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INTRODUCTION

The Talbot effect is a near field diffraction effect that has been observed both with

light and with atom optics.  The origins of this effect, the conditions necessary for it to

occur, and some possible applications are the subject of this paper.  When a plane wave is

transmitted through a grating or other periodic structure, the resulting wave front

propagates in such a way that it replicates the structure at multiples of a certain defined

distance, known as the Talbot length.  Right away one can see potential applications.  An

existing periodic structure can be used in conjunction with light waves or atom waves to

create a replica of the structure a Talbot length away.  However, the details of the Talbot

effect bring out the most interesting possible applications.  Exactly halfway between

these locations, the Talbot effect reproduces the structures with half the spatial period of

the original structure.  As one might imagine, the story does not stop there.  The Talbot

effect will produce smaller fractional revivals under perfect conditions.  Thus, it is not

surprising that the intensity pattern as a function of propagation distance away from a

periodic structure is often referred to as a Talbot carpet.  

This behavior suggests the possibility of Talbot-assisted lithography, in which the

wave nature of the atom is utilized to create very small structures.  Specifically, it could

lower the current size limit for which a regular pattern of any two-dimensional shape can

be produced.  For example, it would be conceivable to place a substrate 1.5 times the

Talbot length away from a physical grating with a 100 nm period, and deposit rows of

atoms spaced 50 nm apart onto this substrate.  The rows of atoms could form 20 nm

wires, which is 6 times smaller than the features on a Pentium 4 chip.1  Of course, there

are limits to how small these structures can get.  First of all, the contrast of the revivals is
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not perfect, and decreases with the size of the fractional period.  Also, since perfect

conditions are never achieved, the actual revival behavior will be strongly influenced by

factors such as the wavelength distribution, interactions between the waves and the

grating structure, and beam collimation.  This paper will examine the possibility of such

quantum lithography both theoretically and experimentally by taking into account some

of these limiting factors.
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HISTORY

The Talbot Effect was discovered by its namesake, Henry Fox Talbot, in the mid-

eighteen hundreds.  Talbot was born February 11, 1800 in Dorset, England, and studied

mathematics and classics at Cambridge.  After being elected a Fellow of the Royal

Society in 1832, he worked to produce images that would stay fixed on a piece of paper.

These experiments resulted in his fame, as he is now known as one of the inventors of

photography.2  During his studies he observed the remarkable effect that now carries his

name.  When he examined a coarsely ruled diffraction grating with a simple magnifying

lens, Talbot noticed that the grating image would reappear as he moved the glass out of

focus.  If illuminated by white light, it would split into different colors, and

monochromatic light would cause the image to come into focus at multiples of a

particular distance.  Talbot published the results of some of his experiments on the

subject in 1836, but did not pursue the subject further, as he was investing his time and

money into photography.  The Talbot effect was forgotten, until it was rediscovered by

Lord Rayleigh in 1881.  Rayleigh explained it as a natural consequence of Fresnel

diffraction, and showed that the Talbot length zT is given by 

λ

2azT =

where a is the period of the grating and λ  is the wavelength of the incident light.  He

also mentioned that the Talbot effect could have a practical application to reproduce

gratings by exposing film to one of the revival images behind the original grating.3  Had

Rayleigh known of the wave-nature of atoms, he probably would also have suggested the

technique for atom lithography.
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CREDIT WHERE CREDIT IS DUE

The Talbot effect for matter waves has also been studied extensively in the last 20

years.  At least 30 scientific papers have been written on the topic, ranging from the

purely theoretical side to applications thereof.  One paper that specifically focuses on

matter-wave diffraction due to near-field grating sequences contains in-depth and

extensive Fourier optics approaches to describing these atom-optical situations.4  On a

more experimental note, there have been several direct observations of the atomic Talbot

effect.  One of the first of these strongly supports the feasibility of this project and

became part of the reason it was undertaken.  In 1993, Michael Chapman and others used

a simple two-grating setup to demonstrate the Talbot effect with atom waves.  The first

grating creates the Talbot carpet, and the second grating of equal periodicity and

orientation functions as a mask.  When the second grating is located a Talbot length

behind the first and gets scanned in the direction transverse to the beam, the transmitted

intensity oscillates.5  The other, by Nowak et al., used a single grating and a narrow

detector that scanned out the whole Talbot carpet.  The fractional revivals of the grating

were also clearly seen, with significant contrast even for the 1/5 and 1/6 period revivals.6

Both of these papers mention the possibility for using this effect as a method for atom

lithography.  However, to this date no paper describes using the Talbot effect with atom

waves to directly deposit atoms onto a surface.

Of course, atom lithography is not the only conceivable practical use of the

atomic Talbot effect.  Some others include a Talbot-von Lau atom interferometer7 and

distance measurement utilizing the Talbot effect.8  Atom lithography, however, does
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receive very much attention because of its usefulness in creating structures smaller than

today’s computer chip features.  A related method for atom lithography utilizes atom

diffraction through an optical grating.  The atom beam travels through an optical standing

wave, which acts as an array of cylindrical lenses i.e. a periodic phase-mask for atom

waves.  A number of research groups have illustrated this method with great success.  A

group led by Prentiss and Timp first succeeded in showing this effect in 1992.9  Three

years later, McClelland et al. used a standing wave to deposit rows of chromium atoms

with a 212.78 nm period onto a surface, which corresponds to the fundamental period of

the optical grating of λlaser/2.10 Rehse et al. did the same in 2000 with aluminum, and

achieved a periodicity of 155nm using resonant 310nm light.11 Although the method is

attractive because of the relative ease with which such an optical grating is produced, it

does have its drawbacks.  First of all, the line spacing is fixed at half the wavelength of

the laser light, due to the nature of a standing wave.  One could conceivably use

fractional Talbot revivals with such a standing wave, but the contrast decreases quickly,

and the few revivals that would produce enough contrast will still be linked to a light

wavelength.  This puts a limit on grating period as defined by the available optical

wavelengths.  Also, since the atoms have to be nearly on resonance with the light, the

laser’s frequency must be tuned to a frequency specific to the depositing atoms.

Therefore, the line spacing not only has a quite large lower limit, but is also constrained

by the type of atoms used.  Finally, the shape of the resulting structures is severely

limited.  McClelland et al. shows that the technique can be modified to create an array of

dots, but not much can be done beyond that to create a specific shape.  
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Nanostructure fabrication through the use of a physical grating offers more

possibilities by avoiding these problems.  The physical grating will work regardless of the

types of atoms (or even molecules) used as long as the van der Waals interaction between

the matter wave and the grating is not excessive, which I will discuss later in the paper.

High quality physical gratings of 100 nm periods are already available, so the size limit is

already an improvement, even if no fractional revivals are utilized.  Yet arguably the

greatest benefit over standing optical waves is the freedom to make an arbitrary shape.
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THE OPTICAL TALBOT EFFECT

Before searching for the atomic Talbot effect, I investigated the much more

accessible optical Talbot effect to get a feel for how it works.  The first setup we used

was an optical microscope with a digital camera attached.  We imaged one of the

nanostructure gratings used in the atom interferometry experiment.  Of course, it was

impossible to optically image the actual grating bars because their 100 nm periodicity is

smaller than the resolution of an optical microscope.  However, the support structure for

these bars made up another grating with a 2 µm period, which was easily visible through

the microscope.  As the grating was moved out of the focal plane, the image reappeared

as expected.  It was even easy to see the half-period revival at the intermediate positions.

These pictures are shown in figure 1.  

For the next step I used a Ronchi rule and laser setup.  Using simple far-field

diffraction and measuring the positions of the bright bands, the grating’s periodicity

measured to be about 6 lines/mm.  The laser used was a simple diode laser pointer, which

was labeled as 650 nm.  In order to see the results more clearly and illuminate more

grating bars, a beam expander was put in front of the laser.  Since the individual lines of

Fig. 1
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the Ronchi rule were still visible to the naked eye, a screen placed behind the grating

easily illustrated the Talbot effect.  By placing the screen at an angle to the beam to

“stretch out” the spot, the half-period revivals became easily visible.  According to the

formula for Talbot distance, zT = 4.1 cm.  However, because the diode laser frequency is

unlikely to be exactly 650 nm, and since it was used both directly in the formula and to

measure the grating period, it is expected that the actual Talbot length would be a bit

different.  From the physical setup, it turned out to be 4.4(1) cm.  In order to investigate

the contrast of the Talbot revivals, a two-grating setup was used (figure 2), analogous to

that in Chapman et al. for the atom waves.2  

A simple photodiode measured the intensity of transmitted light, and by carefully

positioning the second grating, the light at a Talbot length multiple could be either mostly

blocked or mostly transmitted.  This worked well out to about 6 Talbot lengths (26.4 cm),

at which point the fringes of Fraunhofer diffraction started to be visible.  The result can

be seen in figure 3.

Fig. 2
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Since the contrast will always have a local maximum at integer multiples of the

Talbot length, the curve that is fit to these points represents the contrast envelope, under

which the real contrast structure is contained.  Models predict that there is always some

structure present so that contrast never goes down to zero completely, but that could not

be measured in this case because of the lack of the right masks.  

Replacing the second Ronchi rule with a fine one (12 lines/mm), allowed

measurements of some of the half-period revivals (triangles), which are also included in

the contrast graph.  In between the first and second Talbot revival, the contrast of the

half-period turned out to be 52%, which quickly dropped down to 37% between the next

two.  With the right equipment, I could have exposed film at one of these distances in

order to record these patterns permanently.  This would be analogous to placing a surface

at a Talbot length for matter waves and depositing the corresponding structure.  This

demonstration of the optical Talbot effect, which is not commonly known even among

physics students, illustrates the ease of the effect’s accessibility and manifestation.

Therefore, it should be a great candidate to take into the realm of atom optics.

Fig. 3
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THEORETICALLY SPEAKING…

In order to probe the origins of the Talbot effect, to derive the Talbot length, and

to make some predictions about how the atom waves will behave under certain

conditions, one must venture into the theory.  The Talbot effect, just like far-field

diffraction, basically stems from the fact all the waves transmitted through different

windows diffract and interfere with each other.  However, in the near field the curvature

of the wavefronts cannot be ignored, since it has a strong effect on the resulting intensity

pattern.  This is commonly known as Fresnel diffraction.  The relation necessary for

Fresnel diffraction to occur is defined

by the wavelength, the distance from

the grating z, and the illuminated

grating area ρ as ρ2 ≥ λz.12

In general, we can make use of

the Huygens’ wavelets principle, which

states that every point on a wave acts as

a point source, oscillating in phase with

the incident wave.  Thus, the grating can be viewed as a collection of radiating point

sources.  In the simplest case we neglect the width of the slit, and each slit contains only

one radiator.  The resulting picture is shown in figure 4.  For a set of infinite slits, the

wavefunction at the point (r) will be described by 
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where rn is the distance of the n-th slit to the point, k is the wavenumber, and ω the

angular frequency.  The r -1/2 dependence comes from the fact that the intensity must

decrease as 1/r for cylindrical waves in order to conserve the total probability.  Since

intensity or atom flux is the measurable property, we have to find the square of the

wavefunction averaged over time.  This becomes
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To find the z coordinate of a revival, we can solve for the value of z (at x=0) that causes a

maximum of intensity. This will occur when the first term equals 1 for all n.  Neglecting

the r -1/2 for now, it means that the argument of the cosine must be a multiple of π, i.e. for

any n there exists an integer m such that
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and subtracting 2z/λ = m0, we get a formula for the Talbot revivals.  
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Since there exists for all n an integer m that satisfies this equation, it means that every slit

contributes in phase at the position z = d2/λ.  In order to neglect terms of order (nd/z)4

and higher, as was done in the expansion, the relation that must be satisfied is

π
λ
π

<<
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32

z
ndz

which leads to the relation that n2 < d/λ.  As long as this condition holds, the

approximation should be valid.  On a more physical note, the said approximation is just

like taking the wavefront to be parabolic instead of spherical.  For the proposed

experiment as well as the simulations presented in this thesis, the grating period was 100

nm and the atom wavelength (λ =h/p) was 0.01 nm.  Hence the number of contributing

slits must be less than 100 for the parabolic wavefront approximation to hold.  In order to

neglect r -1/2, we must check that it does not contribute much past the distance of one

Talbot length, since that is the region we are most interested in.  Indeed, for the number

of illuminated grating bars and the Talbot distance, the r -1/2 contributes a factor of only

10-4.  
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NOT QUITE PERSIAN, BUT PRETTY NONETHELESS

We can apply this basic theory in computer models to try to simulate the Talbot

carpet (see Appendix A).  In order to account for the finite size of the windows, the

Huygens’ wavelets principle has to be taken one step further.  Now the width of the

window must be approximated as a collection of wavelet sources.  All of the following

simulations are calculated with a 100 nm grating period, but the slit width is one of the

varying parameters.  The first Talbot carpet pattern comes from a grating model with 10

nm windows, corresponding to a 10% open fraction.  Each window was represented by

10 individual sources spaced 1 nm apart, and a total of forty windows were used to

calculate the patterns.  This proved to be plenty to approximate the resulting carpet, but

stayed well under the limit imposed by the parabolic approximation.  Although the slit

width was changed, the density of one wavelet per nanometer and the sum over forty slits

were also kept constant for all the models.  Increasing these parameters did not cause

noticeable change in the resulting intensity distribution.  The atomic wavelength initially

used in the calculations is 0.01 nm.  This, by way of the deBroglie relation describing

atom waves, corresponds to sodium atoms traveling at about 1000 meters per second.

Thus, according to the formula for Talbot length, the first revival appears at one

millimeter.
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Figure 5 exhibits the pattern produced by 10 nm windows.  The pattern on the left

shows the location of the windows, and the bottom axis corresponds to z measured in

Talbot lengths.  It is important to note a clarification of convention here.  The pattern

clearly shows the full period revivals, but they are shifted by half a period for every

revival.  Some define the Talbot length as zT = 2a2/λ, and state that there is a full period

revival with a half-period shift at 0.5 and again at 1.5 Talbot lengths.  These conventions

are of course equivalent, but I will continue to use the one as previously defined and

illustrated in figure 5.  It is also important to keep in mind that the axes have two very

different scales.  While the bottom axis is about four millimeters long, the left axis spans

200 nm, meaning the bottom would be stretched to about 20,000 times its current length

in order to be proportional.  The half-period revivals also show up nicely in this model at

z = zT (n + ½), as well as the thirds of a period at z ≈ 2zT/3 and again at z ≈ 4zT/3.  It is no

               zT = 1      2                         3                         4

Fig. 5

High Intensity

Low Intensity
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coincidence that the well-defined areas of the carpet are reminiscent of fractals.  Berry et

al explains in a PhysicsWeb article that there are an infinite number of images at

fractional distances of the Talbot distance.  However, at irrational fractions of this

distance, such as zT/√2, the intensity as a function of the grating coordinate is actually a

fractal function, continuous but not differentiable .13

Expanding the windows to a 30 nm size changes the Talbot carpet dramatically.

Figure 6 illustrates this nicely.  The main revivals are still clearly visible, yet they have

started to form interesting “lobes” on either side, at z slightly greater and less than zT.  

               zT = 1                            2                           3                           4

Fig. 6
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The revivals are very well defined, but in order to see the contrast better, it is necessary to

take sections of this surface and view them independently.  Figures 7 and 8 are sections

of this plot at one Talbot length and 1.5 Talbot lengths, respectively.
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Although the absolute intensity is arbitrary, the scale as been preserved.  It is clear from

these two graphs that the contrast is practically 100%.  The wavy structure on the tops of

these “pillars” is still a bit of a mystery but might be a true diffractive effect.  Window

sampling density is not the cause of the fine features, since increasing the number of

sources per window by a factor of 100 has no effect on it.  However, the averaging effect

of imperfect collimation will smooth out these features.  Note that in this case, the half

Fig. 7

Fig. 8

z = zT

z = 1.5*zT
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period revivals have roughly the same width as the full revival.  This results in a doubling

of the “open fraction.”

Of course, the next question is what the actual open fraction of such

nanofabricated gratings might be.  A Scanning Electron Microscope revealed that the

gratings from the atom interferometry lab have an open fraction of about 70%.  The

Talbot carpet with this open fraction is depicted in figure 9.  Probably the most

pronounced features of this carpet are the bright lobes seen to either side of the full

revival at z slightly greater or less than nzT.  Once again, it is helpful to take cross sections

of this graph and view them separately (figs. 10, 11, 12). 

                     zT = 1                             2                            3                            4

Fig. 9



The full period revivals at z = nzT are about as expected: 70 nm long plateaus with

some squiggles on top.  However, the half period revivals at (n + ½) zT have very

different characteristics than in the previous case:  Their absolute intensity is equal to that

of the full revival, yet they are only about 20 nm wide.  Also, since the intensity never

goes down to zero, there is quite a loss in contrast, down to about 30%.  The contrast is

defined to be the difference of maximum and minimum intensities divided by their sum, 

minmax

minmax

II
II

contrast
+
−

=

When taking a cross section through the peak of one of the lobes, at about (n ± ¼) zT, one

gets the by far the highest intensity and sharpness.  If this is can be observed in the lab, it

might be useful to take advantage of this focusing effect when the exact shape of the

structure is not that important.
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These models bring up another

question.  How far behind the grating

will the revival pattern persist, and how

quickly does the contrast decrease?  By

taking the last simulation, and going out

to 30 Talbot lengths (fig. 13), one can

see that the finer patterns disappear by

about 10 times the Talbot distance, or

about 1cm.  After about another

centimeter (10*zT), even the roughly

periodic structure begins to die out.

Amazingly enough, there is still 95%

contrast out at 15 times the Talbot

length.  After that, the contrast slowly

drops to 70% at 20 zT, and then quickly

to 25% at 25 zT.  After that all of the

structure basically washes out, except

for the Fraunhofer diffraction that will

start to emerge.  

One test to show that the Talbot

carpet model is working properly would

be to verify that the same model

g
zT = 1

5

10

15

20

25

Fig. 13



21

predicts the diffraction pattern in the far field.  Unfortunately, this is only somewhat the

case.  I tried the same parameters as the optical setup that I had used, so that I had

something simple to compare it to.  Since the laser spot was about half a centimeter in

diameter, it illuminated around 30 grating bars.  The pattern in the near field did recreate

the physical situation (fig. 14) in the first 20 cm behind the grating. The contrast of the

full and half period Talbot revivals consistently stays at nearly 100% past 6*zT, unlike the

measured results in figure 1.  This suggests that the loss in contrast in the physical setup

was due to deviations from the ideal model, such as imperfect collimation of the laser

light and/or imperfections in either grating.

At a distance of 2 meters, where Fraunhofer diffraction has taken over and

become very visible (since z >> zT and x >> spot size), the more familiar far-field

diffraction pattern also appeared.  Figure 15 shows the far-field intensity distribution,

which compares well with the expected distribution.  The far-field diffraction orders

should peak when sinθn=nλ/d, which in this case occurs at x = n* 7.7 mm and matches

the model.  The envelope of the diffraction orders should be given by [sin(θw/λ)/(θw/λ)]2

and is shown with a dashed line in figure 15.  Because of the 50% open fraction, the

minima from single-slit diffraction occur at exactly twice that distance, which explains

the missing orders at n = ± 2, ± 4, etc.  The jagged peaks would effectively be smoothed

out with imperfect beam collimation, since the distribution will be slightly displaced in x

for a beam coming in at an angle.
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VAN DER WHO?

Up until this point, the models might as well have been describing any waves,

since no part of the models other than the wavelength were specific to matter waves.

However, unlike optical waves, matter waves passing through the slots of a grating will

actually be affected by the walls a finite distance away.  This interaction is called the van

der Waals force, and stems from the ability of neutral atoms to become polarized and

attract each other.  For two free atoms in vacuum, this force has a 1/r6 dependence.  For

the interaction between an atom and a plate, which is the more nearly the case for the

gratings, this force goes as 1/r3.  In terms of matter waves, one can think of it as a

potential that they pass through.  This potential will introduce a phase shift (fig. 16).

Assuming that the wavefunction is given by

tikze ωψ −=

then the time-independent Schrödinger equation is

( )ψψ VE
m

−=
∇

−
2

22

yielding

( )VEmk −=
2

Emk 2
0 =     and    zk 00 =ϕ

Now we want the phase shift given by

( )zkk 00 −=−=∆ ϕϕϕ

If we now take z = t and V = -C3/r3, then we get
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Finally, applying the fact that the atom will feel the potential from both sides, the phase

shift is given by


















 ++






 −=∆

−− 33
3

22
wabswabs

v
tC

ξξϕ

Here t is the thickness of the grating (in the same direction as the atoms are traveling), w

is the slit width, v is the velocity of the atoms, ξ is the grating coordinate, and C3 is a

coefficient that depends on the specific substances involved.14  

Fig. 16
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In order to account for the van der Waals force, I simply added the position-dependent

phase shift as given above to the phase of the Huygens’ wavelet in the simulations (see

Appendix A).  Using C3=5 meV nm3 as expected from theory, I combined all the

constants in front into one free parameter, which I will refer to as the vdW phase

coefficient, and which comes out to be somewhere around the order of 0.5 nm3.  Thus the

vdW phase difference is given by 0.5/r3 where r is the distance to the grating wall in

nm.14  

It turns out that the vdW forces do not strongly affect the intensity distribution.

Figure 17 shows two close-ups of a full-period revival at one Talbot length from the

grating.  The one on the left does not take the interaction into account at all, and the right

one was calculated with a vdW coefficient of 100 nm3, corresponding to C3 = 2000 meV

nm3!  A value closer to the calculated value of 0.5 nm3 makes the two almost

indistinguishable.  Figure 18 shows cross-sections of the two plots at z = zT and z = 1.5 zT.

            

Fig. 17

C3 = 0 C3 = 2000
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By looking further down the beam and analyzing the effect of the vdW inter

there, one can see that it is not very strong in that region either.  Since these pictures

up quite a bit of space, I have added them in Appendix B.  The effect of the van der

Waals force in the far field is currently a hot topic of study in Dr. Alex Cronin’s lab

since these forces are notoriously difficult to measure.  
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VELOCITY SPREAD

Another imperfection to include in the simulation is the fact that an atom beam

does not have a single wavelength.  Although atom lasers are beginning to become a

reality, they are not yet readily available.  Until then, an atom beams with various

velocity distributions must be used.  The velocity spread of an effusive beam can be

narrowed greatly through the use of supersonic expansion.  To calculate the Talbot

carpets generated with a spread in velocities, I assumed a Gaussian distribution and used

its sigma as a parameter.  This assumption roughly approximates the continuum of

beams, from effusive with σ = <v>/2 to supersonic with σ = <v>/20.  Each velocity

translates into a different wavelength, creating many distinct interference patterns.  These

were weighted by the velocity’s probability according to the Gaussian and the resulting

intensities summed together.  

A thermal beam with a carrier gas has been shown to achieve a spread of

velocities 5-10% of the average velocity, so I used 10% as my lower limit.14  A thermal

beam, which follows Maxwell’s velocity distribution15
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has a rather large spread, which is why I used 50% as my upper limit.  Since such a

distribution generally tends to blur things out, it is expected that the finer features of the

Talbot carpet disappear first.  This is visible in a detail of the first full period revival in

the left side of figure 19.  The average velocity in this model is 1500 m/s, and the sigma

here is the lower limit, 150 m/s.  The full and first half-period revivals are still visible



here, as are the prominent lobes.  Taking sections of these two areas reveals the shape and

contrast (fig 20).   The contrast for the full period revival lies at 81%, whereas that of the

half-period revival is at only 34%. The effect of a velocity distribution that has a spread

half as large as the average velocity can be seen in the right side of figure 19.  Any and

all structure completely disappears, making the purely thermal beam ineffective to

observe the Talbot effect.  

Figure 19 brings up two questions:  Why is the grating structure not visible at

small z, and why can the Talbot effect be observed optically with a regular incandescent

light bulb?  To answer the first question, one must remember that the model made the

assumption that the contribution of the 1/rn term is negligible.  This does not hold very

close to the grating, and wavelets from the other windows will contribute much too

strongly, thereby washing out the grating structure.  The second discrepancy stems from

the fact that the model shows merely intensities, with no reference to the wavelength

distribution.  However, since our eyes can tell the difference between the wavelengths of

light, we will be able to see the various colors come into focus at different distances.

Fig. 19
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 two extremes, and what sort of contrast difference

 that question, I put together six surface plots, all

th in figure 21.  The sigma value ranges from 0 to 650

/s.  



Fig. 21
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The smaller structures in the sigma = 550 and 650 plots are merely artifacts of the

simulation, and disappear when the velocity sampling density is increased.  The contrast

at each of the Talbot lengths for all the different sigma values can be seen in figure 22.  
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NEXT STEPS IN THEORY

To continue the analytical work, the immediate next step would be to

mathematically describe fractional revivals.  It would be very useful to derive expressions

for their locations and to find any limiting conditions.  Also, one should investigate a

mathematical calculation of the contrast and predict the parameters on which it most

strongly depends.  Then one would need to incorporate the finite size of the windows into

the equation by means of an integral.  Another method of analysis that would be worth

investigating both analytically and in the computer simulations is the Fourier optics

method.  It might prove to be more powerful, and will in any case be useful to compare

its results to the results given above.

With the computer simulations there is still much to be investigated.  It would be

beneficial to include the r –1/2 dependence, so that overall probability is conserved and

intensities close to and far from the grating can be compared.  The jagged peaks in the

near and far field distribution could be an artifact of the computer simulation, or real

characteristics that would manifest themselves in a perfect setup, which calls for further

examination.  Also, one would need to investigate the effects of imperfections in the

grating bars, and how much they would affect the final distribution.  

Since one of the stated advantages of Talbot assisted lithography was the

possibility to use any shape, it would be worthy to investigate how true this really is.

Would the fractional revivals of an arbitrary periodic shape have the same contrast as the

simple grating revivals?  In order to be able to compare the models to experiment better,

one needs to look into the contrast plots in a more detailed manner.  This would include
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plotting the contrast as obtained through a second grating that is used as a mask.  Another

topic to go into would be the more thorough analysis of the region greater than z = 20* zT.

The models showed that the revivals in that region are not quite uniform, but instead drift

farther away.  It would be useful to find out why.  Finally, the models did not address

beam collimation and its effects.  Since this basically translates to a spread in incident

angles, it would be similar to the velocity-spread simulations but would shift the images

along the x-coordinate instead of z.  Thus, a beam divergence angle of 

rad
z
d

T

410−=<θ

is required to see the basic structures.  A detailed investigation would give needed insight

into beam collimation requirements, which are very useful when attempting to deposit

Talbot-reconstructed images.
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EXPERIMENTALISM

Although I did not get the chance to deposit atoms onto a surface using the Talbot

effect, I did investigate some aspects of the necessary experimental process.  In order to

detect whether Talbot-assisted lithography was successful, one must have a reliable

means of imaging the substrate.  The structures are much too small for optical

microscopes, but ideal for an atomic force microscope (AFM).  The atomic force

microscope uses a very small lever (about 100µm long), and pushes it cross a surface.  A

laser beam aimed at the lever then measures the vertical and torsional displacement, as

seen in figure 23.  Utilizing the AFM, I imaged a variety of nanofabricated diffraction

gratings.  Figure 24 shows one of these gratings in good condition.  The “height” image

on the left shows a 3.8 µm square scan on a vertical distance scale, where a pure white

corresponds to 10 nm in height above pure black.  The right image represents the exact

same area, but was produced by the amount the lever twists.  The three large bars are the

support structures that hold the much finer grating bars.

Fig. 23
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Fig. 24
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 An image of an older version of the diffraction grating is visible in figure 25.  In

this case, the original grating period was 200nm, as opposed to the 100 nm grating in

figure 24.  These grating bars were much weaker, and could not hold their original shape

very well.  Instead, the AFM tip moved them enough to succumb to the vdW forces

between them, causing them to stick together in groups of two or three.  This is an

important result in that the AFM imaging can be destructive.  In the case for lithography,

the tip could destroy the structure if the atoms are very loosely bound to the substrate.

Fig. 25
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Figure 26 shows a newer grating that has been used in the sodium atom beam for

a while.  It is covered in easily discernible globs of sodium.  This illustrates that some

substances would be unsuitable for use with the Talbot effect.  In this case, the sodium

beam encountered the grating more or less uniformly.  Since the sodium then formed

clumps much larger than the grating structure, it must be relatively mobile.  Thus, trying

to deposit grating-sized structures of sodium on this surface (silicon nitride) would be

practically hopeless.
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Because of the Na buildup, such gratings were thought to be only suitable for a

single use.  Once clogged, the gratings were retired.  However, in a different research

project I showed that the grating bars can be cleaned simply by immersion in water and

drying in air.  A picture of the same window as above after cleaning can be seen in figure

27.

Fig. 26
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NEXT STEPS IN EXPERIMENTS

Fig. 27



40

Even though the Talbot effect works with any species of atoms or molecules, the

goal of lithography creates a few limitations in an experiment.  The substance must be

able to adhere well to the substrate and not be too mobile because of the small distances

involved and the possibility for destructive imaging.  Also, since the incident angle

generally plays a large role in the resulting intensity pattern, the beam must be well

collimated.  This is usually done by having a high beam intensity come out of the source

and pass through collimation slits, minimizing the effect of the large angular distribution

of an extended source. The next step would be to carry out an experiment to deposit rows

of atoms onto a substrate.  First, one would put the substrate directly behind the grating

without the spacers seen in figure 28, to test the substance mobility and the imaging

capabilities with an AFM.  Once that works, placing spacers with a thickness equal to one

Talbot length between the grating and substrate would be the logical next step before

attempting to deposit fractional revivals.  One might even want to tilt the substrate at an

angle relative to the grating, which can guarantee that some part of the substrate will be

positioned exactly at the desired distance from the grating.

CONCLUSION

Fig. 28
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Because of the advantages that Talbot-assisted lithography has over optical

techniques, it would be beneficial to investigate the possibility further.  This research has

shown that a number of things must be considered when attempting to deposit atoms onto

a substrate by means of Talbot-reconstructed images.  The open fraction of the

transmission grating plays a very large role in the resulting intensity distribution,

especially for the fractional revivals.  Smaller open fractions result in well-defined and

high-contrast fractional revivals, while large open fraction gratings yield poor contrast for

fractional Talbot revivals.  Although atoms do interact with the grating walls by means of

van der Waals forces, this research has shown that, for purposes of simple atom

lithography, these interactions can basically be disregarded.  However, a very important

factor to consider is the spread in velocities.  If that is too great, like a purely thermal

beam, one has little hope of creating high contrast structures.  Fortunately, there are

techniques that effectively narrow the beam velocity spread, such as the use of supersonic

expansion.  The ideal situation would be to use an atom laser, since that has an extremely

narrow velocity distribution, which would create very well-defined patterns.  Because of

its similarity to the effects of a velocity distribution, beam collimation needs to be

controlled to better than θ = d/zT.  Imaging such deposited patterns work very well

through the use of an AFM, as long as the atoms do not move around the surface easily.

Of course, there are many variations with which such an experiment can be carried out,

but I hope that the results of this paper will be of help when considering the details of

such an undertaking.
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APPENDIX A

All the computer simulations in this thesis were performed with Igor Pro version

4.01.  This first section shows the basic code used for most of the simulations.

Half_num_slits and half_w_size changes the number of slits and width of the window,

respectively, and dimensions are given in nanometers.

#pragma rtGlobals=1 // Use modern global access method.

macro dog()                                 //  macro to run the talbot program at several different z.
variable z = 0, zT = (100^2)/.01
z =  .01*zT
do  
  talbot(z)
  z +=.01*zT
while ( z < 2.51*zT)
end

function  talbot(z)
variable z
string zname;  sprintf zname, "pl%g",z;  make/o/N=200 $zname
variable nr, xx, i=0, n, ww, knr ,snr, vdW
variable d=100,  k = (2*pi/.01),  half_num_slits = 40/2 ,  half_w_size = 70/2
make/o/d/N=200 Inten, x_pos
make/o/N=200/c temp
temp = 0

do  // loop over x-position
xx = i*1;  x_pos[i] = xx
n= -half_num_slits

do  // loop over number of slits
  ww= -half_w_size

  do  //  loop over each window of size ww
   vdW= 0 * ((ww + 0.001 - half_w_size)^-3 - (ww + 0.001+ half_w_size)^-3)  

 // phase shift due to van der Waals
   nr =  (z+   .5*(xx + n*d+ ww)^2/z )   // parabolic wavefront approx
   knr =k * nr    + vdW
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   snr = sqrt(nr)
    temp[i] += cmplx(cos(knr)/snr, sin(knr)/snr)
    
ww +=1  // iterate over points in a single window
   while(ww<half_w_size)
  
n+=1  // iterate slit number
  while(n<half_num_slits)

i += 1   // iterate x-position
while (i<100)

Inten =  magsqr(temp)   
duplicate/o Inten $zname
end

To sum over a velocity distribution, I simply added a loop to sum over the

different velocities in the Talbot function:

function  talbot(z,sigma)
variable z, sigma
string zname;  sprintf zname, "%gpl%g",sigma,z;  make/o/N=200 $zname
variable nr, xx, i=0, n, ww, knr, snr, vdW, v, k, prob, sig, v_avg, vmax
variable d=100,  half_num_slits = 40/2 ,  half_w_size = 70/2
make/o/d/N=200 Inten, x_pos
make/o/N=200/c temp

sig = sigma
v_avg = 1500
v = v_avg - 2*sig
vmax = v + 4*sig + 1
Inten = 0

do //loop over velocities in m/s
temp = 0
i = 0
prob = exp(-((v-v_avg)^2)/(2*sig^2))/sqrt(2*pi*sig) //Gaussian distribution
k = 2*pi*v/15

do  // loop over x-position
xx = i*1;  x_pos[i] = xx
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w= -half_w_size

  //  loop over each window of size ww
dW= 0 * ((ww + 0.001 - half_w_size)^-3 - (ww + 0.001+ half_w_size)^-3)   

// phase shift due to van der Waals
r =  (z+   .5*(xx + n*d+ ww)^2/z )   // parabolic wavefront approx
nr =k * nr  + vdW
nr = sqrt(nr)
emp[i] += cmplx(cos(knr)/snr, sin(knr)/snr)

w +=1 // iterate over points in a single window
hile(ww<half_w_size)

=1  // iterate slit number
hile(n<half_num_slits)

en[i] += prob*magsqr(temp[i])
= 1   // iterate x-position
ile (i<100)

 0.02*sig //iterate velocity
ile (v < vmax)

licate/o Inten $zname

This is the brute-force method of computing the effects of velocity spread and

ns out to be very time-consuming.  A more efficient way would be to calculate the

pet for a single velocity, and then stretch or compress it in the z direction to create a

pet corresponding to a different velocity.  One would have to calculate the carpet with

 longest Talbot distance first, and then compress it stepwise in order to preserve detail.

e resulting sum, of course weighted by a Gaussian, should look like the distribution

m the code shown above, while taking a lot less time to calculate.
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APPENDIX B
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