
lithium niobate crystal; (d) Effective interaction length in a bulk crystal and a waveg-
uide.

frequency generation (SFG). As shown in Fig. 4.2(b), this frequency up-conversion

process converts a signal at low frequency ωsignal to an idler at high frequency ωSFG

by mixing it with a strong pump at a convenient frequency ωpump in a crystal with a

χ(2) nonlinearity. Then, the conservation of energy gives:

ωsignal + ωpump = ωSFG (4.3)

which is satisfied by the wavelengths shown in Fig. 4.2(a). In addition to the energy,

the momentum of the interacting fields also has to be conserved during this nonlinear

process, which leads to the momentum conservation or phase-matching condition:

ksignal + kpump = kSFG (4.4)

where the bold symbols represent vectors. In most nonlinear crystals, this condition

is typically achieved by employing different polarizations for the pump, signal and
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idler fields. This is called birefrigent phase-matching. A much more interesting way

to achieve phase-matching, however, is by using the quasi-phase-matching (QPM)

technique [73]. This technique corrects the relative phases of the fields involved in

the nonlinear interaction at regular intervals by means of a structural periodicity

built into the nonlinear medium. In other words, the phase is reset periodically so

that, on average, the proper relationship is satisfied for the growth of the desired

field. The required inversion of the phase can be accomplished by changing the sign

of the nonlinear coefficient of the material. In ferroelectric materials, such as lithium

niobate (LiNbO3), this sign is linked to the direction of the spontaneous electric

polarization. Thus, modulation of the nonlinear coefficient and therefore QPM can

be achieved by forming regions of periodically reversed electric polarization, which

is possible by periodically applying high electric field. This process, called poling, is

shown in Fig. 4.2(c). The phase-matching condition in a periodically poled crystal

becomes:

ksignal + kpump + K = kSFG (4.5)

where

|K| = 2π

Λ
(4.6)

and Λ is the poling period. The above equation shows that with an appropriate

choice of Λ, we can achieve quasi-phase-matching practically for any desired nonlin-

ear interaction between the signal, pump, and idler fields. The major advantage of

this technique is that it allows the use of nonlinear coefficients which couple waves

of the same polarization and may be much stronger than coefficients used in bire-

frigent phase-matching. Thus, QPM offers the potential of very efficient nonlinear

interactions in crystals.

In addition to quasi-phase-matching, another way to increase the efficiency of the

frequency conversion process is to use a guiding structure rather than a bulk crystal.

As shown in Fig. 4.2(d), the use of a waveguide permits the tight confinement of

the interacting modes over the entire length of the crystal, which can be several

centimeters [74], and eliminates diffraction effects. Thus, since the strength of the

nonlinear process is proportional to the effective interaction length, a much higher
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Figure 4.3: Theoretical prediction for the signal conversion and depletion efficiency
as a function of the normalized pump power.
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internal quantum efficiency of the waveguide device, as a function of the normalized
pump power.
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signal conversion efficiency can be achieved in a waveguide than in a bulk nonlinear

crystal.

The above discussion demonstrates that very efficient frequency up-conversion is

possible in periodically poled nonlinear waveguides. In more quantitative terms, the

analytical solution of the coupled-mode equations describing three-wave interactions

inside waveguides in the absence of propagation losses and pump-wave depletion is

given in [74]. Under these assumptions, the signal conversion efficiency, which is the

internal quantum efficiency of the waveguide device, can be expressed as:

ηinternal =
NSFG(LWG)

Nsignal(0)
= sin2 (

√
ηnorpLWG) (4.7)

where N is the photon number, ηnor the normalized power efficiency in the low-

gain limit, LWG the effective interaction length, and p the pump power. Maximum

conversion is achieved when the pump power is equal to:

p0 =
π2

4ηnorL2
WG

(4.8)

The signal conversion efficiency as well as the signal depletion efficiency, which is sim-

ply equal to 1−ηinternal, are plotted as a function of the normalized pump power p/p0

in Fig. 4.3 in logarithmic scale, while Fig. 4.4 shows the signal conversion efficiency

in linear scale. It is clear from these figures that a waveguide structure allows 100%

signal conversion efficiency. This means that the internal quantum efficiency of the

waveguide device is limited only by propagation losses, while the external quantum

efficiency is further reduced by coupling and reflection losses. Finally, the overall

quantum efficiency of the up-conversion single-photon detector has to take the opti-

cal collection efficiency and the Si APD’s intrinsic quantum efficiency into account.

Assuming that the propagation losses are equal to αWG for both the signal and SFG

wavelengths, the overall quantum efficiency is given by the expression:

ηup = ηinternalTWGTCSηSi APD (4.9)
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where

TWG = T signal
in e−αWGLWGT SFG

out (4.10)

is the signal power transmission efficiency through the waveguide of length LWG, and

TCS is the SFG transmission efficiency through the optical collection system. These

transmission efficiencies, ideally unity, are reduced by the nonunity coupling T signal
in

of the signal wavelength at the waveguide input owing to Fresnel reflections and

modal mismatch and at the waveguide output by Fresnel reflections T SFG
out at the sum

frequency wavelength, as well as propagation losses.

The above expressions show that the quantum efficiency of the up-conversion

single-photon detector is determined by the Si APD, the frequency conversion effi-

ciency, which is a function of the pump power as shown in Eq. (4.7), and the losses

of the optical setup and the waveguide. On the other hand, the dark count rate is

determined by the Si APD and parasitic nonlinear interactions inside the nonlinear

crystal, which we will discuss in detail in Sec. 4.3.4. Finally, the use of the Si APD

allows for nongated mode operation of the up-conversion detector, which makes this

detector suitable for high speed fiber-optic quantum cryptography systems.

4.3.2 1.55 µm single-photon detection experiment

The experimental setup for the implementation of a 1.55 µm up-conversion single-

photon detector is shown in Fig. 4.5. A highly attenuated continuous wave signal

at 1.55 µm generated by an external-cavity tunable diode laser (ECDL) is combined

with a strong pump at 1.32 µm generated by a fiber-coupled nonplanar ring os-

cillator (NPRO), in a wavelength division multiplexer (WDM), and injected into a

fiber-pigtailed periodically poled lithium niobate (PPLN) waveguide device. The in-

tegration of the waveguide on the PPLN substrate is achieved using the reverse proton

exchange (RPE) procedure [75]. The waveguide is 5 cm long and designed for sum

frequency generation at the appropriate wavelengths of 1.55 µm and 1.32 µm [74].

In order to avoid beam distortion due to photorefractive damage [76], the waveguide

is heated to 75◦C in a temperature-controlled oven. Because the nonlinear coeffi-

cient of the waveguide material and so the condition for which maximum conversion
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Figure 4.5: Experimental setup for single-photon detection at 1.55 µm. VATT, vari-
able attenuator; PC, polarization controller; WDM, wavelength division multiplexer;
MO, microscope objective; LPF, long-pass filter; BS, beamsplitter; OSA, optical spec-
trum analyzer.

efficiency is achieved depends on the waveguide temperature, this temperature con-

trol also serves the purpose of slightly adjusting the performance of the waveguide

device when necessary. After the waveguide, the 715 nm SFG single-photon output

goes through a series of filters, which are used to suppress the noise photons such as

the residual pump and second harmonic generation (SHG) of the pump light. More

specifically, a dichroic beamsplitter is used to separate the residual pump and signal

light from the SFG output. These beams are directed to a setup used only in the

high-power classical limit in order to determine the specific signal wavelength and

pump power conditions where maximum signal depletion is achieved. In the path of

the SFG light, a long-pass filter and a prism are used to suppress the SHG of the

pump. Finally, the SFG single-photon signal is detected by a single-photon counting

module (SPCM) based on a Si APD.

The experimental results for the main characteristics of the 1.55 µm up-conversion

single-photon detector, namely the quantum efficiency ηup and the dark count rate

Dup, are shown in Figs. 4.6 and 4.7, respectively, as a function of the coupled pump



86 CHAPTER 4. THE UP-CONVERSION DETECTOR

power. To calculate the values for the quantum efficiency, the loss of the fixed at-

tenuators in Fig. 4.5 is carefully calibrated using a 20 dB splitter and a fiber-coupled

power meter so that the number of signal photons that enter the WDM coupler is

known. Then, the number of counts detected by the SPCM after substraction of

the dark counts and correction for the nonlinearity of the device at high count rates,

is divided by the number of signal photons before the WDM to give the quantum

efficiency values shown in Fig. 4.6. Thus, these values include all loss terms and the

intrinsic Si APD quantum efficiency, and they correspond to the overall quantum ef-

ficiency of the up-conversion single-photon detector. The signal conversion efficiency

of the infrared light to the SFG output, that is the internal quantum efficiency of

the waveguide device, exceeds 99.9% with a coupled pump power of about 100 mW,

which corresponds to p0 of Eq. (4.8). This efficiency drops to 83% when propagation

losses are included, and further to 65% when input coupling, output coupling, fiber

pigtail, reflection, and optical setup losses are taken into account. Finally, including

the Si APD quantum efficiency, the maximum overall up-conversion single-photon

detector quantum efficiency achieved is 46%, as shown in Fig. 4.6. In agreement with

the coupled mode theory for three-wave interactions in a waveguide, which predicts

a sin2 dependence of ηup on the pump power p as shown from Eqs. (4.7) and (4.9),

the fitting curve of the experimental results is given by the following expression:

ηup(p) = a1 sin2 (
√
a2p) (4.11)

where a1 = 0.465, a2 = 79.75, and p is given in mW.

As we can see in Fig. 4.7, the dark count rate at the maximum quantum efficiency

is 8 × 105 counts/s. The dark counts increase approximately quadratically with the

pump power, and they are dominated by spurious nonlinear interactions inside the

waveguide that we will describe in Sec. 4.3.4. A more accurate polynomial fitting curve

for the experimental results shown in Fig. 4.7 is given by the following expression:

Dup(p) = b0 + b1p+ b2p
2 + b3p

3 + b4p
4 (counts/s) (4.12)

where b0 = 50, b1 = 826.4, b2 = 110.3, b3 = −0.403, b4 = 0.00065.
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Figure 4.6: Quantum efficiency of the 1.55 µm up-conversion single-photon detector as
a function of pump power. The expression for the fitting curve is given by Eq. (4.11).
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Figure 4.7: Dark count rate of the 1.55 µm up-conversion single-photon detector as a
function of pump power. The expression for the fitting curve is given by Eq. (4.12).
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Figure 4.8: Experimental setup for single-photon detection at 1.32 µm. VATT, vari-
able attenuator; PC, polarization controller; BPF, band-pass filter; EDFA, erbium-
doped fiber amplifier; WDM, wavelength division multiplexer; MO, microscope ob-
jective; SPF, short-pass filter; BS, beamsplitter; OSA, optical spectrum analyzer.

4.3.3 1.32 µm single-photon detection experiment

The experimental setup employed for single-photon detection at 1.55 µm can be

slightly modified to enable single-photon detection at the second telecommunication

window around 1.32 µm. The corresponding experimental setup is shown in Fig. 4.8.

In this case, the ECDL is combined with an erbium doped fiber amplifier (EDFA) to

produce sufficient pump power at 1.55 µm, while the 1.32 µm is highly attenuated to

serve as the single-photon signal light. Furthermore, the long-pass filter is replaced

by a short-pass filter to suppress the SHG of the pump light.

The experimental results for the quantum efficiency and dark count rate of the

1.32 µm up-conversion single-photon detector are shown in Figs. 4.9 and 4.10, re-

spectively, as a function of the coupled pump power. The values for the quantum

efficiency are calculated as before, and the fitting curve is given in this case by the

expression:

ηup(p) = a1 sin2 (
√
a2p) (4.13)
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Figure 4.9: Quantum efficiency of the 1.32 µm up-conversion single-photon detector as
a function of pump power. The expression for the fitting curve is given by Eq. (4.13).
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Figure 4.10: Dark count rate of the 1.32 µm up-conversion single-photon detector as
a function of pump power. The expression for the fitting curve is given by Eq. (4.14).
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where a1 = 0.396, a2 = 88.46, and p is given in mW. The maximum overall quantum

efficiency achieved is 40%. The difference in quantum efficiency with the 1.55 µm

case can be explained by the transmission characteristics of the filters used in the two

setups. In particular, the transmission of the short-pass filter at the SFG wavelength

used in the 1.32 µm detection setup is 8% lower than the transmission of the long-pass

filter used in the 1.55 µm detection setup.

As we can see in Fig. 4.10, the dark count rate at the maximum quantum efficiency

is 2×104 counts/s. The dark counts increase again approximately quadratically with

the pump power, but in general their values are smaller in this experiment than in

the 1.55 µm case. This will be explained in the discussion about the dark counts

origin in Sec. 4.3.4. A polynomial fitting curve for the experimental results shown in

Fig. 4.10 is given by the following expression:

Dup(p) = b0 + b1p+ b2p
2 + b3p

3 + b4p
4 (counts/s) (4.14)

where b0 = 80, b1 = 4.45, b2 = 2.65, b3 = −0.01, b4 = 0.00002.

The implementations of the up-conversion single-photon detector that we de-

scribed show that very efficient single-photon detection in high speed nongated mode

is possible at the standard communication wavelength bands around 1.5 µm and

1.3 µm using this device. Improvements of the up-conversion single-photon detector

in order to achieve even better performance include use of antireflection coatings to

reduce the Fresnel reflections off the waveguide end facets, and better design and

fabrication of the PPLN waveguide device to reduce the propagation and coupling

losses, as well as the required pump power for maximum signal conversion. Since the

dark count rate strongly depends on the pump power, as we see from Figs. 4.7 and

4.10, the latter improvement will also greatly reduce the dark counts, which is very

important for QKD applications.

Other experimental implementations of the up-conversion detector scheme use a

different wavelength configuration for sum frequency generation, and a bulk PPLN

crystal inserted into a cavity in order to achieve the required pump power level for effi-

cient signal conversion [77, 78]. The quantum efficiencies and dark counts achieved in
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these experiments are similar to the results presented in this and the previous section.

The up-conversion single-photon detector that we described, however, has the advan-

tage of a very compact and robust design with single-pass operation that requires

low pump power. Finally, in addition to the InGaAs/InP APD that we described

extensively in Sec. 4.2, another important candidate for single-photon detection in

the infrared is the superconducting transition-edge sensor (TES) [79]. This detector

features extremely low dark count rates, limited only by the background light, but

its operation requires cryogenic cooling and the maximum count rate it can with-

stand is 20 kHz. These characteristics limit the detector’s usefulness for practical

implementations, although further improvements can make it a promising alternative

single-photon detector for long-distance quantum cryptography systems.

4.3.4 Dark counts origin and behavior

Figs. 4.7 and 4.10 reveal that the dark count rate of the up-conversion single-photon

detector is not determined by the dark count rate of the Si APD as was initially

expected but rather by a parasitic process strongly dependent on the pump power.

In order to determine the nature of this process, the output of the waveguide when

only the pump light enters the device is spectrally resolved using a spectrometer.

One spectral feature that is clearly present is generated by the SHG of the pump

and appears at about 660 nm in the case of the 1.55 µm single-photon detector, which

uses a pump at 1.32 µm. The spectrum of this peak is shown in Fig. 4.11. In the

up-conversion single-photon detector the potential dark counts due to this peak are

eliminated with the use of the long-pass filter or short-pass filter for the 1.32 µm

single-photon detection case, and the prism shown in Figs. 4.5 and 4.8. Another

spectral feature appears at about 808 nm and is due to the pump diodes of the

1.32 µm pump laser for the 1.55 µm detector. These peaks, shown in Fig. 4.12, are

eliminated with the use of the optical isolator shown in Fig. 4.5. Finally, the spectral

analysis of the output reveals a third spurious peak that is present at exactly the

same wavelength as the SFG output, so it cannot be eliminated by external filtering

and appears to be intrinsic to the device. The spectrum of this peak as well as the
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Figure 4.11: Spectrum of the SHG of the pump.
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Figure 4.12: Spectrum of the pump diodes.
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Figure 4.13: Spectra of the spurious and SFG output peaks.

SFG spectrum are shown in Fig. 4.13.

One possible origin of the spurious peak that causes the high dark count rate is

the following combined nonlinear process. Initially, the pump photons are scattered

by the phonons of both the PPLN waveguide and the fiber pigtail leading to the

waveguide via a spontaneous Ramam scattering (SRS) process. A schematic illustra-

tion of the SRS process is shown in Fig. 4.14, where two cases have been considered,

namely the Stokes and anti-Stokes cases. The first case is relevant for the 1.55 µm

up-conversion detector, since in this scenario the pump photons at a high frequency

interact with the phonons of the material, and the SRS process generates a spectrum

of Stokes photons, which includes the lower frequency of the signal photons. Subse-

quently, the noise photons interact with the pump photons in the PPLN waveguide

via the phase-matched sum frequency generation process, and create dark counts.

On the other hand, in the case of the 1.32 µm detector, the pump photons at a low

frequency interact with the phonons to generate a spectrum of anti-Stokes photons,

which includes the higher frequency of the signal photons. Again, the noise photons

are up-converted through the SFG process and create dark counts. In this scenario,
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Figure 4.14: Schematic of the (a) Stokes and (b) anti-Stokes spontaneous Raman
scattering nonlinear processes.

however, for the nonlinear process to occur the phonons have to be in an excited

vibrational state, which make this process less efficient. More specifically, if Npump

is the number of pump photons, Bd the detection bandwidth, L the length of the

medium where the SRS process occurs, and g the gain of the SRS nonlinear process,

the number of generated SRS noise photons is given by the expression:

NSRS = BdNpumpgL (4.15)

The scattering gains for the Stokes and anti-Stokes case are related as follows:

ganti-Stokes = gStokese
− h∆f

kBT (4.16)

where the exponential term is simply the thermal occupation factor for the excited

vibrational state. For T = 75◦C and ∆f = 35 THz, which corresponds to the fre-

quency difference between the pump and signal wavelengths, this occupation factor

is approximately equal to 10−2, which means that the number of noise photons is

reduced in the anti-Stokes case by two orders of magnitude. This is actually the

difference in the dark count rates that we observe in the corresponding experimental

results for the 1.55 µm and 1.32 µm up-conversion detectors in Figs. 4.7 and 4.10.

Therefore, the experimental data support the theory that we have described for the

origin of the dark counts. Furthermore, Eq. (4.15) shows that the SRS process scales

linearly with the pump power, so the quantity Nsignal in Eq. (4.7), which now cor-

responds to the noise signal photons generated by spontaneous Raman scattering, is
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a linear function of p. Therefore, in the low gain limit, the number of SFG photons

due to this parasitic combined nonlinear process scales approximately quadratically

with the pump power. This dependence is observed in Figs. 4.7 and 4.10, while more

accurate polynomial fitting curves are given in Eqs. (4.12) and (4.14).

Another possible origin of dark counts that has been discussed as a potential

source of large dark counts in other implementations of the up-conversion single-

photon detector [77, 78] is a potentially phase-matched parametric fluorescence pro-

cess, followed by up-conversion of the noise signal photons. In this process, in the

case of the 1.55 µm detector, the 1.32 µm pump photons convert spontaneously to

photons at the signal wavelength of 1.55 µm, which are subsequently up-converted via

sum frequency generation and create dark counts, and idler photons at an appropri-

ate wavelength that satisfies the energy conservation condition, which in this case is

equal to 8.9 µm. This parametric fluorescence process also invokes an approximately

quadratic dependence of the dark counts on the pump power. However, the strong

absorption in lithium niobate of the 8.9 µm idler photons associated with this process

suggests that the efficiency of such a process is negligible, and so the combined process

involving spontaneous Raman scattering described above most probably dominates

the generation of dark counts. This conclusion suggests that a significant reduction

in the dark count rate of the 1.55 µm up-conversion single-photon detector can be

achieved by minimizing the spurious nonlinear effects inside the device, for example

by choosing a pump wavelength longer than the signal wavelength.

An important feature of the up-conversion detector stems from the fact that the

dark counts depend on the bandwidth of the waveguide, which determines the number

of noise photons, as we can see from Eq. (4.15). In order to illustrate this feature, let

us define the following quantity:

Dup Hz =
Dup

Bd

(4.17)

for a detector with bandwidth Bd and dark count rate Dup. This quantity has units

counts/(s Hz), and corresponds to the optical dark counts per mode. Then, we can

think of the ideal communication system employing the up-conversion detector shown
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Figure 4.15: Ideal communication system employing an up-conversion single-photon
detector.

Table 4.2: Definitions of the dark count quantities for the up-conversion detector and
the InGaAs/InP APD.

Up-converter InGaAs/InP APD

Dark count rate (counts/s) Dup DAPD

Dark counts per mode [counts/(s Hz)] Dup Hz = Dup

Bd
–

Dark counts per time window dup = Dup Hz dAPD = DAPD
1
B

in Fig. 4.15, which operates at a bit rate B, and uses a matched filter with bandwidth

equal to B that follows the up-converter, and a measurement time window equal to

1/B. In such a system, the dark counts per time window dup, a parameter of great

importance in QKD applications as we have seen in Chapters 2 and 3, is equal to:

dup = BDup Hz
1

B
= Dup Hz (4.18)

The above equation shows that dup is independent of the bit rate B (or measurement

time window 1/B) under this optimum filtering. On the other hand, in the case of

an InGaAs/InP APD operated in gated mode, the gate width is equal to 1/B and so

the dark counts per time window dAPD is given by:

dAPD = DAPD
1

B
(4.19)

where DAPD (counts/s) is the dark count rate of the InGaAs/InP APD.

Table 4.2 summarizes the definitions of the dark count quantities that we have

introduced. In Fig. 4.16 the quantities dup and dAPD are plotted as a function of the

bit rate. For the InGaAs/InP APD, the typical value DAPD = 104 counts/s is used.
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Figure 4.16: Dark counts per time window for the up-conversion single-photon detec-
tor operating at the minimum NEP regime, and a typical InGaAs/InP APD respec-
tively, in an ideal communication system.

For the up-conversion detector, we calculate the quantity Dup Hz at the operating

point of the detector, where the Noise Equivalent Power (NEP) is minimized. NEP is

defined as hν
√

2D/η, where hν is the energy of the signal photon, and it characterizes

the sensitivity of a detector, so it is often used as a figure of merit for photodetectors

in optical communications. The normalized NEP is defined as
√

2D/η, and for the

1.55 µm up-conversion detector it takes its minimum value for Dup = 6.4 × 103

counts/s and ηup = 0.075. Then, given a bandwidth of Bd = 50 GHz for the up-

converter, we find from Eqs. (4.17) and (4.18) that the optimum dup is ∼ 1.3× 10−7,

as shown in Fig. 4.16. This result illustrates the significant advantage of the up-

conversion detector over the InGaAs/InP APD in terms of reduced dark counts per

time window, for most practical system bit rates.

The dependence of the dark counts on the waveguide bandwidth, together with

the nongated mode operation of the Si APD and the pump power dependence of the

detector characteristics, have a significant effect on the performance of a quantum
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cryptography system employing up-conversion detectors, as we will see in the next

section.

4.4 Performance of QKD systems with up-conversion

detectors

To illustrate the advantage that the up-conversion detector characteristics present for

quantum cryptography, we compare the performance of fiber-optic quantum key dis-

tribution systems implementing the BB84, BBM92, and DPS-QKD protocols, when

these systems employ the 1.55 µm up-conversion single-photon detector described in

Sec. 4.3. Similarly to the calculations of Chapters 2 and 3, the comparison is based

on the secure key generation rate as a function of fiber length. For these calculations,

the loss coefficient of the optical fiber is set to α = 0.2 dB/km, the baseline system

error rate is set to b = 0.01, and an additional loss of Ls = 1 dB in the receiver side is

assumed. These parameters are exactly the same as in the calculations of Chapters

2 and 3.

On the other hand, we now use different values for the parameters that are de-

termined by the single-photon detector employed in the QKD system, that is the

quantum efficiency η, the dark counts per time measurement window d, and the rep-

etition rate of the transmission ν. As we discussed in Sec. 4.2, in the case of the

up-conversion single-photon detector, due to the nongated mode operation of the Si

APD, there is no severe limitation on the repetition rate of the experiment. In prac-

tice, the limit is set by the speed of the electronic equipment as well as by the timing

jitter of the Si APD, which is typically on the order of 0.5 ns. A realistic value,

compatible with currently available components, is ν = 1 GHz. This is the value

used in Eq. (4.2) to determine the raw key generation rate, which is limited by the

dead time of the Si APD that we set to 50 ns. The saturation factor in this equation

becomes rather small at rates greater than a few megahertz, limiting the final rate at

small fiber losses.

Figs. 4.6 and 4.7 show that both the quantum efficiency and the dark count rate
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Figure 4.17: Secure key generation rate as a function of fiber length for the standard
and decoy state BB84 protocol.

of the up-conversion detector depend on the pump power. This gives us a convenient

tuning tool for determining the optimal operation regime of the detector depending on

the application and the system parameters. Thus, in all calculations we numerically

optimize the secure key generation rate with respect to the pump power p at each fiber

length using Eqs. (4.11) and (4.12). Such optimization is necessary because depending

on the communication distance an equilibrium between the values of the quantum

efficiency and the dark counts of the up-conversion detector has to be established.

The result of this optimization indicates the optimal operation regime of the detector

at each fiber length. Finally, assuming the optimum filtering configuration shown

in Fig. 4.15, we set the measurement time window equal to the inverse of the clock

frequency, that is 1 ns.

The result of the calculation for the standard BB84 protocol employing an ideal

or a Poisson single-photon source, and the decoy state B884 protocol, is shown in

Fig. 4.17. For the standard BB84 protocol the calculation is based on Eq. (2.37) with

the privacy amplification factors given in Eqs. (2.25) and (2.26), while for the decoy
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Figure 4.18: Secure key generation rate as a function of fiber length for the BBM92
protocol employing an ideal or a practical entangled-photon source.

state BB84 protocol Eq. (2.42) is used. As was discussed in Sec. 2.4, in the case of a

weak laser pulse implementation of the BB84 protocol, the average number of photons

per pulse µ is an adjustable parameter, with respect to which the rate is numerically

optimized at each fiber length. On the other hand, for the decoy state protocol µ

is determined by the baseline system error rate, and is set to 0.77. The saturation

effect caused by the dead time of the Si APD is apparent for small fiber losses and

high bit rates in Fig. 4.17. We also observe that, despite the improvement in the

performance of the QKD system employing a Poisson source due to the use of the up-

conversion detector, this system is clearly not well suited for long-distance quantum

cryptography, as we had also concluded from Fig. 2.10. On the contrary, the use of

an ideal single-photon source or decoy states allows for a significantly longer commu-

nication distance with high communication rates because of the increased robustness

to photon number splitting attacks that these systems offer.

Fig. 4.18 shows the result of the numerical calculation for the BBM92 protocol

employing an ideal entangle-photon source or a practical parametric down-conversion
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Figure 4.19: Secure key generation rate as a function of fiber length for the DPS-
QKD protocol for general individual attacks and restricted attacks with time delay
parameter N = 1 when Eve is equipped with an ideal quantum memory and N = 10
when she is not.

source of entangled photons. The calculation is based on Eqs. (2.64) and (2.52). In

the case of the PDC source the adjustable parameter that optimizes the rate is the

parameter χ, which depends on properties of the down-conversion process. As we

observe in Fig. 4.18, the inherently more robust BBM92 protocol allows for longer

communication distances than the BB84 protocol, having the capability to achieve

a practical 1 bit/s secure key generation rate at more than 300 km with an ideal

entangled-photon source and the up-conversion single-photon detector.

The results of the calculation for the DPS-QKD protocol when security against

general individual attacks is assumed, or when security against restricted attacks is

assumed and Eve is equipped with an ideal quantum memory and the time delay pa-

rameter defined in Sec. 3.3.3 is N = 1, or Eve is not equipped with a quantum memory

and N = 10, are shown in Fig. 4.19. The calculations are based on Eqs. (3.10), (3.12),

and (3.24), and in all cases the secure key generation rate is numerically optimized
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with respect to µ at each fiber length. As we expect from the analysis and conclusions

of Chapter 3, the curves for the DPS-QKD protocol feature characteristics very sim-

ilar to the standard BB84 protocol with an ideal single-photon source and the decoy

state BB84, due to its robustness to PNS attacks. Fig. 4.19 shows that this protocol

can be used in a simple and practical QKD system, with the potential of 1 kbit/s

secure key generation rate over distances longer than 150 km.

For all the QKD protocols that we have considered, if we compare the results of

this section with the corresponding figures in Chapters 2 and 3, which have assumed

an InGaAs/InP APD with η = 10%, d = 10−5 counts/time window, and ν = 10 MHz,

we see that the maximum communication distance is about half of the one achieved

with an up-conversion detector, while the secure key generation rate is two orders

of magnitude lower than with the up-conversion detector, due to the gated mode

operation of the InGaAs/InP APD. Clearly, the up-conversion single-photon detector

offers a great advantage over the InGaAs/InP APD as a single-photon detector in a

QKD system, in terms of both secure key generation rate and communication distance.

In order to determine the ultimate capabilities of a QKD system employing the

up-conversion detector, in Fig. 4.20 we compare the performance of quantum key

distribution systems implementing the three protocols, under the assumptions that

Eve is equipped with an ideal quantum memory and that the dark counts of the

up-conversion detector, which are dominated by parasitic nonlinear processes in the

PPLN waveguide as we saw in Sec. 4.3.4, are eliminated. This means that the detec-

tor’s performance is ideally limited by the Si APD characteristics, which corresponds

to d = 5 × 10−8 with a dark count rate of 50 counts/s and a time window equal to

1 ns. Operation at the maximum quantum efficiency regime is also assumed, which

means that η = 46%. We observe that, ultimately, 250 km of secure communication

distance is possible with the DPS-QKD protocol and the BB84 protocol with decoy

states. An ideal single-photon source implementation of BB84 can extend this dis-

tance even more, while BBM92 has the potential of reaching 350 km of secure key

distribution with an ideal entangled-photon source.
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Figure 4.20: Comparison of the performance of QKD systems implementing the BB84,
BBM92 and DPS-QKD protocols. In all cases it is assumed that Eve is equipped with
an ideal quantum memory and that an optimized up-conversion single-photon detector
is used. For the DPS-QKD protocols security against general individual attacks is
assumed.

4.5 Summary

In this chapter, we studied the main characteristics of two types of single-photon

detectors, the InGaAs/InP APDs and the Si APDs, and we discussed how we can

use frequency conversion in a periodically poled lithium niobate waveguide device in

conjunction with a Si APD to achieve high speed and efficient single-photon detec-

tion at telecommunication wavelengths that are of interest for long-distance quan-

tum cryptography systems. We presented experimental realizations of the resulting

up-conversion single-photon detector operating at 1.55 µm and 1.32 µm, and dis-

cussed the nature of the dark counts observed in these implementations. Finally, we

demonstrated that the use of the up-conversion detector can considerably enhance

the performance of a quantum key distribution system.

Although the calculations of Sec. 4.4 have assumed rather realistic experimental
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conditions, there are several factors that come into play when we try to experimen-

tally implement a QKD system rather than predict its performance using the known

parameters and the theoretical calculations. In the next chapter, we will present an

experimental realization of a QKD system implementing the DPS-QKD protocol with

up-conversion single-photon detectors. We will show how the characteristics of the

protocol that we described in Chapter 3 and the detector that we described in this

chapter successfully combine to enable the implementation of a practical and robust

quantum cryptography system capable of transmitting secure keys at high rates over

100 km of optical fiber.



Chapter 5

Implementation of a 1 GHz

differential phase shift QKD

system

5.1 Introduction

Since the first demonstration of a quantum key distribution system in 1992 [10],

there have been numerous efforts toward the implementation of such systems with

the goal of making quantum cryptography practical by achieving the longest pos-

sible communication distance and the highest possible communication rate. Among

these efforts, almost all of the fiber-optic QKD experiments that have been conducted

have implemented the standard BB84 protocol with Poisson photon sources and In-

GaAs/InP APDs [55, 64, 65, 66, 71, 80, 81, 82]. The most advanced systems use the

phase-encoding BB84 protocol in the so called “plug and play” configuration. More

specifically, these systems employ the time slot implementation of the photonic qubit

shown in Fig. 2.3(c) except that all beamsplitters are balanced and Alice and Bob

randomly modulate the phase of their single-photon pulses by values that belong to

two nonorthogonal bases, namely {0, π} and {π/2, 3π/2}. This protocol is completely

equivalent to the polarization-encoded BB84 protocol that we discussed in Sec. 2.4.1,

and it has the additional advantage of being more suitable for fiber-optic long-distance

105
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quantum communication. The problem associated with the relative phase stabiliza-

tion of the two interferometers has been cleverly solved with the use of the “plug

and play” configuration. This configuration uses only one interferometer for divid-

ing the pulse on Alice’s site and interfering the pulses on Bob’s site, and a Faraday

polarization rotating mirror which ensures robustness to birefringence fluctuation in

the optical fiber. However, in this two-way scheme the Rayleigh backscattered light

from the fiber is a considerable source of noise, and limits the repetition rate of

the system. An alternative one-way scheme successfully solved the stability problem

by active compensation of the QKD system for temporal drifts in the photon phase

and polarization [83]. Other fiber-optic QKD experiments have used superconducting

single-photon detectors that have very low dark counts to increase the communication

distance [84], or near-infrared operation with Si APDs to increase the key generation

rate at the expense of limited key distribution distance [85, 86].

Although the experimental progress that has led to the above results is extremely

valuable, most of the experiments have not been able to produce secure keys, ei-

ther because the experimental conditions were not sufficient to guarantee security

especially against Eve’s photon number splitting attack, or because the implemented

protocol was inherently insecure as in the case of the B92 protocol without a bright

phase reference pulse. Secure key distribution was achieved in an experiment im-

plementing the BB84 protocol with an attenuated Poisson source and InGaAs/InP

APDs with particularly small dark count rates over 50 km of optical fiber, but with

a very small secure key generation rate of about 0.1 bits/s [71]. As we discussed

in Sec. 2.4.2, the secure key distribution distance of the BB84 protocol with Pois-

son sources can be significantly extended by employing decoy states. Although this

scheme is promising, experimental realization is still at an early stage with a reported

distance of 15 km [87]. We have also seen that the use of a single photon source can

significantly enhance the performance of a QKD system. However, an ideal single-

photon source does not exist today for the 1.5 µm telecommunication band, although

efforts toward this goal are underway [21]. Entanglement-based QKD systems im-

plementing the BBM92 protocol [88, 89, 90, 91, 92] are more robust than systems

implementing the BB84 protocol, but the maximum key distribution distance has not
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exceeded 30 km so far [88], mainly due to the difficulty involved in the generation

and coincidence detection of an entangled photon pair in the 1.5 µm band. Finally,

the use of quantum repeaters based on nested entanglement purification and swap-

ping [93] constitutes another candidate for long-distance quantum communication.

However, to realize such a system, we need to overcome a number of technological

challenges. These challenges include capturing entangled photon pairs in quantum

memories either by the cavity QED technique [94] or the electromagnetically induced

transparency technique [95, 96], and storing qubits of information in quantum memo-

ries with a long coherence time of typically 1− 10 s, requirements far beyond today’s

capabilities.

This review of experimental efforts for implementing a practical and secure quan-

tum key distribution system has highlighted the main limiting factors in such systems,

which are due either to the vulnerability of the QKD protocol to eavesdropping attacks

or the limited capabilities of the system components. In the following sections, we

will present a simple, practical and secure QKD system implementing the DPS-QKD

protocol with up-conversion single-photon detectors operating in nongated mode at

1.55 µm. We will first explain the experimental setup, and we will then show that the

use of the DPS-QKD protocol allows for longer communication distance while the use

of the up-conversion detector allows for higher secure key generation rate, the com-

bination resulting in a system that significantly outperforms previous experimental

efforts. We will present the experimental results when the security analysis against

restricted attacks only is taken into account, and how they are modified when security

against general individual attacks is considered instead. Finally, by using Si APDs

with very low timing jitter, we will present experimental results for a QKD system

that achieves secure exchange of secret keys at high rates over 100 km of optical fiber.

5.2 Experimental setup

The experimental setup for the quantum key distribution experiments that were con-

ducted at a repetition rate of 1 GHz and implemented the DPS-QKD protocol with
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up-conversion single-photon detectors is shown in Fig. 5.1. At Alice’s site, a contin-

uous wave light at 1.55 µm generated from an external cavity semiconductor laser is

modulated into a coherent pulse train with a 1 GHz clock frequency using a LiNbO3

intensity modulator. The modulator is driven by a 10 GHz pulse pattern generator,

so the pulse width is 100 ps. Subsequently, following the DPS-QKD protocol that is

illustrated in Fig. 3.2, the phase of each pulse is modulated by 0 or π with a LiNbO3

phase modulator. The phase modulation signal is a 1 Gbit/s pseudo-random bit se-

quence with a length of 27 − 1 bits, which is generated by a data generator. This

sequence is used to generate a 10 µs long bit pattern, which corresponds to 10,000

bits for 1 GHz repetition rate, and is used for the QKD experiments described be-

low. After appropriate attenuation, the pulse train is sent to Bob’s site through an

optical fiber, where a Mach-Zehnder interferometer based on planar lightwave circuit

(PLC) technology [97] is installed. The interferometer has a path length difference of

20 cm, and so it introduces a 1-bit delay of 1 ns to the incoming pulses. The PLC

technology offers stability of operation and very small polarization dependence [98].

The insertion loss of the interferometer is 2.5 dB, and the extinction ratio is greater

than 20 dB. One 1.55 µm up-conversion single-photon detector is connected to each

of the output ports of the interferometer. In particular, the output of each port of

the interferometer enters the WDM coupler shown in Fig. 4.5, and is combined with

the 1.32 µm pump light to generate the single-photon SFG output, which is subse-

quently detected by a single-photon counting module (SPCM) based on a Si APD.

Because the PPLN waveguides used in the two up-conversion detectors are phase-

matching at slightly different wavelengths, temperature tuning is used to adjust their

peak conversion efficiency at the signal wavelength. The quantum efficiency and dark

count rate experimental data for the up-conversion single-photon detectors with the

SPCM devices that were used for the QKD experiments are shown in Figs. 5.2 and

5.3, respectively. As we discussed in Sec. 4.2, due to the low after-pulse probability

of the Si APDs the up-conversion detectors are operated in nongated mode, so the

sifted key generation rate is limited only by the dead time of the detector, as shown

in Eq. (4.2). The dead time of the SPCMs is 50 ns.

The events detected by the two SPCMs are recorded using a time interval analyzer
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(TIA). Figs. 5.4(a) and (b) shows histograms of detected photons counted by DET1

and DET2 in Fig. 5.1, respectively, for a fixed phase modulation pattern after a

20 km fiber transmission. These data are taken with only the corresponding detector

connected to the TIA. For each of these measurements, the average photon number

per pulse µ is set to 0.1 and the quantum efficiency of the detector η is set to 8.8%.

The tailing distribution that is clearly observed in this figure is mostly due to detector

timing jitter, which is related to the uncertainty in the detection time of the incoming

photons, and is typically about 500 ps for the SPCM device. This broadening of the

received signal induces errors in the transmission, and so to reduce the system bit error

rate we apply a time window to the recorded data, as shown in Fig. 5.1. Applying this

measurement time window also reduces the dark counts per time window, a crucial

parameter for the performance of the QKD system, at the expense of reduced key

generation rate. Another way to avoid large bit error rates due to the large dark

counts of the up-conversion single-photon detector is to keep the pump power at a

relatively low level, at the expense of reduced quantum efficiency and thus again

reduced key generation rate. In general, as we will see, by tuning the pump power to

levels appropriate for desired dark count and quantum efficiency values, the focus of

the QKD system can be adjusted to achieve high secure key generation rate or long

communication distance, depending on the application.

Using the 20 dB splitter and the power meter shown in Fig. 5.1 we carefully

calibrate the loss of the second variable attenuator in the setup so that the number of

photons entering the optical fiber, or else the average photon number per pulse µ of the

signal sent from Alice to Bob, is exactly known. This parameter is set at its optimum

value for each fiber length. In particular, based on the experimental parameters of

the system, we maximize the secure key generation rate with respect to µ for each

fiber length, using Eqs. (3.10) and (3.5) when the security analysis against restricted

attacks is considered, and Eqs. (3.10) and (3.24) when the security analysis against

general individual attacks is taken into account. This means that the optimum µ

depends on the security requirements of the QKD system. Once the appropriate µ is

set, we perform QKD experiments, that is we measure the generation rate of the sifted

keys that Alice and Bob exchange, and by directly comparing the yielded keys we also
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Figure 5.4: Histograms of the received signal at (a) DET1 and (b) DET2 for a fixed
phase modulation pattern.

measure the bit error rate of the transmission. For each fiber length, we measure the

sifted key generation rate and error rate 5 times and take the average value. Error

correction and privacy amplification are not implemented; instead we calculate the

secure key generation rate from the appropriate theoretical equation that depends

on the security requirements of the experiment using the experimental results for the

sifted key generation rates and bit error rates. Fiber transmission experiments are

performed using fiber spools, with Alice and Bob located in the same room, while

some additional data are taken with an optical attenuator simulating fiber loss. In

the following, we present the QKD results that we obtained with the described setup

and procedure.

5.3 Experimental results

5.3.1 Results for restricted attacks security analysis

When the security analysis of the DPS-QKD protocol against a set of restricted

attacks is considered, the optimal average photon number per pulse µ is determined
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by the equation that was derived in Sec. 3.3 and is repeated here in compact form:

Rrestricted = Rsifted {[1− 2µ(1− T )− 2e] + f(e)[e log2 e+ (1− e) log2(1− e)]} (5.1)

where we have included the appropriate privacy amplification factor τ from Eq. (3.5)

and Rsifted is given by Eq. (4.2) since the sifting parameter is 1 for this protocol.

Based on the above equation and our experimental parameters, we find the optimum

µ for each fiber length. This optimum value is around 0.16 - 0.18, depending on η, d,

and the fiber length. The experimental parameters as well as the experimental results

that we obtained are summarized in Table 5.1, while Fig. 5.5 shows the theoretical

curves and experimental results for the sifted and secure key generation rate as a

function of fiber length for several cases.

First, we set the overall quantum efficiency of the up-conversion single-photon

detectors to η = 8.8%, which corresponds to a pump power of about 15 mW, as we

see from Fig. 5.2. For this pump power level, the dark count rate is D = 13 kHz.

The measurement time window used to reduce the effective dark counts and bit

errors due to the SPCM timing jitter is 600 ps, so the number of dark counts per

time window in these experiments is d = 7.8 × 10−6. The use of the 600 ps time

window also decreases the effective quantum efficiency by 33%. Under these operating

conditions, we perform QKD experiments for 20, 30, and 75 km of optical fiber. We

used dispersion-shifted fiber (DSF) for the fiber spools in order to avoid chromatic

dispersion induced pulse broadening. As a result, the pulse broadening caused by

chromatic dispersion is negligible compared to that caused by the timing jitter of the

detectors. The curves (a) of Fig. 5.5 correspond to the theoretical prediction for the

sifted and secure key generation rate under these experimental conditions, when µ is

optimized to maximize the secure key generation rate at each fiber length. A baseline

system error rate of 3% is assumed in these calculations. The clear squares represent

the fiber transmission experimental results for the secure key generation rate, while

the sifted key generation rate at the corresponding fiber lengths is represented by

the clear diamonds. Finally, the clear circles and stars show the experimental results

when we simulate additional fiber loss with an optical attenuator. As we observe in
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Table 5.1: Summary of fiber transmission experimental conditions and results for the
restricted attacks security analysis case.
Fiber length (km) 20 30 75 75 105

Fiber loss (dB) 4.5 6.9 15.2 15.2 22.1
Dark count rate (kHz) (each detector) 13 13 13 1.35 1.35
Quantum efficiency (%) 8.8 8.8 8.8 2 2
Time window width (ps) 600 600 600 200 200
Average photon number per pulse 0.1 0.18 0.17 0.17 0.16

Sifted key generation rate (kbits/s) 1020 1050 157 22.6 4.93
Bit error rate (%) 3.94 5.19 6.96 4.06 7.95

Secure key generation rate (kbits/s) 455 210 13.8 6.65 0.209

Fig. 5.5, the theoretical curves fit very well with the experimental results. At fiber

lengths of 30 km or less, the achieved sifted key generation rate is more than 1 Mbit/s.

The sifted key rate cannot greatly exceed 1 Mbit/s because of the timing jitter of the

SPCM devices. In particular, as noted on Table 5.1, for a fiber length of 20 km, the

value µ = 0.1 was used instead of the optimum value of µ = 0.18. This is because

the timing jitter of the SPCM surges when the count rate increases, and thus at this

low loss point we cannot enlarge µ because the error rate becomes prohibitively large.

The maximum attainable sifted key generation rate is limited by this effect. Even

with this limitation, however, the achieved sifted rate is two orders of magnitude

larger than the previous record of 45 kbits/s over 10.5 km of fiber [55]. The secure

key generation rate is 0.455 Mbits/s over 20 km of optical fiber. Thus, even with the

moderate 8.8% quantum efficiencies, the key rate is significantly increased, and this

is due to the nongated mode operation of the up-conversion single-photon detectors.

In order to achieve long-distance quantum key distribution, we now set the pump

power level, quantum efficiency, dark count rate, and time window width at approxi-

mately 3 mW, 2%, 1.35 kHz and 200 ps, respectively. This further reduces the errors

caused by the dark counts, which are now d = 2.7× 10−7 counts/time window. Here,

the use of the 200 ps time window reduces the effective quantum efficiency of the

detector by 60%. Under these operating conditions, we perform QKD experiments

for 75 and 105 km of fiber. The curves (b) of Fig. 5.5 correspond to the theoretical
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Figure 5.5: Secure and sifted key generation rate as a function of fiber length for
3 cases. (a) The dashed and solid curves are theoretical predictions for the sifted
and secure rate, respectively, when η = 8.8% and d = 7.8 × 10−6, and security
against restricted attacks is taken into account. The clear diamonds and squares
are the experimental fiber transmission data for the sifted and secure key generation
rate under these conditions. The clear stars and circles are the data taken with
attenuation used to simulate additional fiber loss. (b) The dashed and solid curves
are the theoretically predicted sifted and secure rate, when η = 2% and d = 2.7×10−7.
The filled diamonds and squares are the experimental fiber transmission data under
these conditions. The filled stars and circles are the simulated attenuation data.
A baseline system error rate of 3% is assumed in all theoretical calculations. The
effective quantum efficiency factor is 0.67 for (a) and 0.4 for (b). (c) The dash-dot
curve is the theoretical prediction and the filled triangles the experimental results for
the best experiment employing the BB84 protocol with Poisson light and InGaAs/InP
APDs.
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prediction for the sifted and secure key generation rate when the above experimental

conditions are assumed. The filled squares and diamonds represent the fiber trans-

mission experimental results, while the filled circles and stars correspond to data

taken using the attenuator to simulate additional fiber loss. Again, the theoretical

curves fit very well with the experimental data. By using these operating conditions,

secure keys are distributed at a rate of 209 bits/s over 105 km of fiber. The bit error

rate for the 105 km experiment is 7.95%. It is induced by several sources, that are

summarized as follows:

etotal = einterferometer + edark + eelectrical + ejitter (5.2)

The first term represents errors due to imperfect interference, and can be inferred from

the extinction ratio of the interferometer. The PLC Mach-Zehnder interferometer

that we used had a 20 dB extinction ratio, which results in a 1% error rate. The

second term is due to the dark counts of the detector. This term increases with

the fiber transmission distance, since the dark count rate remains constant while the

number of received signal photons reduces, which leads to a worse signal to noise

ratio. For the 105 km experiment, the sifted key rate is 4930 counts/s, while the dark

count rate is 1350 counts/s, which means that 270 counts/time window are included

in the 200 ps time window for each detector. Thus, if we take into account both

detectors and the fact that half of the dark counts lead in errors, we find that the

contribution of the dark counts to the error rate is 5.5%. The third term in Eq. (5.2)

represents errors caused by electrical noise, which we estimate to be negligible in this

case. Finally, the last term corresponds to the timing jitter of the detectors and the

remaining 1.45% error rate for the 105 km experiment is due to this effect. Fig. 5.6

shows the theoretical prediction based on Eq. (3.9) for the bit error rate under the

experimental conditions discussed above, as well as the error rate values obtained

in the experiments. For the theoretical curve, a baseline system error rate of 3% is

assumed, as in the corresponding calculations for Fig. 5.5.

To compare the results obtained using the DPS-QKD system with up-conversion

detectors with the best results obtained so far, we plot curve (c) in Fig. 5.5, which
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Figure 5.6: Theoretical prediction and experimental results for the bit error rate as
a function of fiber length, when η = 2% and d = 2.7× 10−7. The squares and circles
correspond to fiber transmission and simulated attenuation experiments, respectively.

shows the theoretical prediction for the secure key generation rate, as well as the

experimental results for the best QKD system implementing the standard BB84 pro-

tocol with an attenuated Poisson source and InGaAs/InP APDs to date [71]. The

comparison between the curves shows that the DPS-QKD system significantly out-

performs a QKD system based on the BB84 protocol, in terms of both secure key

generation rate and communication distance. This improvement is due to the robust-

ness of the DPS-QKD protocol to photon number splitting attacks, which extends

the communication distance, and the high speed nongated mode of the up-conversion

single-photon detectors, which extends the key generation rate.

5.3.2 Results for individual attacks security analysis

Although a practical QKD system capable of transmitting keys that are secure against

a set of realistic eavesdropping attacks such as the beamsplitter and intercept and

resend attacks discussed in Sec. 3.3 is very important, it is also crucial to take into
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Table 5.2: Summary of fiber transmission experimental conditions and results for the
general individual attacks security analysis case.

Fiber length (km) 20 75

Fiber loss (dB) 4.5 15.2
Dark count rate (kHz) (each detector) 13 1.35
Quantum efficiency (%) 8.8 2
Time window width (ps) 600 200
Average photon number per pulse 0.1 0.17

Sifted key generation rate (kbits/s) 1020 22.6
Bit error rate (%) 3.94 4.06

Secure key generation rate (kbits/s) 125 0.871

account more elaborate attacks that will be available in the near future, and guarantee

the security of the system against these types of attacks. Thus, below we reinterpret

the results obtained in the experiments described in the previous section when the

security analysis against general individual attacks that was developed in Sec. 3.4 is

considered.

In this case, because the average number of photons per pulse µ was not optimized

based on the individual attacks analysis, only two fiber transmission experiments

were found to have been secure against the more powerful eavesdropping attacks: the

20 km experiment with conditions (a) of Fig. 5.5, and the 75 km experiment with

conditions (b) of the same figure. The parameters and results that correspond to

these experiments are summarized in Table 5.2, while Fig. 5.7 shows the theoretical

curves and experimental results for the sifted and secure key generation rate as a

function of fiber length for the two different detector operating conditions, when

the security analysis against general individual attacks is taken into account. To

obtain the secure key generation rates shown in Table 5.2 and Fig. 5.7, we insert the

experimental values for the sifted key generation rate and error rate, as well as the

experimental parameters, in the equation that was derived in Sec. 3.4 and is repeated
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here in compact form:

Rindividual = Rsifted{−[1− 2µ(1− T )] log2[1− e2 − (1− 6e)2

2
]

+f(e)[e log2 e+ (1− e) log2(1− e)]} (5.3)

where we have included the appropriate privacy amplification factor τ from Eq. (3.24)

and Rsifted is again given by Eq. (4.2). As we see in Fig. 5.7, even with the strict

security requirements imposed by the general individual attacks analysis, the DPS-

QKD system with the up-conversion detectors offers a very enhanced performance

compared to the system that implements the BB84 protocol with InGaAs/InP APDs.

In the experiments that we described, the secure key distribution distance is lim-

ited by two factors related to the up-conversion single-photon detectors. The first fac-

tor is the large dark count rate, which as we explained in Sec. 4.3.4 is caused by noise

photons generated via a spontaneous Raman scattering process in the waveguide.

These noise photons can potentially be suppressed by choosing a pump wavelength

longer than the signal wavelength. The second factor that limits the performance

of the system is the large timing jitter of the SPCM devices, which is on the order

of 500 ps. As we discussed in the previous sections, for small fiber losses and large

count rates the timing jitter surges and limits the key generation rate. But even for

high fiber losses, the broadening of the received signal pulses that the timing jitter

induces leads to a larger bit error rate, which results in a reduction of the secure

key distribution distance. It is therefore clear that by improving the performance of

the Si APDs with respect to their timing jitter the capabilities of the QKD system

can be substantially extended. Fortunately, the timing jitter of these devices is not

determined by an intrinsic process, rather it is limited by the electronic circuit used

for the quenching of the avalanche process. Progress in research related to these de-

tectors has recently led to commercial devices that feature low timing jitter, on the

order of 50 ps. The development of these low-jitter photon counting detection mod-

ules (PDMs) opens the way to the implementation of quantum cryptography systems

with enhanced capabilities, as was suggested in [99] and we experimentally show in

the following section.
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Figure 5.7: Secure and sifted key generation rate as a function of fiber length for
3 cases. (a) The dashed and solid curves are theoretical predictions for the sifted
and secure rate, respectively, when η = 8.8% and d = 7.8 × 10−6, and security
against general individual attacks is taken into account. The clear diamond and
square are the experimental fiber transmission data for the sifted and secure key
generation rate under these conditions. (b) The dashed and solid curves are the
theoretically predicted sifted and secure rate, when η = 2% and d = 2.7× 10−7. The
filled diamond and square are the experimental fiber transmission data under these
conditions. For the theoretical calculations we have made the same assumptions as
in the case of restricted attacks. (c) The dash-dot curve is the theoretical prediction
and the filled triangles the experimental results for the best experiment employing
the BB84 protocol with Poisson light and InGaAs/InP APDs.
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5.4 Experimental results with low-jitter detectors

The experimental setup used for the QKD experiments that we describe in this section

is the same as the setup shown in Fig. 5.1, except for two modifications. First, the

pulse pattern generator is operated at 15 GHz so that the resulting pulse width ob-

tained with the intensity modulator driven by the generator is 66 ps instead of 100 ps

that was used in the previous experiments. Second, the high-jitter SPCM devices are

replaced by the low-jitter PDM devices, resulting in low-jitter up-conversion single-

photon detectors. Both of these modifications have the goal of reducing the bit error

rate caused by timing jitter, and thus achieve better performance of the DPS-QKD

system with respect to both key generation rate and communication distance.

In order to evaluate the performance of the low-jitter up-conversion detectors,

we first perform timing jitter measurements. For these measurements, the phase

modulator and PLC interferometer in Fig. 5.1 are not used, and only one detector

is connected to the time interval analyzer at a time. Furthermore, the pulse pattern

generator is adjusted so that the 66 ps pulses are generated every 10 ns instead of

every 1 ns as in the QKD experiments. Under these conditions, a typical detection

signal from the up-conversion single-photon detector with the low-jitter Si APD is

shown in Fig. 5.8 for a count rate of 105 counts/s. As we observe in this figure,

the full width at half maximum (FWHM) of the signal is rather small, about 75 ps.

However, the signal is clearly not Gaussian and there is a long tail that can potentially

cause errors in the next 1 ns time slot in a QKD experiment with a repetition rate of

1 GHz. Thus, a more appropriate figure of merit is the full width at tenth maximum

(FWTM) of the signal, which is 240 ps for the signal pulse in Fig. 5.8. As we

discussed in Sec. 5.3, the timing jitter of the SPCM devices surged at high count

rates, preventing the sifted key generation rate from exceeding 1 Mbit/s for small

fiber losses. To determine the corresponding behavior of the low-jitter detectors, we

record the FWHM and FWTM of the detected signal pulses for several count rate

values. Fig. 5.9 shows the experimental results obtained with these timing jitter

measurements. Although the FWHM remains below 100 ps even for 106 counts/s,

the FWTM becomes larger for high count rates. Nevertheless, Figs. 5.8 and 5.9 show
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Figure 5.8: Typical detection signal from the up-conversion single-photon detector
with a low-jitter Si APD when 66 ps pulses are used. This curve corresponds to
DET2 and a count rate of 105 counts/s.

that the improvement in timing jitter achieved with these Si APDs is significant, and

so the error rate should be considerably lower both in high bit rate and long-distance

QKD experiments employing these detectors.

The procedure followed for the experiments implementing the DPS-QKD protocol

with low-jitter up-conversion detectors is the same as the one described in Sec. 5.2.

The quantum efficiency and dark count rate experimental data for the up-conversion

single-photon detectors with the PDM devices that were used for the QKD experi-

ments are shown in Figs. 5.10 and 5.11, respectively. The maximum quantum effi-

ciency of the PDM device at the SFG wavelength of 715 nm is ∼ 25% instead of 70%

for the SPCM device, which explains the lower overall quantum efficiencies of the

low-jitter up-conversion detector that we observe in Fig. 5.10 compared to Fig. 5.2.

Since the dark counts of the up-conversion detector are mainly caused by spurious

optical processes in the waveguide, the smaller quantum efficiency of the PDM device

also results in less efficient conversion of the dark counts, and the relatively smaller
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Figure 5.9: Timing jitter as a function of count rate for the low-jitter up-conversion
detectors when 66 ps pulses are used.

dark count rates we observe in Fig. 5.11. Finally, the low-jitter up-conversion detector

is operated in nongated mode, so the sifted key generation rate is again limited by

the dead time of the detector, which is 85 ps for the PDMs.

For the QKD experiments, we first set the average photon number per pulse µ at

its optimal value based on the experimental parameters and the security analysis for

general individual attacks, that is we use Eq. (5.3) for our calculations. The optimal

value is around 0.2 in this case, the exact value depending on η, d, and the fiber

length. The experimental parameters as well as the experimental results that we

obtained are summarized in Table 5.3, while Fig. 5.12 shows the theoretical curves

and experimental results for the sifted and secure key generation rate as a function

of fiber length for two different experimental conditions.

As with the experiments of Sec. 5.3, we first set the detector operating condi-

tion to levels appropriate for achieving high bit rate quantum key distribution. More

specifically, the quantum efficiency and dark count rate of the low-jitter up-conversion

single-photon detectors are set to 6% and 98 kHz, respectively. These values do not
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Figure 5.10: Quantum efficiency of the low-jitter up-conversion single-photon detector
as a function of pump power.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3
x 10

5

Pump power (mW)

D
ar

k 
co

un
t r

at
e 

(c
ou

nt
s/

s)

Figure 5.11: Dark count rate of the low-jitter up-conversion single-photon detector
as a function of pump power.
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Table 5.3: Summary of fiber transmission experimental conditions and results for the
general individual attacks security analysis case and low-jitter up-conversion detec-
tors.

Fiber length (km) 10 25 75 100

Fiber loss (dB) 2.4 5.7 15.2 20.9
Dark count rate (kHz) (each detector) 98 0.35 0.35 0.35
Quantum efficiency (%) 6 0.4 0.4 0.4
Time window width (ps) 200 100 100 100
Average photon number per pulse 0.2 0.2 0.2 0.2

Sifted key generation rate (kbits/s) 2020 37.7 6.7 2.1
Bit error rate (%) 2.2 1.3 2.4 3.4

Secure key generation rate (kbits/s) 468 13.8 1.39 0.166

correspond to the same pump power level in Figs. 5.10 and 5.11 because the per-

formance of the detectors was slightly degraded when the QKD experiments were

performed compared to when the quantum efficiency and dark count rate data were

taken. Due to the low timing jitter of the PDMs we can now use a smaller measure-

ment time window to significantly reduce the effective dark counts without greatly

affecting the signal to noise ratio. This window is set to 200 ps, so the dark counts

per time window in these experiments are d = 1.95 × 10−5. The use of the 200 ps

time window also decreases the effective quantum efficiency by 40%. Under these

operating conditions, we perform QKD experiments for 10 km of dispersion-shifted

optical fiber. The curves (a) of Fig. 5.12 correspond to the theoretical prediction for

the sifted and secure key generation rate under these experimental conditions, when

µ is optimized to maximize the secure key generation rate at each fiber length using

the general individual attacks security analysis. A baseline system error rate of 1.2%

is assumed in these calculations. The clear square represents the fiber transmission

experimental result for the secure key generation rate, while the sifted key generation

rate at the corresponding fiber length is represented by the clear diamond. The clear

circles and stars show the experimental results when we simulate additional fiber loss

with an optical attenuator. As we observe in Fig. 5.12, the theoretical curves fit very
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well with the experimental results. At the fiber length of 10 km the achieved sifted

key generation rate is 2 Mbits/s, while the secure key generation rate at this fiber

length is 0.468 Mbits/s. The comparison with the results of Table 5.2 shows that

the use of the low-jitter detectors has doubled the sifted rate at small fiber loss, and

quadrupled the secure key generation rate because of the significantly improved error

rate.

Subsequently, we set the quantum efficiency, dark count rate, and time window

width at approximately 0.4%, 350 Hz and 100 ps, respectively, to achieve long-distance

quantum cryptography. The use of the 100 ps time window sets the dark counts per

time window to d = 3.5×10−8, and also reduces the effective quantum efficiency of the

detector by 54%. Under these operating conditions, we perform QKD experiments for

25, 75 and 100 km of optical fiber. The 75 km fiber spool was dispersion-shifted fiber,

while the 25 km spool was standard single-mode fiber. The curves (b) of Fig. 5.12

correspond to the theoretical prediction for the sifted and secure key generation rate

when the above experimental conditions are assumed. The filled squares and dia-

monds represent the fiber transmission experimental results, while the filled circles

and stars correspond to data taken using the attenuator to simulate additional fiber

loss. Again, we observe that the theoretical curves fit very well with the experimen-

tal data. By using these operating conditions, keys that are secure against general

individual eavesdropping attacks are distributed at a practical rate of 166 bits/s over

100 km of fiber. As we observe in Table 5.3, the error rate achieved in these ex-

periments is significantly lower that the one achieved in the experiments with the

SPCMs, ranging from only 1.3% for the 25 km experiment to 3.4% for the 100 km

experiment. This error rate is induced by the sources indicated in Eq. (5.2). For the

100 km experiment, 1% error rate is attributed to imperfect interferometry, 1.7% to

the dark counts of the detector, and the remaining 0.7% to the timing jitter. Fig. 5.13

shows the theoretical prediction based on Eq. (3.9) for the bit error rate under the

experimental conditions discussed above, as well as the error rate values obtained in

the experiments. For the theoretical curve, a baseline system error rate of 1.2% is as-

sumed, as in the corresponding calculations for Fig. 5.12. These results show that the

use of the low-jitter detectors has considerably extended the secure key distribution



5.4. EXPERIMENTAL RESULTS WITH LOW-JITTER DETECTORS 127

0 20 40 60 80 100 120
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Fiber length (km)

S
ec

ur
e 

ke
y 

ge
ne

ra
tio

n 
ra

te
 (

bi
ts

/s
)

(a) 

(b) 

10 km 

25 km 

75 km 

100 km 

Figure 5.12: Secure and sifted key generation rate as a function of fiber length for 2
cases. (a) The dashed and solid curves are theoretical predictions for the sifted and
secure rate, respectively, when η = 6% and d = 1.95 × 10−5, and security against
general individual attacks is taken into account. The clear diamond and square are
the experimental fiber transmission data for the sifted and secure key generation
rate under these conditions. The clear stars and circles are the data taken with
attenuation used to simulate additional fiber loss. (b) The dashed and solid curves are
the theoretically predicted sifted and secure rate, when η = 0.4% and d = 3.5× 10−8.
The filled diamonds and squares are the experimental fiber transmission data under
these conditions. The filled stars and circles are the simulated attenuation data. A
baseline system error rate of 1.2% is assumed in all theoretical calculations. The
effective quantum efficiency factor is 0.6 for (a) and 0.46 for (b).
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Figure 5.13: Theoretical prediction and experimental results for the bit error rate as
a function of fiber length, when η = 0.4% and d = 3.5×10−8. The squares and circles
correspond to fiber transmission and simulated attenuation experiments, respectively.

distance of the DPS-QKD system. This is partly due to the smaller pulse broadening,

which results in smaller error rate, but most importantly due to the reduced effective

dark counts of the detector, which are one order of magnitude smaller than the case

of the previous long-distance experiments with high-jitter detectors. The latter is

only possible because the low timing jitter allows the use of a smaller time window

without the degradation of the signal to noise ratio that would occur in the previous

experiments.

5.5 Summary

In this chapter, we presented the experimental realization of a simple and practical

quantum key distribution system that implements the DPS-QKD protocol with the

up-conversion single-photon detectors. We described the experimental results that

were initially obtained taking into account the security analysis against restricted
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eavesdropping attacks, and we reinterpreted these results when stricter security re-

quirements are imposed from the general individual attacks analysis. With this sys-

tem we achieved 1 Mbit/s sifted key generation rate over 20 km, and transmission of

secure keys over 75 km of optical fiber. Although these results significantly outper-

formed previous QKD experiments, they also highlighted the limitations imposed on

the system from the high timing jitter of the single-photon detectors. By using newly

developed low-jitter detectors we demonstrated a DPS-QKD system that achieved

2 Mbits/s sifted key generation rate over 10 km, and transmission of secure keys over

100 km of optical fiber.

If we can eliminate the noise photons and all losses in the system except for the

fiber loss, and achieve a negligible timing jitter compared to the pulse width, we find

that the secure key distribution distance of the DPS-QKD system with low-jitter

up-conversion detectors can reach 270 km. This means that in this ideal case, an

entanglement-based quantum repeater system will be required only if the length of

the system exceeds 270 km. This argument shows that the capabilities of fiber-optic

QKD systems can be extended even further by improving the timing jitter of the Si

APDs and by reducing the dark counts of the up-converter. Of course, in practical

quantum cryptography systems spanning hundreds of kilometers problems resulting

from the chromatic dispersion and birefringence in optical fibers may appear. In this

chapter, we have seen some effective solutions to these problems, such as the use

of dispersion-shifted fibers and a phase-encoding protocol with small polarization-

dependence interferometers.

Before technology advances sufficiently to reach the above predictions, a natural

question that arises from the considerably enhanced performance of the QKD system

achieved with the use of the low-jitter detectors is whether we can achieve even better

performance with currently available technology. In the next chapter, we will present

the implementation of a DPS-QKD system with low-jitter up-conversion detectors

operating at 10 GHz repetition rate, and we will show that unfortunately even these

detectors cannot guarantee the security of this system that reaches the limits of

today’s capabilities.



Chapter 6

Implementation of a 10 GHz

differential phase shift QKD

system

6.1 Introduction

The progress in classical optical communications in the last decade has been impres-

sive, with 40 GHz systems currently operating in research laboratories and the indus-

try and 100 GHz components under development for use in the near future. Quantum

communications can greatly benefit from this progress, although the requirements in

these systems are very different from those of their classical counterparts, as we will

see in this chapter.

In the following sections, we will present the experimental realization of a quantum

cryptography system implementing the DPS-QKD protocol, in which components de-

veloped for the advanced telecommunication industry are used to achieve a 10 GHz

repetition rate. We will show that although this rate is standard for classical com-

munications it reaches the limits of quantum communication systems. This is due to

limitations imposed by the components developed for quantum optics applications,

namely the single-photon detectors. Even the good characteristics of the low-jitter Si

APDs that we described in the previous chapter are not sufficient to achieve secure

130
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key generation in the 10 GHz DPS-QKD system. We will present the experimental

results we obtained with this system, we will explain what are the limiting factors,

and discuss possible solutions.

6.2 Experimental setup

The experimental setup for the quantum key distribution experiments that were per-

formed at a repetition rate of 10 GHz and implemented the DPS-QKD protocol with

1.55 µm low-jitter up-conversion detectors, is shown in Fig. 6.1. At Alice’s site, a

10 GHz mode-locked fiber laser is used to generate an optical pulse train at 1.55 µm.

The waveform of the pulses emitted by the laser is monitored with a sampling oscillo-

scope, and is shown in Fig. 6.2. The pulses are Gaussian with a FWHM specification

of 10 ps, which corresponds to a bandwidth of 0.36 nm or 45 GHz at 1.55 µm. This

matches well the waveguide bandwidth, which is about 50 GHz, so we can achieve

the overall quantum efficiency of the detectors shown in Fig. 5.10. The large spectral

width of these pulses, however, makes the system more sensitive to the effect of chro-

matic dispersion induced pulse broadening. For example, in this case we cannot use

the 25 km single-mode fiber (SMF) that was used in the 1 GHz DPS-QKD experiment

with low-jitter up-conversion detectors. The dispersion of such fibers at 1550 nm is

17 ps/km/nm, so if a pulse with a linewidth of 0.36 nm propagates in 25 km of SMF,

the dispersion will be equal to 153 ps. This pulse width is prohibitive for the tight

requirements of the 10 GHz DPS-QKD system, where pulses are only separated by

100 ps. On the contrary, for the 66 ps pulses used in the 1 GHz DPS-QKD setup

with low-jitter detectors, the corresponding dispersion was 23 ps, which did not have

any substantial effect on the performance of the system. The use of dispersion-shifted

fibers is absolutely required, however, in the 10 GHz system.

Following the DPS-QKD protocol, the pulse train generated by the mode-locked

laser is phase modulated by 0 or π using a high-speed LiNbO3 phase modulator. The

phase modulation signal is a 10 Gbit/s pseudo-random bit sequence with a length of

100 bits, which is provided by a pulse pattern generator. Subsequently, the pulses

are appropriately attenuated and sent to Bob through an optical fiber. At Bob’s site,
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Figure 6.1: Experimental setup for the 10 GHz DPS-QKD system. PC, polarization
controller; PM, phase modulator; VATT, variable attenuator; PPG, pulse pattern
generator.
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Figure 6.2: Optical pulse train generated from the 10 GHz mode-locked laser.

the pulses enter a PLC Mach-Zender interferometer, which has a 2 cm path length

difference, and so it introduces the required 1-bit delay of 100 ps to the incoming

pulses. The insertion loss of the interferometer is 2.5 dB, and the coherence of the

mode-locked laser is sufficient to achieve an extinction ratio of 19-20 dB. Two 1.55 µm

up-conversion single-photon detectors with low-jitter PDMs operating in nongated

mode are placed at the output ports of the interferometer.

The events detected by the two Si APDs are recorded using a time interval analyzer

(TIA). Fig. 6.3 shows a histogram of detected photons counted by DET2 for a fixed

modulation pattern after a 10 km fiber transmission. For this measurement, only

DET2 is connected to the TIA, while the average photon number per pulse is set

to 0.1 and the quantum efficiency of the detector to 0.2%. The comparison of this

figure with the histograms of Fig. 5.4 that correspond to the high-jitter SPCM devices

shows the great advantage the low-jitter Si APDs provide in terms of reduced pulse

broadening. However, it is also apparent in Fig. 6.3 that the long tail of the detection

signal that we observed in Fig. 5.8 causes a significant intersymbol interference, which

will result in considerable errors in the transmission. Thus, to reduce the bit error

rate, we apply a time window to the recorded data, which also reduces the effective

dark counts of the system.
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Figure 6.3: Histogram of the received signal at DET2 for a fixed phase modulation
pattern.

Before conducting the QKD experiments, we first want to evaluate the perfor-

mance of the low-jitter detectors with this system; we thus perform timing jitter

measurements in the same way as we described in Sec. 5.4. More specifically, for

these measurements we omit the phase modulator and PLC interferometer and we

only connect one detector at a time to the TIA. We also insert an intensity modulator

driven by a 10 GHz pulse pattern generator in the system so that only 1 every 10

pulses of the pulse train generated by the mode-locked laser is selected, and the spac-

ing between the pulses becomes 1 ns instead of 100 ps as in the QKD experiments.

This is necessary to infer the quality of the detection signal from the time interval

analyzer data. Under these conditions, a typical detection signal from the low-jitter

up-conversion detector is shown in Fig. 6.4 for a count rate of 3× 105 counts/s. The

FWHM of the signal is only 30 ps, while the FWTM, which is a more appropriate

figure of merit as we explained in Sec. 5.4, is 116 ps. These values are smaller than the

corresponding values for the signal in Fig. 6.4 since much shorter pulses are used for

this measurement. Fig. 6.5 shows experimental results for the FWHM and FWTM of

the detection signal obtained for different count rates. Similarly to the corresponding

behavior in Fig. 5.9, the FWHM remains below 40 ps even for high count rates, while

the FWTM becomes significantly larger when the count rate exceeds 105 counts/s.
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Figure 6.4: Typical detection signal from the up-conversion single-photon detector
with a low-jitter Si APD when 10 ps pulses are used. This curve corresponds to
DET2 and a count rate of 3× 105 counts/s.

Although the measured timing jitter values are extremely beneficial for the 1 GHz

DPS-QKD system that we described in Sec. 5.4, the effect of the long tail observed

in Fig. 6.4 and quantified with the FWTM values in Fig. 6.5 is detrimental for the

10 GHz DPS-QKD system. With only 100 ps time separation between adjacent pulses

this tail induces large errors in the next time slots, since counts from a bit in a certain

time slot that are attributed to subsequent slots yield uncorrelated results and thus

lead in errors. From Fig. 6.4 we can estimate the error rate due to this effect to be

on the order of 9-10% for the adjacent slot, 5-6% for the second next slot, and 2-3%

for the third next slot. Therefore, the timing jitter measurements reveal a source of

large errors for the 10 GHz DPS-QKD system. In the next section, we show that this

is indeed the predominant source of errors in the system, and prevents the generation

of secret keys between Alice and Bob.
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Figure 6.5: Timing jitter as a function of count rate for the low-jitter up-conversion
detectors when 10 ps pulses are used.

6.3 Experimental results

For the experiments implementing the DPS-QKD protocol with low-jitter up-conversion

detectors at a repetition rate of 10 GHz, we set the quantum efficiency and dark count

rate of the low-jitter up-conversion detectors to 0.27% and 320 Hz, respectively. Due

to the very narrow pulse width and the small FWHM of the detection signal in this

system, we can decrease the measurement time window significantly while achieving

at the same time a reasonable signal to noise ratio. For a 10 ps time window the ef-

fective dark counts are reduced to the very small value of d = 3.2× 10−9 counts/time

window, while the effective quantum efficiency factor takes values between 0.16 and

0.19, depending on the fiber length. Finally, based on Eq. (5.3) for the security analy-

sis against general individual attacks and the experimental parameters we described,

we set the average number of photons per pulse to 0.2. Under these conditions, we

perform QKD experiments for 10, 30, 75, and 105 km of dispersion-shifted optical

fiber. The experimental parameters and the results that we obtained are summarized
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Table 6.1: Summary of fiber transmission experimental conditions and results for the
10 GHz DPS-QKD system with low-jitter up-conversion detectors.

Fiber length (km) 10 30 75 105

Fiber loss (dB) 2.4 6.5 16.1 22.1
Dark count rate (kHz) (each detector) 0.32 032 0.32 0.32
Quantum efficiency (%) 0.27 0.27 0.27 0.27
Time window width (ps) 10 10 10 10
Average photon number per pulse 0.2 0.2 0.2 0.2

Estimated bit error rate due to dark counts (%) 0.012 0.035 0.19 0.88
Bit error rate (%) 10.9 10.1 9.2 9.7

Portion of detected events in time window (%) 15.9 16.2 18.2 18.5
Sifted key generation rate (kbits/s) 267 93.8 15.5 3.69

in Table 6.1.

An interesting observation that we can make from this table is that the contribu-

tion of the dark counts to the error rate is extremely small, which is possible because

of the use of a very narrow measurement time window. This fact is also verified by

a second observation that the total bit error rate is nearly independent of the fiber

length. The contribution of imperfect interference to the error rate is estimated to be

about 1.1%, while the term in Eq. (5.2) related to the electrical noise is not negligi-

ble in the 10 GHz system due to an imperfect amplification system used to generate

the 10 GHz modulation signal. It is estimated to contribute about 0.5-1% to the

total error rate. All the remaining errors are attributed to the timing jitter effect. At

small fiber losses the larger FWTM of the detection signal that we observed for larger

count rates leads to a slightly increased error rate. The error rate is high for high

fiber losses as well, however, partly because of the increased dark count contribution

but mainly because of the dominating timing jitter induced errors. Unfortunately,

the threshold error rate for secure key generation calculated from Eq. (5.3) with the

experimental parameters that we used is 4.5%, so the error rate of about 10% that

we measured does not allow the extraction of secure keys from the generated sifted

keys for any fiber length. This threshold error rate is determined by the tight security
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requirements of the individual attacks analysis and imposes great limitations on the

acceptable error levels in the system.

In Figs. 6.6 and 6.7 we plot the estimated error rate due to dark counts and the

sifted key generation rate, respectively, as a function of the measurement time window

width for the case of the 105 km experiment. As expected, the sifted key generation

increases when the time window becomes wider because the effective quantum effi-

ciency factor increases, but this happens at the expense of an increased error rate

due to the larger contribution of the timing jitter induced errors. For time windows

smaller than 10 ps, we observe a saturation of the error rate due to dark counts,

which is expected because the number of errors due to dark counts included in the

time window does not change significantly for these narrow widths.

6.4 Summary

In this chapter, we presented the experimental realization of a quantum key distri-

bution system that implements the DPS-QKD protocol with low-jitter up-conversion

detectors and operates at a repetition rate of 10 GHz. With this system, we gen-

erated sifted keys over 105 km of optical fiber with a bit error rate of 9.7%. This

error rate was not sufficient to generate secure keys, and we showed that it is limited

only by the timing jitter characteristics of the Si APD devices, since the dark count

contribution was very small due to the narrow pulse width and the narrow FWHM

of the detection signal. Therefore, by improving the timing jitter behavior of the

single-photon detectors, it will be possible to achieve distribution of secure keys with

the 10 GHz DPS-QKD system. Continuing research in the development of these de-

tectors will undoubtedly yield the desired characteristics, and will thus enable the

successful implementation of quantum key distribution at 10 GHz.

If we can eliminate the noise photons in the system and all losses except for the

fiber loss, and achieve a negligible timing jitter compared to the pulse width, a 10 dB

improvement in both the secure key generation rate and the maximum channel loss

can be achieved with the 10 GHz system compared to the 1 GHz system. This will

lead in megahertz secure key generation rates and key distribution distance exceeding
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Figure 6.6: Experimental results for the bit error rate as a function of measurement
time window width for the 105 km experiment.
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Figure 6.7: Experimental results for the sifted key generation rate as a function of
measurement time window width for the 105 km experiment.
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300 km. A practical quantum cryptography system with the above capabilities is a

very appealing prospect, and opens the way to the integration of such systems in

current telecommunication networks.

In the previous chapters, we have focused on quantum cryptography systems and

we have shown that the 1.55 µm up-conversion single-photon detector is a useful tool

for achieving enhanced performance of such systems. However, this simple and ef-

ficient single-photon detector that operates in high speed nongated mode, is also a

very useful technology for classical applications requiring low light sensitivity in the

infrared wavelength range, such as optical time domain reflectometry (OTDR) [100],

laser detection and ranging (LADAR), and astronomy and deep-space communica-

tions. In the next chapter, we will present the experimental realization of a photon-

counting OTDR system employing an up-conversion detector, and will discuss how

this system benefits from the characteristics of this detector.



Chapter 7

Photon-counting optical time

domain reflectometry

7.1 Introduction

Optical time domain reflectometry (OTDR) is a powerful and widely employed method

for nondestructive and spatially resolved fault location and optical fiber and system

characterization. This technique consists of sending a light pulse into the optical fiber

under test and measuring the backscattered light. This backscattered light is due to

essentially two physical mechanisms: the Fresnel reflections from fiber discontinuities,

and the Rayleigh scattering. Since the velocity of the light in the fiber v is known, the

optical backscattered power measured at a time t after the exciting light pulse gives

information on the fiber attenuation characteristics at a distance l = tv/2, where the

factor 2 is required since the light travels for a distance 2l from the injection point

to the backscattering position and then back to the detector. It follows that if a

small portion of the fiber needs to be characterized, the duration of the light pulse

as well as the photodetector resolution must be sufficiently short. Except for the

spatial resolution of the measurement, which determines how precisely the location

of defects can be detected, another important figure of merit of an OTDR system is

the sensitivity or dynamic range of the measurement, which determines the minimum
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detectable backscattered power and thus the maximum fiber length that can be mea-

sured. When shorter pulses are used to provide good spatial resolution, the signal

to noise ratio is worse because of the smaller backscattered power, so the attainable

dynamic range is smaller. This shows that there is a trade-off between spatial reso-

lution and dynamic range in an OTDR measurement. Finally, an important figure of

merit for an OTDR system is the total required time of the measurement.

Classical OTDR, which employs a photodiode in the analog regime as the detec-

tion apparatus [101], has been very successful in terms of the dynamic range of the

measurement, achieving a 40 dB range, which corresponds to a fiber length of 200 km

for a fiber with a loss coefficient of 0.2 dB/km. However, the spatial resolution of

these systems is only in the kilometer range. Furthermore, classical systems suffer

from the so called dead zones. More specifically, when a strong Fresnel reflection is

detected by the photodetector, the preamplifier placed at the detector output is very

likely to saturate. In this case, the small Rayleigh scattering of the subsequent fiber

cannot be detected for a certain distance because the preamplifier has to recover from

the nonlinear behavior. This effect defines the dead zone of the measurement, which

is a well-known and serious problem in classical OTDR systems.

On the other hand, photon-counting OTDR (pc-OTDR), which employs a single-

photon detector as the detection apparatus, does not feature dead zones. This is

because while in classical OTDR the information is carried in the analog waveform of

the detector pulse, in photon-counting OTDR the detector provides standard pulses

and the information is carried in the time of occurrence of these pulses. Moreover,

single-photon detectors feature better sensitivity and time resolution, characteristics

very useful for the purpose of OTDR measurements. Due to all of the above rea-

sons, photon-counting OTDR has received increasing attention as a potentially ideal

technique for characterizing optical fiber networks.

Several pc-OTDR experiments have been performed at the telecommunication

wavelengths of 1.3 µm and 1.5 µm with either centimeter spatial resolution or very

large dynamic range. Some of the reported results are a 5 cm resolution with 0.04 dB

dynamic range, corresponding to only 200 m of fiber [102], 100 m resolution with 25 dB

range, corresponding to 125 km of fiber [103], and 1 km resolution with 44 dB range,



7.2. MEASUREMENT TIME CALCULATION 143

corresponding to 220 km of fiber, which constitutes an improvement of 4 dB with

respect to classical OTDR systems [104]. Possibly the most successful experiment in

terms of achieving a good trade-off between spatial resolution and dynamic range is

reported in [105], where a carefully designed system achieved a 15 cm spatial resolu-

tion with a 20 dB dynamic range, which corresponds to 100 km of optical fiber. In all

these implementations, Ge or InGaAs/InP avalanche photodiode detectors (APDs)

in Geiger mode were used. As we discussed in Sec. 4.2, these single-photon detec-

tors exhibit high after-pulse probability, caused by charge carriers trapped during the

avalanche process. These after-pulse effects can cause significant distortion of the

OTDR data [105, 106]. To reduce this effect, the detectors have to be operated in

gated mode. In QKD applications, we saw that this operation mode limits the attain-

able communication rate significantly. In applications like OTDR, where the arrival

time of a signal photon is not known a priori, gated mode operation complicates the

measurement process significantly. Gated measurement windows have to be used to

access only parts of the fiber link at a time. However, even with gating, the effect of

after-pulsing is still significant, and therefore post signal processing algorithms and/or

control of the detector gate activation time is needed [105]. This results in a long

measurement time and a complex control system.

In the following sections, we will present the implementation of a 1.55 µm photon-

counting OTDR system that employs an up-conversion single-photon detector as the

detection apparatus. We will first discuss the advantage that the use of this detector

provides in terms of reduced measurement time. We will then describe the experi-

mental setup and the results that we obtained with this system, and we will show

that the nongated mode operation of the Si APD used in the up-conversion detector

allows for a high speed pc-OTDR system without any need for a complex control

system.

7.2 Measurement time calculation

To illustrate the advantage of the nongated up-conversion detector in terms of reduced

measurement time, let us consider a simplified case. We assume that the backscattered
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light has a constant power for time duration ∆T , instead of a temporally decreasing

power as in a real OTDR measurement. When a gated mode InGaAs/InP APD is

used in the OTDR system, the signal photons are measured over a gate width ∆tg

with a period tg, and the gate position is changed to cover the entire time ∆T . If ng

is the number of repeated measurements for each gate position, the total number N

of photons to be collected is:

N = ngµη∆T (7.1)

where η is the quantum efficiency of the detector and µ is the number of photons

per second in the signal. Then, the overall measurement time Tg is given by the

expression:

Tg = ng∆T
tg

∆tg
=

Ntg
µη∆tg

(7.2)

where tg/∆tg is the number of different gate positions required to cover the time ∆T ,

and we have used Eq. (7.1) to derive the second part of the equation.

On the other hand, when an up-conversion single-photon detector is used in the

OTDR system, no gating is needed but the dead time td of the Si APD effectively

alters the measured signal, as we discussed when we derived Eq. (4.2) in Sec. 4.2.

In this case, if nng is the number of repeated measurements, the total number N of

collected photons is:

N = nngµη∆Te
−µηtd (7.3)

Then, the overall measurement time Tng is given by the expression:

Tng = nng∆T =
N

µηe−µηtd
(7.4)

Assuming the same quantum efficiency η for both detectors, as well as the same

values for N and µ, Eqs. (7.2) and (7.4) give:

Tg

Tng

=
e−µηtdtg

∆tg
(7.5)

For the typical values tg = 1 µs, ∆tg = 1 ns, td = 50 ns, and given that the Si APD
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count rate per second µη can reach 107 counts/s, we find:

Tg

Tng

≥ 0.6× 103 (7.6)

This simple argument shows that by employing the up-conversion detector a photon-

counting OTDR system can be almost 3 orders of magnitude faster than when it uses

an InGaAs/InP APD.

7.3 Experimental setup

The experimental setup for the implementation of the pc-OTDR system with an up-

conversion detector is shown in Fig. 7.1. The 1.55 µm continuous wave signal light

enters an optical LiNbO3 intensity modulator, which is driven by a 200 MHz pulse

pattern generator. A train of 5 ns pulses with a repetition rate of 4 kHz is generated.

The pulse peak power at the input of the OTDR system is controlled by a variable

attenuator and is set at −2.6 dBm (0.55 mW) for the measurement. Subsequently,

the pulses enter a 3 dB optical splitter, one of the output ports of which is connected

to the fibers under test. We used a combination of an 11 km dispersion-shifted fiber,

a 13 km dispersion-shifted fiber, and a 12 m standard single mode fiber. The Rayleigh

backscattered light and the strong Fresnel reflections from the connecting points of

the fiber link enter the 1.55 µm up-conversion single-photon detector. There, the

light is combined in the wavelength-division multiplexer shown in Fig. 4.5 with the

1.32 µm pump light and enters the fiber-pigtailed PPLN waveguide device. The

sum frequency generated output is then detected by a single photon counting module

(SPCM) based on a Si APD. We take OTDR data using the output electrical pulses of

the pulse pattern generator and the SPCM to trigger a time interval analyzer (TIA).

Gating of the detector is not required, and data from the entire fiber link are taken

continuously. It is important to note that the birefringence of the fiber induces time-

dependent fluctuation of the polarization of the backscattered light. On the other

hand, the performance of the up-conversion detector is polarization dependent. To

overcome this problem, the polarization of the input light is set using the half-wave
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Figure 7.1: Experimental setup for the 1.55 µm pc-OTDR measurement. IM, intensity
modulator; PC, polarization controller; PBS, polarizing beam splitter; HWP, half-
wave plate; VATT, variable attenuator; DSF, dispersion-shifted fiber; SMF, single-
mode fiber; PPG, pulse pattern generator.

plate shown in Fig. 7.1. Experimental data are taken for both horizontal and vertical

polarization inputs and are subsequently added.

The choice of the operating point of the single-photon detector is of great impor-

tance for a photon counting OTDR system. This is because the minimum detectable

power, which defines the sensitivity of the OTDR system, is determined by the noise

equivalent power of the detector, defined as NEP = hν
√

2D/η, where hν is the energy

of the signal photon, D the dark count rate, and η the quantum efficiency. As we

saw in Sec. 4.3, both the dark counts and the quantum efficiency of the up-conversion

detector depend on the pump power, and consequently the NEP of the detector is

also a function of the pump power. This is demonstrated in Fig. 7.2, where we show

NEP values calculated from the quantum efficiency and dark count rate experimen-

tal data shown in Figs. 5.2 and 5.3, which correspond to the up-conversion detector

that was employed in the pc-OTDR experiment. The NEP takes a minimum value

of 2.4× 10−16 W Hz−1/2, which corresponds to a pump power at the entrance of the

waveguide equal to 8 mW, D = 5.7× 103 counts/s, and η = 5.8%. These conditions

are chosen as the operating point of our experiment. In the next section, we present

the results that we obtained with the described setup and procedure.
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Figure 7.2: NEP of the up-conversion single-photon detector as a function of the pump
power. The solid curve is derived from the fitting curves of the quantum efficiency
and dark counts experimental data.

7.4 Experimental results

The experimental results for the main characteristics of the 1.55 µm photon-counting

OTDR system, namely the dynamic range and the spatial resolution, are shown in

Figs. 7.3 and 7.4, respectively.

Fig. 7.3 shows the measurement result for the backscattered signal power from

the entire fiber link of 24 km as a function of fiber length. The measurement time

was 12 min. As we observe in the figure, the statistical noise is rather large but

can be significantly decreased by increasing the measurement time. A linear fit of

the data corresponding to the two long fibers gives the values of 0.21 dB/km and

0.24 dB/km for the loss coefficient of the 11 and 13 km fibers, respectively. The exact

length of the fibers can also be determined from this measurement and is 10.650 km

and 12.848 km, respectively. We can observe the large Fresnel reflections from the

connecting points as well as the loss of 3.2 dB at the connection between the two

fibers. From the background noise level shown in Fig. 7.3 we can determine the peak



148 CHAPTER 7. PHOTON-COUNTING OTDR

Figure 7.3: pc-OTDR measurement result for the link of 11 km, 13 km and 12 m
fibers. R is the backscattered signal power normalized by its value at the splice
point.

dynamic range of the pc-OTDR system to be 16 dB, which corresponds to the loss of

80 km of optical fiber. This means that measurement of up to 80 km of fiber is possible

with this system, without changing the input power. The fact that we are able to

measure this long distance in a short time is due to the nongated mode operation of

the up-conversion single-photon detector, as well as the increased sensitivity achieved

by careful tuning of the pump power. The dynamic range is limited in this case by the

maximum peak input power we are allowed to let into the SPCM to avoid saturation

of the detector owing to the large-power backscattered light at the leading edge.

We can significantly increase the dynamic range by measuring different segments of

the fiber link with a different input power, which can be realized, for example, by

inserting a temporal switching function at the detector side. Another approach could

be to appropriately gate the 1.32 µm pump in order to avoid up-conversion during

the backscattering from the leading edge.
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Figure 7.4: Time interval analyzer data for the 12 m fiber, indicating the 1 m spatial
resolution of the pc-OTDR system.

The spatial resolution of the pc-OTDR system is explored in Fig. 7.4, which

shows the time interval analyzer data for the 12 m single-mode fiber after 6 min of

measurement time. We clearly observe the two reflection peaks from the connecting

points, indicating that we can detect a 12 m fiber after a distance of 24 km with a

spatial resolution of 1 m, determined by the 5 ns pulse width. Using shorter pulses

in the same system can readily provide centimeter resolution.

7.5 Summary

In this chapter, we discussed the advantages that the nongated mode operation and

the increased sensitivity of the up-conversion single-photon detector offer in the per-

formance of a photon-counting optical time domain reflectometry system. The use

of this detector allowed us to perform a continuous and fast pc-OTDR measurement

with a simple and practical control system that does not require gate trains or post
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signal processing algorithms. With the pc-OTDR system that we implemented we

achieved a good trade-off between spatial resolution and dynamic range. In particu-

lar, the system exhibits a dynamic range of 16 dB, which corresponds to measurement

of up to 80 km of fiber without changing the input power, and 1 m spatial resolution.

By measuring different segments of the fiber link with a different input power and

using shorter pulses we can achieve even better performance of the photon-counting

OTDR system.
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Conclusion

This thesis has presented a number of results in the field of quantum cryptography.

To conclude, we would like to summarize our main results and discuss some avenues

for further research.

We presented a new quantum cryptography algorithm, the differential phase shift

quantum key distribution protocol, which uses attenuated coherent states of light as

the information carrier, has a very simple system architecture, and requires standard

telecommunication components for its implementation. We proved the security of

this protocol first against a set of restricted attacks, namely the beamsplitter and

intercept and resend attacks. We then extended the security proof to the most gen-

eral individual attacks allowed by quantum mechanics and photon number splitting

attacks. The security proof revealed that the protocol is very robust to powerful

attacks that are the main limiting factor in weak laser light implementations of the

standard BB84 protocol, and thus enhances considerably the communication speed

and distance of a quantum cryptography system.

We then described a new single-photon detector, the up-conversion detector, which

uses frequency up-conversion of infrared light in a periodically poled lithium niobate

waveguide and subsequent detection of the near-infrared output by a silicon avalanche

photodiode to achieve high speed and efficient single-photon detection in the telecom-

munication wavelength band. We demonstrated an overall quantum efficiency of 46%
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at 1.55 µm and we analyzed the source of the high dark counts that the detector ex-

hibited. We also showed that the nongated mode operation of this detector and the

tunability offered by the pump power dependence of its characteristics can enhance

significantly the performance of a quantum cryptography system.

The differential phase shift quantum key distribution protocol and the up-conversion

detectors were subsequently combined to perform quantum key distribution experi-

ments at repetition rates of 1 and 10 GHz. When the security analysis for general

individual attacks was taken into account, the 1 GHz system achieved a sifted key

generation rate of 1 Mbit/s over 20 km of optical fiber, and secure key distribution

over 75 km. These results demonstrated the great potential of this system, while high-

lighting at the same time the limitations imposed by the timing jitter characteristics

of the single-photon detectors. By replacing these detectors with newly developed

low-jitter detectors, we demonstrated a quantum cryptography system that achieved

a 2 Mbits/s sifted key generation rate over 10 km, and secure key distribution at a

rate of 166 bits/s over 100 km of optical fiber. Compared to the best experiments

reported to date, these results constitute an improvement of more than two orders of

magnitude in communication speed and a factor of two in communication distance.

On the other hand, the 10 GHz system did not yield secure keys, due to the tight

requirements that this system imposes on the characteristics of the single-photon de-

tectors. With this system, we generated sifted keys over 105 km of fiber with a bit

error rate of 9.7%, which is only limited by the timing jitter of the detectors.

The above results demonstrate that practical and secure high speed and long-

distance quantum cryptography is possible with currently available technology. The

1 GHz system that we have presented achieves a sufficiently high communication

rate and a long enough communication distance to be able to operate in a standard

telecommunication network. Of course, improvements in the timing jitter charac-

teristics of silicon avalanche photodiodes as well as the dark count behavior of the

up-conversion detectors, to be expected in the coming years, will enhance even more

the performance of the quantum cryptography systems that we have implemented.

For example, single-photon detectors with Gaussian response and very narrow FWHM
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may soon become available, and the dark counts of the up-converter can be reduced

by two orders of magnitude at 1.55 µm if we use a pump wavelength that is longer

than the signal wavelength. Then, megahertz secure key generation rates will be

possible, and the distance over which a repeater system is required will be extended

to more than 300 km. This will open the way for extremely long distance point to

point secure communication.

The differential phase shift quantum key distribution protocol can also be imple-

mented in a quantum cryptography system employing other types of infrared single-

photon detectors, that may potentially present desirable characteristics for this pur-

pose. These could include superconducting single-photon detectors (SSPD), which

have very low dark counts, small timing jitter, and almost Gaussian response, or

hybrid detectors consisting of photomultiplier tubes and avalanche photodiodes that

are under development and may also feature the required timing jitter and dark

count behavior. Similarly, the up-conversion single-photon detectors can be used in

a quantum cryptography system implementing a different protocol, for example the

entanglement-based BBM92 protocol, which can withstand larger quantum channel

losses and has the potential of enabling very long distance quantum key distribution.

Finally, on the theoretical side, the proof of unconditional security for the DPS-QKD

protocol will be required to guarantee the security of quantum cryptography systems

implementing this protocol against coherent eavesdropping attacks.

Except for quantum cryptography, the ideas and tools that we have developed in

this work can be useful for other fields in the area of quantum information process-

ing and communications, such as quantum computation and quantum teleportation.

Systems like the ones we implemented, that combine the well established telecommu-

nication technology with new ideas from quantum and nonlinear optics, will be an

indispensable part of any future quantum network consisting of quantum computers,

quantum memories, and quantum repeaters, all subjects of intense research efforts

worldwide. The architecture, security, and topology of such quantum networks is a

new research field that attracts the attention of electrical engineers, computer sci-

entists, and physicists due to the interesting challenges that it presents. With the

rapid progress in this field, simple tasks in quantum networking will soon be within
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technological reach.

Finally, we showed that the up-conversion single-photon detector can be useful

for classical applications as well by demonstrating a simple and fast photon-counting

optical time domain reflectometry measurement system that achieved a good trade-off

between spatial resolution and dynamic range. Other applications that can benefit

from the high speed nongated mode operation of this detector are laser detection and

ranging, and deep-space communications.
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