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Preface

Cognitive science is the interdisciplinary study of mind and intelligence,
embracing philosophy, psychology, artificial intelligence, neuroscience,
linguistics, and anthropology. Its intellectual origins are in the mid-1950s
when researchers in several fields began to develop theories of mind based
on complex representations and computational procedures. Its organiza-
tional origins are in the mid-1970s when the Cognitive Science Society was
formed and the journal Cognitive Science began. Since then, more than sixty
universities in North America and Europe have established cognitive
science programs and many others have instituted courses in cognitive
science.

Teaching an interdisciplinary course in cognitive science is difficult
because students come to it with very different backgrounds. Since 1993,
I have been teaching a popular course at the University of Waterloo called
Introduction to Cognitive Science. On the one hand, the course attracts
computationally sophisticated students from computer science and engi-
neering who know little psychology or philosophy; on the other, it attracts
students with good backgrounds in psychology or philosophy but who
know little about computation. This text is part of an attempt to construct
a course that presupposes no special preparation in any of the fields of cog-
nitive science. It is intended to enable students with an interest in mind
and intelligence to see that there are many complementary approaches to
the investigation of mind.

There are at least three different ways to introduce cognitive science to
a multidisciplinary audience. The first is to concentrate on the different
fields of psychology, artificial intelligence, and so on. The second is to orga-
nize the discussion by different functions of mind, such as problem
solving, memory, learning, and language. I have chosen a third approach,
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systematically describing and evaluating the main theories of mental rep-
resentation that have been advocated by cognitive scientists, including
logic, rules, concepts, analogies, images, and connections (artificial neural
networks). Discussing these fundamental theoretical approaches provides
a unified way of presenting the accomplishments of the different fields of
cognitive science to understanding various important mental functions.

My goal in writing this book is to make it accessible to all students likely
toenroll in an introduction to cognitive science. Accomplishing this goal
requires, for example, explaining logic in a way accessible to psychology
students, computer algorithms in a way accessible to English students,
and philosophical controversies in a way accessible to computer science
students,

Although this book is intended for undergraduates, it should also be
useful for graduate students and faculty who want to see how their own
fields fit into the general enterprise of cognitive science. I have'not written
an encyclopedia. Since the whole point of this exercise is to provide an
integrated introduction, I have kept the book relatively short and to the
point, highlighting the forest rather than the trees. Viewing cognitive
science as the intersection rather than as the union of all the relevant fields,
I have omitted many topics that are standard in introductions to artificial
intelligence, cognitive psychology, philosophy of mind, and so on. Each
chapter concludes with a Summary and suggestions for further reading.

The book is written with great enthusiasm for what theories of mental
representation and computation have contributed to the understanding of
mind, but also with awareness that cognitive science has a long way to go.
The second part of the book discusses extensions to the basic assumptions
of cognitive science and suggests directions for future interdisciplinary
work.

I have been grateful for the reception of the first edition of this book,
especially its translation into Italian, German, Czech, Portug'uese_, Japan-
ese, Korean, and two variants of Chinese. For this second edition, I have
brought part I up to date and substantially revised partII, adding new chap-
ters on brains, emotions, and consciousness, Other additions include a list
of relevant Web sites at the end of each chapter, and a glossary at the end
of the book. My anthology, Mind Readings: Introductory Selections on Cogni-
tive Science (MIT Press, 1998) remains a useful accompaniment.
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7 Representation and Computation

Studying the Mind

Have you ever wondered how your mind works? Every day, people accom-
plish a wide range of mental tasks: solving problems at their work or
school, making decisions about their personal life, explaining the actions
of people they know, and acquiring new concepts like cell phone and Inter-
net. The main aim of cognitive science is to explain how people accom-
plish these various kinds of thinking. We want not only to describe
different kinds of problem solving and learning, but also to explain how
the mind carries out these operations. Moreover, cognitive science aims to
explain cases where thinking works poorly—for example, when people
make bad decisions.

Understanding how the mind works is important for many practical
activities. Educators need to know the nature of students’ thinking in order
to devise better ways of teaching them. Engineers and other designers need
to know what potential users of their products are likely to be thinking
when they use their products effectively or ineffectively. Computers can
be made more intelligent by reflecting on what makes people intelligent.
Politicians and other decision makers can become more successful if they
understand the mental processes of people with whom they interact.

But studying the mind is not easy, since we cannot just pop one open
to see how it works. Over the centuries, philosophers and psychologists
have used a variety of metaphors for the mind, comparing it, for example,
to a blank sheet on which impressions are made, to a hydraulic device with
various forces operating in it, and to a telephone switchboard. In the last
fifty years, suggestive new metaphors for thinking have become available
through the development of new kinds of computers. Many but not all
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cognitive scientists view thinking as a kind of computation and use com-
putational metaphors to describe and explain how people solve problems

and learn.

What Do You Know?

When students begin studying at a college ot univer'sity,-they have mucl':
more to learn than course material. Undergraduates in different pl)rogrzrilo
will have to deal with very different subject matters, but they al :‘—e -
acquire some basic knowledge about how the umvefslt}’ works. How
ou register for courses? What time do the classes begin? What courses ari
Sg,ood and which are to be avoided? What are the requirements for a degr;e.
What is the best Toute from one building to another? What are the other

students on campus like? Where is the best place to have fun on Friday

night? .
inswers to these questions become part of the minds of most students,

but what sort of part? Most cognitive scientists ag‘re‘e that'lfnow.le}cllge in
the mind consists of mental representations. Every(?ne is familiar V\Tlt X no:(;
mental representations, such as the words on this page. I have ]}15 usstu-
the words “this page” to represent the page that you are now seen?g.
dents often also use pictorial representations such as maps of their c;.m-
puses and puildings. To account for many kind.s ’of kr-x.owlfedge, such as
what students know about the university, cognitive ?uennsts have prto-
posed various kinds of mental representation including rules, con;eptz,
images, and analogies. Students acquire rules such as If I want to gT'a ualv,-
then I need to take ten courses in my major. They also acqulrf con::epts 1nv(§) \
ing new terms such as “bird” or “Mickey Mouse” or ' @t, all u‘s?1 : o)
describe a particularly easy course. For getting from bu'ﬂdmg to buil 1;1ug1,
a mental image or picture of the layout of the campus might be very ustslzSl d
After taking a course that they particularly like, stLTdents may try tod nt
another similar course to take. Having interacted with numerous stu fezl S
from different programs O Campus, students may form‘ stereotypes O te
different kinds of undergraduates, although it may be difficult for them to
hat constitutes those stereotypes.
Sa?[}i:a::(z,wv:edge that students acquire about college life is not acquired
+ for the sake of accumulating information. Students face numerous

jus
; such as how to do well in their courses, how to have a decent

problems,
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social life, and how to. get a job after graduation. Solving such problems
requires doing things with mental representations, such as reasoning that
you still need five more courses to graduate, or deciding never to take
another course from Professor Tedium. Cognitive science proposes that
people have mental procedures that operate on mental representations to
produce thought and action. Different kinds of mental representations
such as rules and concepts foster different kinds of mental procedures.
Consider different ways of representing numbers. Most people are famil-
iar with the Afabic numeral representation of numbers (1, 2, 3, 10, 100,
etc.) and with the standard procedures for doing addition, multiplication,
and so on. Roman numerals can also represent numbers (I, II, III, X, C),
but they require different procedures-for carrying out arithmetic opera-
tions. Try dividing CIV (104) by XXVI (26).

Part I of this book surveys the different approaches to mental represen-
tations and procedures that have developed in the last four decades of cog-
nitive science research. There has been much controversy about the merits
of different approaches, and many of the leading cognitive science theo-
tists have argued vehemently for the primacy of the approach they prefer.
My approach is more eclectic, since I believe that the different theories of
mental representation now available are more complementary than com-
petitive. The human mind is astonishingly complex, and our understand-
ing of it can gain from considering its use of rules such as those described
above as well as many other kinds of representations including some not
at all familiar. The latter include “connectionist” or “neural network” rep-
resentations that are discussed in chapter 7.

Beginnings

Attempts to understand the mind and its operation go back at least to the
ancient Greeks, when philosophers such as Plato and Aristotle tried to
explain the nature of human knowledge. Plato thought that the most
important knowledge comes from concepts such as virtue that people know
innately, independently of sense experience. Other philosophers such as
Descartes and Leibniz also believed that knowledge can be gained just
by thinking and reasoning, a position known as rationalism. In contrast,
Aristotle discussed knowledge in terms of rules such as All humans are
mortal that are learned from experience. This philosophical position,
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defended by Locke, Hume, and others, is known as empiricism. In the eigh-
teenth century, Kant attempted to combine rationalism and empiricism by
arguing that human knowledge depends on both sense experience and the
innate capacities of the mind.

The study of mind remained the province of philosophy until the nine-
teenth century, when experimental psychology developed. Wilhelm
Waundt and his students initiated laboratory methods for studying mental
operations more systematically. Within a few decades, however, experi-
mental psychology became dominated by behaviorism, a view that virtu-
ally denied the existence of mind. According to behaviorists such as J. B.
Watson (1913), psychology should restrict itself to examining the relation
between observable stimuli and observable behavioral responses. Talk of
consciousness and mental representations was banished from respectable
scientific discussion. Especially in North America, behaviorism dominated
the psychological scene through the 1950s.

Around 1956, the intellectual landscape began to change dramatically.
George Miller (1956) summarized numerous studies that showed that the
capacity of human thinking is limited, with short-term memory, for
example, limited to around seven items. (This is why it is hard to remem-
ber long phone or social security numbers.) He proposed that memory lim-
itations can be overcome by recoding information into ."c'hunk's\_?_; mental

representations that require mental procedures for e_n_codjn_{:fnﬁ decoding

the information. At this time, primitive computers had been around for
only a few years, but pioneers such as John McCarthy, Marvin Minsky,
Allen Newell, and Herbert Simon were founding the field of artificial intel-
ligence. In addition, Noam Chomsky (1957, 1959) rejected behaviorist
assumptions about language as a learned habit and proposed instead to
explain people’s ability to understand language in terms of mental gram-
mars consisting of rules. The six thinkers mentioned in this paragraph can
justly be viewed as the founders of cognitive science.

The subsequent history of cognitive science is sketched in later chapters
in connection with different theories of mental representation. McCarthy
became one of the leaders of the approach to artificial intelligence based
on formal logic, which we will discuss in chapter 2. During the 1960s,
Newell and Simon showed the powert of rules for accounting for aspects of
human intelligence, and chapter 3 describes considerable subsequent work
in this tradition. During the 1970s, Minsky proposed that conceptlike
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frames are the central form of knowledge representations, and other
researghers in artificial intelligence and psychology discussed similar struc-
tures called schemas and scripts (chapter 4). Also at this time, psycholo-
gists began to show increased interest in @M{chapt;r 6). Much
experimental and computational research 51;1€eiglke 19.805 has con.cemed
analogical thinking, also known as case-based reasoning (chapter 5). The
most exciting development of the 1980s was the rise of connectionis’; the-
ories of mental representation and processing modeled loosely on neural
networks in the brain (chapter 7). Each of these approaches has con-
tributed to the understanding of mind, and chapter 8 provides a summar
and evaluation of their advantages and disadvantages. ’
Many challenges and extensions have been made to the central view that
the mind should be understood in terms of mental representations and
procedures, and these are addressed in part II of the book (chapters 9-14)
The 1990s saw a rapid increase in the use of brain scanning technologie;
to study how specific areas of the brain contribute to thinking, and cur-
rently there is much work on neurologically realistic com£)utationa1
models of mind (chapter 9). These models are suggesting new ways to
understand emotions and consciousness (chapters 10 and 11). Chapters 12
and 13 address challenges to the computational-representational approach
based on the role that bodies, physical environments, and social environ-
ments play in human thinking. Finally, chapter 14 discusses the future of

cognitive science, including suggestions for how students can pursue
further interdisciplinary work.

Methods in Cognitive Science

Cognitive science should be more than just people from different fields
having lunch together to chat about the mind. But before we can begin to
see the unifying ideas of cognitive science, we have to appreciate the diver-
sity of outlooks and methods that researchers in different fields bring to
the study of mind and intelligence.

Although cognitive psychologists today often engage in theorizing and
computational modeling, their primary method is experimentation with
hum.an participants. People, usually undergraduates satisfying course
requ1rements: are brought into the laboratory so that different kinds
of thinking can be studied under controlled conditions. To take sdme;', T
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examples from later chapters, psychologists have experimentally examined
the kinds of mistakes people make in deductive reasoning, the ways that
people form and apply concepts, the speed of people thinking with mental
images, and the performance of people solving problems using analogies.
Our conclusions about how the mind works must be based on more than
“common sense” and introspection, since these can give a misleading
picture of mental operations, many of which are not consciously accessi-
ble. Psychological experiments that carefully approach mental operations
from diverse directions are therefore crucial for cognitive science to be
scientific.

Although theory without experiment is empty, experiment without
theory is blind. To address the crucial questions about the nature of mind,
the psychological experiments need to be interpretable within a theoreti-
cal framework that postulates mental representations and procedures. One

- of the best ways of developing theoretical frameworks is by forming and

testing computational models intended to be analogous to mental opera-
tions. To complement psychological experiments On deductive reasoning,
concept formation, mental imagery, and analogical problem solving,
researchers have developed computational models that simulate aspects of
human performance. Designing, building, and experimenting with com-
putational models is the central method of artificial intelligence (AD), the
branch of computer science concerned with intelligent systems. Ideally in
cognitive science, computational models and psychological experimenta-
tion go hand in hand, but much important work in Al has examined the
power of different approaches to knowledge representation in relative iso-
lation from experimental psychology.

Although some linguists do psychological experiments ot develop com-
putational models, most currently use different methods. For linguists in
the Chomskyan tradition, the main theoretical task is to identify gram-
matical principles that provide the basic structure of human languages.
Identification takes place by noticing subtle differences between gram-
matical and ungrammatical utterances. In English, for example, the sen-
tences “She hit the ball” and “What do you like?” are grammatical, but
#She the hit ball” and “What does you like?” are not. A grammar of English
will explain why the former are acceptable but not the latter. Later chap-
ters give additional examples of the theoretical and empirical work per-
formed by linguists in both the Chomskyan tradition and others.

Representation and Computation

Like cognitive psychologists, neuroscientists often perform controlled
e.xperiments, but their observations are very different, since neuroscien-
tists are concerned directly with the nature of the brain. With nonhuman
subjects, researchers can insert electrodes and record the firing of individ-
ual neurons. With humans for whom this technique would be too inva-
sive, it has become possible in recent years to use magnetic and positronic
scanning devices to observe what is happening in different parts of the
brain while people are doing various mental tasks. For example, brain scans
have identified the regions of the brain involved in mental imagery and
word interpretation. Additional evidence about brain functioning is gath-
ered by observing the performance of people whose brains have been
damaged in identifiable ways. A stroke, for example, in a part of the brain
dedicated to language can produce deficits such as the inability to utter
sentences. Like cognitive psychology, neuroscience is often theoretical as
we.ll as experimental, and theory development is frequently aided by devel-
oping computational models of the behavior of sets of neurons.
Co.g'nitive anthropology expands the examination of human thinking to
consider how thought works in different cultural settings. The study of
mind should obviously not be restricted to how English speakers think but
should consider possible differences in modes of thinking across cultures
Flhapters 12 and 13 describe how cognitive science is becoming increas:
ingly aware of the need to view the operations of mind in particular phys-
ical and social environments. For cultural anthropologists, the mZin
method is ethnography, which requires living and i_ntera,lcting with
members of a culture to a sufficient extent that their social and cognitive
systems become apparent. Cognitive anthropologists have investigated, for
example, the similarities and differences across cultures in words for col’ors
With a few exceptions, philosophers generally do not perform system:
atic empirical observations or construct computational models. But phi-
losophy remains important to cognitive science because it deals with
fundamental issues that underlie the experimental and computational
approaches to mind. Abstract issues such as the nature of representation
and computation need not be addressed in the everyday practice of psy-
chology or artificial intelligence, but they inevitably arise when researchers
think deeply about what they are doing. Philosophy also deals with general
questions such as the relation of mind and body and with methodologi-
cal questions such as the nature of explanations found in cognitive science.
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In addition to descriptive questions about how people think, philosophy
concerns itself with normative questions about how they should think.
Along with the theoretical goal of understanding human thinking, cogni-
tive science can have the practical goal of improving it, which requires
normative reflection on what we want thinking to be. Philosophy of mind
does not have a distinct method, but should share with the best theoreti-
cal work in other fields a concern with empirical results.

In its weakest form, cognitive science is merely the sum of the fields just
mentioned: psychology, artificial intelligence, linguistics, neuroscience,
anthropology, and philosophy. Interdisciplinary work becomes much more
interesting when there is theoretical and experimental convergence on
conclusions about the nature of mind. Later chapters provide examples of
such convergences that show cognitive science working at the intersection
of various fields. For example, psychology and artificial intelligence can be
combined through computational models of how people behave in exper-
iments. The best way to grasp the complexity of human thinking is to use
multiple methods, especially combining psychological and neurological
experiments with computational models. Theoretically, the most fertile
approach has been to understand the mind in terms of representation and

computation.
The Computational-RepresentationaI Understanding of Mind

Here is the central hypothesis of cognitive science: Thinking can best be
understood in terms of representational structures in the mind and com-
putational procedures that operate on those structures. Although there is
much disagreement about the nature of the representations and compu-
tations that constitute thinking, the central hypothesis is general enough
to encompass the current range of thinking in cognitive science, includ-
ing connectionist theories. For short, [ call the approach to understanding
the mind based on this central hypothesis CRUM, for Computational-
Representational Understanding of Mind.

CRUM might be wrong. Part II of this book presents some fundamental
challenges to this approach that suggest that ideas about representation
and computation might be inadequate to explain fundamental facts about
the mind. But in evaluating the successes of different theories of knowl-
edge representation, we will be able to see the considerable progress in
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understanding the mind that CRUM has made possible. Without a doubt
CRUM has been the most theoretically and experimentally successfui
approach to mind ever developed. Not everyone in the cognitive science
disciplines agrees with CRUM, but inspection of the leading journals in
psychology and other fields reveals that CRUM is currently the dominant
approach to cognitive scienice.

Much of CRUM’s success has been due to the fact that it employs a fertile
analogy derived from the development of computers. As chapter 5
describes, analogies often contribute to new scientific ideas, and compar-
ing the mind with computers has provided a much more powerful way of
approaching the mind than previous metaphors such as the telephone
switchboard. Readers with a background in computer science will be famil-
iar with the characterization of a computer program as consisting of data
structures and algorithms. Modern programming languages include a
variety of data structures including strings of letters such as “abc,” numbers
such as 3, and more complex structures such as lists (A B C) and trees.
Algorithms—mechanical procedures—can be defined to operate on various
kinds of structures. For example, children in elementary school learn an
algorithm for operating on numbers to perform long division. Another
simple algorithm can be defined to reverse a list, turning (A B C) into (C
B A). This procedure is built up out of smaller procedures for taking an
element from one list and adding it to the beginning of another, enabling
a computer to build a reversed list by forming (A), then (B A), then (C B
A). Similarly, QRI{I\E assumes that the mind has mental representations
analogous to data structures, and computational procedlixrés: s{nﬁlé;.:o

algorithms. Schematically: -

Program Mind

data structures + algorithms mental representations + computational

= running programs procedures = thinking

This has been the dominant analogy in cognitive science, although it has
taken on a novel twist from the use of another analog, the brain. Con-
nectionists have proposed novel ideas about representation and computa-
tion that use neurons and their connections as inspirations for data
structures, and neuron firing and spreading activation as inspirations for
algorithms. CRUM then works with a complex three-way analogy among
the mind, the brain, and computers, as depicted in figure 1.1. Mind, brain,
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Figure 1.1
Three-way analogy between minds, computers, and brains.

and computation can each be used to suggest new ideas about the cthers.
There is no single computational model of mind, since different kinds of
computers and programming approaches suggest different ways in which
the mind might work. The computers that most of us work with today are
serial processors, performing one instruction at a time, but the brain and
some recently developed computers are parallel processors, capable of
doing many operations at once.

If you already know a lot about computers, thinking about the mind
computationally should come fairly naturally, even if you do not agree that
the mind is fundamentally like a computer. Readers who have never
written a computer program but have used cookbooks can consider
another analogy. A recipe usually has two parts: a list of ingredients and a
set of instructions for what to do with them. A dish results from applying
cooking instructions to the ingredients, just as a running program results
from applying algorithms to data structures such as numbers and lists, and
just as thinking (according to CRUM) results from applying computational
procedures to mental representations. The recipe analogy for thinking is
weak, since ingredients are not representations and cooking instructions
require someone to iﬂterpret thémj, Chapters 2-7 provide simple examples
of computational procedures that map much more directly onto the oper-
ations of mind.

Representation and Computation 13

Theories, Models, and Programs

Computer models are often very useful for theoretical investigation of
mental processes. Comprehension of cognitive science models requires
noting the distinctions and the connections among four crucial elements:
illqo_r,yL.dee_L_pmg:am,‘and platform. A cognitive theory postulates a set
of representational structures and a set of processes that operate on these
structures. A computational model makes these structures and processes
more precise by interpreting them by analogy with computer programs
that consist of data structures and algorithms. Vague ideas about repre-
sentations can be supplemented by precise computational ideas about data
structures, and mental processes can be defined algorithmically. To test
the model, it must be implemented in a software program in a program-
ming language such as LISP or Java. This program may run on a variety
of hardware platforms such as Macintoshes, Sun Workstations, or IBM PCs,
or it may be specially designed for a specific kind of hardware that has
many processors working in parallel. Many kinds of structures and
processes can be investigata in this way, from the rules and search strate-
gies of some traditional sorts of artificial intelligence, to the distributed
representations and spreading activation processes of newer connection-
ist views. 4

Suppose, for example, that you want to understand how children learn
to add numbers together in problems such as 13 + 28 = ? A cognitive theory
would postulate how children represent these numbers and how they
process the representations to accomplish addition. The theory would
propose whether 13 is to be represented by a single structure, a combined
structure such as 10 plus 3, or by a complex of neuronlike structures. The
theory would also propose processes that operate on the structures to
produce a result such as 41, including the carrying operation that somehow
turns 30-plus-11 into 41. A computational model would specify the nature
of the representations and processes more precisely by characterizing pro-
grammable structures and algorithms that are intended to be analogous to
the mental representations and processes for addition. To evaluate the
theory and model, we can write a computer program in a computer lan-
guage such as LISP, running the program to compare its performance with
human adders and checking that the program not only gets the same right
answers as the humans but also makes the same kind of mistakes. Our
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program might run on any number of different platforms such as PCs, or
it might be specially tailored to a particular kind of computer such as one
that mimics the neuronal structure of the brain.

The analogy between mind and computer is useful at all three stages of
the development of cognitive theories: discovery, modification, and eval-
uation. Computational ideas about different kinds of programs often
suggest new kinds of mental structures and processes. Theory develop-
ment, model development, and program development often go hand in
hand, since writing the program may lead to the invention of new kinds
of data structures and algorithms that become part of the model and have
analogs in the theory. For example, in writing a computer program to sim-
ulate human addition, a programmer might think of a kind of data struc-
ture that suggests new ideas about how children represent numbers.
Similarly, evaluation of theory, model, and program often involves all
three, since our confidence in the theory depends on the model’s validity
as shown by the program’s performance. If the computer program for
doing addition cannot add, or if it adds more perfectly than humans, we
have reason to believe that the corresponding cognitive theory of addition
is inadequate.

The running program can contribute to evaluation of the model and
theory in three ways. First, it helps to show that the postulated represen-
tations and processes are computationally realizable. This is important,
since many algorithms that seem reasonable at first glance do not scale up
to large problems on real computers. Second, in order to show not only
the computational realizability of a theory but also its psychological plau-
sibility, the program can be applied qualitatively to various examples of
thinking. Our addition program, for example, should be able to get the
same kinds of right and wrong answers as children. Third, to show a much
more detailed fit between the theory and human thinking, the program
can be used quantitatively to generate detailed predictions about human
thinking that can be compared with the results of psychological experi-
ments. If there are psychological experiments that show that children get
a certain percentage of a class of addition problems right, then the com-
puter program should get roughly the same percentage right. Cognitive
theories by themselves are normally not precise enough to generate such
quantitative predictions, but a model and program may fill the gap
between theory and observation.

Representation and Computation 15

Box 1.1
Criteria for evaluating theories of mental representation.

(1) Representational power
(2) Computational power
(a) Problem solving
(i) Planning
(ii) Decision
(iii) Explanation
(b) Learning
(c) Language -
(3) Psychological plausibility
(4) Neurological plausibility
(5) Practical applicability
(a) Education
(b) Design
(c) Intelligent systems
(d) Mental illness

Evaluating Approaches to Mental Representations

We can now be more specific about what to expect of a theory of mental
representation. Box 1.1 lists five complex criteria for evaluating a particu-
lar account of the representations and computations that can be claimed
to explain thought. Chapters 2-7 use these criteria to evaluate six differ-
ent approaches to mental representation: logic, rules, concepts, images,
_cases, and connections (artificial neural networks).

Each of the approaches described in chapters 2-7 proposes a particular
kind of representation and a corresponding set of computational proce-
dures. The first criterion, representational power, concerns how much
information a particular kind of representation can EZ‘PI‘?FF‘; For ékémpie,
‘a university calendar urges: “Once admitted to the University, students are
advised to preregister for their courses well in advance of the beginning of
lectures.” Students who take such advice seriously will need to represent
it internally in a form that leads to further inferences, such as the conclu-
sion that they should get over to the registrar’s office to sign up for next
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term’s courses. We will see that different proposed kinds of mental repre-
sentation vary greatly in representational power.

Mental representations are important not only for what they express,
but especially for what you can do with them. We can evaluate the com-
putational power of an approach to mental representation in terms of how
it accounts for three important kinds of high-level thinking. The first is
problem solving: a theory of mental representation should be able to
explain how people can reason to accomphsh their goals. There are at least
three kinds of problem solving to be explained: planning, decision making,
and explanation. Planning requires a reasoner to figure out how to get from
an initial state to a goal state by traversing various intermediate states.
Planning problems include mundane issues such as how to get to the
airport before your flight leaves, to the sort of exercise students are com-
monly posed in their textbooks and their exams. In these questions, stu-
dents are given some information and need to figure out how to calculate
the answer. The starting state involves what the student knows and the
information in the problem description, and the goal state includes having
an answer. The student has to find a solution by constructing a successful
sequence of calculations.

In decision making, people are faced with a number of different means
for accomplishing their goals and need to select the best one. For example,
a student about to graduate may need to choose among looking for a job,
going to graduate school, or attending a professional school such as law
or business. Such decisions are very difficult, since they require students
to identify their goals and figure out which course of action will best
accomplish those goals. In planning problems, the task is to find a suc-
cessful sequence of actions, whereas in decision problems the task is to
choose the best plan from among a number of possible actions.

Explanation problems are ones that require people to figure out why
something happened. They range from mundane questions such as why a
friend is late for dinner, to deep scientific questions such as why human
language has evolved. Every minimally intelligent human being is capable
of planning, decision making, and generating explanations. A cognitive
theory must have sufficient computational power to offer possible expla-
nations for how people solve these kinds of problems.

The computational power of a system of representations and procedures
is not just a matter of how much the system can compute, but must also
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take into account how efficient the computation is. Imagine a procedure
that takes only a second to be applied once, but twice as long the second
time, and twice as long as that the third time, and so on. Then twenty
applications would take 2*° seconds, which are more seconds than there
have been in the approximately 15 billion years since the universe was
formed. Both naturally and artificially intelligent systems need to have suf-
ficient speed to work effectively in their environments.

When people solve a problem, they are usually able to learn from the
experience and thereby solve it much more easily the next time. For
example, the first time that students register for classes is usually very con-
fusing since they do not know what procedures to follow or how to go
about choosing good classes. Subsequently, however, registering typically
gets a lot easier. Part of being intelligent involves being able to learn from
experience, so a theory of mental representation must have sufficient com-
putational power to explain how people learn. In discussing different
approaches to mental representation, we will encounter diverse kinds of
human learning, ranging from the acquisition of new concepts such as reg-
istration and tules such as Never sign up for an 8:30 class to more subtle kinds
of adjustment in performance.

In addition to problem solving and learning, a general cognitive theory
must account for human language use. Ours is the only species on Earth
capable of complex use of language. General principles of problem solving
and learning might account for language use, but it is also possible that
language is a unique cognitive capacity that must be dealt with specially

to comprehend language, thelr ab11 ity to produce utterances, and chil-
dren’s universal ability to learn language. Different approaches_ to knowl-
edge representation provide very different answers to how these work.

If artificial intelligence is viewed as a branch of engineering, it can
develop computational models of problem solving, learning, and language
that ignore how people accomplish these tasks; the question is just how
to get computers to do them. But cognitive science has the goal of under-
standing human cognition, so it is crucial that a theory of mental repre-
Sentation not only have a lot of representational and computational
power, but also be concerned with how people think. Accordingly,
the third criterion for evaluating a theory of mental representation is
psychological plausibility, which requires accounting not just for the




18 Chapter 1

qualitative capacities of humans but also for the quantitative results of
psychological experiments concerning these capacities. Relevant experi-
ments include ones dealing with the same high-level tasks that were dis-
cussed under the heading of computational power: problem solving,
learning, and language. The difference between this criterion and the last
is that a cognitive theory of mental representation must not only show
how a task is possible computationally, but also try to explain the partic-
ular ways that humans do it.

Similarly, since human thought is accomplished by the human brain, a
theory of mental representation must at least be consistent with the results
of neuroscientific experiments. Until recently, neurological techniques
such as recording EEGs of brain waves seemed too crude to tell us much
about high-level cognition, but the past two decades have brought new
scanning techniques that can identify where and when in the brain certain
cognitive tasks are performed. Cognitive neuroscience has thereby become
an important part of reflection on the operations of mind, so we should
try to assess each approach to knowledge representation in terms of neu-
rological plausibility, even though information about how the brain pro-
duces cognition is still limited (see chapter 9).

The fifth and final criterion for evaluating theories of mental represen-
tation is practical applicability. Although the main goal of cognitive
science is to understand the mind, there are many desirable practical
results to which such understanding can lead. This book considers what
each of the approaches to knowledge representation has to tell us about
four important kinds of application: education, design, intelligent systems,
and mental illness. For educational purposes, cognitive science should be
able to increase understanding of how students learn, and also to suggest
how to teach them better. Design problems, such as how to make com-
puter interfaces that people like to use, should benefit from an under-
standing of how people are thinking when they perform such tasks.
Developing intelligent systems to act either as stand-alone experts or as
tools to support human decisions can directly benefit from computational
ideas about how humans think. Different theories of mental representa-
tion have given rise to very different sorts of expert computer systems,
including rule-based, case-based, and connectionist tools. Other potential
practical applications of cognitive science include understanding and treat-
ment of mental illness.
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As we will see, no single approach to mental representation fully satis-
fies all these criteria. Moreover, there are aspects of human thinking such
as perception (sight, hearing, touch, smell, taste), emotion, and motor
control that are not included in these criteria (see chapters 10-12). Never-
theless, the criteria provide a framework for comparing and evaluating
current theories of mental representation with respect to their accom-
plishments as well as their shortcomings.

Summary

Researchers in psychology, artificial intelligence, neuroscience, linguistics,
anthropology, and philosophy have adopted very different methods for
studying the mind, but ideally these methods can converge on a common
interpretation of how the mind works. A unified view of cognitive science
comes from seeing various theoretical approaches as all concerned
with mental representations and procedures that are analogous to the
representations and procedures familiar in computer programs. The
Computational-Representational Understanding of Mind operates with
the following kind of explanation schema:

Explanation target

Why do people have a particular kind of intelligent behavior?
Explanatory pattern

People have mental representations.

People have algorithmic processes that operate on those represen-
tations.

The processes, applied to the representations, produce the behavior.

The words in boldface are placeholders, indicating that to explain various
kinds of intelligent behavior, various kinds of representations and
processes can be considered. Currently, there are six main approaches to
modeling the mingd, involving logic, rules, concepts, analogies, images, and
neural connections. These can be evaluated according to five criteria: rep-
resentational power, computational power, psychological plausibility, neu-
rological plausibility, and practical applicability.

The fundamental presuppositions that have guided the writing of this
book are:
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1. The study of mind is exciting and important. It is exciting for theoret-
ical reasons, since the attempt to investigate the nature of mind is as chal-
lenging as anything attempted by science. It is also exciting for practicél
reasons, since knowing how the mind works is important for such diverse
endeavors as improving education, improving design of computers and
other artifacts, and developing intelligent computational systems that can
aid or replace human experts.

2. The study of mind is interdisciplinary. It requires the insights that have
been gained by philosophers, psychologists, computer scientists, linguists,
neuroscientists, anthropologists, and other thinkers. Moreover, it requires
the diversity of methodologies that these fields have developed.

3. The interdisciplinary study of mind (cognitive science) has a core: the
Computational-Representational Understanding of Mind (CRUM). Think-
ing is the result of ment_alﬂr_@r_esergations ‘and computational p@es

that operate on those representations.

4. CRUM is multifarious. Many kinds of representations and computa-
tions are important to understanding human thought, and no single
computational-representational account now available does justice to the
full range of human thinking. This book reviews (in chapters 2-8) the
six major current approaches to understanding the mind in terms of
representations and computation.

5. CRUM is successful. The computational-representational approach has
exceeded all previous theories of mind in its theoretical ability to account
for psychological performance and its practical ability to improve that
performance.

6. CRUM is incomplete. Not all aspects of human thought and intelligence

can be accounted for in purely computational-representational terms. Sub--

stantial challenges have been made to CRUM that show the necessity of
integrating it with biological research (neuroscience) and with research on
social aspects of thought and knowledge.

Discussion Questions

1. What are additional examples of things that students learn when they
go to college or university?

2. Why have researchers in different fields adopted different methods for
studying the mind?
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3. Can you think of any alternatives to the computational-representa-
tional understanding of mind?

4. What aspects of human thinking are most difficult for computers to
perform or model? What would it take to convince you that a computer
is intelligent?

5. Are theories and models in cognitive science like theories and models
in physics and other fields?

6. Are there additional criteria that you would want a theory of mental
representation to meet?

Further Reading

Three recent reference works contain valuable articles on many aspects of
cognitive science: The MIT Encyclopedia of the Cognitive Sciences (Wilson and
Keil 1999), A Companion to Cognitive Science (Bechtel and Graham 1998),
and Encyclopedia of Cognitive Science (Nadel 2003).

On the history of cognitive science, see Gardner 1985 and Thagard 1992,
chap. 9. Other introductions to cognitive science include Johnson-Laird
1988, Stillings et al. 1995, Dawson 1998, and Sobel 2001. General collec-
tions of articles include Polk and Seifert 2002 and Thagard 1998.

Textbooks on cognitive psychology include Anderson 2000, Medin, Ross,
and Markman 2001, and Sternberg 2003. For introductions to artificial
intelligence, see Russell and Norvig 2003 and Winston 1993. Graham 1998
and Clark 2001 provide introductions to the philosophy of mind and cog-
nitive science. An introductory linguistics text is Akmajian et al. 2001. For
accessible introductions to cognitive neuroscience, see LeDoux 2002 and
Kosslyn and Koenig 1992; Churchland and Sejnowski 1992 present a more
computational approach. D’Andrade 1995 provides an introduction to cog-

nitive anthropology.

Web Sites

Note: Live links to all the sites mentioned in this book can be found at my
own Web site, http://cogsci.uwaterloo.ca/courses/resources.html.

Artificial Intelligence in the news (American Association for Artificial Intel-
ligence): http://www.aaai.org/AlTopics/html/current.html
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Artificial intelligence on the Web: http:// aima.cs.berkeley.edu/ai.html
Biographies of major contributors to cognitive science: http://mechanism.
ucsd.edu/~bill/research/ANAUT.html

Cognitive Science dictionary, University of Alberta: http://web.psych.
ualberta.ca/~mike/Pearl_Street/Dictionary/dictionary.html

Cognitive Science Society: http://WWW.cognitivesciencesociety.org/
Cogprints (archive of papers on cognitive science): http://cogprints.ecs.
soton.ac.uk/ .

Dictionary of Philosophy of Mind: http://www.artsci.wustl.edu/~philos/
MindDict/

Science Daily (mind and brain news): http:/ /www.sciencedaily.cpm/news/
mind_brain.htm

Yahoo! Cognitive Science page: http://dir.yahoo.com/Science/cognitive_
science/

Notes

Discussions of thinking as computation often begin with an abstract model of com-
putation such as the Turing machine, a simple device that consists of a tape and a
mechanical head that can write symbols on spaces on the tape. Although it can be
proven mathematically that such a machine can in principle do anything that fmy
other computer can, the Turing machine is an excessively abstract analog of t1.11nk-
ing, which is much better discussed in terms of higherlevel computational ideas
such as data structures and algorithms.

For more on explanation schemas and patterns, see Kitcher 1993, Leake 1992,
Schank 1986, and Thagard 1999.

2 Logic

Although formal logic has not been the most influential psychological
approach to mental representation, there are several reasons for beginning
our survey with it. First, many basic ideas about representation and com-
putation have grown out of the logical tradition. Second, many philoso-
phers and artificial intelligence researchers today take logic as central to
work on reasoning. Third, logic has substantial representational power that
must be matched by other approaches to mental representation that may
have more computational efficiency and psychological plausibility.
Formal logic began with the Greek philosopher Aristotle more than two
thousand years ago. He systematically studied such inferences as

All students are overworked.
Mary is a student.

So, Mary is overworked.

Such patterns of inference, with two premises and a conclusion, are called

._SyllogismsNn addition to cataloging many different kinds of syllogism, Aris-
totle showed how they can be analyzed purely in terms of their form. For
the conclusion in the example to follow from the two premises, it does
not matter that the syllogism is about overworked students. We can sub-
stitute “sausage” for “student,” “orange” for “overworked,” and “Marvin”
for “Mary,” and the conclusion that Marvin is orange follows from the
revised premises even if it makes little sense. Aristotle initiated the use of
symbols to show the form of the inference:

All S are O.
Mis S.
So, M is O.
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.aotle’s discovery of how to analyze syllogisms purely in terms .of
Aﬂs-tofmm ignoring their content, has had a major influence on logic.
'ﬁle;xdjscm:ety's usefulness, however, has been challe-nged from a psyc?w-
Jogical perspective, as we will see below in the section on psychological
valldm;- llogism is a form of deductive inference, in which the conclusion
foﬁgjvsynecessarﬂy from the premises: if the premises are tr.ue, t.he. con-

ion is true also. Inductive inference is more dangerous since it 1n.tro-
o uncertainty. If all the students you know are overworked, you might
fiu:l:zitively infer that all students are overworked. But your c.onclus.ion
m~ ht well be erroneous—for example, if there are basket-weaving majors
o do not know who take it easy.
yO;xxllthough the syllogism dominated discussions of formal logic for two

thousand years, it is not sufficient tc represent all inferences. Syllogisms
0

are fine for simple predicates like “is a student” but they can not handle
relations such as take in sentences like “Students who take courses get

dit for them.” Here take is a relation between a student and a coTlr'se.
o dern logic began in 1879 with the work of the German mathematician
I;I((:ttlob Frege (1960), who devised a formal system of logic much more
than Aristotle’s. Subsequently, Bertrand Russell and many other

eneral ' _ '
g have found ways of increasing the representational and deduc

logicians
; of formal logic.

th;hI;me”;y theory of i:)mputation was developed by logicians such as
Alonzo Church and Alan Turing. In the 1930s, Church, Turing, and ot.hers
developed mathematical schemes for specifying what ?ould be e_tffecuvely
computed. These schemes turned out to be mathema‘fmall.y_ equivalent t<;
each other, providing support for the thesis that the intuitive concep'f o
effective computability can be identified with well-deﬁne'd'mathemaUCal
concepts such as Turing-machine computability. When dxglt’al computeri
pecame available in the late 1940s and 1950s, the mat.hematl.cal theoT"y e}
computability provided a powerful tool for understanding thelr. opera‘aoii.
It is not surprising that, when artificial intelligence began in the mid-
1950s, mathematically trained researchers such as John McCarthY t(;:)k
Jogic to be the most appropriate tool. We shall see, howe'ver, 1.:hat other
pioneers such as Allen Newell, Herbert Simon, and Marvin Minsky pre-
ferred different approaches.
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Representational Power

Modern formal logic has the resources to represent many kinds of deduc-
tive inferences. The simplest system of formal logic is propositional logic,
in which formulas like “p” and “g” are used to stand for sentences such as
“Paula is in the library” and “Quincy is in the library.” Simple formulas
can be combined into more complex ones using symbols such as “&” for
“and,” “v” for “or,” and “—” for “if-then.” For example, the sentence

If Paula is in the library, then Quincy is in the library.

becomes
p—9q

Such if-then sentences are called conditionals, consisting of antecedents
{the “if” part) and consequents (the “then” part). To express negation, “rot-
p” can be written ~p. From these building blocks we can construct for-
malizations for complex statements such as “If Paula or Quincy is in the
library, then Debra is not,” which can be formalized as

wvyg —

Here, “p” stands for “Paula is in the library,” “g” stands for “Quincy is in
the library,” and “4” stands for “Debra is in the library.”

More complicated logics have been developed that allow different kinds
of propositional operators. Modal logic adds operators for necessity and
possibility, so that we can represent statements such as “It is possible that
Paula is in the library.” Epistemic logic adds operators for knowledge and
belief, so that Kp represents “It is known that p.” Deontic logic represents
moral ideas such as that p is permissible or forbidden.

Propositional logic requires treating statements such as “Paula is a
student” as an indivisible whole, but predicate logic allows us to break
them down. Predicate calculus distinguishes between predicates such as “is
a student” and constants referring to such individuals as Paula or Quincy.
In the version of predicate calculus usually taught in philosophy courses,
“Paula is a student” is formalized as “S(p),” where “p” now stands for Paula
rather than a whole proposition. Computer scientists tend to express this
more mnemonically as “is-student (paula).” In addition to simple proper-
ties, predicates can be used to express relations between two or more
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things. For example, “Paula takes Philosophy 256” becomes: “takes (Paula,
Phil256).”

Predicate calculus can formalize sentences with quantifiers such as “all”
and “some” by using variables such as “x” and “y.” For example, “All stu-
dents are overworked” becomes

(for-all x) (student(x) — overworked (x)).

Literally, this says “For any , if x is a student, then x is overworked,” which
is equivalent to saying that all students are overworked. The sentence “Stu-
dents who take courses get credit for them” could be formalized as

(for-all x) (for-all y) [(student (x) & course (y) & take (x, )) = get-credit-
for (x, Y]

This looks complicated, but what it is saying in English is “For any x
and y, if x is a student, y is a course, and x takes y, then x gets credit
for y.”

Readers whose interest lies predominantly in human psychology might
now be asking, why are you throwing these mathematical symbols at me?
The answer is that some rudiments of formal logic are required for under-
standing much current work in cognitive science, including some propos-
als about how humans do deduction. At a minimum, we have to notice
that people can comprehend such statements as “Students who pass
courses get credit for them” and use them to make inferences. Predicate
logic, unlike some other approaches to representation we will discuss, has
sufficient representational power to handle this example.

Although predicate logic is useful for many purposes, it has limitations
that become obvious as soon as we try to translate a natural language text.
For example, try to put the last paragraph into logical form. Its first sen-
tence includes the word “now,” and extending predicate logic to deal with
time is not an easy matter. It also contains the word “you,” which the
reader can figure out refers to Paul Thagard, the author of this book, but
it is not obvious how to express this in logic. Moreover, the structure of
this sentence includes the relation “asks,” which involves both an asker
and the proposition that is asked, so that we need to be able to embed a
proposition within a proposition, which is not naturally done in the usual
formalism for predicate logic. If translation from language to logical for-
malism were easier, we could have greater confidence that formal logic cap-
tures everything that is necessary for mental representation.

!
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Propositional and predicate logic work well for making assertions that
take statements to be true or false, but they provide no means to deal with
uncertainty, as in “Paula is probably in the library.” For such assertions,
formal logic can be supplemented with probability theory, which assigns
numbers between O and 1 to propositions. We can then write “P(p) = 0.7”
to symbolize that the probability that Paula is in the library is 0.7.

Computational Power

Representations by themselves do nothing. To support thinking, there
must be operations on the representations. To derive a conclusion in logic,
we apply rules of inference to a set of premises. Two of the most commmon
rules of inference make it possible to draw conclusions using conditionals

(if-then sentences):
Modus ponens
P-4

p

Therefore, q.
Modus tollens
p—4q

not-q

Therefore, not-p.

From the conditional “If Paula is in the library, then Quincy is in the
library” and the information that Paula is in the library, modus ponens
enables us to infer that Quincy is in the library. From the information that
Quincy is not in the library, it follows by modus tollens that Paula is not
in the library.

In predicate logic, there are rules of inference for dealing with the quan-
tifiers “all” and “some.” For example, the rule of universal instantiation
allows the derivation of an instance from a general statement, licensing
the inference from (for-all x)(cool (x)) to cool(Paula), that is, from “Every-
thing is cool” to “Paula is cool.” A more complicated application applies
the generalization that all students are overworked: (for-all x) (student(x)
~— overworked (x)). Applying this to Mary, we get the conclusion that if
Mary is a student, she is overworked: student (Mary) — overworked (Mary).
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Abstract rules of inference such as modus ponens are not in themselves
proéessing operations. To produce computations, they need to be Part of
a human or machine system that can apply the::n to senter?ces with '.che
appwpziate logical form. From a logical perspective, .deductlve ;gasgn.l_pg
consists of applying forma) inference rules that consider only the logical
[_0‘1;_ of the premises.

problem Solving )
planning Many planning problems are open to solutions that employ

Jogical deduction. Suppose Tiffany is a student who wants to get a degree
in Psychology. Her college or university catalog telis her that she n?e('is to
take ten psychology courses, including two statistics courses, Statistics 1
and Statistics 2. The first of these is a prerequisite for .the other, afnd the
second is a prerequisite for Research Methods, which is a}so requlrecfl for
the degree. From the general description in the catal?g, Tiffany can infer
by the inference rule universal instantiation the conditionals that apply to
her, including

take (Tiffany, Statl) — can-take (Tiffany, Stat2)

can-take (Tiffany, Stat2) & open (Stat2) — take (Tiffany, Stat2)

take (Titfany, Stat2) — can-take (Tiffany, RM)

can-take (Tiffany, RM) & open (RM) — take (Tiffany, RM)

take (Tiffany, RM) & take (Tiffany, Statl) & take (Tiffany, Stat2) & take
(Tiffany, seven-other-courses) — graduate-with (Tiffany, psychology-
degree)-

The last conditional is a somewhat awkward formalization of the state-
ment that if Tiffany takes Research Methods, the two statistics courses, and
seven other courses, then she can graduate with a psychology degree.
Tiffany can use these conditionals and the inference rule moTiu's.ponens
to derive a plan, which in logical terms is a deduction from her initial state,
where she has taken no psychology courses, to the goal state, where she
graduates. Tiffany can construct the deductive plan that she can take Sta-
tistics 1, and then Statistics 2, and then Research Methods, and then seven
other courses, and finally graduate with a psychology degree.

For planning to be computationally realizable, deduction must be
more constrained than the general set of inference rules found il'l forl.nal
Jogic. For example, propositional logic contains the following conjunction

rule:
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Conjunction

p

q
Therefore, p & q.

This rule is fine logically, but computationally it is potentially disastrous.
If Tiffany has taken both statistics courses, she could usefully infer

take (Tiffany, Statl) & take (Tiffany, Stat2).
But it would gain her nothing to make the additional valid inference to

take (Tiffany, Statl) & take (Tiffany, Stat2) & take (Tiffany, Statl) & take
(Tiffany, Stat2).

Uncontrolled inference of this sort would quickly exhaust the memory of
any human or machine system.

The deductive method of planning is intuitively appealing, but it
encounters a number of computational problems. First, it tends to be
slow, with an enormous amount of inference required to accomplish even
simple plans, although various computational strategies have been devel-
oped to make deduction more effective. Second, purely deductive planning
is monotonic: it can only draw new conclusions and not reject previous
ones. (A monotonic mathematical function is one whose values continu-
ously increase or continuously decrease without oscillation; reasoning is
not monotonic because we do not continuously add new bTelEfs_,msihcé
sometimes old l_)el..i‘efs must be gbap_dopéd._) Al researchers have developed
several techﬁitiues to make logic nonmonotonic, but they are computa-
tionally expensive. Third, a purely deductive planner is not capable of
learning from experience. Having solved a problem once, it will go through
the same laborious deductive process when faced with it again, unless some
method of learning from its experience has been added.

I have barely scratched the surface in describing artificial intelligence
work on deductive planning (see, for example, Dean and Wellman 1991;
Russell and Norvig 2003). The reader should see that logical deduction can
be a useful way to describe how planning problems are solved, but that
this view of planning has some difficulties. Later chapters will describe
numerous other approaches to planning.

Decision Deductive planning finds a logical path from an initial state to
a goal state. But what happens if there is more than one reasonable path?
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In the example in the last section, Tiffany’s deduced plan was to take Sta-
tistics 1, then Statistics 2, then Research Methods. But often she will face
decisions that require her to choose between actions. For example, she may
be required to take a humanities course, and therefore will have to choose
among philosophy, English, and Spanish. Deductive planning will not tell
her which choice to make, since each path will take her to the desired goal
state of satisfying the humanities requirement. Tiffany needs to decide
which of the courses will satisfy her other goals, such as learning some-
thing interesting, not working too hard, and taking a course that fits rea-
sonably with the rest of her schedule. Deduction may be relevant to
working out the consequences of some possible choices. If Spanish is only
offered at 8:30 in the morning, Tiffany might deduce that she would have
to get up early in the morning if she took it. But other consequences might
not be so clear, since students are often not sure about what a course will
be like.

Hence, decision making often requires considering of probabilities.
Tiffany might believe that philosophy will probably be more interesting
than English, or vice versa, or that Spanish will probably be more useful
than English. Hence, she needs to base her decision both on what her goals
are and on her estimated probabilities that the actions will accomplish
those goals. There is thus room for judgments that apply the formal theory
of probability. We can write P(p/q) to represent the probability of p given
g, so that “P(interesting course/English course)” could express the proba-
bility that Tiffany gets an interesting course given that she takes an English
course. To estimate this probability, she could use her background knowl-
edge of what proportion of English courses on her campus are interesting.
In deciding whether to take philosophy, English, or Spanish, Tiffany will
have to calculate the expected value of each choice, taking into account both
the probability of various outcomes and the extent to which her goals are
satisfied by the outcomes.

Computational systems for decision making based on probabilities have
been developed. Holtzman (1989) used probability theory and other formal
ideas to develop an intelligent decision system for helping infertile couples
decide what kind of treatment to use. Developing probabilistic computer
systems is tricky, because using probability can be computationally explo-
sive: the number of probabilities needed can increase exponentially as the
number of propositions or variables in the model increase. Clever tech-
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niques have been developed for keeping probabilistic reasoning computa-
tionally tractable (Neapolitan 1990; Pearl 1988, 2000). A different issue
treated below is whether people’s normal decision making uses
probabilities.

Explanation Whereas in a planning problem you are trying to figure out
_Mm_nglhi_sy_argoal,‘ in an explanation you are trying to um
why something hai)pened. Suppose that Sarah was expecting to meet Frank
at the student bar, but he did not show up. She would naturally try to gen-
erate an explanation for his absence. Like plans, explanations can some-
times be viewed as logical deductions: you can try to deduce what you
want to explain for what you know. Someone might tell Sarah that Frank
is studying for an exam, and that whenever he studies he forgets about
social engagements. From this information Sarah can deductively explain

why Frank did not show up.

The view that explanations are logical deductions was developed and
defended by the philosopher of science Carl Hempel (1965). Especially
in mathematical areas of science such as physics, explanations can be
described as logical deductions. We shall see in later chapters, however,
that not all explanations are deductive. Moreover, not all deductions are
explanations. For example, we can deduce the height of a flagpole from
information about its shadow along with trigonometry and laws of optics,
but it seems odd to say that the length of a flagpole’s shadow explains the
flagpole’s height.

In rare cases, the reason Frank did not show up could be deduced—for
example if he is a rigid person who misses appointments if and only if he
is sick. Sarah could then apply modus ponens: if Frank misses an appoint-
ment, he is sick; Frank missed an appointment; therefore Frank is sick.
But normally there will more than one explanation available. Just like a
planner constructing multiple paths to a goal, Sarah might be able to con-
struct several deductive explanations based on conditionals such as

If Frank is sick, then he will not arrive.
If Frank has had a car accident, then he will not arrive.
If Frank has fallen in love with someone else, then he will not arrive.

If Sarah did not actually know that Frank is sick, or that he has had a car
accident, or that he has fallen in love, then she would not immediately be
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able to deduce that he will not arrive. But the three conditionals just given
can be used to form hypotheses about what happened: maybe he’s sick, or
maybe he had a car accident, or maybe he has fallen in love. This kind of
inference, where you form a hypothesis in order to generate an explana-
+ion, was called abduction by the nineteenth-century American philosopher
Charles Peirce (1992). Sarah may abduce that Frank is sick because this
hypothesis, in conjunction with the rule that if Frank is sick he will not
arrive, allows her to deductively explain why Frank did not arrive. Abduc-
tive inference is a risky but powerful kind of learning.

Learning
[ntelligent systems should be able not only to solve various kinds of prob-

lems but also to use experience to improve their performance. How can
we improve planning, decision making, and explanation? Little work has
peen done within the logical approach on direct improvements to problem
solving, but logical representations are useful for describing some kinds of
Jearning programs.

Consider the learning problem faced by students first arriving on
campus. They usually start with little knowledge about the kinds of course
offerings available or the kinds of people they will meet. But they quickly
accarnulate information about particular examples of courses or types of
people and naturally proceed to make inductive generalizations about them.
crude generalizations might include such statements as that philosophy
dasses are fun (or boring, as the case may be) and that statistics classes are
demanding. These generalizations are inductive in that they involve uncer-
tainty, a leap from what is definitely known to what is at best probable.
students who have taken two philosophy classes might be prepared to gen-
eralize from information that could be expressed in logical form as follows:

fun (Phil100)
fun (Phil200)
Therefore, (for-all x) (philosophy-course (x) — fun (x)).
The conclusion is that all philosophy courses are fun. But it is obviously
possible that these two courses might be fun whereas other philosophy
courses (e.g., Philosophy of Basket Weaving) are boring.

Computer programs for inductive generalization do not always use
Jogical representations for input. One of the most widely used learning
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programs is Quinlan’s (1983) ID3 program. It can be classified as within
the logical approach because it uses probabilities to form generalizations
from sets of instances. For example, it could be given a sample of students
from different sections of a university along with a description of their
traits. It could then start to form generalizations concerning how students
from such areas as arts, sciences, and engineering differ with respect to per-
sonal, social, and intellectual characteristics.

Like inductive generalization, but unlike deduction, abduction is obvi-
ously a very risky sort of inference. There may be all sorts of reasons
unknown to Sarah that explain why Frank did not show up for an appoint-
ment with her. But abduction is indispensable in science and everyday life,
whether paleontologists are trying to generate explanations of why the
dinosaurs became extinct or students are trying to understand their friends’
behavior. Since abduction’s purpose is to generate explanations, and expla-
nations can sometimes be understood in terms of logical deduction, it is
natural to treat abduction within a logical framework (e.g., Konolige 1992).
Later chapters describe alternative ways of thinking about abduction.

Sarah does not want to find just some explanation of why Frank did not
arrive, she wants to find the best explanation. From a logical perspective,
assessing the best explanation involves probabilities. Sarah will want to be
able to assess the conditional probability of Frank being sick, given that
he did not arrive, as well as the conditional probabilities of all the other
hypotheses. A theorem of the probability calculus, Bayes’s theorem, is
potentially very useful. In words, it says that the probability of a hypoth-
esis given the evidence is equal to the result of multiplying the prior prob-
ability of the hypothesis, P(h), by the probability of the evidence given the
hypothesis, all divided by the probability of the evidence. For Sarah, the
prior probability that Frank is sick is her estimate of how likely he is to be
sick in general, without considering his failure to arrive. To apply Bayes’s
theorem, she also needs to consider the probability of his failure to arrive,
assuming he is sick. Probabilistic approaches to the problem of how to
choose explanatory hypotheses have been popular in both artificial intel-
ligence (Pearl 1988, 2000) and philosophy (Howson and Urbach 1989;
Glymour 2001). But alternative approaches are available, as we will see in
chapter 7.

The term “induction” can be very confusing, since it has both a broad
and a narrow sense. The broad sense covers any inference that, unlike
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deduction, introduces uncertainty. The narrow sense covers only inductive
generalization, in which general conclusions are reached from particular
examples. Abduction (forming explanatory hypotheses) is induction in the
broad sense but not in the narrow one. My practice in this book is to use
ujearning” for the broad sense of induction and “inductive generalization”
for the narrow sense. Additional computational accounts of learning will
be encountered in later chapters.

Language

Linguists have sometimes taken formal logic to be a natural tool for under-
standing the structure of language. There are even two editions of a book
called Everything That Linguists Have Always Wanted to Know about Logic—
But Were Ashamed to Ask (McCawley 1993). The philosopher Richard Mon-
tague (1974) contended that there are no important theoretical differences
petween natural languages and the artificial languages of logicians. Most
Jinguists and psychologists would disagree with this claim, however, and
formal logic has played a minor role in the understanding of human lan-
guage. Stabler (1992) has used logic to formalize some of Chomsky’s recent
ideas about language, which include the postulation of a level of “logical
form” at which meaning is most explicitly represented (Chomsky 1980).
Later chapters discuss how other kinds of representation, particularly
rules and concepts, have been used to describe and explain human use of

language.
psychological Plausibility

Historically, logicians have disagreed about the mutual relevance of logic
and psychology. Some early writers on logic, such as John Stuart Mill, saw
an intimate connection between human psychology and logic, which was
construed as the art and science of reasoning. In cdntrast, the founders of
modern formal logic, Gottlob Frege and Charles Peirce, emphatically dis-
tanced their work from psychology. Today, we can distinguish at least three
positions concerning the relations and relative merits of formal logic and
psychology:

1. Formal logic is an important part of human reasoning.

9. Formal logic is only distantly related to human reasoning, but the dis-
tance does not matter, since the role of logic in philosophy and artificial
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intelligence is to provide a mathematical analysis of what constitutes
optimal reasoning.

3. Formal logic is only distantly related to human reasoning, so cognitive
science should pursue other approaches.

The first position is advocated by a few psychologists who have provided
experimental evidence that people use rules like modus ponens. The
second position is popular among philosophers and artificial intelligence
researchers who prefer formal approaches. The third position is probably
now the dominant view in psychology, but is less popular in philosophy
and artificial intelligence.

The psychologists who have most aggressively defended the first posi-
tion are Martin Braine (1978; Braine and O’Brien 1998) and Lance Rips
(1983, 1986, 1994). Rips (1986, 279) lists several kinds of psychological evi-
dence for mental logic. Theories of mental logic successfully predict the
validity judgments that subjects give for a fairly wide range of proposi-
tional arguments. For example, people recognize as valid arguments that
have the same form as modus ponens, but reject arguments of the form
“If A, then C; C, therefore, A.” Theories of mental logic also account for
reaction times and help make sense of what subjects say when they think
aloud about validity decisions.

Nevertheless, other kinds of experiments have made many psychologists
skeptical about mental logic. The best-known experimental technique uses
Wason's (1966) selection task, in which subjects are informed that they
will be shown cards that have numbers on one side and letters on the other.
They are then given a rule such as If a card has an A on one side, then it has
a 4 on the other. The subjects are then shown four cards and asked to indi-
cate exactly which cards must be turned over to determine whether the
rule holds. They can be given, for example, the four cards shown in figure
2.1. Then they must decide which of these cards should be turned over.
Most people realize that it is necessary to turn the A over to check whether
it has a 4 on the other side. This can be interpreted as an application of
modus ponens, since the rule If A then 4 combined with the premise A sug-
gests checking to see if there is a 4. On the other hand, a great many people
neglect to check the 7, failing to realize that if this card has an A on the
other side, it refutes the rule in question. Recognition that the card with
a 7 needs to be turned over requires an appreciation of modus tollens:” If
A then 4; 7 means not-4; so not-A is required for the rule to hold.” Some
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.

Figure 2.1
Cards in Wason’s selection task.

people are confused enough about the task to turn over the cards with B
and 4 on them, even though these are irrelevant to determining the truth
of the rule.

The point of this kind of experiment is not to show that people are stupid
in violating the rules of formal logic. Rather, the experiment becomes inter-
esting if it suggests that people approach this kind of reasoning task with
representations and computations quite different from those used in
formal logic. Subsequent experiments have shown that people have little
difficulty with tasks like Wason’s card problem if they are given familiar
concrete examples. Suppose that people are told that the cards have on
one side information about whether individuals are in a bar and on the
other side numbers representing their ages. They can then be given a rule
such as If a person is in the bar, then he or she is over 21. They can then be
asked what cards need to be turned over to determine whether this rule
holds, choosing, for example, from IN-BAR, NOT-IN-BAR, 23, 18. In con-
trast to the way they perform on abstract problems with letters and
numbers, most people can recognize that it is necessary not only to turn
over the IN-BAR card to check the age of the person, but also to turn over
the 18 card to make sure that the person is not in the bar.

Cheng and Holyoak (1985) have argued that people approach these
tasks, not with mental logic, but with pragmatic reasoning schemas. For
example, a permission schema has the form If one is to do X, then one must
satisfy precondition Y. Then the reason that people do so much better with
the concrete bar-and-age example than with the abstract letter-and-
number example is that the permission schema is naturally applied to the
former. The psychological application of rules and schemas is discussed
further in chapters 3 and 4.

The most persistent critic of the mental logic view has been the psy-
chologist Philip Johnson-Laird (1983). Johnson-Laird and Byrne (1991)
argue that deductive reasoning is carried out neither by formal logical rules
nor by content-specific rules or schemas, but by mental models, which are
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mental representations that correspond in structure to the situations that
‘ they represent. Johnson-Laird and Byrne claim that when people interpret

a conditional such as “If a card has an A on one side, then it has a 4 on

the other,” they construct a mental representation something like this:

[A] 4

Here “[A]” indicates a model in which a card has an A on it, and “4” adds
that in this model it also has a 4 on the other side. Johnson-Laird and
Byme explain many people’s performance in the selection task by sup-
posing that they consider only those cards that are explicitly represented
in their models of the rule. Hence, people turn over the A card because it
is represented in the model they have constructed, but fail to turn over
the 7 card because it is not represented.

The theory of mental models has also been applied to many kinds of
reasoning with the quantifiers “all” and “some.” From a formal logic per-
spective, reasoning with quantifiers proceeds by first using inference rules
such as universal instantiation (presented above) to remove quantifiers,
then using propositional rules of inference such as modus ponens to make
inferences, and finally reapplying quantifiers using additional rules of
inference. Consider the simple reasoning:

All football players are strong.
Anyone strong can lift heavy objects.
Therefore, all football players can lift heavy objects.

In Jogic, it can be confirmed that this is a valid form of inference by instan-
tiating it into nonquantified statements such as “If x is a football player,
then x is strong” and “If x is strong then x can lift heavy objects.” Propo-
sitional logic then yields “If x is a football player, then x can lift heavy
objects,” which can be generalized by a deductive inference rule to hold
for any x. In contrast, Johnson-Laird maintains that people work with
models rather than abstract forms, constructing the following sort of
model:

football-player strong lifts-heavy-objects

In the model constructed, there are no football players who cannot lift
heavy objects, so the conclusion that all football players can lift heavy
objects goes through. More complicated kinds of inference with mixtures
of “all” and “some” and “not” require more complex kinds of models.
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Johnson-Laird argues that the comparative difficulties that people have
with different kinds of inferences of this sort correspond exactly to the
complexity of different kinds of models that have to be constructed. Rips
(1994) and O'Brien, Braine, and Yang (1994) have responded with argu-
ments that mental logic accounts for the psychological evidence about
deductive inference better than mental models do. But mental model
theory has been applied to many kinds of human thinking, including
causal reasoning (Goldvarg and Johnson-Laird 2001).

Just as Johnson-Laird has challenged the relevance of formal logic to
human deductive reasoning, psychologists have done experiments that
suggest that human inductive reasoning may not have much to do with
probability theory. Tversky and Kahneman (1983), for example, have
shown that people sometimes violate the rule that the probability of a con-
junction will also be less than or equal to the probability of one its con-
juncts, P(p & q) < P(p). Suppose you are told that Frank likes to read a lot
of serious literature, attend foreign movies, and discuss world politics. You
are then asked to estimate the probability that Frank is college educated,
that Frank is a carpenter, and that Frank is a college-educated carpenter.
Not surprisingly, people in experiments like this one tend to judge it to be
more probable that Frank is college educated than that he is a carpenter,
but they often violate probability theory by judging it to be more likely
that Frank is a college-educated carpenter than that he is a carpenter. When
people approach such examples, they seem to employ a kind of matching
process that judges the degree of fit between the description of the indi-
vidual and their stereotypes such as college-educated and carpenter (see
chapter 4). Numerous other instances have been found where people’s
inductive reasoning appears to be based on something other than formal
rules of probability theory (Kahneman, Slovic, and Tversky 1982; Gilovich,
Griffin, and Kahneman 2002). However, just as Rips and others have
defended mental deductive logic, some psychologists have offered differ-
ent interpretations of Tversky and Kahneman's results that are consistent
with the view that people employ probabilistic reasoning (Gigerenzer, Hof-
frage, and Kleinbolting 1991; Gigerenzer 2000).

One open possibility is that mental logic may give an appropriate
account of some narrow kinds of human reasoning such as applying
modus ponens, whereas more vivid representations such as mental models
are needed to account for more complex kinds of human reasoning such
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as that involving “all” and “some.” It is at least obvious that the logical
approach is not the only possible way of understanding human thinking,
and various alternatives are discussed in the chapters to come. Of course,
philosophers and artificial intelligence researchers not interested in psy-
chology can maintain that whether or not people use logic in their think-
ing is less important than developing formal logical models of how people
and other intelligent systems should think. What they risk missing is the
appreciation that human intelligence and the kind of machine intelligence
we want to build may rest on representational structures and computa-
tional processes that differ markedly from those that logic affords.

Neurological Plausibility

Until recently, little was known about the neurological plausibility of
formal logic. Metaphorically, every synaptic connection between neurons
looks like a miniature inference using modus ponens: if neuron 1 fires,
then neuron 2 fires. Neuron 1 fires, so neuron 2 fires. However, it is obvious
that single neurons do not represent whole propositions, and how groups
of neurons perform inferences is unknown. However, it is now possible to
investigate at a larger scale how the brain performs deductive reasoning.
Brain scanning experiments are being used to determine whether people
perform deductions using just the left half of the their brains, as suggested
by the mental logic view that deduction is formal and independent of
content. The alternative hypothesis is that people perform deductions
using the right half of their brains, as suggested by the mental models view
that deduction requires regions in the right hemisphere of the brain that
involve spatial reasoning (Wharton and Grafman 1998). (See chapter 8 for
an introduction to how brain scanning is used to identify neural correlates
of different kinds of thinking.)

Goel et al. (1998) used brain scans to identify regions involved in rea-
soning tasks such as syllogisms. They found no significant right-
hemisphere activation, suggesting that deductive reasoning is purely
linguistic as implied by the mental logic theory. However, Kroger, Cohen,
and Johnson-Laird (forthcoming) compared brain regions involved in
logical reasoning and mathematical calculation and found that parts of the
right half of the brain were more active in reasoning than in calculation.
They judged that their results are incompatible with a purely linguistic
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theory of logical reasoning based on formal rules of inference. Goel (2003)
reviewed several neuroimaging studies of syllogistic reasoning and argued
that it involves two neural pathways, including both linguistic and visual-
spatial systems. The debate between mental logic and mental model
accounts of deductive reasoning now involves three of the methodologies
of cognitive science: psychological experiments, computational models,
and neurological experiments.

Practical Applicability

The logical approach to cognitive science has not been of great educational
use from the perspective of providing deeper understanding of human
learning. Piaget and Inhelder (1969) tried to base some of the principles of
human cognitive development on logical categories, but claims about the
role of propositional logic in developmental stages are not part of modern
educational theory. Logic is, however, useful from another educational per-
spective, in that it can suggest ways that people should reason better.
Courses on informal logic and critical thinking have proliferated because
of the perceived need to improve people’s reasoning. Formal deductive
logic and probability theory certainly do provide useful tools for prescrib-
ing how some kinds of thinking should be done.

According to Dym and Levitt (1991), engineering design often involves
satisfying requirements that may be expressed as logical statements. For
example, a structural code may state “If a beam is simply supported, its
depth shall be greater than one-thirtieth of its clear span.” PROLOG, a
programming language that uses logic representations and deductive
techniques, has been applied to problems such as designing buildings that
satisfy physical and legal constraints. Levesque et al. (1997) have devel-
oped a logic-based programming language intended for applications in
high-level control of robots and industrial processes. Although logic has
been a favored tool of artificial intelligence theorists, practical intelligent
systems have tended to use techniques such as rules, cases, and neural net-
works discussed in later chapters. However, there is a growing use of
probabilistic reasoning in intelligent systems, for example, in a tutoring
computer program that deals with uncertainty about the knowledge and
goals of the students it teaches (Conati, Gertner, and Vanlehn 2002).

3
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Summary

Formal logic provides some powerful tools for looking at the nature of Tep-
resentation and computation. Propositional and predicate calculus serve
to express many complex kinds of knowledge, and many inferences can
be understood in terms of logical deduction with inference rules such as
modus ponens. The explanation schema for the logical approach is as
follows:

Explanation target

Why do people make the inferences they do?

Explanatory pattern
People have mental representations similar to sentences in predicate logic.

People have deductive and inductive procedures that operate on those
sentences.

The deductive and inductive procedures, applied to the sentences, produce
the inferences.

It is not certain, however, that logic provides the core ideas about repre-
sentation and computation needed for cognitive science, since more effi-
cient and psychologically natural methods of computation may be needed
to explain human thinking.

Discussion Questions

1. What do you know that is hard to express in formal logic?
2. Are people logical? Should they be?

3. Is deduction a central kind of human thinking? How do people make
deductions?

4. Is nondeductive reasoning done in accord with the laws of probability?

S. Is natural language based on logic?
Further Reading

On the history of logic, see Prior 1967. There are many good introductory
logic textbooks; for example, Bergmann, Moor, and Nelson 2003. Pollock
1995  approaches philosophical problems from a computational
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perspective based on formal logic. The logical approach to artificial intel-
ligence is expounded in Genesereth and Nilsson 1987 and Russell and
Norvig 2003. Rips 1994 develops and defends a logical approach to human
deductive reasoning.

Web Sites

Introduction to logic: http://people.hofstra.edu/faculty/Stefan_Waner/
RealWorld/logic/logicintro.html

Logic programming: http://www.afm.sbu.ac.uk/logic-prog/
Mental models: http://www.tcd.ie/Psychology/Ruth_Byrne/mental_models/
index.html

Notes

Formal logic is concerned not only with syntax, the structure of sentences that I
have described in this chapter, but also with semantics, the truth conditions of sen-
tences. For example, the conjunction p & q is true just in case p is true and g is true,
and false otherwise.

Most logic-based planners in artificial intelligence do not use a full set of logical
inference rules, but instead use an inference procedure based on a simple rule of
inference known as the resolution principle (Genesereth and Nilsson 1987). Resolu-
tion is too complicated to explain in detail here, but what it does is take expres-
sions that have been translated into a simplified version of predicate calculus and
apply a powerful kind of operator to them to see what can be deduced. Fikes and
Nilsson (1971) used logical deduction in a planning system called STRIPS that has
been applied to robotics and other applications.

In symbols, Bayes’s theorem can be written

P(h/e) = {P(h) * Ple/h) )/ P(e).

In artificial intelligence research, logic and probability are often considered to be
alternative approaches to knowledge representation, but I have combined them
because they both base inference on highly general and abstract principles.

This chapter has focused on one approach to mental models, but other kinds of
model-based reasoning are also important (Magnani, Nexsessian, and Thagard 1999).

3 Rules

Rules are if-then structures such as: IF you pass forty Arts courses, THEN you
graduate with a B.A. These structures are very similar to the conditionals
discussed in chapter 2, but they have different representational and com-
putational properties. Whereas most logic-based computational models
have not been intended as models of human cognition, rule-based models
have had psychological aims from the start. The first artificial intelligence
program was the Logic Theorist of Allen Newell, Cliff Shaw, and Herbert
Simon (1958). Written in 1956 on a primitive computer, this program did
proofs in formal logic. Its proving behavior was intended not just as a
mathematically sophisticated intelligent system,.but also as a model of
how humans do proofs in logic. In addition to logical rules of inference,
the Logic Theorist included strategic rules for finding proofs efficiently. The
Logic Theorist was soon generalized into the first broad framework for
understanding human thinking, GPS (the General Problem Solver; Newell
and Simon 1972). GPS used rules to simulate human solutions to various
kinds of problems, such as cryptarithmetic problems described later in this
chapter. In artificial intelligence, rules are often called productions.

Since GPS, two different rule-based cognitive systems have had a sub-
stantial impact on cognitive science because of their broad applicability to
human cognition. The ACT system of John Anderson (1983, 1993) has had
a wealth of psychological applications. More recently, Allan Newell, in
collaboration with John Laird and Paul Rosenbloom, developed SOAR, a
powerful rule-based program that has had many technological and
psychological applications (Newell 1990; Rosenbloom, Laird, and Newell
1993).

The thrust of this chapter is not to describe any of these systems in
detail, but rather to convey what makes rules so computationally and
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psychologically powerful. Later chapters, however, will provide alternative
views of cognition that suggest that rules do not tell the whole story about
human thinking.

Representational Power

Although rules have a very simple structure, with just an IF part (some-
times called the condition) and a THEN part (called the action), they can be
used to represent many different kinds of knowledge. First, they can rep-
resent general information about the world, such as that students are over-
worked: IF x is a student, THEN x is overworked. Second, they can represent
information about how to do things in the world: IF you register early, THEN
you will get the courses you want. Third, rules can represent linguistic regu-
larities such as IF an English sentence has a plural subject, THEN it has a plural
verb. Fourth, rules of inference such as modus ponens can be recast in rule
form: IF you have an if-then rule and the if part is true, THEN the then part
will be true too. As this example shows, rules can have multiple conditions
(multiple clauses in the IF part). They can also have multiple actions: IF
you register early, THEN you get the classes you want, and you have a short line
to stand in.

It may seem surprising at first that rule-based systems have been so
important in cognitive science, since rules are not as representationally
elegant as formal logic. Logic provides a standardized way of representing
relations and basic operations such as “and,” “or,” and “not,” whereas
these can be implemented in various nonstandard ways in rule-based
systems. But the developers of rule-based systems have been happy to lose
some of the representational rigor of logic-based systems for the sake of
increased computational power. One advantage comes from the fact that
rules do not have to be interpreted as universally true. The logical gener-
alization (for all x) (student (x) — overworked (x)) must be interpreted as
saying that every student is overworked. But the rule that IF x is a student
THEN x is overworked can be interpreted as a default, that is, as a rough gen-
eralization that can admit exceptions. We might have another rule that
says that IF x is a student and x is taking only easy courses, THEN x is not over-
worked. These two rules might coexist in the same system, but the result
need not be the contradictory conclusion that a particular student is both
overworked and not overworked, since the computational operations of
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the rule-based system can ensure that only the more appropriate rule is
applied.

Unlike logic, rule-based systems can also easily represent strategic infor-
mation about what to do. Rules often contain actions that represent goals,
such as IF you want to go home for the weekend, and you have bus fare, THEN
you can catch a bus. Such information about goals serves to focus the rule-
based problem solver on the task at hand. Hence, although the rules in a
rule-based system may not have the full representational power of formal
logic, they can be expressed in ways that enhance computational power
and psychological plausibility.

Computational Power

Problem Solving

In logic-based systems the fundamental operation of thinking is logical
deduction, but from the perspective of rule-based systems the fundamen-
tal operation of thinking is search. When you have a problem to solve—for
example, how to write an essay for a course—you have a space of possibil-
ities that you must navigate. This space includes the possible topics you
might write on, the range of available library resources you might consult,
and the means you might employ to actually write the essay. Accomplish-
ing your assigned task requires you to search through the space of possible
actions to find a path that will get you from your current state (essay to be
done) to the desired state (finished essay that will earn a good grade). Rule-
based systems can efficiently perform this kind of search for a solution.

In complex problems, it is impossible to search the space exhaustively
for the very best solution. Suppose, for example, you wear four different
articles of clothing (shirts, socks, etc.) and you have ten pieces of each
article (ten shirts, etc.). Then there are ten thousand (10%) different com-
binations of clothes that you might wear each day, but no one has the
time or interest to consider all these possibilities. Instead, people rely on
heuristics, which are rules of thumb that contribute to satisfactory solutions
without considering all possibilities. A heuristic such as “Wear brown shoes
with brown pants but not with black pants” helps to provide an efficient
solution to the problem of planning what to wear. Problem solving, learn-
ing, and language use can all be described in terms of rule-based heuristic
search through a complex space of possibilities.
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Psychologists make an important distinction between long-term
memory, the mind’s permanent store of information, and short-termn
memory, a much smaller selection of information immediately available
for processing. From the rule-based perspective, you have many rules
in long-term memory, but only a small selection of rules and facts are
active in your short-term memory and ready for current use. You probably
have your mother’s birthday in long-term memory, but reading this sen-
tence may make you conscious of it as it becomes active in short-term
memory.

Computer scientists and psychologists make an important distinction
between serial processing, in which thinking proceeds one step at a time,
and parallel processing, in which many steps occur at once. Rule-based pro-
cessing can be either serial, with one rule being applied at a time, or par-
allel, with many rules being applied simultaneously. Conscious thought
tends to be serial, as we notice ourselves making one inference at a time,
but these inferences may depend on numerous rules of which we are not
conscious being applied simultaneously. Chapter 11 discusses the role of
consciousness in thinking.

Planning Many students go to college or university in a town or city away
from their home town or city, so they frequently face the problem of how
to get home for the weekend or at the end of term. The available means
for getting from university to home can be expressed in collections of rules,
such as

IF you drive on highway 1, THEN you can get from university city to home
city.

IF you take the parkway, THEN you can get from university city to the
highway.

IF you take Main Street from the university, THEN you can get from the
university to the parkway.

IF you take a bus from the bus depot, THEN you can get from university
city to home city.

IF you take a bus from the university to the bus depot, THEN you can get
to the bus depot.

Other possibilities may also exist, such as taking the train or hitchhiking.
Students who must solve the problem of how to get home for the weekend
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can search the space of possible actions (go to the bus depot, head for the
highway) and put together a plan that gets them where they want to be.

Rules can be used to reason either forward or backward. Reasoning back-
ward, a student might think that “To get home, I can take the highway,
which requires taking the parkway, which requires taking Main Street,
which requires getting a car.” The goal is to get home, but the plan is con-
structed by considering a series of subgoals such as getting to the highway.
Reasoning forward, the student might use inference akin to modus ponens
to see that “Main Street gets me to the parkway, which gets me to the
highway.” Forward and backward reasoning both try to find a series of rules
that can be used to get from the starting point to the goal, but they differ
in the search strategy employed.

Another possible reasoning strategy is bidirectional search, which com-
bines working forward from the starting place with working backward from
the goal. Although many planning problems can be understood in terms
of rule-based reasoning, planning in this way is difficult when there are
many potentially relevant rules and the reasoner has to select which ones
to use at the key points in problem solving. Rule-based problem solving
sounds a lot like logical deduction, but it differs in that much more atten-
tion is paid to strategies for applying the right rules at the right time.

The same is true for the sort of planning problems that students
encounter in courses. A mathematical word problem gives you some infor-
mation and requires you to calculate an answer. For example, you may be
told that it takes 75 minutes to get from the university city to the home
city, a distance of 65 miles (100 kilometers), and be asked to calculate the
average speed of the trip. Rules, embodied in mathematical operations,
show you how to move forward from the information given to an answer
that can be derived from it. Often, however, it will be more effective instead
or in addition to work backward from the goal—the desired answer—
toward the initial information given. In either case, you are trying to find
a sequence of rules that provides a path between the start and the goal.
Not all planning, however, is rule based. We will see in later chapters how
schemas and analogies can help to solve planning problems.

Decision Although rules are very useful for finding plans, they are not
always very helpful for deciding between competing plans. A student may
be able to use rules to construct two different ways of getting home for the
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weekend, but the result does not provide guidance about which plan to
adopt. Driving, taking the bus, and taking the train will all get you home,
but which way you go will require a more complex balancing of goals such
as wanting to minimize cost, time, and hassle. For decision making, there-
fore, rule-based reasoning needs to be supplemented by other processes,
such as the expected-value calculation mentioned in chapter 2, or the
deljberative coherence determination described in chapter 7.

Explanation As we saw in chapter 2, explanation can often be viewed as
a kind of deductive process, which rules can perform as well as logical
deduction. Some kinds of hypothesis formation can be described as a
search for explanations performed by rules. Suppose you try to register for
a course and it turns out to be full. Various rules might apply:

1F a course is required for many programs, THEN it fills up quickly.
IF a course has a popular instructor, THEN it fills up quickly.

Knowing that the course’s instructor is popular, in conjunction with the
second rule just stated, allows you to explain why it was full when you
tried to sign up for it. Even if you do not know for sure that the course
has a popular instructor or is required for many programs, you can con-
jecture that these might be true (see the discussion of abductive learning
below). Thus, solving explanation problems can be understood in terms
of rule-based teasoning, if there is a sequence of rules that allows you to
generate what needs to be explained from what you already know.

Learning
Numerous important kinds of learning are naturally understood in terms
of the acquisition, modification, and application of rules. Some rules may
be innate, comprising part of the biological equipment with which we are
born. A physical rule such as IF something is coming toward your eyes, THEN
blink is not one that people or other organisms have to learn. More con-
troversially, some cognitive scientists discussed in the next section believe
that many rules of language are innate. But no one would claim that rules
for how to register for university courses are innate, so how are they
acquired?

Like the logical statements described in chapter 2, rules can be learned
by inductive generalization, in which examples are summarized by means of
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a rule. Sometimes rules require many examples to support them: you
should not conclude from just one engineering class that all engineering
classes are hard or from just one philosophy course that all philosophy
courses are interesting. But students do gradually acquire from experience
such rules as IF x is a programming class, THEN x will be time consuming and
IF you want to get into popular courses, THEN you should register early.

In inductive generalization, rules are formed from examples; but rules
can also be formed from other rules by a process that in the SOAR model
of cognition is called chunking and in the ACT model is called composition.
Suppose that you have used lots of rules to plan how to get from univer-
sity to home and found a good series of rules about how to get from uni-
versity to the parkway to the highway home. The next time you want to
go home, you need not go through the whole search. Instead, you can
chunk the rules into a general rule like IF you want to get from university
to home, THEN drive. Similarly, the first time you put together a class
schedule, you may have to do lots of complex searching for a plan, but
with experience you can use a higher-level rule such as IF you want a good
schedule, THEN arrange your classes at close times rather than spread over five
days. We will see in the section on psychological plausibility that the com-
putational process of chunking rules has been used to model many kinds
of human learning.

Another way that rules can be formed from rules is by specialization, in
which an existing rule is modified to deal with a specific situation. If
driving home on Friday afternoon may be slow because of heavy traffic,
experience might lead you to produce the specialized rule IF you want to
get from university to home and it is Friday afternoon and you are in a hurry,
THEN don’t drive.

As we saw in chapter 2, rules can also be used in abductive learning.
Suppose a friend of yours is angry and depressed. Naturally, you try to con-
struct explanations of what is bothering him or her. Suppose you have
acquired by inductive generalization the rule IF a student gets a bad grade,
THEN the student is angry and depressed. You could then generate a possible
explanation of why your friend is angry and depressed by conjecturing
that he or she might have received a bad grade. This is abductive reason-
ing, in which a rule is run backward to provide a possible explanation of
what happened. Obviously, this kind of inference is highly risky, since
there might be a much better explanation of your friend’s state of mind—
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for example, one based on the rule IF someone is rejected by a partner THEN
he or she becomes angry and depressed. Picking the best explanation requires

a more complex kind of inference discussed in chapter 7. But rules can be "

very useful for generating hypotheses such as that your friend got a bad
grade. Hence abductive inference fits naturally with rule-based reasoning
(Thagard 1988), although we will see other kinds of representation that
also support it.

Rules can also be used to describe slow incremental learning, if each rule
has a numerical value representing the usefulness or plausibility associated
with it. The more a rule gets used successfully, the more it is judged to be
plausible and useful. For example, each time a student successfully applies
the rule, IF you want to get from university to home, THEN drive, the stronger
the rule gets and the more likely it is to be used in the future. In sum, rules
can be created from examples, created from other rules, applied abduc-
tively, and quantitatively evaluated based on their performance.

Language

Before the cognitive revolution of the 1950s, language was widely thought
to consist of behavior learned by association. Through repeated experience
with pairs of words, people come to expect to hear them used together.
The linguist Noam Chomsky developed a very different view of language
beginning with his 1957 book Syntactic Structures. Chomsky argued that
the behaviorist learning models could not account for the generativity of
language, the fact that there are an indefinite number of sentences that
people can produce and understand. You have probably never encountered
the sentence “She rode to the university on a purple camel,” but you have
no trouble understanding it.

According to Chomsky, our ability to speak and understand language
depends on our possessing a complex grammar that consists of rules that
we do not consciously know we have. Children who learn English, for
example, start forming the past tenses of verbs by adding “ed,” without
being aware that they are applying a rule like IF you want fo use a verb to
describe the past, THEN add “ed” to the verb. Notoriously, children under five
overgeneralize the rule, saying “goed” and “bringed” rather than using the
irregular forms that are exceptions to the rule. Pinker (1999) argues at
length that rules such as adding “ed” to make past tenses are an essential
ingredient of our ability to produce and comprehend language. Taatgen

Rules ' 51

and Anderson (2002) use the ACT system to model how children acquire
past tenses in English. Akmajian et al. (2001) describe rules that apply to
several different aspects of language. For example, as English speakers we
know how to form nouns from verbs by adding “er,” as in turning “write”
into “writer.” We also know phonetic rules such as how to pronounce
plurals: compare the predictably different pronunciations of the “s” in
“cats”/"huts” and “dogs”/“hugs.” Syntactic rules enable us systematically
to turn statements into questions, as when we turn “I am happy” into
“Am I happy?” by moving the auxiliary verb “am” to the beginning of the
sentence.

ChomsKky’s influential views have been controversial on a number of
issues. In chapter 7, we will consider connectionist views that language
consists not of rules but of looser associations represented by weights
between simple units. Independent of the issue of whether our knowledge
of language is best represented by rules, there is the issue of whether it is
learned or innate. Chomsky continues to maintain that every human is
born with an innate universal grammar. In a departure from his early
views, in which children acquire the ability to use language abductively
by forming hypotheses about what rules apply to their own individual lan-
guages (Chomsky 1972), he currently holds that children learn a language
automatically by merely recognizing which of a finite set of possibilities
that language employs (Chomsky 1988). All human languages have nouns,
verbs, adjectives, and prepositions or postpositions. But languages such as
Japanese do not have articles like “the” and “a” in English, so a child leam-
ing Japanese has to instantiate universal grammar in a different way than
child learning English. Most recently, Chomsky (2002) has raised doubts

_about whether grammar is a system of rules.

Psychological Plausibility

Of all the computational-representational approaches described in this
book, which has had the most psychological applications? The answer is
clear: rule-based systems. I cannot attempt to give a comprehensive review
of all of these applications, but I will provide a sample of some typical ways
in which rule-based systems have been used to account for human thought.

Newell (1990) has shown how SOAR, a sophisticated current rule-based
model, can be applied to a wide range of interesting psychological
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phenomena. For example, he describes how SOAR solves cryptarithmetic
problems, which are puzzles in which letters are substituted for numbers
(see also Newell and Simon 1972). One puzzle is DONALD + GERALD =
ROBERT, where each letter must be replaced by a distinct number between
0 and 9 in a way that makes the equation true. Rules can be very useful
for solving this problem, which for our usual addition algorithm is more
perspicuously represented as

DONALD
GERALD

ROBERT

How does one begin to solve this puzzle? You might notice that in the
second column from the left O added to E produces O. This might bring
to mind the rule: IF O (zero) is added to a number THEN the number is
unchanged. This tule suggests that E is 0. Then, looking at the fourth
column, you could see that since A + A =0, A should be 5. But following
this line of reasoning is likely to get you into trouble, because this assumes
that no carry was involved in adding L and L to get R or in adding N and
R to get B. So somehow R needs to be twice as big as L, yet small enough
that adding N to it in the third column does not produce a carry. Carry-
ing in our familiar addition algorithm involves the rule IF the digits added
exceed 10, THEN write down the second digit of the sum and carry 1 over to the
next column to the left. This rule shows that there is another possible value
for E: if E = 9, then O + E = O, provided that there is a carry from the
column N + R = B. Working out the consequences of this starting point
using rules about addition and carrying, along with additional knowledge
such as that IF a digit is at the beginning of a number, THEN the digit is not
0, allows you {(with considerable effort) to come up with a solution. SOAR
is able to model aspects of this effort by having various operators that
suggest numerical values for the digits and checking to see whether the
results are consistent with each other.

SOAR has also been used to model other kinds of high-level reasoning
tasks such as determining what follows from “Some archers are not
bowlers” and “All canoeists are bowlers.” SOAR uses neither mental logic
nor mental models, the two approaches to deduction described in chapter
2, but instead does a search through a space of possible inferences, even-
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tually forming the conclusion that “Some archers are canoeists.” This is
logically incorrect, but the point of a cognitive account of deduction is to
model how people reason, including how they sometimes make errors.

Newell also uses SOAR to account for many aspects of human learning,
particularly the power law of practice, according to which the rate of learn-
ing slows down as more is learned. This law applies to many tasks such as
typing and learning to write reversed letters the way they appear in a
mirror. Chunking in SOAR provides an explanation of why learning slows
down as peoplé become more experienced with a task. At the beginning
of practice on a task, people can build more chunks rapidly, and as chunks
build up, the speed of performance increases. For example, someone learn-
ing to type may make rapid early progress in speed and accuracy. But as
higher-level chunks build up, they become less and less useful, because the
situations they apply to are rare. So the learning rate of a rule-based system
slows down with practice, just like that of people.

Holland et al. (1986) used rule-based systems to account for many dif-
ferent kinds of learning. Conditioning in rats—for example, when they
learn to avoid shocks—can be explained by supposing that part of learn-
ing with rules is adjusting the strengths of different rules that are used.
Every time a rat presses a lever to get food, the rule IF lever, THEN food gets
strengthened. On the other hand, a shock can produce the conflicting rule
IF lever, THEN shock and lead to the 1at’s ceasing to press the lever. Rules
can also be used to describe the dynamic mental models that people have
of changes in the physical world, such as IF a car hits a pole, THEN the pole
is damaged. People’s abilities and limitations in dealing with the physical
and social worlds can also be understood in terms of rules. For example,
once people leamn a social stereotype, they tend to apply it too generally.

Crowley and Siegler (1993) have shown how variations in children’s
ability to play tic-tac-toe, a simple game in which the goal is to get 3 Xs
or 3 Os in a row, can be understood in terms of their acquisition of rules.
Children need to acquire rules about what moves to make, as well as strate-
gic knowledge about what rules to apply when. Here are some of the rules:

Win IF there is a row, column, or diagonal with two of my pieces and a
blank space, THEN play the blank space to win.

Block IF there is a row, column, or diagonal with two of my opponent’s
pieces and a blank space, THEN play the blank space to block the
opponent.
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X0
O

X
X

Figure 3.1

Rule application in tac-tac-toe. X’s turn matches the IF part of four different rules:
Win (a move to the top left); Block (a move to the bottom right); Play Center (a
move to the middle); and Play empty comer (a move to either empty comner.
Adapted with permission from Crowley and Siegler 1993, p. 537.

Play center IF the center is blank, THEN play the center.
Play empty corner IF there is an empty corner, THEN move to an empty
corner.
Figure 3.1 shows a partially played game in which all four of these rules
are applicable. Children’s ability to play tic-tac-toe improves as they
acquire rules such as these as well as recognition of the priority of rules.
For example, many preschoolers do not have the blocking rule, and many
who do have it will apply it even when they have a chance to win.
Rule-based systems have also been used to account for the acquisition
and use of language. Anderson (1983) describes human knowledge of
English in terms of such rules as this one (in simplified form):

IF the goal is to communicate a meaning structure of the form (relation,
agent, object), THEN set as subgoals

1. to describe agent

2. to describe relation

3. to describe object.

Additional rules show how the mentioned subgoals can be accomplished
so that eventually a full sentence, such as “The girl threw the ball,” is
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produced to describe what the agent did to the object. Anderson (1993)
describes numerous applications of his ACT rule-based system to acquir-
ing skills such as geometry problem solving and computer programming.
There are many examples of a fit between the performance of rule-based
systems and the behavior of human thinkers.

Neurological Plausibility

There is a crude analogy between rules and neurons connected by synapses,
in that IF one neuron fires, it can THEN cause the firing of the neuron con-
nected to it. But this similarity is superficial and in fact little is known
about how rules might be implemented in the brain. Anderson (1993)
sketches a possible neural implementation of ACT, and simple rule-based
systems have been implemented in artificial neural nets (see chapter 7).
More recently, Anderson et al. (forthcoming) have related the newest
version of the ACT system, ACT-R, to specific brain regions. Based on brain
scans of people solving problems, Anderson et al. infer that production
rules are implemented by the brain’s basal ganglia, which are a collection
of nuclei deep in the white matter of the cerebral cortex. They also esti-
mate that the facts that the rules matched are stored in a set of buffers in
the prefrontal cortex. Thus the ACT system, which originated as a purely
cognitive model, is becoming a neurological model as well. For more on
brains, brain scans, and neurological models, see chapter 9.

Practical Applicability

If what we learn consists of rules, then education must be concerned with
helping children and other students better acquire those rules. Anderson
(1993) discusses numerous educational! applications of ACT rule-based
systems, including understanding how people learn computer program-
ming, text editing, aind doing proofs in geometry. Rule-based systems have
been used not only to model learners’ performance, but also to build
computer tutors that can help them learn.

Design in engineering and other fields can also be understood in terms
of rules. Newell (1990) describes a version of SOAR that designs computer
algorithms by using operators that generate and test program specifications
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to search a space of possible algorithms. He and his collaborators have also
discussed the implications of viewing human computer users as rule-based
systems for designing computers that people can easily use (Card, Moran,
and Newell 1983). SOAR is now being incorporated into computer games
such as Quake, in order to produce opponents that behave like humans
(Laird 2001). Characters in computer games usually have very limited
flexibility, but SOAR can give them some of the complex decision making
that make human opponents challenging.

Most expert systems used in industry and government are rule-
based systems, which were the first kind of applied intelligent system to
be developed (Buchanan and Shortliffe 1984; Feigenbaum, McCorduck,
and Nii 1988). Expertise in many domains, from configuring computers to
prospecting for oil, can be captured in terms of rules. Recent examples of
rule-based expert systems (and other kinds as well) can be found in the
Proceedings of the Nineteenth (and previous) Innovative Applications of Artifi-
cial Intelligence Conference, published by AAAI Press. Langley and Simon
(1995) provide numerous examples of industrial application of computer
programs that learn rules from examples, including systems for chemical
process control, making credit decisions, and diagnosis of mechanical

devices.
Summary

Much of human knowledge is naturally described in terms of rules, and
many kinds of thinking such as planning can be modeled by rule-based
systems. The explanation schema used is as follows:

Explanation target

Why do people have a particular kind of intelligent behavior?

Explanatory pattern

People have mental rules.

People have procedures for using these rules to search a space of possible
solutions, and procedures for generating new rules.

Procedures for using and forming rules produce the behavior.
Computational models based on rules have provided detailed simulations

of a wide range of psychological experiments, from cryptarithmetic
problem solving to skill acquisition to language use. Rule-based systems
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have also been of practical importance in suggesting how to i improve 1
e learn-
1ng and how to develop intelligent machine systems. i

Discussion Questions

1. What areas of knowledge do you have that are easily described in terms
of rules?

2. What areas of knowledge do you have that are difficult to describe in
terms of rules?

3. How does the rule-based approach differ from the logic approach
described in chapter 2?
4. How might the brain implement rules?

5. Is knowledge of language innate or learned?

Further Reading

Classic sources on the mind as a rule-based system include Newell and
Simon 1972, Newell 1990, and Anderson 1983, 1993. Holland et al. 1986
discusses many kinds of learning in terms of rule-based systems. Smith,
Langston, and Nisbett 1992 makes the case for rules in reasoning; see also
Nisbett 1993. Pinker 1994 is an entertaining defense of the Chomskyan
approach to language, including the importance of rules to language.
Pinker 2002 emphasizes the role of innateness in human behavior in
general, but see Elman et al. 1996 and Quartz and Sejnowski 2002 for
skeptical discussions of innateness claims.

Web Sites

ACT home page at Carnegie Mellon University: http://act-t.psy.cmu.edu/
John Anderson’s home page: http://act-r.psy.cu.edu/people/ja/
Stephen Pinker’s home page: http://pinker.wjh.harvard.edu/

SOAR home page at the University of Michigan: http://sitemaker.
umich.edu/soar
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Notes

Non-rule-based approaches can also be described in terms of search, but historically
that description has been most closely associated with rule-based systems. The
search metaphor works well with well-defined problems where the states and oper-
ators can be specified, but is much less clear for problems where the task involves
learning new representations and operators.

More technically, the power law of practice can be expressed as “If the logarithm
of the reaction time in a task is plotted against the logarithm of the number of prac-
tice trials, the result is a straight line that slopes downward.”

4 Concepts

When students learn their way around their colleges or universities, they
acquire new rules about them, but they also acquire new concepts. Many
new administrative concepts must be acquired, such as major, register, and
transcript. Students also quickly learn new concepts for describing courses,
such as bird or gut or cake for an unusually easy course. Social knowledge
increases dramatically too, as students learn concepts for describing their
fellow students, such as computer geek, jock, artsie, (Arts student), and keener
(eager student). Students who encounter different kinds of classes like
seminars and huge lectures must modify the concept of class they acquired
in high school.

Concern with the role of concepts in knowledge goes back more than
two thousand years to the Greek philosopher Plato. He asked questions
such as “What is justice?” and “What is knowledge?” and showed that con-
cepts such as justice and knowledge are very hard to define. Plato believed
that knowledge of such concepts is innate and that education can serve to
remind us of the essence of these concepts. Just as Chomsky argues that
linguistic rules are innate, Plato and later philosophers such as Leibniz and
Descartes contended that the most important concepts are purely in the
mind.

Other philosophers such as Locke and Hume contended that concepts
are learned through sensory experience. The way you acquire a concept
such as dog, for instance, is not just by thinking about what dogs are,
but by encountering a variety of examples of dogs. Although Jerry Fodor
(1975), a contemporary philosopher heavily influenced by Chomsky,
maintains that concepts are largely innate, most cognitive scientists today
are interested in processes by which toncepts are learned from experience
and from other concepts.
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Psychological and computational interest in the nature of the concepts
boomed in the mid-1970s when researchers introduced terms such as
“frame,” “schema,” and “script” to describe new views of the nature of
concepts. (Somewhat similar ideas had been advanced by Bartlett (1932)
and Kant (1965).) In the most influential artificial intelligence paper of
the decade, Minsky (1975) argued that thinking should be understood as
frame application rather than logical deduction. In a computational-
psychological collaboration, Schank and Abelson (1977) showed how é
great deal of our social knowledge consists of scripts, which describe typical
sequential occurrences such as going to a restaurant. Around the same
time, psychologists such as David Rumelhart (1980) were describing
knowledge in terms of conceptlike structures called schemas that repre-
sent, not the essence of a concept such as dog, but what is typical of dogs.
Similarly, the philosopher Hilary Putnam (1975) argued that the meaning
of concepts should be thought of in terms of stereotypes, not in terms of
defining conditions. During the 1980s, discussion of concepts from a com-
putational perspective took on a different complexion through the devel-
opment of connectionist models that learn concepts; we will take up this
topic in chapter 7.

Representational Power

How often have you heard someone insist, “Define your terms!”? People
frequently say things like, “We can’t talk about intelligence until we can
define what the word ‘intelligence’ means.” The demand requires a defin-
ition that would provide the exact rules IF x is intelligent, THEN x has the
properties y and IF x has the properties y, THEN x is intelligent. But as Plato
discovered with concepts such as justice, such definitions are very hard to
come by. As an exercise, try coming up with rules that will exactly capture
what is meant by college, university, course, Ot geek. At best, a concept such
as intelligence will be defined at the end of an inquiry, not at the begin-
ning, and outside of mathematics we should not expect definitions to be
available at all.

Construed as frames, schemas, or scripts, concepts are understood as rep-
resentations of typical entities or situations, not as strict definitions. For
example, students acquire a concept of course in which instruction takes
place by a professor and students get a grade at the end. What is expected
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of a course can be summarized as a set of slots, each of which can be filled
in with expected information such as the instructor’s name:

Course

A kind of: process (systematic series of actions)

Kinds of courses: lecture course, seminar, etc.

Instructor:

Room:

Meeting time:

Requirements: exams, essays, etc.

Instances: Philosophy 100, Mathematics 242, etc.

One of the first things a student does in signing up for a course is to find
out who the instructor is, thus filling in an important slot. The course
concept could perhaps be represented differently by a set of rules such as
IF x is a course, THEN x has an instructor, but we will see in the next section
that there are computational reasons why it is useful to think of a concept
in terms of a set of slots. Although typically courses have an instructor,
this should not be taken as part of the definition of a course, since there

are team-taught courses with more than one instructor and correspon-
dence courses that have no instructor.

Some concepts involve a temporal sequence, as in taking an exam:
Exam
A kind of: course requirement
Kinds of exam: written, oral, take-home, short-answer, etc.
Room:
Sequence:
Get the exam questions
Put your name on the exam paper
Answer the questions
Check your answers
Hand in your exam
Again, this concept can be thought of in terms of rules such as IF you take

an exam, THEN first get the exam questions. But it is cognitively useful to
have acquired a package of information that can be applied as a whole.
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Although the slots in concepts can usually be translated into rules, it is
important to realize that slots do not express universal truths, only what
is expected to hold typically. The values of slots are sometimes called
defaults, as when the default value for number of instructors in a class is
one. Rules can also be understood as expressing default expectations rather
than universal truths, as in the statement IF x is a course, THEN x typically
has an instructor. Exams typically take place in a room on campus, but take-
home exams are an exception in that they do not have any special room
in which everyone takes the exam.

Concepts organize knowledge in important ways that are not usually
found in rule-based systems. Notice that the concept course includes slots
that state what kind of thing a course is and what kinds of things are
courses. These kind relations establish a hierarchical network of concepts,
as in figure 4.1. A seminar is a kind of course which is a kind of educa-
tional process, and so On. Conceptual organization of this sort has com-
putational consequences that give concepts properties that unorganized
sets of rules might lack. Another sort of slot that is important for many
physical concepts is part, which establishes another sort of hierarchy. For
example, a toe is a part of a foot, which is part of a leg, which is part of a
body. Slots involving parts can also be translated into rules, such as IF x is
a toe, THEN x is part of a foot. But organizing concepts into slots and hier-
archies has computational advantages discussed in the next section.

Concepts are clearly not intended to be a complete theory of mental rep-
resentation. The information that if a course is full you can still get into
it by getting a signature from the professor is not part of the concept of

process

|

educational process

|

J/’M
laboratory course lecture course seminar correspondence course

Figure 4.1
Hierarchical organization of the concept of a course.
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course; rather, it is a rule you learn about courses. But concepts have com-
putational properties that make them useful additions to rules for model-
ing human thinking.

Computational Power

Packaging information into concepts that are hierarchically organized
makes possible powerful kinds of computations. Large rule-based systems
face the problem of selecting rules to apply. It does a systemn no good to
have a rule that is relevant unless that rule can be retrieved from memory
in order to be applied. One process that can be applied very efficiently in
a concept-based system is inheritance, in which inferences about concepts
can be quickly made using the hierarchy established by the kind slot. Does
a seminar have an instructor? The answer to this question might not be
directly represented as part of the concept of seminar, but it can quickly be
gained by noting that a seminar is a kind of course, and courses typically
have instructors. This is not a logical deduction, since not all courses have
instructors. But it is reasonable to expect that a seminar has an instructor,
where this expectation is inherited by virtue of a seminar’s being a kind of
course.

What do you think of when you hear the word “desk”? Perhaps you
begin to think about chairs, studying, or lamps. Not all thinking is a matter
of making inferences in the way that logic-based and rule-based systems
do. One might associate desks with chairs by means of some rule such as
that every desk has a chair, but this association could also come about more
casually by virtue of the fact that a desk is a kind of furniture, and another
kind of furniture is a chair. This kind of loose association is described com-
putationally as a process of spreading activation. One concept in a system
is active, and activation spreads in a network to other concepts that are
linked to it by kind and other relations. Spreading activation is like a type
of electronic contagion, in which one electrified object electrifies other
objects connected to it. For example, if something activates your concept
of desk, activation may spread to your concepts of furniture (desks are a
kind of furniture) and drawer (a drawer is a part of a desk). Activation of
these concepts may then lead to activation of related concepts such as table
(a table is a kind of furniture) and wood (drawers are typically made
of wood). Some rule-based systems include spreading activation as a
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mechanism along with rule firing for modeling how people retrieve rules
from memory (Anderson 1983; Thagard 1988).

Packaging information in a concept is most useful when it can be used
to deal with new situations. When a course begins, students quickly fit it
into their conceptual system, categorizing it as a lecture course, a bird
(easy) course, or whatever. There are two crucial steps in the process, match-
ing and inference. Finding the most appropriate concepts to apply to a
course requires matching the slots of various relevant courses against the
particular information known about the course. For example, if there are
only ten students enrolled in the course, this information will fit with the
slot in the concept of semingr that suggests that class size is typically small.
If instead there are a hundred students in the class, it will not fit in the
size slot of the seminar concept, but will better match the lecture concept.
Once a concept is matched to a situation, students can make inferences
about the situation by carrying over the full set of expectations produced
by the concept. Once a course is classified as a semninar, the student will
probably expect it to have lots of class discussion. Thus, to understand the
computational role of concepts, we need to think of these steps in a pro-
cessing system:

1. The system has active concepts that represent a situation.

2. These concepts spread activation to other potentially relevant concepts.
3. Some concepts that match the current situation well are selected.

4. The system makes inferences about the situation by inheritance from
the selected concepts.

Problem Solving

Planning The first time you encounter a planning situation such as reg-
istering for courses, you may need to use general rules to search for a solu-
tion. But successful registrations will make it easier for you next time
around, since you can then simply follow the same sequence of operations.
You have acquired a script or concept for registration. Planning then is not
search or logical deduction, but concept application. Given a representa-
tion of your current situation and the goals you want to accomplish such
as getting into the courses you want, you retrieve from memory a concept
of registration that matches the situation and goals. This script can then
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be applied to tell you what to do in the appropriate order: sign up for
courses, pay tuition, and so on.
Concept application, however, works only if you have an organized

@ package of information that closely matches your current situation. After
~a year or more of college or university, students have a set of schemas that

are useful for many educational situations, but first-year students may err
by trying to apply schemas acquired in high school. Students taking the
course Introduction to Cognitive Science are sometimes confused because
they expect its content to be like that of courses they are already familiar
with in philosophy, psychology, or computer science. They have difficulty
fitting an interdisciplinary course into their previous concepts. Scripts can
be very useful when they can be applied to situations that occur frequently,
but they can hinder planning in novel situations where existing situations
do not fit. Recall the saying: To someone whose only tool is a hammer,
everything looks like a nail. The lesson is that you should not try to apply
the concept of hammering to situations in which it is not relevant.

Decision The same lesson applies to decision making using concepts. In
some cases, making decisions based on a familiar script will not cause you
problems, as when you always order the same flavor in an ice cream store.
But people often apply schemas unreflectively. Hiring decisions, for
example, are sometimes made not on the basis of a reasoned judgment of
which candidate will best meet the needs of the organization hiring, but
rather because a particular candidate fits the boss’s concept of the right
kind of employee. That concept might have appropriate slots that describe
the intelligence and industriousness of the ideal candidate, but it also may
include extraneous requirements such as race and gender. Thus, although
some decisions are undoubtedly made by concept application, it is a good
thing that not all are. Concept application is a quick and easy way to make
a decision, but it does not always take into account the complex of con-
cerns about actions and goals that are part of more reflective decision
making.

Explanation Like plans, explanations sometimes come in schematic pack-
ages. Social concepts are often used in explanations, probably more than
they should be. Why did Fred stay up all night programming? Because he’s
a computer geek. Why does Sarah always wear black? Because she’s an
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artsie. Why did Alice get an A in that course even though she did not
study? Because it’s a bird (gut, cake). In all these cases, explanation comes
almost automatically by matching a concept to a situation that it seems
to fit.

But concepts also have more reflective explanatory uses. Scientific expla-

nation sometimes has the deductive flavor that logic-based and rule-based -

systems give to explanation. In physics, for example, there are often
general laws such as force = mass times acceleration that can be applied math-
ematically to produce a deductive explanation of planetary motion. But in
many fields, such as evolutionary biology and the social sciences, laws are
hard to come by. Then explanation is better characterized as application
of a schema that includes a target—what is to be explained—and a kind
of pattern that furnishes the explanation. Here is a simplified explanatory
schema for using Darwin’s theory of evolution by natural selection to
explain why a species has a particular trait (from Thagard 1999; see also
Kitcher 1993 and Schank 1986):

Explanation target

Why does a given species have a particular trait?

Explanatory pattern

The species has a set of variable traits.

The species experiences environmental pressures.

The pressures favor members of the species that have a particular trait.

So members of the species with that trait will survive and reproduce
better than members of the species that lack the trait.

So eventually most members of the species will have the trait.

The terms presented in boldface are variables that can be filled in by many
different examples. If you want to explain, for example, why some bacte-
ria are resistant to antibiotics, this pattern can be applied by noticing that
the trait of resistance to antibiotics is variable in a species of bacteria, that
antibiotics introduce environmental pressures, so that bacteria with resis-
tance to antibiotics will survive and reproduce better until the species is
resistant. =
‘We have already seen various instances of the explanatory schema that
is fundamental to cognitive science. The summary for chapter 1 provided
a general explanatory schema based on representations and computational
procedures, and the summaries for chapters 2-7 include explanatory
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schemas for particular representational approaches. Part II discusses aspects
of mind and intelligence to which such schemas are harder to apply.

Learning

We saw three kinds of answers to the question of where rules come from:
they can be innate, formed from experience, or formed from other rules.
The same three kinds of answer apply to concepts, which can be innate,
formed from examples, or formed from other concepts. Different answers
are appropriate for different concepts. Young children acquire new words
and the corresponding new concepts at the rate of around ten per day.

Consider, for example, the concept of a human face consisting of two
eyes, a nose, and a mouth. Perhaps babies learn this concept from experi-
ence as they repeatedly encounter examples of faces. But there is experi-
mental evidence that babies do not have to learn the typical structure of
faces, but rather are born expecting faces to look a certain way. Similarly,
there is growing evidence that basic physical concepts such as object are
innate, since very young infants show strong expectations about how
objects should behave—for example, when they disappear behind another
object and then reappear. Thus, whereas it is implausible to suppose that
all our concepts right up to DVD player and cell phone are innate, some
basic concepts as well as the mechanisms for forming new ones seem to
be part of our inborn mental equipment.

Some concepts are learned from examples in much the way that some
rules are formed by inductive generalization. Some concepts must be
gained laboriously from many examples, as when a child learns to dis-
criminate dogs from other animals. When you know a lot, however, you
can acquire concepts quickly from a small number of examples. If you walk
into a course and are surprised to discover that it has just ten students
and that instead of lectures there is much discussion, you can acquire the
concept of seminar from that example alone. Of course, the concept may
be revised on the basis of subsequent examples. Just as rules are fine tuned
for content and plausibility by repeated use, so concepts can be modified
as additional examples are encountered. Many sophisticated computa-
tional models of concept formation from examples have been developed
(Langley 1996). Connectionist methods of concept formation are discussed
in chapter 7.

Not all concepts need to be formed from examples, since we can produce
new concepts by combining ones we already have. Examples may play a
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role in filling in details of concepts such as music television and electronic
mail, but much of the content is furnished by the concepts that are com-
bined to produce the new one. Some conceptual combination is straight-
forward, as when we can figure out that a pet fish is just a fish that is
kept as a pet. But other conceptual combinations are more complex; for
example, a computer geek is not something that is both a computer and a
geek, but rather a strange person obsessed with computers. Some surpris-
ing conceptual combinations can even involve an abductive component
when hypotheses are required to explain how the combination might be
possible. For example, the concept of blind lawyer is formed not simply
by combining the attributes of blind and lawyer, but by adding emergent
attributes such as courageous that are needed to explain how a blind person
can become a lawyer (Kunda, Miller, and Claire 1990). There are computer
models of simple kinds of conceptual combination (Thagard 1988), but not
yet of the more complicated abductive kind. Costello and Keane (2000)
present a computational theory that explains both the creativity and the
efficiency of people’s conceptual combinations.

Schemas that include causal information can be used to perform a kind
of abductive inference. Here is a script for acquiring a contagious disease
such as a cold:

Contagious disease

Contact: You come into contact with some germs (viruses or bacteria).
Incubation: The germs multiply.

Symptoms: The germs cause you to develop symptoms such as a runny
nose.

Cure: Eventually, your body’s immune system kills the germs.

If you have symptoms such as a runny nose, you can fill in the symptom
slot in this schema, and then fill in the contact slot to abductively infer
that you must have come in contact with some germs. N

Language

In spoken and written language, concepts are represented by words. Not
all concepts need have words that describe them, but there is a close cor-
respondence between our words and many of our concepts. In the last
section, we discussed grammar in terms of linguistic rules. Knowledge of
language, however, obviously cannot consist of such rules alone: we need
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to know words to plug into grammatical structures. A set of words in a dic-
tionary is called a lexicon, so that the set of words or concepts represented
in a mind is called the mental lexicon.

George Miller and others have argued that the mental lexicon is orga-
nized hierarchically (Fellbaum 1998). He and coworkers have produced a
huge electronic lexicon called WordNet, with more than 60,000 English
words. Nouns such as “dog” are organized hierarchically in terms of kinds
and parts as was described in the above section on representational power
(figure 4.1). Verbs that express actions such as “register” and “run” have
a different kind of organization in terms of ways of doing things. For
example, in one sense running is a way of traveling, and sprinting is a way
of running. Adjectives such as “easy” are organized in other ways. Our use
of language depends on our ability to store and use concepts for such nouns,
verbs, and adjectives. Miller (1991) discusses the structure of the mental
lexicon, how words are formed, and how children’s vocabularies grow.

Learning a language is not just a matter of acquiring grammatical rules;
it also involves developing a whole conceptual system. Linguists in the
Chomskyan tradition have assumed a sharp distinction between grammar
and lexicon, but the distinction is challenged by advocates of a different
approach, called cognitive grammar (Taylor 2003). Langacker (1987) and
Lakoff (1987) argue that syntactic structure is very closely tied in with the
nature and meaning of concepts.

What is the meaning of a concept and how does it contribute to the
meaning of a sentence? Philosophers have been particularly vexed by this
question and have developed a range of possible answers to it. On the one
hand, the meaning of a concept seems to derive from the meaning of other
concepts, as when a child is told the meaning of sprint by saying it is a
kind of fast running. On the other hand, the meaning of a concept is con-
nected to observations of things in the world, as when the child actually
sees someone sprinting. A concept’s meaning is normally not given by
definition in terms of other concepts, since successful exact definitions are
rare. Nor is meaning exhausted by a set of examples, as if one identified
the concept of dog with the set of dogs. A theory of meaning of the con-
cepts must therefore include an account of how concepts are related both
to each other and to the world (see chapter 12). Both aspects are necessary
in order for us to understand how concepts underlie our ability to use
language.
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Psychological Plausibility

How does one show the psychological plausibility of a particular kind
of mental representation? The direct method is to perform psychological
experiments producing results that follow immediately from the assump-
tion that people have the proposed kind of mental representation. The
indirect method is to use computer simulations employing the proposed
kind of mental representation to explain the results of experiments con-
cerning some general sort of performance. Much of the evidence for the
psychological plausibility of rules described in chapter 3 is of the second,
indirect sort—for example, the rule-based simulation of cryptarithmetic
problem solving. In contrast, much of the evidence for the psychological
reality of concepts comes from experiments about concepts rather than
from computer simulations. Psychologists have performed a vast number
of experiments designed to determine the nature of concepts and their role
in categorization. Here I will mention just a small selection of important
experiments.

While behaviorism dominated psychology, there was little talk of
concepts or any other mental representations. When research on concept
learning began in the 1950s, it presupposed the classical view of concepts
as sharply defined (Bruner, Goodnow, and Austin 1956). During the 1970s,
however, evidence mounted that concepts should be understood in terms
of typical conditions rather than defining conditions. Defining conditions
are ones that provide strict rules, as when we say that a figure is a triangle
if and only if it has exactly three sides. Typical conditions allow for excep-
tions, as when we say that dogs typically have four legs, even though some
have only three. A prototype is a set of typical conditions, so that the pro-
totype for dog is something like “has four legs, is furry, barks,” and so on.
On the classical view, applying the concept dog to a particular example
such as Benji is a matter of checking whether the defining conditions of
dog apply to Benji. But on the prototype view, applying dog to Beniji is a
looser process of seeing whether the typical conditions of dog match Beniji’s
characteristics.

Psychological experiments suggest that concept application fits the
prototype view rather than the classical view. Posner and Keele (1970)
used patterns of dots as perceptual categories. Experimental subjects were
required to learn sets of four distortions of each of four prototypical pat-
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terns of dots and were then given a new set of patterns to classify. Of the
new patterns, subjects found ones that matched the prototypes easiest to
classify, but took longer and made more errors in classifying patterns more
distant from the prototype. Similarly, people can more quickly verify the
truth of the sentence “A robin is a bird” than they can verify “A goose is
a bird,” presumably because robins are closer to the prototype for bird than
geese are.

Rips, Shoben, and Smith (1973) showed that people reliably rate some
category members as more typical than others. For example, in North
America a banana is a more typical fruit than a mango. When people are
asked to list examples of a concept, they tend to produce items that are
considered most typical (Rosch 1973). If you are asked to name a bird, you
will be more likely to say “sparrow” than “penguin.” Rosch and Mervis
(1975) found that judgment of how typical a kind of bird is correlates
highly with the extent to which the bird has the properties that are most
commonly assigned to birds, such as flying and building nests. A robin and
a penguin are both birds, and would both have to fall under the defini-
tion of bird if one could be produced, but cognitively they differ enor-
mously because a robin is much closer to the prototype for bird than is a
penguin.

Viewing concepts as prototypes helps to account for various features
of how concepts are applied, including mistakes that people make. For
example, when Brewer and Treyens (1981) asked subjects to recall what
items were in a university office where they had been kept waiting, they
often mistakenly reported that there were books in the office. Books are
part of the prototype of academic office. Psychological experiments have
also been performed that tease out some of the aspects of conceptual com-
bination (Smith et al. 1988).

The findings about prototypes fit well with the computational view of
concepts as framelike structures that list typical properties. However, there
is experimental evidence that the structure of concepts is not fully cap-
tured by prototypes. Barsalou (1983) and others have argued that concepts
are much more flexible and context dependent than a package of typical
properties would be. Some psychologists have argued that our knowledge
of a particular concept is closely tied in with the initial examples from
which we learned the concept. Applying a concept is then a matter not of
matching to a prototype but of comparing new examples to the old ones.
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Concept application is then similar to analogical reasoning, discussed in
chapter 5. Barsalou et al. (2003) argue that conceptual processing depends
on specific modalities such as perception, so that a concept like car is tied
in with memory of sensory experiences of cars.

Murphy and Medin (1985), Keil (1989), and others have argued that
neither sets of typical features nor examples capture all that there is to
concepts. Concept application is sometimes as much a matter of causal
explanation as it is of matching features—for example, when we classify
as drunk someone who jumps into a pool fully clothed. Jumping into a
pool fully clothed is not a defining or typical feature of the concept drunk,
but it fits with a theory of impaired judgment that is part of the concept:
being drunk causes people to do silly things. Murphy (2002, chap. 6)
reviews psychological evidence that concepts are part of our general knowl-
edge of the world. Perhaps, therefore, we should envision concepts as
involving rules such as IF x is drunk, THEN x has impaired judgment. Con-
cluding that someone is drunk is not just matching a prototype, but is a
kind of abductive inference based on rules. Kunda, Miller, and Claire (1990)
found evidence for such inference in conceptual combination. Thus, con-
cepts may be intimately connected with rules and examples, as well as with
typical features.

Neurological Plausibility

Spreading activation between concepts in conceptual networks is similar
to the way neurons activate each other by electrochemical impulses, but
little is known about how concepts are realized in the brain. Brain-
scanning techniques are being used to learn more about language organi-
zation. Posner and Raichle (1994) describe studies that monitored brain
responses to words such as “hammer.” These studies identified distinct
areas of the brain involved in word perception and speech production.
Ashby and Walrdron (2000) review evidence that the prefrontal cortex and
basal ganglia contribute to concept learning. Another way of learning
about the neural structure of the mental lexicon is to study deficits that
occur in people who have had brain damage resulting from strokes. One
patient had difficulty naming inanimate objects such as musical instru-
ments, but could comprehend the names of foods, flowers, and animals
relatively well; another patient suffered a stroke and lost the ability to
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name fruits and vegetables (Kosslyn and Koenig 1992). Artificial neural net-
works (chapters 7 and 9) have provided some ideas about how concepts
might be stored and used in the brain.

Practical Applicability

One of the functions of education is to turn novices into experts in a
domain such as physics or another branch of science. What is the differ-
ence between novices and experts? One answer might be that the latter
have more rules, but educational research has suggested that experts have
highly organized knowledge that can be described in turns of concepts or
schemas (Bruer 1993). For example, students who are only beginning to
learn physics have a schema for an inclined plane that includes only super-
ficial features such as its angle and length. In contrast, the expert’s schema
immediately connects the concept of an inclined plane with the laws
of physics that apply to it. Nersessian (1989) and Chi (1992) argue that
science education is made difficult by the fact that students need to acquire
abstract concepts such as field and heat that they erroneously treat as sub-
stances. Learning a complex discipline often requires active and inten-
tional conceptual change (Sinatra and Pintrich 2003).

Any design problem involves concepts that can be represented by
schemas or frames. In the context of building design, the concept of bearn
can be represented by a frame that has slots for span, load, support, and
maximum stress (Allen 1992). This frame is part of a conceptual hierarchy
that involves various kinds of beams, such as ones made of steel (I-beam
or box-beam), concrete (reinforced or prestressed), and wood. Dym and
Levitt (1991) describe an expert system called SightPlan that was devel-
oped to provide computer support for the task of locating temporary facil-
ities on a construction site. SightPlan uses frames to represent concepts
such as construction site, power plant, and various parts of power plants.

Although not so common as rule-based systems, frame-based systems
have found various applications in artificial intelligence. Pure frame-based
expert systems are rare, but some rule-based systems also use frames
(Buchanan and Shortliffe 1984). The most ambitious current intelligent
system is Cyc (originally short for “Encyclopedia”), which uses more than
a million rules to encode a huge amount of commonsense knowledge
that underlies intelligent performance in many domains (Lenat and Guha
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1990). Cyc has a database of thousands of representations for many every-

day concepts and objects, organized by means of an “ontology” of funda-

mental concepts such as thing, individual, and animal. The most general
part of the Cyc ontology is available on the Web site listed below.

Summary

Concepts, which partly correspond to the words in spoken and written lan-
guage, are an important kind of mental representation. There are compu-
tational and psychological reasons for abandoning the classical view that
concepts have strict definitions. Instead, concepts can be viewed as sets of
typical features. Concept application is then a matter of getting an approx-
imate match between concepts and the world. Schemas and scripts are
more complex than concepts that correspond to words, but they are similar
in that they consist of bundles of features that can be matched and applied
to new situations. The explanatory schema used in concept-based systems

is as follows: 2

Explanatory target
Why do people have a particular kind of intelligent behavior?

Explanation pattern

People have a set of concepts, organized via slots that establish kind and
part hierarchies and other associations.

People have a set of procedures for concept application, including spread-
ing activation, matching, and inheritance.

The procedures applied to the concepts produce the behavior.

Concepts can be translated into rules, but they bundle information dif-
ferently than sets of rules, making possible different computational
procedures.

Discussion Questions

1. What concepts are learned? What concepts are innate?

2. What concepts can be defined? What concepts have typical features you
can specify?

3. What concepts do not correspond to English words? What concepts are
known only unconsciously?
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4, Can concepts be reduced to rules? Can rules be reduced to concepts?
5. How does concept-based explanation differ from rule-based explanation?
6. How would you represent the concept of mind?

7. How are concepts related to things in the world?
Further Reading

Murphy 2002 is a comprehensive review of psychological research on con-
cepts. Ward, Smith, and Vaid 1997 contains many articles on conceptual
combination and creative use of concepts. Aitchison 1987 and Miller 1991
provide introductions to the mental lexicon. Frame-based Al systems are
reviewed in Maida 1990 and Winston 1993. Langley 1996 has several chap-
ters on computational models of concept learning. Margolis and Laurence
1999 is a collection of important articles on concepts.

Web Sites

Concept mapping: http://cmap.coginst.uwf.edu/info/

The Cyc ontology (organized set of thousands of concepts):
http://www.cyc.com/

Visual thesaurus: http://www.visualthesaurus.com/online/index.html

WordNet, a lexical database for the English language: http://www.cogsci.
princeton.edu/~wn/

Notes

Systems of hierarchically organized concepts are sometimes called semantic net-
works, although in Al the term “ontology” is used. In philosophy, ontology is the
study of what fundamentally exists.

Inference by inheritance is used in object-oriented programming.

Conceptual change in the major revolutions in the history of science is analyzed
in Thagard 1992.



5 Analogies

Imagine what life would be like if you always had to figure everything
out from scratch, if every class were your first class, if every date were your
first date. Fortunately, people are able to remember previous experiences
and learn from them. But the learning that takes place does not always
establish general knowledge of the sort that is found in rules and concepts.
If you are a student in your second or later year of college, you may
remember how you previously registered and chose your courses. That ex-
perience may have been too limited for you to capture it in a general rule
or concept, but you can still use the particular experience to guide your
choices for this year. If you ended up in a particularly disastrous course,
you can try to avoid courses with similar topics and instructors. On the
other hand, if you had a course that was a big success for you, you can try
to enroll in similar courses.

Analogical thinking consists of dealing with a new situation by adapt-
ing a similar familiar situation. Human use of analogy is documented as
far back as there are written records: Homer used analogies in the Iliad,
and parables in the Bible serve to provide analogies between stories that
are told and the readers’ own situations. The importance of analogies in
reasoning has long been recognized by philosophers (e.g., Mill 1974; Hesse
1966), but intense psychological and computational investigation is
relatively recent. Evans (1968) developed the first computational model of
analogical reasoning, and numerous models have been developed since
then. Today, there are several research teams working to develop sophisti-
cated models of analogy use. Keith Holyoak and I have developed a com-
putational theory of human analogy use (Holyoak and Thagard 1995). In
ways elaborated later, our view is similar to but also different from the
influential view of Dedre Gentner and her colleagues (Gentner 1983, 1989;
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Forbus, Gentner, and Law 1995; Forbus 2001). In artificial intelligence

today, analogical reasoning is often called case-based reasoning, and

numerous interesting applications have been developed (Kolodner 1993;
’ Leake 1996). Douglas Hoftstadter and his associates (Hofstadter 1995;
| Mitchell 1993) have developed novel models of creative analogy use.

Representational Power

I Do analogies say anything more than can be said with logic, rules, or con-
cepts? For analogical reasoning, we need to be able to express two situa-
it tions, the target analog representing the new situation to be reasoned
about, and the source analog representing the old situation that can be
adapted and applied to the target analog. Each analog is a representation
of a situation, and the analogy is a systematic relationship between them.
Representing analogs requires paying attention not only to predicates like
“student” that apply to individuals but also to predicates like “teach” that
describe a relation between two or more individuals. Interesting analogies
hold between situations that share similar relations as well as similar
features. Using the kind of logical notation introduced in chapter 2, we
can represent some aspects of a course called Philosophy 999 as follows:

1. instructor (Repulso, Phil999); i.e., Professor Repulso is the instructor of
Philosophy 999.
/™ 2. dull (Repulso); i.e., Repulso is dull.
l T3 3 difficult (Phil999); i.e., the course is difficult.
\ 4. enrolled-in (you, Phil999); i.e., you're stuck in the course.
= 5. grade (you, Phil999, low); i.e., you're getting low grades in the course.

B aieda

In addition, it may be crucial to your low grade in the course that the
instructor was dull and the course was difficult:

6. cause (2 & 3, 5); i.e., the dull instructor and difficult course are causing

your low grade.

Statement 6 exemplifies a kind of representational power involving causal
relations between statements that is significant for many important analo-
gies. If you are considering taking Psychology 888, which also has a dull
instructor and a reputation for being difficult, you may infer by analogy
to Philosophy 999 that you are likely to get a low grade in the course and
therefore avoid it. Here, Philosophy 999 is the familiar source analog and
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Psychology 888 is the target analog that you reason about based on the
source.

More positive analogies can be used in course selection rather than
course avoidance. If there has been a course that you have liked and if you
can identify the features of the course that caused you to like it, then you
can look for similar courses that you are also likely to enjoy. A sophisti-
cated analogy user will ignore superficial similarities, such as that two
courses both have names with the same number of letters. But how are
superficial similarities to be distinguished from important ones? For one
student, it may not matter what time of day a course meets; for another
student, who is most alert in the morning, the time of day will be a rele-
vant factor in choosing courses similar to ones that have already proved
to be enjoyable. The key to noticing relevant differences is to appreciate
the causal relations that produced outcomes relevant to your goals in
taking the class. Hence, representation of analogies needs to include
representation of causal relations like the one in statement 6.

Usually, analogs can be represented as collections of the kinds of repre-
sentations we have already seen. Analogs are like concepts and unlike state-
ments in logic and rules in the way that they bundle together packages of
information, but they are like simple statements and unlike concepts and
rules in that the information they contain describes only a particular sit-
uation. For example, the representation of Philosophy 999 in statements
1-6 provides a package of information about a course, but the pieces of
information in the package apply only to that course, not to courses in
general. In contrast, analogical schemas, discussed below in the learning
section, include general information, like rules and concepts and unlike
representations of source and target analogs.

Analogs are sometimes represented using visual images of the sort dis-
cussed in chapter 6. Figure 5.1 presents a visual analogy. People use visual
analogies when, for example, they use a mental picture of a familiar build-
ing to guess how to get around in a similar unfamiliar one. Emotions can
also be involved in the representation of analogs, as chapter 10 describes.

Computational Power

If you are solving problems in a very familiar domain where you have lots
of expertise, you can put to work general knowledge captured in rules and
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Figure 5.1
A humorous visual analogy. Reprinted by permission from Holyoak and Thagard

1995, p. 14.

concepts. Analogical reasoning, in contrast, becomes useful when you have
some previous experience with a domain but little general knowledge of
it. Hence analogies can be computationally powerful in situations when
conceptual and rule-based knowledge is not available.

Typically, analogical reasoning proceeds in four stages:

1. You face a target problem to be solved.

2. You remember a similar source problem for which a solution is known.
3. You compare the source and target problems, putting their relevant
components in correspondence with each other.

4. You adapt the source problem to produce a solution to the target
problem.

Understanding analogical reasoning computationally requires specifying
procedures for the stages of remembéring (retrieving from memory),
comparison (mapping the source and target analogs to each other), and
adaptation.

Retrieving potentially relevant source analogs from memory is compu-
tationally very difficult. How many experiences have you had in your life?
If you have accomplished just 10 tasks per day for the past 15 years, you
have potentially stored in memory 54,750 task solutions. Faced with a
current task for which you hope to find a new solution, you would have
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somehow to compare the new problem against the very large number of
stored solutions. How does the mind select usable experiences from its vast
store? Suppose your current task is to register for the upcoming term or
semester. Will you recall every time you had to register for something?
Every time you had to stand in line? Every time you were frustrated? Every
time you did something in the rain?

Current computational models of analog retrieval disagree about the
factors that make for effective retrieval and that account for both the
successes and failures of human use of analogies. Combining the ideas of
many researchers, Keith Holyoak and I argue that retrieval is governed by
three constraints: similarity, structure, and purpose (Holyoak and Thagard
1995). Two analogs are similar to each other at a superficial level if they
involve similar concepts. Thinking about registering now will make you
think about previous cases of registering and other bureaucratic operations
that are conceptually related to registering. The similarity of visual analogs
is not just conceptual, but also involves their visual appearance. One car
may remind you of another car because they have similar shapes or colors.

However, powerful analogies involve not just superficial similarities, but
also deeper structural relations. If registering this year is causing you to
miss your favorite afternoon TV show, you may remember a previous time
when paying your tuition caused you to miss a show. The correspondence
between the two situations is then not just that they both involve bureau-
cratic tasks and missing a TV show, but the higher relation that the bureau-
cracy caused you to miss the show. To fully satisfy the structure constraint,
two analogs must align exactly:

Target Source

cause: register (you)
miss (you, TV show)

cause: pay-tuition (you)
miss (you, TV show)

The target analog on the left says that your registering caused you to miss
your TV show. The source analog on the right says that your paying tuition
caused you to miss your TV show. Even though the two situations are
different in that one involved registration and the other paying tuition,
they have exactly the same structure, since the relations “miss” and “cause”
align perfectly.

The third constraint on retrieval is purpose: you want to remember cases
that will help you to solve your current problem. In human memory (and
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in computer databases) there are vast amounts of information, so that

retrieving all and only potentially useful information is a difficult psy- =

chological and computational problem. The problem of finding and apply-
ing source analogs to target problems can be eased by making the purpose
of the analogy one of the constraints on its development. For example, if
your purpose in using the analogy between registering and paying tuition
is to show bureaucratic inefficiencies at your college or university, then the
purpose should encourage remembering other inefficiencies.

Holyoak and I contend that it is these three constraints operating in par-
allel that make possible retrieval of relevant analogs from the vast number
of potentially relevant ones. Other researchers on analogy disagree with
us. Forbus, Gentner, and Law (1995) emphasize the role of similarity
in retrieval, giving structure and purpose less of an impact. On the other
hand, many researchers on case-based reasoning have stressed the con-
straint of purpose, urging that computer mermories be indexed in ways that
encourage rtetrieval of analogs relevant to current goals (Schank 1982;
Kolodner 1993). For building expert systems, they propose developing a
“generally applicable indexing vocabulary” that will apply to all domains.
Whether human memory is indexed in this way can be determined only
by psychological experiments (see below).

Once a potential source analog has been retrieved from memory, it must
be mapped with the target problem to find the correspondences that can
suggest a solution. If the two analogs are very similar, mapping is quite
trivial, as when you map the current registration to the previous one. But

creative analogies often involve a leap, as in the following example -

(Dennett 1991, 177):

The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk
of coral to cling to and make its home for life. For this task, it has a rudimentary
nervous system. When it finds its spot and takes root, it doesn't need its brain
anymore, so it eats it! (It's rather like getting tenure.)

How is a professor getting tenure like a sea squirt eating its brain? Grasp-

ing the comparison requires noticing a set of mappings: between sea squirt "

and professor, between finding a rock and getting tenure, and so on. Cog-
nitive science researchers differ on which constraints play a role in such
mappings. Gentner (1983, 1989) maintains that mapping is a matter of
noticing structural correspondences, but Holyoak and I argue that super-

ficial similarities and purpose also contribute to analogical mapping. Both =
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sides of this dispute have developed computer models that aid in testing
the competing theoretical claims.

If a source analog maps neatly onto a target problem, copying over the
relevant part of the source to the target can generate a solution. If you
solved your registration problem last time by taking an evening psy-
chology course, you might solve it this time by taking another evening
psychology course. If the exact same solution is not possible, you might
adapt the previous solution somewhat—for example, by taking an evening
philosophy course. The most sophisticated accounts of adaptation have
been offered by researchers in case-based reasoning. Kolodner (1993) lists
ten methods for adapting previous solutions, from simple substitutions
like replacing a philosophy course by a psychology course, to more com-
plex derivations like writing a computer program in one programming
language by systematically adapting a program written in another com-
puter language.

Problem Solving
Planning It should be obvious from the above discussion how analogies
can contribute to solving planning problems such as registering for good
courses. Under the same heading we can also put solving the kinds of prob-
lems that students are assigned in scienice and mathematics courses. A text-
book chapter in a technical field often includes examples that show how
to go about solving problems where the student is given some informa-
tion and has to find an answer. For example, given some information about
a chemical substance, you might have to calculate additional features of it
such as density. Analogy is not the only way to go about solving such prob-
. lems, but it is often useful to try to solve the exercises at the end of the
chapter by flipping back and relating them to solved problems provided

in the main text.
Analogies can be very useful in problem solving, but they do not always
Lprovide the best way to approach a new problem. There is always the
danger that a selected analog will not have the deep relevant similarity
that is needed to provide a solution to a target problem. If the target
problem is genuinely novel, then no previous solution will apply and
analogies will only mislead. In military planning, generals often fight the
last war, using outmoded analogs. Similarly, although students can greatly
simplify new assignments by perceiving them as analogous to previous
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ones, this strategy can backfire if the new problems require novel
approaches. Techniques learned in mathematics courses are of limited use
in courses that require writing essays.

Decision Decisions about what actions to choose are also often made ana-
logically. Legal reasoning frequently makes reference to previous cases that
serve as precedents: these are source analogs that get mapped to the current
target case. Historians have documented numerous cases of political deci-
sions heavily guided by analogies. For example, when the United States
debated in 1991 whether to attack Iraq in retaliation for Iraq’s invasion of
Kuwait, arguments pro and con often concerned historical analogs, Presi-
dent George Bush compared the Iraqi leader, Saddam Hussein, to Adolf
Hitler, suggesting that the invasion of Iraq was as legitimate as the World
War II invasion of Germany. Critics of the plan to invade Iraq preferred a
different comparison, to the United State’s disastrous involvement in
Vietnam. These analogies resurfaced in 2003 when the United States again
invaded Iraq. Analogies can improve decision making by both suggesting
previously successful solutions and reminding leaders of previous disasters.
All too often, however, decision makers become fixated on a single previ-
ous analog and do not consider how a variety of source analogs might
suggest different actions to choose from.

Explanation Analogies are also an important source of solutions to expla-
nation problems, including both educational situations where teachers
must convey what they understand to students and research situations
where brand-new explanations are being generated. Listen for your instruc-
tors’ analogies in your next few lectures. Teachers often try to help stu-
dents understand unfamiliar things by comparison with what the students
already know. For example, T might explain the British sport of cricket to
an American by comparing it to baseball, since both involve bats, balls,
and running between positions. Analogical explanations are often limited
by the fact that the things being compared have many differences as well
as similarities, but they can be a crucial part of getting someone new to a
domain up and running. Later in this chapter, the section on educational
applications discusses how to use analogies effectively in teaching.
Analogical explanation abounds in cognitive science. As we have already
seen, the fundamental analogy in cognitive science is between the mind
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and the computer: we attempt to explain how the mind works by model-
ing it as a computer. The analogy is complex, however, since sometimes
we get new ideas about what computing can be like by studying the mind
and brain. Early ideas about computing drew heavily on psychological
views, and recent connectionist computational models discussed in
chapter 7 have been influenced by new views about the brain.

Learning

Analogical thinking involves three kinds of learning. The most mundane
is simply the storage of cases based on previous experience. When you
figure out how to solve a problem, you can store your solution in memory.
This storage does not involve analogy as such, nor does it require the kinds
of generalization that underlie forming concepts and rules. But it is a
necessary prelude to analogical thinking and constitutes learning at a low
level. The second kind of learning is directly the result of analogizing,
when you adapt a previous case to solve a new problem. This is again a
more particular kind of learning than we saw with rules and concepts, since
all you have learned is how to solve the particular new problem. This kind
of inference can be abductive if you adapt a previous explanation problem
to suggest a new explanatory hypothesis. For example, if a friend is late
for a party, you may remember a previous case where somebody was late
for a party because of a flat tire, and conjecture analogically that your
friend in the current case might have had car trouble.

The third kind of learning introduces a general element. If you use a
source analog to solve a target problem, you can abstract from the source
and target and form an analogical schema that captures what is common
to both of them. For example, figuring out how to register for courses this
year based on how you registered last year can lead to an abstracted schema
for registration. Analogical schemas are very much like the schemas (con-
cepts) discussed in chapter 4, except they should not be expected to have
the same degree of generality, since they are generalizations from only two
instances. Having registered for courses twice, you may be able to abstract
a description of registration from the two situations, an abstraction that
includes rough rules concerning how to get the courses you desire. An
abstracted analogical schema may be very useful for future problem
solving, since it should include those aspects of the source and target
analogs that are shared and relevant to problem solution. We will see in
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the section on psychological plausibility that forming analogical schemas
improves problem solving.

Language

Analogy plays an important role in the production and comprehension of
language, since it underlies the use of metaphor. When people say that
Britney Spears is the new Madonna, they do not literally mean that Britney
Spears is Madonna. Rather, they are pointing out some systematic similar-
ities between the two: both are female rock stars who perform provoca-
tively. Similarly, the statement that life is a battlefield evokes a systematic
comparison between a target (life) and a source (war). Other metaphors,
such as that life is a party, evoke very different comparisons. The infor-
mation superhighway is not a highway, but it is analogous to one in that
it provides a fast and effective way of moving electronic data.

Some language theorists see metaphor as a rather deviant use of language
since it does not seem to use language literally: why not just say what you
mean? In contrast, various linguists, philosophers, and psychologist§ have
viewed metaphor as a pervasive and valuable feature of language, not as
an exceptional or deviant use (Glucksberg and Keysar 1990; Lakoff and
Johnson 1980). All metaphors have as their underlying cognitive mecha-
nism the sort of systematic comparison that analogical mapping performs,
although metaphor may go beyond analogy by using other figurative
devices to produce a broader aura of associations. Both the generation of
a metaphor by a speaker and its comprehension by the hearer require the
perception of an underlying analogy. If I tell you that Professor Repulso is
a sea squirt, you should be able to understand that I am not saying that
he is a marine animal with a saclike body, but rather that there is some
relevant similarity between his mental history and that of the sea squirt.

Psychological Plausibility

Many psychological experiments have examined how people use analo-
gies. I will mention only a few examples that show analogy at work in
problem solving, learning, and language use.

How would you go about solving the problem in box 5.1? Most people
find it hard to think how the doctor can use the rays to kill the tumor
without destroying the healthy tissue: Gick and Holyoak (1980) found
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Box 5.1
The tumor problem (from Gick and Holyoak 1980).

Suppose you are a doctor faced with a patient who has a malignant tumor in
his stomach. It is impossible to operate on the patient, but unless the tumor
is destroyed the patient will die. There is a kind of ray that can be used to
destroy the tumor. If the rays reach the tumor all at once at a sufficiently
high intensity, the tumor will be destroyed. Unfortunately, at this intensity
the healthy tissue that the rays pass through on the way to the tumor will
also be destroyed. At lower intensities the rays are harmless to healthy tissue,
but they will not affect the tumor either. What type of procedure might be
used to destroy the tumor with the rays, and at the same time avoid destroy-
ing the healthy tissue?

that only about 10 percent of college students could produce a good
solution.

In contrast, 75 percent of college students could produce a good solu-
tion to the tumor problem if they were told the fortress story in box 5.2.
At first glance, the fortress story has nothing to do with the tumor problem.
But many people are able to use the solution in the fortress story that
involves the army dividing up and then converging on the fortress to
generate a solution to the tumor problem: instead of using a single high-
intensity ray, the doctor could administer several low-intensity rays from
different directions.

This example illustrates the simple kind of analogical learning where a
new problem is solved by adapting an old one. Using the same problem,
Gick and Holyoak (1983) investigated how students learn analogical
schemas from more than one example. In addition to the fortress story,
some students were given a story about a firefighter who extinguished an
oil-well fire by using multiple small hoses. The fire was put out by con-
verging water, just as the fortress was conquered by converging armies.
Students who had two such examples and were instructed to reflect on the
similarities between them were more likely to be able to remember to apply
a convergernce solution to the tumor problem than students who had only
received a single analog. Learning analogical schemas thus contributes to
more effective problem solving.

Psychological experiments concerning language have been done to
address the question of metaphor use. Glucksberg and Keysar (1990) have
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Box 5.2
The fortress story (from Gick and Holyoak 1980).

’7A small country fell under the iron rule of a dictator. The dictator ruled the
country from a strong fortress. The fortress was situated in the middle of the
country, surrounded by farms and villages. Many roads radiated outward from
the fortress like spokes on a wheel. A great general arose who raised a large
army at the border and vowed to capture the fortress and free the country of
the dictator. The general knew that if his entire army could attack the fortress
at once it could be captured. His troops were poised at the head of one of the
roads leading to the fortress, ready to attack. However, a spy brought the
general a disturbing report. The ruthless dictator had planted mines on each
of the roads. The mines were set so that small bodies of men could pass over
them safely, since the dictator needed to be able to move troops and workers
to and from the fortress. However, any large force would detonate the mines.
Not only would this blow up the road and render it impassable, but the
dictator would destroy many villages in retaliation. A full-scale direct attack
on the fortress therefore appeared impossible.

The general, however, was undaunted. He divided his army up into small
groups and dispatched each group to the head of a different road. When all
was teady he gave the signal, and each group charged down a different road.
All of the small groups passed safely over the mines, and the army then
attacked the fortress in full strength. In this way, the general was able to
capture the fortress and overthrow the dictator.

shown that people find metaphorical meanings even when instructed to
find literal meanings. In one study, college students were asked to decide
whether or not sentences such as “Some desks are junkyards” were liter-
ally true. The students were slower to correctly respond “no” to a sentence
that was literally false when it also had a2 metaphorical interpretation, as
in the above example, than to respond to literally false sentences such as
“Some desks are roads” that lack a metaphorical interpretation. Similar
findings have been obtained for sentences that can be interpreted both
literally and metaphorically. Keysar (1990) presented students with sen-
tences such as “My son is a baby” in contexts that manipulated whether
the sentence was true or false, literally or metaphorically. The students were
instructed to press a key as quickly as possible to indicate the literal truth
value of the sentence. If the sentence was literally false in the context, the
students decided more quickly if it was also metaphorically false; if the
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sentence was literally true, they decided more quickly if it was also
metaphorically true. Such findings imply that literal and metaphorical pro-
cessing interact with each other. Metaphorical interpretation appears to be
an obligatory process that accompanies literal processing, rather than an
optional process that occurs after literal processing.

Neurological Plausibility

Neurological research on analogical reasoning is just beginning. Boroojerdi
et al. (2001) found that the left prefrontal cortex is involved in analogical
reasoning by determining that magnetic stimulation of that part of the
brain speeds up solution times for solving analogical problems. This is con-
sistent with recent findings that reasoning involving' complex relations,
which is crucial for analogical thinking, also involves the left prefrontal
cortex (Christoff et al. 2001; Kroger et al. 2002).

Recent computational models of analogy are moving in the direction of
using artificial neural networks that approximate to real neuronal behav-
jor. Hummel and Holyoak (1997, 2003) have developed a neural network
model of analogy that uses synchrony of neuronal firing to represent rela-
tional information. Eliasmith and Thagard (2001) use a different technique
to produce representation of complex relations that are distributed over
multiple neurons. Neural network models of cognition are described in
chapters 7 and 9.

Practical Applicability

As we saw in the section on computational power, analogies can make sub-
stantial contributions to explanation. Hence, they potentially have great
value in education. Effective teachers often try to help students understand
the unfamiliar by systematically comparing it to the familiar. There are,
however, many potential pitfalls in educational use of analogies. Avoiding
pitfalls requires careful attention to what students know and to how analo-
gies are used and misused.

Here are some brief recommendations for how educators can more
successfully use analogies (see Holyoak and Thagard 1995, for more
discussion and justification):
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1. Use familiar sources. There is no point in explaining science or some
other complex, unfamiliar target in terms of something that is equally
unfamiliar. You cannot explain the structure of atoms to young children
by analogy to the solar system if they do not know the structure of the
solar system.

2. Make the mapping clear. With a good analogy, students should be able
to figure out for themselves the basic correspondence between the source
and target, but some guidance may facilitate finding a mapping. For
example, in cognitive science it is important to indicate which aspects of
mind correspond to which aspects of computers.

3. Use deep, systematic analogies. Instead of superficial feature compar-
isons, the most powerful analogies use systematic causal relations that
provide clear relevance to the students’ goals.

4. Describe the mismatches. Any analogy or metaphor is incomplete or
misleading in some respects. Some educators have concluded that analo-
gies are therefore too misleading to be effective in teaching, but the solu-
tion to the problem is not to abandon use of analogies but rather to
indicate where they break down. No one should expect the information
superhighway to have a white stripe painted down the middle.

5. Use multiple analogies. When one analogy breaks down, another can
be added to provide understanding of what has been incompletely
presented.

6. Perform analogy therapy. Find out what analogies students are already
using and correct them as necessary.

These maxims are good advice not only for educational use of analogies
but also for all the other uses of analogy, including problem solving and
decision making.

Analogies are often a fertile source of creative designs. Georges de Mestral
invented Velcro after he observed how burrs stuck to his dog. Alexander
Graham Bell modeled the telephone partly on the human ear. New adhe-
sives have been invented based on how the feet of gecko lizards enable
them to walk up walls. Industrial designers often use the technique of
reverse engineering, where they take a competitor’s product apart and
figure out how to produce an analogous product.

Analogies and metaphors have also contributed to computer design and
discussion of computer-human interaction. The Macintosh interface,
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which was copied (analogically) by the Windows program on PCs, uses a
desktop analogy: the screen is like a desk on which the user lays out various
documients and folders. Spreadsheets make numerical calculations using a
format that is analogous to a paper ledger. Word processors are in some
respects like the typewriters they have replaced.

Effectiveness of design can be hampered by unsuspected analogies that
users employ. One computer company reported that a woman phoned to
complain that she had her foot on the mouse on the floor but the com-
puter would not start; she seems to have thought it was like a sew/"ing
machine. A man complained that his computer would not fax a piece of
paper he was holding up to its screen, which he apparently thought was
like a copying machine. Designers need to consider positive analogies for
consumers to use, but they also need to watch out for misleading analo-
gies that users may come up with themselves. Customers may need
analogy therapy.

Kolodner (1993) describes dozens of case-based reasoning systems.
Although they differ in particular retrieval and mapping mechanisms, all
fundamentally employ analogical reasoning to solve new problems on the
basis of old. Lockheed, for example, uses a case-based reasoning system
called Clavier to recommend how to arrange airplane parts in a large pres-
surized convection oven called an autoclave (Hinkle and Toomey 1994).
The cases (source analogs) are records of previous loads placed in the auto-
clave. Although experts on autoclave use were not able to express their
technique in rules, a system that stores, retrieves, and adapts cases has
proven very effective. Hastings, Branting, and Lockwood (2002) developed
a system that uses case-based reasoning along with rules to provide advice
about how to deal with grasshopper infestations in Wyoming.

Summary

Analogies play an important role in human thinking, in areas as diverse
as problem solving, decision making, explanation, and linguistic commu-
nication. Computational models simulate how people retrieve and map
source analogs in order to apply them to target situations. The explana-
tion schema for analogies is as follows:

Explanation target
Why do people have a particular kind of intelligent behavior?
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Explanatory pattern

People have verbal and visual representations of situations that can be used
as cases or analogs.

People have processes of retrieval, mapping, and adaptation that operate
on those analogs.

The analogical processes, applied to the representations of analogs,
produce the behavior.

The constraints of similarity, structure, and purpose overcome the difficult
problem of how previous experiences can be found and used to help with
new problems. Not all thinking is analogical, and using inappropriate
analogies can hinder thinking, but analogies can be very effective in
applications such as education and design.

Discussion Questions

1. How do analogs (cases) differ from rules and concepts?
2. When is analogical problem solving likely to be useful?

3. What are the main stages in analogical thinking? What constraints
figure most prominently at each of those stages?

4. What are the main potential drawbacks of thinking by analogy?

5. How do analogies contribute to creativity? What other sources of
creativity are there?

Further Reading

Gentner, Holyoak, and Kokinov 2001 contains articles describing many
current approaches to analogy. Hall 1989 reviews artificial intelligence
work on analogy to that date. French 2002 surveys more recent computa-
tional models. Holyoak and Thagard 1995 gives a psychologically oriented
survey. For a review of Gentner’s work on analogy, see Gentner 1989.
Kolodner 1993 is an excellent survey of case-based reasoning work in
artificial intelligence; see also Leake 1996. For an entertaining review of
the work of Hofstadter’s group on creative analogies, see Hofstadter 1995.
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Web Sites

Artificial intelligence and case-based reasoning: http://www.ai-cbr.org/
theindex.html

Case-based reasoning: http://www.cbr-web.org/
Conceptual metaphor: http://cogsci.berkeley.edu/lakoff

Dedre Gentner’s home page: http://www.psych.northwestern.edu/psych/
people/faculty/gentner/ :

Keith Holyoak’s home page: http://www.psych.ucla.edu/Faculty/Holyoak/
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6 Images

How many windows are there on the front of your house or apartment
building? How did you answer that question? If you have never counted
the windows before, you must have found a way to count them now.
Perhaps you compiled a list of all the rooms that are on the front of your
building and did a verbal count of their windows, but many people answer
this kind of question by making a mental picture and doing a visual count.
Similarly, try to remember how you get from your home to your college
or university. Although you may have a purely verbal memory of how to
do this (“Go to the traffic light at Main St. and turn right”), many people
remember such routes by constructing a series of mental images of the
roads, buildings, and other landmarks along the way.

Many philosophers, from Aristotle through Descartes and Locke,
assumed that picturelike images are an essential part of human thought.
In the early days of modern psychology in the late nineteenth century,
researchers such as Wilhelm Wundt studied how people think with imagery
and some even claimed that there was no thought without imagery. The
rise of behaviorism in the twentieth century made talk of mental images
and other internal representations scientifically unrespectable. But the
return of cognitive psychology in the 1960s made imagery once again a
suitable object of investigation, and researchers such as Paivio (1971) and
Shepard and Metzler (1971) began doing experiments with visual images.
Many experiments ensued, and computational models of visual imagery
began to appear (Kosslyn and Shwartz 1977; Funt 1980). Some cognitive
scientists remain skeptical that human thinking involves pictorial repre-
sentations that are different from verbal ones (Pylyshyn 1984, 2002). But
numerous computational, psychological, and neurological considerations
suggest that the mind thinks with pictures as well as words.
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Although cognitive scientists interested in imagery have concentrated
on visual representations, we should not ignore images connected to non-
visual perception. What does a pepperoni pizza taste like? If you have ever
had one, you may be able to form a mental image of the taste and smell,
and use it to decide whether something else—say, a submarine sandwich—
tastes like a pepperoni pizza. Does a growth of beard feel like sandpaper?
To answer this, you may form a tactile image of each touch and compare
them. How do you hit a baseball to the opposite field, slam-dunk a basket-
ball, or clean a mirror? If you have regularly experienced these physical
activities, you may be able to construct a motor image of the bodily sen-
sations associated with them. Finally, people can have emotional images.
How did you feel when you heard that you had been admitted to your
college or university? Did your friends feel the same? Chapter 10 discusses
emotions and consciousness. The test of this chapter will concentrate on
visual images, the kind most investigated to date.

Vision

For people with normal vision, seeing things seems automatic and easy.
You look at a room and immediately pick out the furniture and people in
it. The complexity of vision becomes apparent, however, when you try to
get a computer to do the same thing. [t is easy to point a video camera at
a room and store the image as a set of pixels, the dots that make up an
image on a TV screen. But extracting information from thousands or

millions of pixels is very difficult, since the image captured by the video |

camera may be highly ambiguous. If a person is sitting in a chair, the pixels
will reveal only part of the chair, so the computer must somehow infer
that there is a chair even though it cannot see anything that matches a
standard chair. Some parts of the room may be in brighter light than other

parts. A rectangular object on the wall might be a picture, or it might be \

a mirror reflecting other parts of the room. In the past few decades, com-

puter vision has made substantial progress, enabling robots to identify | f
and manipulate objects under simplified circumstances. But robotic vision

remains crude compared to the power of human vision.
Consider the drawing in figure 6.1. If you shift your concentration

between the top and the bottom of the cube, you should be able to make §
it flip back and forth, seeing first one face as the front and then another *

es
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Figure 6.1

The Necker cube. The top edge can be seen either as being at the front or at the
back of the cube. Try to make it flip back and forth by concentrating on different
edges.

face as the front. How does this happen? Light reflects off the picture
into your eyes and onto your retina, which consists of millions of light-
detecting cells. But an enormous amount of processing is required before
your brain can interpret the picture as a cube. Your brain must detect edges,
distinguishing the lines from the background. In figure 6.1, edge detection
is trivial, but this task becomes much more difficult if there are subtle vari-
ations in brightness, grays as well as black and white. Moreover, your brain
does not receive a single image like what a video camera would produce,
but rather gets information from two eyes with slightly different perspec-
tives on objects. The perspective differences make possible your ability to
appreciate distances and see objects in three dimensions.

The brain manages to combine inferences about edges, perspective,
colors, and other information into a coherent interpretation of objects far
more complicated than the cube in figure 6.1. See Marr 1982 and Kosslyn
1994b for much more about visual information processing. The result of
all this inference is a visual image. Such images do not depend on an
object’s being present to the eyes, for we can store the images in memory,

Ietrieve them, and manipulate them in ways that contribute to a variety
of mental tasks.
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"Looking good!”

Figure 6.2
Drawing by Gahan Wilson. © 1994, The New Yorker Magazine, Inc. Reprinted by

permission.

Representational Power

Why do people often say that a picture is worth a thousand words? Pic- *

tures can usually be described in words. For example, we can say that figure
6.2 depicts one man sitting behind another and looking into the top of
his head. Given enough sentences, we could provide a much fuller descrip-
tion. But the pictorial representation has various advantages. The verbal
description might contain the information that the man in the chair is
close to the man with his head open, who is on a couch. We could then
verbally infer that the chair is close to the couch. Using the pictorial rep-
resentation, however, no inference is necessary: we can just see that the
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chair is close to the couch. Figure 6.2 is an external representation that we
see with our eyes. But if you cover up the picture for a moment, you may
still be able to form a mental image of the picture and answer some ques-
tHons about it. Roughly how old are the men? Is either of them bald? Is
either wearing a tie?

Pictures and visual mental images provide powerful ways of represent-
ing how things look and how they are spatially arranged, but not all infor-
mation is naturally represented in pictures. Abstract sentences like “Justice
is fairness” are not visually representable, and general sentences like “All
dinosaurs are extinct” are very awkward to represent pictorially. Similarly,
causal statements such as “Smoking causes cancer” and “If you get a cold,
then you will cough” are not straightforwardly represented by pictures.
Hence, visual images complement but do not replace verbal representa-
tions of the sort we have seen in the previous chapters.

Earlier chapters assumed that representations are fundamentally verbal:
the rules, concepts, and analogs discussed were all presented in words. But
these structures may have visual forms as well. A rule might have the struc-
ture IF <picture 1>, THEN <picture 2>, providing a kind of movie in which
picture 1 is followed by picture 2. A concept might be pictorial—for
example, if my prototype for a dog is represented not by a set of features
but by a picture of a dog that has those features. Similarly, source and target
analogs can have visual representations such as the rabbit and shadow in
figure 5.1. Hence, in addition to verbal rules, concepts, and analogs, there
may be visual rules, concepts, and analogs.

What is the structure of mental images? Kosslyn (1980) and Glasgow
and Papadias (1992) proposed that the mind uses arraylike structures to
perform visual tasks. For example, we might represent Europe using the
array shown in figure 6.3. More recently, Kosslyn (1994b) has argued that
the human brain uses various kinds of neural networks to represent spatial
information (see the section below on neurological plausibility).

Computational Power

Much thinking that can be done with images can also be done with words,
but verbal thinking may be much more awkward for some tasks. Visual
thinking is likely to be useful for any problem whose solution depends on
visual appearance or spatial relatonships. Visual representations, both
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Sweden
Scotland J Denmark
Wales | England |
Holland Germany Germany
Belgium
France France Croatia Serbia
Portugal Spain Greece

Figure 6.3
Map of Europe represented as an array. Adapted with permission from Glasgow and

Papadias 1992, p. 373.

mental and external, are accessible to different kinds of computational pro-
cedures than verbal representations:

1. Inspect Imagine a plate that has a knife to the left of it and a fork to
the right of it. Is the knife to the left or the right of the fork? The answer
could be inferred verbally using the logical properties of the relations “left”
and “right,” but more immediately the answer could come just by looking
at the image formed and seeing that the knife is to the left of the fork. This
procedure can also be used to compare two representations by inspecting
them both.

2. Find Where do you keep your shoes at home? To remember, you might
do a mental scan of your room or rooms to find the spot they are likely
to be.

3. Zoom Does a frog have a tail? Some people answer this question by
forming a mental image of a frog and then zooming in to look in more
detail at its behind, just as you can look more closely at part of a picture.
4. Rotate What does a capital letter “E” look like when it is flat on its
back? One way to answer this question is to rotate the letter mentally until

it is on its back.
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5. Transform Follow these instructions from Finke, Pinker, and Farah
1989: Imagine the letter “B.” Rotate it 90 degrees to the left. Put a
triangle the same width as the rotated “B” directly below it and pointing
down. Remove the horizontal line. Many people see the resulting figure as
a heart or double ice-creamn cone. We seem to be able to alter and combine
visual representations in powerful ways, including flipping and juxtapos-
ing them as well as rotating them.

Operations such as these five make possible kinds of problem solving dif-
ferent from the verbal kinds considered in earlier chapters. To answer the
question of whether all your shoes have the same number of holes for
laces, you might retrieve an image of your closet, scan it to find your shoes,
zoom in to inspect your shoes, and transform the shoe images to juxta-
pose laces to compare the number of holes. On the other hand, if you have
only one pair of shoes, and you know the rule that two shoes from the
same pair have the same number of holes, it might be easier to deduce the
answer without recourse to mental imagery.

Problem Solving
Planning Suppose you have many errands to do: picking up groceries,
mailing a parcel, and dropping off dry cleaning. Previous chapters
suggested verbal ways in which you niig'ht plan how to accomplish these
tasks in a reasonably efficient way. A set of IF-THEN rules might have
guided you to the grocery store, post office, and dry cleaner’s, or
perhaps previous experience with these tasks might have guided you
with a verbal analog or schema. Alternatively, you might construct a
plan visually, imagining yourself driving into the grocery store parking
lot, then driving out to the post office, and finally parking at the dry
cleaner’s. Such visual planning may employ a mental map that you
have constructed that encodes the spatial relations of the places you have
to go. Not everyone employs such mental maps: some people function
better with verbally encoded landmarks. But for many others, getting
around in the world is very much helped by being able to use visual images
to figure out where they are and how they can get to where they want
to be.

Planning with visual representations involves steps similar to those in
rule-based problem solving described in chapter 2, except that the steps
are executed visually. You must first construct visual representations of the
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starting and goal states, then construct a visual path from the start to the
goal. Visual transformations can be useful in solving construction prob-
lems, such as how to build a bridge connecting two banks of a river, and
even for more mundane problems in the sciences. Problem solvers often
use diagrams as an external aid to supplement the more temporary bene-
fits of mental images. In geometry, for example, it can be very helpful to
draw diagrams of figures and angles as an aid to working out how to draw
figures. Students solving science problems often make use of diagrams that
make complex objects such as springs, molecules, and chromosomes more

comprehensible.

Decision Little research has been done on the contribution of imagery to
decision making. But suppose you are trying to decide whether to wear
your blue or your brown jacket. You might imagine how each would look
with the other clothes you are planning to wear, so that the decision about
what to wear would be the resuit of a comparison of visual images. Simi-
larly, if you are trying to decide what to order in a restaurant, your deci-
sion might be based in part on imagining what different dishes might taste
like. Emotional images can also be important for decision making, as we
will see in chapter 10.

Explanation Visual reasoning may be very useful in generating explana-
tions. The great inventor Nikola Tesla could reportedly diagnose the faults
in complex machinery just by forming a mental image of the machinery
and running it in his head to see where breakdowns might occur. Visual
explanation has not been much studied in psychology or artificial intelli-
gence, but there is reason to believe that it is common in scientific and
everyday thinking. Look at a map of the world that shows the continents
of Africa and South America. Now slide these two continents together until
the bulge that constitutes Brazil fits into and under West Africa. Early in
this century, the fit between these two continents suggested to Alfred

Wegener that they had once been joined, and he formed the hypothesis "

of continental drift to explain how they had come apart. This hypothesis

can be stated in purely verbal terms, but the fit between Africa and South ¢

America is best represented visually and can be explained by a visual

joining of the two continents. This joining mentally reverses a spatial :
separation conjectured to have happened long ago. As with planning,
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visual explanation is not a replacement for verbal reasoning, but provides
a valuable complement to it.

Learning

Athletes are often coached to improve their performances by using
imagery, and there is experimental evidence that practicing by mental
imaging can improve performance if mixed with actual practice (Goss
et al. 1986). Someone waiting to perform a dive or to hit a baseball can
imagine accomplishing the task perfectly, using both visual and motor
images. Running the task through your mind can actually help you to do
it better when the time comes.

Images can also be useful for generalization, as when someone uses
pictures of members of a category such as elephant to form a fairly general
mental picture of an elephant. The resulting visual representation of an
elephant ignores incidental information about particular elephants (e.g.,
carrying a rider) in favor of general properties (e.g., being gray, wrinkled).
Imagistic learning of generalizations has not received much experimental
or computational attention.

Abductive leamning can also be visual. If you find a long scratch on the
door of your car, you can generate various verbal explanations of it. But
you might also construct a kind of méntal movie in which someone drives
up beside you in the parking lot and opens a door that scrapes along your
car just where the scratch appears. Your abductive inference that another
car scraped your door is generated visually, by constructing a sequence of
pictures that shows how the scratch might have come about. Other pic-
tures are possible too, such as one showing a shopping cart rolling into the
car or keys scraping along it. Shelley (1996) describes how archaeologists
use visual abduction when they generate explanations of ancient objects.

Language

Language is essentially verbal, so how could imagery be relevant to the use
of language? We saw in chapter 5 that language is not just a matter of
syntax and simple semantics, but is frequently metaphorical. As Lakoff and
Johnson (1980) have pointed out, many metaphors are visual in origin:
he’s up today, she’s on top of her job. Lakoff (1994} contends that much
understanding involves image schemas, which are general concepts that
have a visual component. For example, behind understanding of categories
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is visual understanding of containers: an object can be in or out of a cate-
gory such as dog, and it can be put into or removed from such categories.
Metaphors can also tie together more than one kind of sensory represen-
tation, as in “loud clothes.”

Langacker (1987) defends an approach to cognitive grammar that takes
metaphor and imagery as central to mental life, including language pro-
cessing, He argues that sensory imagery plays a substantial role in con-
ceptual structure; for example, the meaning of the word “trumpet” may
be tied in part to an auditory image of the sound a trumpet makes. This
approach to linguistics is controversial, but it suggests how language may
depend on visual and other images as well as on words.

Psychological Plausibility

Many psychological experiments have supported the claim that visual
imagery is part of human thinking. Cooper and Shepard (1973) measured
how long it took students to decide whether a rotated letter was normal
or a mirror image. Figure 6.4 shows versions of the letter “R.” The first “R”
is normal, but the second is a mirror image. The third and fourth “R"s can
be discovered to be, respectively, mirror and normal images by mentally
rotating them. If letters are relatively close to the normal position, like the
“R”s in cases 5 and 6, then less time is needed to determine whether they
are normal or mirror images than when they are relatively far from the
normal position, like the “R”s in cases 3 and 4.

In addition to rotation experiments, scanning experiments have con-
firmed the mental imagery hypothesis by finding that people take more
time to scan longer distances across images (Kosslyn 1980). Make a mental
image of your country, and identify a city on the west coast or border, one

R I EKEIRXS

1 2 3 4 5 6

Figure 6.4
Mental rotation: the amount of time it takes to determine whether a letter is normal
or a mirror image is directly proportional to how much it needs to be rotated to
find an answer.
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in the interior of the country, and one on the east coast or border. For
example, Americans should locate San Francisco, Chicago, and New York
on their maps. If you are working with a visual image, then it should take
longer for you to scan from the western city to the eastern city than it does
to scan from the western city to the central city.

Finke, Pinker, and Farah (1989) performed experiments that show that
people can assign novel interpretations to images that have been con-
structed out of parts or mentally transformed. In addition to the rotated
«B”-into-heart example described above, they gave students instructions
such as the following: Imagine the letter “Y.” Put a small circle at the
bottom of it. Add a horizontal line halfway up. Now rotate the figure 180
degrees. Most people see a stick person as the result of these instructions.
The required transformations are shown in figure 6.5. People’s frequent
success in getting the right answer suggests that they are operating with
visual representations. Even financial judgments may be affected by mental
imagery (MacGregor et al. 2002).

Although most researchers in psychology are convinced by experiments
like those just described that humans use visual imagery, some skeptics
maintain that the same kind of verbal representations underlie all thought
and that the experiences of imagery are illusory. Rotation, scanning, and
other transformations can always be mimicked by nonimagistic computa-
tional procedures on lists of words. Within the last decade, however, neu-
rological evidence has accumulated that provides further support for the
imagery hypothesis.

Neurological Plausibility

Kosslyn (1994b) extensively reviews two kinds of evidence that parts of the
brain used in visual perception are also involved in visual mental imagery.

* First, patients with brain damage that produces deficits in their perceptual

TmEEX

Figure 6.5
Sequence of transformations required to produce the stick person.



106 Chapter 6

abilities sometimes have similar imagery deficits. For example, some
patients unable to see one side of space during perception also are unable
to see the same side of space during imagery. Damage to the occipital lobe
impairs visual imagery. Second, measurements of brain activity have found
that when people use visual mental imagery to perform tasks, brain areas
used in visual perception become active. Imagery relies on regions of cortex
that are spatially organized in ways that correspond to the structure of the
retina, the networks of nerve cells that send impulses to the brain. The
areas of the brain most immediately connected to the retina have a spatial
organization that is structurally similar to that of the retina. Since these
areas preserve some of the spatial structure of objects presented to the
retina, their activation during imagery suggests that imagery involves

picturelike representations, not just verbal descriptions. Kosslyn, Ganis, |
and Thompson (2001) review neurological studies of visual, auditory, and:

motor imagery.

Kosslyn describes the brain's processing of mental images in terms of -

computational mechanisms by which it satisfies multiple constraints in

parallel. Chapter 7 describes how similar processes can be performed by

artificial neural networks.
Practical Applicability

If mental imagery is useful in problem solving, education may profitably
involve teaching people to use images more effectively. Larkin and Simon
(1987) describe the conditions under which diagrams contribute to effec-
tive problem solving. Most psychological work on imagery, however, has
been concemed with how people use images, not with educating them
to use images better. Dehaene et al. (1999) report behavioral and brain-
imaging experiments that suggest that mathematical intuition sometimes

depends on visual and spatial representations; hence, mental images may

be relevant to improving the teaching of mathematics.
Many strategies for improving memory rely on visual images. To remem-

ber something important, it helps to associate it with a vivid image. For |
example, to ensure that you will be able to recall the six kinds of mental |
representation discussed in this book, you might associate each of them

with a mental picture of a different zoo animal that you think of as logical,
rule-based, and so on.
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Many kinds of design by architects, engineers, and product designers use
visual representations such as sketches and blueprints. Mental imagery is
presumably a part of these designers’ creative mental processes, but there
is little psychological evidence or computational understanding concern-
ing the role of imagery in design. Kosslyn (1994a) presents a set of princi-
ples, based on empirical findings, for making visual displays that people
can easily read and understand. Finke, Ward, and Smith (1992) discuss
imagery’s contribution to creative inventions.

Although artificial intelligence researchers have taken increasing inter-
est in imagery and diagram-based systems, image-based expert systems
are rare. Forbus, Nielson, and Faltings (1991) describe a system that does
qualitative spatial reasoning about physical devices. Glasgow, Fortier, and
Allen (1993) have used an array-based system for determining crystal and
molecular structure.

Summary

Visual and other kinds of images play an important role in human think-
ing. Pictorial representations capture visual and spatial information in a
much more usable form than lengthy verbal descriptions. Computational
procedures well suited to visual fepresentations include inspecting,
finding, zooming, rotating, and transforming. Such operations can be
very useful for generating plans and explanations in domains to which
pictorial representations apply. The explanatory schema for visual repre-
sentation is as follows:

Explanation target

Why do people have a particular kind of intelligent behavior?
Explanatory pattern

People have visual images of situations.

People have processes such as scanning and rotation that operate on those
images.

The processes for constructing and manipulating images produce the intel-

ligent behavior.

Imagery can aid learning, and some metaphorical aspects of language may
have their roots in imagery. Psychological experiments suggest that visual
Procedures such as scanning and rotating employ imagery, and recent
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neurophysiological results confirm a close physical link between reason-
ing with mental imagery and perception.

Discussion Questions

1. Is introspection a reliable guide to our mental representations and pro-
cedures? Why is introspection alone not enough to show the importance
of mental images? |

2. Do you have sensory imagery? When do you most frequently use it?
3. What computations are potentially easier to achieve using imagistic
representations?

4. In what kinds of problem solving are visual images useful? When can
they become a hindrance?

5. How would a critic of mental imagery explain the psychological and
neurological experiments supporting mental imagery?

Further Reading

Kosslyn 1994b and Kosslyn, Ganis, and Thompson 2001 provide a com-
prehensive review of recent psychological and neurological results. Finke
1989 surveys much experimental work on imagery. Glasgow 1993 reviews
the debates about imagery from a computational perspective, with dis-
cussion by AI critics. Tye 1991 provides a philosophical examination.
Langacker 1987 touches on the relevance of imagery to linguistics. Marr
1982 is a classic source on human and computer vision. For the latest
in the imagery debate, see Pylyshyn 2002 and Kosslyn, Ganis, and
Thompson 2003.

Web Sites

Diagrammatic reasoning: http://www.hcrc.ed.ac.uk/gal/Diagrams/
Imagination and mental imagery: http://www.calstatela.edu/faculty/
nthomas/home.htm

Sports and mental imagery: http://www.vanderbilt.edu/AnS/psychology/
health_psychology/mentalimagery.html

Stephen Kosslyn’s home page: http://www.wjh.harvard.edu/~kwn/
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Zenon Pylyshyn’s home page: http://ruccs.rutgers.edu/faculty/pylyshyn.
html

Notes

One of the main reasons that computational models of imagery have been relatively
rare is that the programming tools currently available are much better suited for
verbal representations than for visual ones. In addition to the array representations
advocated by Glasgow and Papadias (1992), graph representations can be useful for
capturing some aspects of visual representations (Wong, Lu, and Rioux 1989). Croft
and Thagard (2002) use scene graphs and the Java 3-D programming language to
model visual analogies.



7 Connections

Near the end of the nineteenth century, Santiago Ramén y Cajal dis-
covered that the brain consists of discrete cells. These neurons signal each
other through contacts at specialized points called synapses. Figure 7.1
shows a simplified picture of neurons connected by synapses. The human
brain has about 100 billion neurons, many of which connect to thousands
of other neurons, forming neural networks.

In the early days of computational models of thinking in the 1950s and
1960s, there was much interest in modeling how neural networks might
contribute to thought. But this work waned in the 1970s, as the attention
of researchers in artificial intelligence and psychology shifted almost
entirely to rule-based and concept-based representations. In the 1980s,
however, there was a dramatic rebound of computational modeling
inspired by the neuronal structure of the brain (e.g., Hinton and
Anderson 1981; Rumelhart and McClelland 1986). This research is often
called connectionist, because it emphasizes the importance of connections
among simple neuronlike structures, but is also sometimes discussed in
terms of neural networks or parallel distributed processing (PDP). A wealth
of connectionist models of mind and brain have been developed, but I will
concentrate on two classes of models. The first class is concerned with local
representations in which neuronlike structures are given an identifiable
interpretation in terms of specifiable concepts or propositions. The second
class is concerned with distributed representations in networks that learn
how to represent concepts or propositions in more complex ways that dis-
tribute meaning over complexes of neuronlike structures.

Both local and distributed representations can be used to perform paral-
lel constraint satisfaction. Many cognitive tasks can be understood compu-
tationally in terms of processing that simultaneously satisfies numerous
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Figure 7.1
Neurons connected by synapses. The electrical signals flow into the dendrites and
out through the axon. Adapted with permission from Rumelhart and McClelland

1986, vol. 2, p. 337.

constraints. As an initial example of a constraint satisfaction problem, con-
sider the task faced by university administrators when they put together a
new class schedule. Some of the constraints they face are inviolable: they
cannot put two classes in the same room at the same time, and a student
or professor cannot simultaneously be in two different classes. In contrast,
many of the constraints are soft ones, involving preferences of professors
and students concerning when and where their classes will take place.
Coming up with a schedule that takes into account the various constraints
imposed by classroom availability and the preferences of professors and
students is a daunting task that is rarely accomplished in optimal fashion.
Administrators typically take a previous term'’s schedule and adapt it as
needed to handle new problems. But constraint satisfaction problems can
be solved in a more general way if all the constraints are simultaneously
taken into account.

Explicit models of parallel constraint satisfaction were first developed for
computer vision. Marr and Poggio (1976) proposed what they cailed a
“cooperative” algorithm for stereoscopic vision. Two eyes form slightly dif-

ferent images of the world: how does the brain match the two images and

construct a coherent combined image? Marr and Poggio noticed that
matching is governed by several constraints involving how points in one
image can be put into correspondence with points in another. Creating a

coherent image is then a matter of satisfying the constraints on matching -

points across the two images. To accomplish this task computationally,
Marr and Poggio proposed using a parallel, interconnected network of
processors in which the interconnections represented the constraints.

Connections 113

Similar networks were subsec_]uenﬂy used by Feldman (1981) to model
visual representations in memory and by McClelland and Rumelhart
(1981) to moc_:lel letter perception. Look back at the Necker cube presented
in figure 6.1. Parallel constraint satisfaction provides a mechanism for
resolving the ambiguity inherent in the Necker cube. Each of the two
global interpretations can be defined in terms of a set of more elementary
interpretations of the elements of the drawing. For example, under one
interpretation the top-left corner in the drawing is the front-top-left corner
of the cube, whereas under the other interpretation the same point is inter-
preted as the back-top-left comer. Furthermore, the possible local inter-
pretations are highly interdependent, tending to either support or compete
with each other in accord with the structural relations embodied in the
canonical cube.

Human interpretations of the Necker cube can be modeled by a simple
connectionist network that uses units to represent interpretations of the
corners and links between units to represent compatibilities and incom-
patibilities between interpretations. In this network, parallel constraint
satisfaction converges on one or the other of the two possible views,
activating a subset of units that collectively represent a coherent interpre-
tation, and deactivating the others. Research in the past decade has shown

~ that parallel constraint satisfaction applies to many kinds of high-level cog-

nition, not just to visual perception.
Representational Power

Connectionist networks constitute very simple representations, since they
consist only of units and links. The units are analogous to neurons and
have a degree of activation that corresponds roughly to the frequency with
which neurons fire in order to send signals to other neurons. In local con-
nectionist networks, the units have a specifiable interpretation such as par-
ticular concepts or propositions. The activation of a unit can be interpreted
as a judgment about the applicability of a concept or the truth of a propo-
sition. Links can be one-way, with activation flowing from one unit to
another, or symmetric, with activation flowing back and forth between two
units. Links are either excitatory, with one unit raising the activation of
another, or inhibitory, with one unit suppressing the activation of another.
Figure 7.2 gives a simple example of a local network that might be involved



114 ’ Chapter 7

[ likes programming J [ likes parties J
Y Y
l computer geek ] outgoing
Y =
shy
Figure 7.2

Simple local network with excitatory links (thin lines) and an inhibitory link (thick
line with minus sign). Which of the excitatory links could plausibly be symmetric?

in making inferences about a fellow student. You meet Alice and learn that
she likes programming, so you think she might be a computer geek and
therefore shy. On the other hand, you learn that she likes parties, which
suggests that she is outgoing. In forming a coherent impression of her, you
have to decide whether she is actually shy or outgoing. The network in
figure 7.2 uses a unit to represent each trait and has one-way excitatory
links that make activation flow from the observed behaviors to the inferred
traits. It also has a symmetric inhibitory link between shy and out-
going, reflecting the fact that it is hard to be both. The distributed
networks described below include units that do not have such specific
interpretations.

To understand the nature of distributed representations, we can use a
visual analogy developed by Kosslyn and Koenig (1992, 20). Figure 7.3
shows an octopus network that accomplishes the task of communicating
to seagulls the presence of fish near the bottom of the tidal pool. The octopi
in the bottom row detect fish and signal to the octopi in the middle row
by squeezing their tentacles, and the octopi in the middle row similaily
signal to those in the top row, who in tumn can throw up tentacles to
inform the seagulls. This is a kind of feedforward network where iriforma-
tion flows upward through the network. The bottom row of octopi can be
thought of as an input layer, and the top row as an output layer, but what

interpretation can be given to the octopi in the middle row? The infor-’

mation about how many fish there are is not encoded in any particular
octopus, but rather is distributed over the whole network of octopi. Simi-
larly, figure 7.4 depicts a feedforward neural network in which the hidden
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Figure 7.3

A visual analogy for a distributed processing network. Reprinted with the permis-
sion of The Free Press, an imprint of Simon and Schuster, from Wet Mind: The New
Cognitive Neuroscience, by Stephen M. Kosslyn and Olivier Koenig. Copyright © 1992
by Stephen M. Kosslyn and Olivier Koenig.

(neither input nor output) units in the middle layer have no initial
interpretation. They acquire an interpretation through adjustments in the
weights that connect them to other units, by a learning process discussed
below. In recurrent networks, activation from the output units feeds back
into the input units.

Concepts can be viewed as distributed representations in networks. A
network that is trained to respond accurately to stimuli can acquire con-
cepts that apply to the stimuli. For example, if a network has as input units
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Output Units

Hidden Units

Input Units

Figure 7.4
A feedforward computer model, with input, hidden, and output units.

features of animals, and output units that identify kinds of animals such
as dog and cat, then the network can acquire the concept of a dog or a
cat. The concept does not consist of any particular node; rather, it consists
of a typical pattern of activation of units that occurs when a typical set of
features is given as input. The notion of a concept as a pattern of activa-
tion of nodes in a distributed network is very different from the charac-
terization of concepts given in chapter 4, but shares with it the claim that
a concept is a prototype rather than a set of necessary and sufficient
conditions.

Links between units suffice for representing simple associations such as
that computer geeks are shy and shy people are not outgoing. But they
lack the representational power to capture more complex kinds of rules,
such as that anyone who likes a computer geek is also a computer geek.
In the logical symbolism presented in chapter 2, this would be something
like
() (@) [geek () & likes (v, y)] - geek ().

In words: “For any x, if there is a y such that y is a geek and x likes y,
then x is a geek.” Relations such as “likes” and complex logical relations
are difficult to represent in connectionist networks, although ingenious
attempts are underway to increase their representational power beyond
that of the simple local network in figure 7.2. One promising technique is
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to use synchrony to link units that represent associated elements: a unit or
package of units that represents the x that does the liking can be made to
fire with the same temporal pattern as the x that likes computers (Shastri
and Ajjanagadde 1993; Shastzi 1999; Hummel and Holyoak 1997). Another
way of representing relational information is to use vectors, which are lists
of numbers that can be understood as the firing rates of groups of neurons.
For example, the vector (0.3, 0.4, 0.2) can be interpreted as the relative
firing activity of three neurons. Vectors can be used to distinguish between
agents (e.g., what does the liking) and objects (e.g., ones that are liked).
Such vectors can be combined to represent highly complex relational
information needed for analogical reasoning (Smolensky 1990; Eliasmith
and Thagard 2001). See chapter 9 for more discussion of neuronal
representations.

Neural networks provide powerful sensory representations that make
possible many more tastes and aromas than we can typically express in
words (Churchland 1995). The tongue has four types of taste sensors, for
sweet, sour, salty, and bitter. Consider a system that has a unit corre-
sponding to each of these sensors, with each unit capable of ten distinct
levels of activation. Then the system can discriminate 10* = 10,000 differ-
ent tastes, each corresponding to a different pattern of activation.

Computational Power

Problem Solving

Neural networks provide powerful computational tools for performing
parallel constraint satisfaction. Consider the problem in figure 7.2, where
the task is to decide whether Alice is outgoing or shy. This problem has
both positive constraints, such as between likes parties and outgoing, and
negative constraints, such as between outgoing and shy.

Once the concepts and constraints are specified, implementing this kind
of model in a parallel network is easy. First, concepts such as outgoing are
represented by units. Second, positive internal constraints are represented
by excitatory connections: if two concepts are related by a positive con-
straint, then the units representing the elements should be linked by an
excitatory link. Third, negative internal constraints are represented by
inhibitory connections: if two concepts are related by a negative con-
straint, then the units representing the elements should be linked by an
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inhibitory link. Fourth, an external constraint can be captured by linking = ;

units representing elements that satisfy the external constraint to a special
unit that affects the units to which it is linked either positively {by virtue
of excitatory links) or negatively (by virtue of inhibitory links). In the Alice
example, the external constraints are that you know that she likes pro-
gramming and likes parties, so there will be links between the special unit
and the units representing these two elements.

The neural network computes by spreading activation between units
that are linked to each other. A unit with an excitatory link to an active
unit will gain activation from it, whereas a unit with an inhibitory link
to an active unit will have its own activation decreased. Some units are
activated as others are deactivated, with the result depending on the inter-
connectionis among the units. A problem solution consists of when a

group of units, such as those in the Alice problem, is activated by the set '-

containing outgoing, while correctively deactivating the set containing shy.
In the network in figure 7.2, outgoing will win out over shy because out-
going is more directly connected to the external information that Alice
likes parties.

Constraints can be satisfied in parallel by repeatedly passing activation
among all the units, until after some number of cycles of activity all units
have teached stable activation levels. This process is called relaxation, by
analogy to physical processes that involve objects gradually achieving a

stable shape or temperature. Achieving stability is called settling. Relaxing

the network means adjusting the activation of all units based on the units

to which they are connected until all units have stable high or low ¢

activations.

Planning Although decisions among competing plans are naturally
understood in terms of parallel constraint satisfaction, constructing plans

is usually a more sequential process understood in terms of rules or

analogies. Your plan to graduate can be expressed in terms of a set of rules

concerning what sequence of courses will give you enough courses of the
required kinds. But connectionist networks can implement simple kinds

of rule-based systems. Touretzky and Hinton (1988) constructed a rule-
based system that uses distributed representations. It treats the process of

matching the IF part of a rule as a kind of parallel constraint satisfaction. b
However, the resulting system can match only clauses with simple predi-
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cates, not relations. Nelson, Thagard, and Hardy (1994) use local repre-
sentations to implement rule matching and analogy application as paral-
lel constraint satisfaction. The resulting system models plan construction,
such as how Juliet in Shakespeare’s play planned to meet Romeo. Thus,
connectionist systems can be indirectly relevant to modeling solutions of
planning problems.

Decision We can understand the process of making a decision in terms
of parallel constraint satisfaction (Thagard and Millgram 1995; see also
Mannes and Kintsch 1991). The elements of a decision are various actions
and goals. The positive internal constraints come from facilitation rela-
tions: if an action facilitates a goal, then the action and goal tend to go
together. The negative internal constraints come from incompatibility rela-
tions, when two actions or goals cannot be performed or satisfied together,
as when a student cannot take two courses at the same time. The external
constraint on decision making comes from goal priority: some goals are
inherently desirable, providing a positive constraint. Once the elements
and constraints have been specified for a particular decision problem, a
constraint network can be formed such as that seen in figure 7.5.

Suppose you are facing the difficult problem of deciding what to do after
graduation. Perhaps your options include going to graduate school or
taking an entry-level position with a large corporation. The constraints you
face are first that you cannot do both and moreover that the different
options fit better with different goals that you have. Immediate employ-
ment may solve your current financial problems, but may not necessarily
provide an interesting long-term career. Moreover, perhaps there are
aspects of your field that you want to learn more about. On the other hand,
you might be tired of taking classes. Figure 7.5 shows a simple network
that captures part of what is involved in the decision. Units represent the
various options and goals, and pluses and minuses indicate the excitatory
and inhibitory links that embody the fundamental constraints. If a unit
settles with high activation, this is interpreted as acceptance of the goal or
action that it represents, whereas deactivation represents rejection. The
unit representing graduate school has stronger excitatory links and there-
fore will get more activation than the unit representing taking a job, which
will be deactivated because of the inhibitory link with the unit for
graduate school.
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[ GOAL PRIORITY ]
understand retire
more

early
learn long-term
more income

graduate
school

Figure 7.5

A constraint network for decision making. Boxes represent units, thin lines repre-
sent positive constraints based on facilitation (symmetric excitatory links), and the
thin line with a minus represents a negative constraint (inhibitory link). The “goal
priority” special unit pumps activation to the other nodes that have to compete

corporation

for it.

Analogy can also be useful in decision making, since a past case where
something like A helped to bring about something like B may help one to
see that A facilitates B. But reasoning with analogies may itself depend on
parallel constraint satisfaction. Chapter 5 described Holyoak’s and my view
that retrieving and mapping analogs involves the constraints of similarity,
structure, and purpose (Holyoak and Thagard 1995). The computational
models we have implemented perform parallel satisfaction of these con-
straints using mechanisms similar to the ones just described for decision
making.

Explanation Churchland (1989) has contended that explanation should
be understood as activation of prototypes encoded in distributed networks.
Understanding why a particular bird has a long neck can come via activa-
tion of a set of nodes representing swan, which include the prototypical
expectation that swans have Jong necks. On this view, inference to the best
explanation is just activation of the most appropriate prototype.
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Using local networks, inference to the best explanation has been
modeled via a theory of explanatory coherence (Thagard 1989, 1992,
2000). Suppose you are expecting to meet your friend Fred at the cafete-
ria, but Fred does not show up. Your knowledge of Fred and your general
knowledge about other students may suggest various hypotheses that
could explain why Fred does not show up, but you would still have to
decide which hypothesis is most plausible. Perhaps Fred decided he had
to study, or maybe he went dancing with someone. An extra piece of
evidence that Fred was spotted in the library would clearly support one
hypothesis over the other. Figure 7.6 shows a network that captures some
of the relevant information as used in the program ECHO that I wrote to
model explanatory coherence. Units representing pieces of evidence are
linked to a special evidence unit that activates them, and activation spreads
out to other units. There is an inhibitory link connecting the units repre-
senting the two competing hypotheses that Fred is in the library and that
he went dancing. Choice of the best explanation can involve not only the
evidence for particular hypotheses, but also explanations of why those
hypotheses might be true. For example, Fred’s motive for studying is that
he wants high grades; alternatively, the reason he went dancing might
be that he likes to party. Settling the nefwork will provide a coherent
interpretation of his behavior. In the network in figure 7.6, the net-
work will settle with the unit for “Fred is studying” activated because it
has more sources of activation than its competitor, the unit for “Fred went
dancing.”

Learning

Given the simple structure of connectionist networks, there are two basic
ways in which learning can take place: add new units, or change the
weights on the links between units. Work to date has concentrated on the
second kind of learning. A biologically plausible kind of weight learning
was proposed by Hebb (1949). He speculated that when two brain cells or
systems are active at the same time, they should become associated with
each other. This kind of learning has been observed in real neurons and
has been modeled computationally in various ways. The idea is that if unit
(neuron) A and unit B are both active at the same time, then the weight
on the link between them should increase. For example, in a local network
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Fred wants Fred likes
high grades to party
Fred is - Fred went |
studying dancing

Fred was seen
in the library

Fred did
not come

Figure 7.6
Network for picking the best explanation of why Fred did not show up. The thin
lines are symmetric excitatory links and the thick line marked with a minus is a

symmetric inhibitory link.

that has units representing both dancing and partying, if these units are
frequently active at the same time, then the link between them will
become stronger and stronger, implementing an association between
dancing and partying. This kind of learning is unsupervised in that it does
not require any teacher to tell the network when it has right or wrong
answers.

The most common kind of learning in feedforward networks with dis-
tributed representations uses a technique called backpropagation. Figure 7.7
shows a simple network with input, hidden, and output units that is sup-

posed to learn about social stereotypes on campus. After training, the

network should be able to classify students: given a set of features activated
in the input layer, it should activate an appropriate stereotype at the output
layer. For example, a student who plays sports and parties (input layer)
could be identified as a jock (output layer). Backpropagation can be used
to train the network by adjusting the weights that connect the different

Connections = 123
Artsie Computer Engineer Jock

Output Geek
Units
Input
Units

quiet drinks plays wears  parties  studies

sports  black hard

Figure 7.7

A network that can be trained to classify students.

units, through the following steps (see Towell and Shavlik 1994; for full
details, see Rumelhart and McClelland 1986):

1. Assign weights randomly to the links between units.

2. Activate input units based on features of what you want the network to
learn about.

3. Spread activation forward through the network to the hidden units and
then to the output units.

4. Determine errors by calculating the difference between the computed
activation of the output units and the desired activation of the output
units. For example, if activation of quiet and studies hard activated jock, this
result would be an error.

5. Propagate errors backward down the links, changing the weights in such
a way that the errors will be reduced.

6. Eventually, after many examples have been presented to the network,
it will correctly classify different kinds of students.

Backpropagation models have had many successful applications, in both
psychology and in engineering. They do more than simply identify rules
such as IF someone plays sports THEN he or she is a jock. Networks trained
by backpropagation can identify statistical associations between input and
output features that are more subtle than rules. Nevertheless, backpropa-



Mo sEn

r

124 Chapter 7

gation has a number of drawbacks as a model of human learning. First, it
requires a supervisor to say whether an error has been made. Much learn-
ing—for example, of language—seems to occur without much explicit
supervision. Neural network models of unsupervised learning are discussed
in Hinton and Sejnowski (1999). Second, backpropagation tends to be
slow, requiring many hundreds or thousands of examples to train a simple
network. For some kinds of human learning large numbers of trials seem
appropriate, but people can also sometimes learn from very few examples.
McClelland, NcNaughton, and O'Reilly (1995) advocate complementary
learning systems that use both a slow-learning component for semantics
as well as a fast-learning one for object names and other information.

Language

Early connectionist models of language involved visual and auditory per-
ception. McClelland and Rumelhart (1981) showed how word recognition
can be understood as a parallel constraint satisfaction problem. Suppose
you spilled coffee on this page so that some of the letters were partly
covered. You would probably still be able to figure out what many of the
words were, by using visible letters and the overall context. For example,
in figure 7.8 it is possible to determine the ambiguous middle letter in each
word, using both the presented information about the shape of the letter
and the overall context given by the word that the letter appears in. Inter-
connected units can represent hypotheses about what letters are present
and about what words are present, and relaxing the network can pick the
best overall interpretation. McClelland and Elman (1986) developed a
similar model of speech perception.

TJust as connectionist networks can be used to disambiguate letters and
sounds, they can be used also to disambiguate word meanings. Kintsch
(1988, 1998) proposed a “construction-integration” model of discourse
comprehension that could explain, for example, how the word “bank” is
sometimes taken to mean a financial institution and at other times taken

TAE CAT

Figure 7.8
Context makes possible identification of identical structures as different letters.
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financial
institution I boundary

Montreal ]
Figure 7.9

Meaning of “bank” is determined by activation flow in the network. Thin lines are
symmetric excitatory links. Thick lines are symmetric inhibitory links.

to mean the edge of a river. Unlike what happens under the view of con-
cepts described in chapter 4, meaning is not built into a concept but must
instead be created in particular contexts by interacting elements. Figure 7.9
shows part of a network that might be useful for determining the appro-
priate meaning of “bank” in a particular context. Which interpretation gets
activated depends on how input information will affect the various units
and links.

Rumelhart and McClelland (1986) developed a parallel distributed pro-
cessing model of how children learn to form the past tense of English verbs
without forming explicit rules. One explanation of why young children
erroneously use past tenses such as “goed” and “hitted” is that they have
formed a rule that produces past tenses by simply adding “ed.” Errors arise
when this rule is applied too generally to include irregular verbs. But
Rumelhart and McClelland showed how a connectionist network can be
trained to reproduce the children’s error using distributed representations
rather than rules. In response, Pinker and Prince (1988) argued that the
connectionist model is psychologically implausible in that it forms past
tenses quite differently from how children do. MacWhinney and Leinbach
(1991) replied with a new connectionist model designed to overcome these
objections, and Ling and Marinov (1993) countered with a nonconnec-
tionist model that they claimed is at least as psychologically realistic. The
debate continues with Pinker and Ullman (2002) advocating a “words and
rules” theory of language processing. McClelland and Patterson (2002)
defend the connectionist approach.
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Psychological Plausibility

Connectionist models have furnished explanations of many psychological = |

phenomena. McClelland and Rumelhart’s (1981) model of word percep-
tion described above has explained the results of several experiments. For
example, Rumethart and McClelland (1982) described psychological exper-
iments that confirmed their model’s predictions concerning how the dura-
tion of context letters affects the perceptibility of a word. McClelland and
Flman (1986) described various speech perception phenomena such as
temporal effects that are explained by their model. Similarly, Kintsch's
(1988) model of discourse comprehension has been confirmed by experi-
ments in which students verified sentences of various types (Kintsch et al.
1990).

The local connectionist models of analogical mapping and retrieval not
only have been used to simulate the resuits of previous psychological
experiments, but also have suggested new ones (Holyoak and Thagard
1995; Spellman and Holyoak 1993; Wharton et al. 1994). For example,
Spellman and Holyoak (1993) were able to show that the purpose of an
analogy has an effect on analogical mapping in a way that Holyoak’s and
my computer models simulate. Similarly, to test my connectionist model
of how explanatory hypotheses are evaluated, Read and Marcus-Newhall
(1993) and Schank and Ranney (1991, 1992) created experiments that com-

pared judgments of human subjects favorably with those generated by the | '

program ECHO. Ziva Kunda and I used a simple local connectionist model
to account for a dozen experimental results concerning how people form
impressions of other people (Kunda and Thagard 1996).

Backpropagation techniques have simulated many psychological. '

processes. For example, Seidenberg and McClelland (1989) used back-
propagation to model visual word recognition in a way that simulates
many aspects of human performance, including how words vary in pro-
cessing difficulty, how novel items are pronounced, and how people make
the transition from beginning to skilled reading. St. John (1992) used back-

propagation to produce distributed representations that simulate many 1

aspects of discourse comprehension. Connectionist learning mechanisms
are now used to explain many aspects of human development, such as why
children are quick to learn some things but slow to learn others (Bates and
Elman 2002).
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Neurological Plausibility

How neurologically plausible are local connectionist networks? The artifi-
cial networks in this chapter are similar to brain structure in that they have
simple elements that excite and inhibit each other. But real neural net-
works are much more complicated, with billions of neurons and trillions
of connections. Moreover, real neurons are much more complex than the
units in artificial networks, which merely pass activation to each other.
Neurons have dozens of neurotransmitters that provide chemical links
between them, so the brain must be considered in chemical as well as elec-
trical terms. Real neurons undergo changes in synaptic and nonsynaptic
properties that go beyond what is modeled in artificial neural networks.
See chapter 9 for discussion of neurons that are much more like those
found in the brain.

In local representations, each unit has a specifiable conceptual or
propositional interpretation, but each neuron in the brain does not
have such a local interpretation. At best, we can think of each arti-
ficial unit as representing a neuronal group, a complex of neurons that
work together to play a processing role. Thinking of units as like neu-
ronal groups rather than like neurons also overcomes another difference
between units and neurons: many local networks use symmetric links
between units, whereas synapses connecting neurons are one-way. But
neuronal groups often have neural pathways that allow them to influ-
ence each other. Unlike units in artificial neural networks, a real neuron
has excitatory links to other neurons or inhibitory links to other neurons,
but not a mixture. The brain clearly distributes its representations over
far more neurons than are found in artificial neural networks, local or
distributed.

Hebbian learning that strengthens synapses between similarly active
neurons has been observed in the brain, which also experiences various
other kinds of learning by synapse adjustment (Churchland and Sejnowski
1992, chap. 5). However, backpropagation learning does not correspond
to any process that scientists have observed in the brain. Actual neural
networks do have the feedforward character of backpropagation networks,
but there is no known neurological mechanism by which the same path-
ways that feed activation forward can also be used to propagate error cor-
rection backward. O’Reilly and Munakata (2000, 162) describe an



128 Chapter 7

algorithm that is an approximation to backpropagation but is more bios
logically plausible. i

Most connectionist models are thus only a very rough approximation td
the behavior of real neurons. Nevertheless, the analogy between the brain
and the computational mind has so far been very fruitful, and computer:
models that are more authentically brainlike are under development: &
Chapter 9 describes computational models that are more neu:ologu:aﬂy 4
realistic than the ones presented in this chapter.

Practical Applicability
;
Connectlomst models of learning and performance have had some inter-
esting educational applications. Adams (1990) provides a connectionis _‘
style description of the various kinds of knowledge required for reading,
Figure 7.10 shows the interrelations among orthography, word meanings, -
and the broader context in which a word occurs. To read a piece of text :
you need to process letters into words and simultaneously take into;™
account meaning and context. In the terms of this chapter, reading is @
kind of parallel constraint satisfaction where the constraints simultane-
ously involve spelling and meaning and context. Any narrow approach to: :
teaching reading that ignores some of these constraints—for example, by
neglecting phonics or by neglecting meaning and context—will make
learning to read more difficult. 3
Design is naturally thought of in terms of parallel constraint satisfaction: -
For example, an architect’s design for a building must take into account
numerous constraints such as cost, the intended use of the building, it}
surroundings, and aesthetic consideratjons. Backpropagation techniques.
have been used to assist engineers in predicting the stresses and strains of
materials needed for buildings (Allen 1992).

Orthographic - Meaning Context i
Processor - Processor /%
Figure 7.10

Multiple processors required for reading (Adams 1990, 138). See also Seidenberg and
McClelland 1989.
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Connectionist models are widely used in intelligent systems. The back-
propagation algorithm has had many engineering applications—for
example, in training networks to recognize bombs, underwater objects, and
handwriting. One bank trained an artificial neural network to identify
which of its customers were likely to default on loans. Other networks have
been trained to interpret the results of medical tests and predict the occur-
rence of disease. Widrow, Rumelhart, and Lehr (1994) survey applications
of neural networks in industry.

Summary

Connectionist networks consisting of simple nodes and links are very
useful for understanding psychological processes that involve parallel con-
straint satisfaction. Such processes include aspects of vision, decision
making, explanation selection, and meaning making in language compre-
hension. Connectionist models can simulate learning by methods that
include Hebbian learning and backpropagation. The explanatory schema
for the connectionist approach is as follows:

Explanation target
Why do people have a particular kind of intelligent behavior?
Explanatory pattern

People have representations that involve simple processing units linked to
each other by excitatory and inhibitory connections.

People have processes that spread activation between the units via their
connections, as well as processes for modifying the connections.
Applying spreading activation and learning to the units produces the
behavior.

Simulations of various psychological experiments have shown the psy-
chological relevance of the connectionist models, which are, however, only
tough approximations to actual neural networks.

Discussion Questions

1. What is the difference between a local and a distributed representation?

2. How do units in artificial neural networks differ from natural neurons?
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3. How do connectionist explanations of psychological phenomena differ
from rule-based explanations? :

4. What psychological phenomena are most naturally explained in con- .
nectionist terms?
5. What psychological phenomena are most difficult for connectionists to

explain?
Further Reading

Introductions to neural network modeling include Bechtel and
Abrahamsen 2002, Churchland and Sejnowski 1992, O'Reilly and
Munakata 2000, and Rumelhart and McClelland 1986. McClelland
and Rumelhart 1989 provides detailed instructions for doing your owni
modeling. Anderson and Rosenfeld 1988 includes some classic papers on
neural networks, and Anderson and Rosenfeld 1998 contains interviews
with many pioneering researchers in the field. Elman et al. 1996 applies
connectionist ideas to the problem of innateness. Tesar and Smolensky
2000 discusses language acquisition from the perspective of a theory that
grew out of connectionism.

Web Sites

Jeff Elman’s home page: http://crl.ucsd.edu/~elman/

Jay McClelland’s home page: http://www.cnbc.cmu.edu/~jlm/

Software for neural network modeling: http:/ /www.cnbc.cmu.edu/Resources/;
PDP++//PDP++.html

Notes

The kind of spreading activation between concepts as discussed in chapter 4 is nar- |
rower than the kind discussed in this chapter, which includes inhibitory as well as
excitatory mechanisms, and includes the activation of hidden units that do not
represent whole concepts.

To compute activations of the units in a connectionist network, each unit is given
a starting activation and repeated cycles of updating begin. There are many ways
this can be done. In one technique, on each cycle the activation of a unit j, 4, is
updated according to the following equation:
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aft+ 1) =a®)(1 -d) +

net{max — aff)) if net;>0

neti(a;(t) — min) otherwise.
Here d is a decay parameter (that decrements each unit at every cycle, min is the
minimum activation (-1), max is the maximum activation (1). Based on the weight

w; between each unit i and j, we can calculate net;, the net input to a unit, by the
equation

net; = Zwya(t).



8 Review and Evaluation

Cognitive science is about the same age as rock and roll; both emerged
from diverse sources in the mid-1950s. Like rock music, cognitive science
has changed in many ways through the development of new ideas and
techniques. This chapter briefly summarizes the achievements of cognitive
science, comparing and evaluating the representational and computational
power of the six approaches described in chapters 2-7. It concludes by
sketching a series of important challenges for CRUM, the Computational-
Representational Understanding of Mind.

The Achievements of Cognitive Science

Scientific understanding of problem solving, learning, and language is
enormously more sophisticated now than it was fifty years ago when
behaviorism reigned. We know how to design complex systems that make
logical inferences. Rule- and concept-based systems have successfully
modeled various aspects of problem solving and language use. In the past
couple of decades, analogical thinking has been increasingly understood
through a combination of psychological experiments and computational
modeling. Imagery has been transformed from a topic at the fringes of sci-
entific investigation to a subject of highly sophisticated psychological, neu-
rological, and computational research. Connectionist models of learning
and parallel constraint satisfaction have furnished explanations of numer-
ous psychological phenomena.

One accomplishment that has eluded cognitive science is a unified
theory that explains the full range of psychological phenomena, in the
way that evolutionary and genetic theory unify biological phenomena,
and relativity and quantum theory unify physical theory. Different
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Table 8.1
Review of theoretical applications of computational approaches.
Problem
Representation ~ solving Leamning Language
Logic Propositions Deduction Generalization Logical form
Operators Probability Abduction
Predicates
Quantifiers
Rules IF-THEN Search Chunking Grammar
Forward Generalization Pronunciation
chaining Abduction Spelling
Backward
chaining
Concepts Frames with Matching Abstraction Lexicon
slots Inheritance  {rom examples  Semantics
Schemas Spreading Conceptual
Scripts activation combination
Analogies Target and Retrieval Storage Metaphor
source Matching Schema
Causal Adaptation formation
relations
Images Visual, motor, Matching, Imaginary Image schemas
etc. manipulating  practice
Connections Units and Parallel Backpropagation ~ Disambiguation
links constraint weight Pronunciation
satisfaction adjustment

cognitive scientists argue that the mind is a logical system, a rule-based -
system, a concept-based system, an analogy-based system, an imagery-
based system, and a connectionist system. The perspective of this book is |
that the best current answer to the final exam question “What kind of :
system is the mind?” is “All of the above.” The mind is an extraordinarily

complex system, supporting a very diverse range of kinds of thinking:

The different approaches to CRUM that were described in chapters 2-7 :

tend to capture different aspects of mind. Table 8.1 summarizes the dif-

ferent approaches and their theoretical applications. At this early stage of :
cognitive science research, theoretical diversity is a desirable feature rather
than a flaw. Of course, we can hope that a Newton, Darwin, or Einstein of
cognitive science will emerge to provide a simple, unified theory that incor-

porates all the insights to date. But progress can be made in understand-

ing mind without such an overarching theory, which the complexity and |
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Table 8.2
Practical applications of cognitive science.
Education Design Systems
Logic Critical thinking Codes Logic programming
Rules Arithmetic, Computer-human Most expert systems
skill acquisition interaction
Concepts Problem schemas Building CYC, frame-based
specifications expert systems
Analogies Problem solving Case-based design Case-based expert
systems
Images Visual problem Diagrams A few expert
solving systems
Connections Reading Constraint Trained expert
satisfaction systems

diversity of mind might make unattainable. One premise of cognitive
science is that progress will require more than the isolated efforts of
researchers in particular disciplines. Integrated, cross-disciplinary effort
will continue to be essential in understanding the nature of mind.

Cognitive science has also had substantial applications to education,
design, and intelligent systems. Different versions of CRUM have illumi-
nated different aspects of applied thinking. We saw, for example, that rule-
based and analogical models are useful in understanding how students
solve problems, and connectionist parallel constraint satisfaction models
have important implications for teaching reading. Design requires a diver-
sity of cognitive processes, from deductive inference to imagery. Intelligent
systems that mimic human abilities have drawn on a variety of kinds of
representations and processes, especially rule-based, analogical (case-
based), and connectionist (backpropagation) systems. Table 8.2 summa-
rizes how the different approaches have been practically applied.

Comparative Evaluation

For a deeper review of the six different approaches to representation and
computation, we can evaluate their comparative advantages and disad-
vantages, continuing to use the criteria of representational power, com-
putational power, psychological plausibility, neurological plausibility, and
practical applicability. This comparison supports the contention that no
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single approach currently deserves to be seen as the theoretical basis for
all of cognitive science.

Representational Power
We saw that formal logic has considerable representational power, gener-
ating complex propositions with operators such as “not” and “or” and

quantifiers such as “all” and “some.” Computer models that restrict them- '

selves to rules, concepts, analogies, images, or connections have d1fﬁcu1ty
representing intricate propositions such as “No students’ supervisors are
responsible for some of their students’ problems or worries.” Even so,
formal logic does not capture all the subtleties of natural language, so we
have to conclude that no current computational model has the represen-
tational power to capture all of human thought.

Connectionist models have an advantage over verbal representations in
that they have more flexibility in capturing a broader range of sensory
experience. Patterns of activation of units can represent many tastes and
smells to which verbal representations only approximate. On the other
hand, connectionism has struggled with the challenge of figuring out how
simple neuronlike units can represent complex relations such as those
naturally included in computational models based on logic, rules, or
analogies. Since the brain with its billions of neurons somehow manages
to produce language, we know that a system based on interacting units
can produce complex inferences, but discovering how will require con-
nectionist models with substantially more representational power than
those now available.

Computational systems that employ rules abandon the expressiveness
of formal logic for a simplified format of IF-THEN rules that have compu-
tational advantages. Like propositions in formal logic, rules are concise and
independent representations. In contrast, concepts, analogies, and images
all bundle information together into organized structures. A concept col-
lects a package of information about a kind of thing, and an analog col-
Jects a package of information about a situation. Images provide their own
special kind of packaging since they are intimately connected with sensory
functions such as vision. A visual image vividly ties together intercon-
nected information that can be difficult to represent verbally.

In sum, a unified theory of mental representation needs to postulate
structures that among them have (1) the sensory richness of images and
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connections, (2) the organizing capabilities of concepts, analogs, and
images, and (3) the verbal expressiveness of rules and propositions in
formal logic.

Computational Power

In developing a computational model, we need to be concerned with speed
and flexibility as well as abstract computational potential. There are many
ways to perform computations, but for cognitive science we need compu-
tational techniques that have the speed and flexibility necessary for both
psychological plausibility and practical applicability. Inference viewed as
logical deduction can be elegant, but rule-based systems that emphasize
heuristic search have exhibited superior performance in many domains.
The effectiveness of rule-based systems has led some theorists such as
Newell (1990) to advocate a unified theory of cognition based on rules.
But other computational mechanisms include matching of whole struc-
tures in applying concepts, analogies, and images. Concept-based and
connectionist systems implement different kinds of spreading activation.
Although much human problem solving can be construed as heuristic
search in a rule-based system, there are many problem solutions that are
better described in terms of processes like schema application, analogical
mapping, and parallel constraint satisfaction.

Similarly, human learning is not restricted to a single mechanism such
as rule-based chunking. A comprehensive theory will have to account for
learning of rules and concepts from examples and from combinations of
other rules and concepts. It should encompass both quick, one-shot learn-
ing such as when people abductively form new hypotheses, and slow,
multiple-trial learning such as when children learn to balance. Rule-based
chunking and connectionist weight adjustment are both powerful learn-
ing mechanisms, but neither captures the full range of human learning
capabilities.

Similarly, cognitive science still lacks a comprehensive theory of lan-
guage learning and use, although different approaches have shed consid-
erable light on different aspects of language. Some aspects of grammar and
pronunciation, for example, are plausibly described in terms of rules, but
rule-based approaches have helped little with understanding the nature of
the lexicon or the role of metaphor in language production and compre-
hension. Language thus seems to depend on concepts, analogies, and
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images as well as on rules. Perhaps connectionism will eventually provide -
a neurally inspired way of saying how all these aspects are exhibited by a
single system. But no comprehensive connectionist theory of language has "
emerged, even though connectionist models of learning and parallel con- -
straint satisfaction have been very successful in some linguistic applica- §
tions such as word sense disambiguation.

Psychological Plausibility
Each of the six approaches to representation and computation has inspired
psychological experiments as well as computational models. These
experiments have addressed numerous controversial issues that continue =
to inspire lively debate. Are syllogistic and other kinds of logical inference ©
done by applying logical rules, or by some more concrete method such as!
mental models? Is the process by which people learn to form the past tensé
of English verbs best described in connectionist terms or in terms of nﬂes?;
Decades of experimental psychology have identified many phenomena
that a general theory of mind will have to explain, but the situation so far
is that different experimental results fit best with different representational '_
theories. Rule-based models apply well to some cognitive tasks such as
playing tic-tac-toe, but do not tell us much about other cases of problemi’]
solving where analogies are more prominent. Experiments support the :
importance of images in human thinking, but many phenomena do not
seem to involve images. Although the connectionist simulations described 3
in chapter 7 are successful in accounting for a diverse range of psycholog:
ical phenomena, it would be premature to suppose that all other kinds of
models are unnecessary. The connectionist models apply well to cognitive-
tasks that are naturally understood in terms of incremental learning and!
parallel constraint satisfaction. But the generation of units and constraintsi
may require rule-based and other mechanisms that connectionist models:
have not yet addressed. 4
Tt would be wonderful to have a unified theory of cognition that ccmld
account for all psychological phenomena observed so far. But progress can’
also be made locally, applying particular theories of representation and:
‘computation to particular psychological phenomena. Cognitive science :
has made substantial progress in developing rich computational mode f:
of many kinds of human performance observed in psychological experi=
ments. Discovering how the various kinds of representation and thinking:
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fit together will undoubtedly require more experiments as well as more
integrated models of the sort discussed in chapter 14.

Neurological Plausibility

When the first edition of this book appeared in 1996, there was consider-
able neurological evidence linking mental imagery with the visual system
in the brain, but a lack of neurological evidence for logic, rules, concepts,
and analogies. Thanks to new scanning techniques for observing the oper-
ations of the brain, cognitive neuroscience has been the fastest develop-
ing part of cognitive science. Chapters 2-5 of the current edition cite some
relevant neurological studies. Connectionist models gain some neurologi-
cal plausibility from the analogy between artificial neural networks and the
brain, although current connectionist ideas are only rough approximations
to how the brain works. Chapter 9 describes computational models that
are more neurologically realistic.

Practical Applicability

Constructing a unified cognitive theory requires reconciling the conflict-
ing claims of various cognitive scientists who hold that the mind is fun-
damentally a rule-based system, or a connectionist system, and so on. But
accomplishing practical goals of improving education, design, and intelli-
gent systems can proceed in a more piecemeal fashion, selectively apply-
ing insights from different approaches to cognitive science wherever they
appear relevant.

Potentially, cognitive science is to education what biology is to medicine:
a theoretical basis for practical remedies. Conceptions of the mind as using
rules, concepts (schemas), and analogies have already contributed to under-
standing how people solve problems. Images are also relevant to problem
solving as is evident in the usefulness of diagrams in many domains. Con-
nectionist ideas are just starting to have an impact on educational theory
and practice, and conceiving of processes such as reading in terms of
parallel constraint satisfaction suggests ways of improving teaching.

To date, understanding the process of design has been most furthered
by attending to the roles of rules, concepts, analogies, and images in cre-
ative design. Most expert systems that have had industrial applications
have been rule-based systems, but case-based (analogical) and connec-
tionist systems are proving increasingly useful. A manager hoping to
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develop an intelligent system should look carefully at the nature of the
task to be accomplished and the knowledge available, critically consider: -
ing what kinds of representation and computation are most appropriate.

Some advocates of particular approaches to cognitive science boldly assert
that the mind is a rule-based system, or that the mind is a connectionist =
system, and so on. The fact that all current accounts of representation and -
computation have disadvantages as well as advantages suggests the need for
combinations and integrations of the various approaches (see chapter 14). &
Some critics of CRUM have argued, however, that all of these computational =
approaches are inherently limited in what they can tell us about the mind:

Challenges for Cognitive Science

Review of the major approaches taken by advocates of CRUM shows that -
it explains much about the nature of human problem solving, learning; |
and language. Although CRUM has had considerable success in illuminat-

ing the nature of mind, there remain skeptics who believe that it i§ &
fundamentally misguided and neglects crucial aspects of thinking—for
example, consciousness and emotional experience. Chapters 9-13 discuss
seven important challenges for CRUM:

1 The brain challenge CRUM ignores crucial facts about how thinking i$ 2
performed by the brain.
2 The emotion challenge CRUM neglects the important role of emotions in
human thinking.
3 The consciousness challenge CRUM ignores the importance of conscious- |
ness in human thinking.
4 The body challenge CRUM neglects the contribution of the body to
human thought and action. _'
5 The world challenge CRUM disregards the significant role of physical
environments in human thinking. '_
6 The dynamic systems challenge The mind is a dynamic system, not a

computational system. _
7 The social challenge Human thought is inherently social in ways that’
CRUM ignores.
These challenges pose serious problems for CRUM and for the whole enter- =
prise of cognitive science. There are four possible responses to them:
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1. Deny the claims that underlie the challenge.

2. Expand CRUM to enable it to deal with the problems posed by the
challenge, adding new computational and representational ideas.

3. Supplement CRUM with noncomputational, nonrepresentational con-
siderations that together with CRUM can meet the challenge.

4. Abandon CRUM.

I will argue that none of the challenges provides reason to abandon CRUM.
Several of them show, however, that CRUM needs to be expanded and sup-
plemented, particularly in ways that integrate it with biological and social
factors. Supplementing is different from expanding in that it requires intro-
ducing concepts and hypotheses that go beyond the computational-
representational explanation pattern. Chapters 9-14 describe numerous
ways in which cognitive science is currently being expanded to deal with
gaps in older versions of CRUM.

The Mind-Body Problem

Because the challenges discussed in the following chapters raise important
general questions about the nature of mind and body, it will be helpful
first to outline the major philosophical views about how mind and body
are related. The commonsense view of persons is that they consist of two
components: a body and a mind. This view is called dualism, since it
assumes that each of us consists of two fundamentally different substances,
one physical and the other mental or spiritual. Anyone whose religious
views imply that a person survives after death is a dualist, since the mind
can survive the body’s demise only if it is something nonphysical.
Although dualism is probably the most widely held view of mind, it is
philosophically problematic. What evidence do we have that there is mind
independent of body? If mind and body are two different substances, how
do they interact? Dualism makes mind a fundamentally mysterious entity
beyond scientific investigation.

In contrast to dualism, materialism claims that mind is not a different
kind of substance from the physical matter that constitutes the body.
Philosophers have defended several versions of materialism. Reductive mate-
riglism claims that every mental state such as being conscious of the smell
of donuts is a physical state of the brain. Thus, the mental can be reduced
to the physical. More radically, eliminative materialism claims that we
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should not try to identify all the aspects of our mental experience with
Dbrain events, since our commonsense views of the mind may be funda-
mentally wrong. Instead, as neuroscience develops, we can hope to acquire
a much richer theory of mind that may replace and eliminate common-
sense notions such as consciousness and belief.

Both reductive and eliminative materialism assume that understanding
the mind depends fundamentally on understanding the brain. However,
the computational approach to mind has frequently been associated with
a different view called functionalism, according to which mental states are
not necessarily brain states, but rather are physical states that are related
to each other through causal relations that can hold among various kinds
of matter. For example, an intelligent robot might be viewed as having
mental states even though its thinking depends on silicon chips rather
than on biological neurons. Similarly, we might encounter intelligent
aliens from other planets whose mental abilities depend on very different
biological structures than human brains.

These four views—dualism, reductive materialism, eliminative material-
ism, and functionalism—have been the favorites in recent philosophy of
mind. Another view, idealism, was popular in the nineteenth century. It
holds that everything in the universe is mental and nothing is material.

Summary

The Computational-Representational Understanding of Mind has con-
tributed to much theoretical understanding and practical application. But
no single approach has emerged as the clearly most powerful explanation
of human cognitive capacities. Different approaches have different repre-
sentational and computational advantages and disadvantages. Psycholog-
ical plausibility is shared among various approaches that have successfuily
modeled different kinds of thinking. But CRUM faces challenges that
charge it with neglecting important aspects of mind.

Discussion Questions

1. What are the most impressive achievements of cognitive science? In
what directions does it still have the furthest to go?

2. What other challenges does CRUM need to face?
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3. What are the impediments to a unified theory of the mind? Will we
ever have one? Would we want one?

Notes

My preferred version of materialism is close to what Flanagan 1992 calls “construc-
tive naturalism” and what Foss 1995 calls “methodological materialism.” Paul
Churchland (1989) and Patricia Smith Churchland 1986 defend eliminative mate-
rialist. On functionalism, see Johnson-Laird 1983 and Block 1978.

Alan Turing proposed an imitation game to answer the question of whether com-
puters can think. In this game, which has come to be known as the Turing test, an
investigator communicates by typing with both a person and a computer. If the
investigator cannot tell which is the human and which is the computer, then we
should judge the computer to be intelligent. This test is both too loose and too
restrictive. It is too loose in that a cleverly constructed program might be able to
fool us for a while even though it contains little intelligence. It is too restrictive in
that the computer may fall short on some fairly trivial aspect of human experience
but be capable of highly intelligent functioning in other areas.

Creativity is often cited as a challenge for CRUM, but earlier chapters described
several mechanisms that can model some aspects of human creativity, including
abduction, conceptual combination, and analogy. Another interesting challenge is
whether CRUM, neuroscience, and/or the dynamic systems view discussed in
chapter 12 explain why people dream (Flanagan 2000). Bruner (1990) poses what
might be called the narrative challenge, claiming that computational and biological
approaches to thinking neglect the importance of story interpretation in how people
understand each other, but researchers such as Kintsch (1998) have much to say
about narrative coherence.
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Glossary

Note: Words in italics have their own entries in the glossary.

Abduction Reasoning that generates hypotheses to explain puzzling facts.

ACT “Adaptive Control of Thought”—A computational theory of thinking devel-
oped by John Anderson.

Affective computing Study of computing technology that relates to, arises from,
or deliberately influences emotions.

Algorithm A step-by-step procedure for solving a problem.
Amygdala Almond-shaped part of the brain involved in emotions such as fear.

Analogy Mental procéss that makes connections between relations in two sets of
objects.

Anthropology The study of the origins, distribution, social relations, and culture of
human beings.

Artificial intelligence The study of how computers can be programmed to perceive,
reason, and act.

Backprogagation Learning algorithm in feedforward networks that adjusts the
strengths of the links between neurons.

Bayesian network A directed graph that that can be used to reason with proba-
bilistic information.
Case-based reasoning Reasoning by analogy.

Chaos Property of a dynamic system that it is highly sensitive to small changes.

Cognitive grammar Approach to linguistics that rejects the traditional separation
of syntax and semantics.

Cognitive science The interdisciplinary study of mind and intelligence.
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Coma State of deep unconsciousness caused by disease or injury.

Computatibn Physical process with states that represent states of another
system and with transitions between states that amount to operations on the

representations.

Concept Mental representation of a class of objects or events that belong together,
usually corresponding to a word.

Conceptual change Process in which concepts acquire new meaning.

Conceptual combination Process in which new concepts are constructed by joining
or juxtaposing old ones.

Connectionism Approach to cognitive science that models thinking by artificial

neural networks.

Consciousness Mental state involving attention, awareness, and qualitative

experience.

Cortex Outer layer of the brain, responsible for many higher cognitive
functions.

CRUM Computational-Representational Understanding of Mind: the hypothesis
that thinking is performed by computations operating on representations.

Culture The way of life of a society, including beliefs and behaviors.
Data structure An organization of information in a computer program.

Deduction Reasoning from premises to a conclusion such that if the premises are
true then the conclusion must also be true.

Distributed artificial intelligence Problem solving that requires communication
among more than one computer, each of which possesses some intelligence.

Distributed cognition Problem solving that requires communication among more
than one thinker.

Distributed representation Neural networks that use patterns of activity in multi-
ple nodes or neurons to stand for objects or situations.

Dopamine Neurotransmitter involved in reward pathways in the brain.

Dualism Philosophical view that the mind consists of two separate substances, soul
and body.

Dynamic (dynamical) system Collection of interacting objects whose changes are
describable by mathematical equations.

Electroencephalogram (EEG) Recording of electrical activity in the brain.
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Embodiment Property of having a body and experiencing the world by means of
it.

Emotion Positive or negative mental state that combines physiological input with
cognitive appraisal.

Emotional intelligence Ability to deal effectively with the emotions of oneself and
others.

Empiricism The philosophical view that knowledge comes primarily from sensory
experience.

Explanation schema Mental representation of a pattern of causal connections.

Feedforward network Artificial neural network in which the flow of activity is in
one direction, from input neurons to output neurons.

Frame Data structure that represents a concept or schema.

Functionalism Version of materialism according to which mental states are
defined by their functional relations, not by any particular kind of physical
realization.

Hebbian learning Process in neural networks that strengthens the association
between two neurons that are simultaneously active.

Hippocampus Brain region involved in the acquisition of memories.
Image Mental structure that is similar to what it represents.
Induction Reasoning that introduces uncertainty.

Inheritance Form of inference in which information is transferred from a higher
to a lower structure.

Innate A representation or process that is genetic rather than learned.

Insula (insular cortex) Brain region that integrates information from many bodily
senses.

Intentionality Property of a representation or mental state that it is about some
aspect of the world.

Lesion Abnormal change in an organ such as the brain.
Linguistics The study of language.

Link Comnnection between two artificial neurons that enables one to influence the
activity of the other.

Local representation Artificial neural network in which each node stands for a single
concept or proposition.
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Logic The study of valid reasoning.

Magnetic resonance imaging (MRI and fMRI) Technique that uses magnets to
produce images of the structure and function of organs.

Materialism Philosophical view that minds are purely physical.

Meaning The content of a representation that results from its relations to other
representations and the world.

Mechanism System of interconnected parts that produces regular changes.

Memory Storage of information, either temporary (short-term or working
memory) or permanent (long-term).

Mental model Mental structure that approximately stands for something in the
world.

Mental representation A structure or process in the mind that stands for
something.

Metaphor Use of language to understand and experience one kind of thing in
terms of another.

Model Structure that approximately represents some objects or events.
Multiagent system Interacting collection of computers capable of intelligent action.
Neural network Interconnected group of neurons.

Neuron Nerve cell.

Neuroscience Study of the structure and functioning of brains.

Neurotransmitter Molecule that transmits nerve impulses across a synapse.

Parallel Process in which more than one computation is performed at the same
time.

Parallel constraint satisfaction Process in which a problem is solved by using a
parallel algorithm to find the best assignment of values to interconnected aspects
of the problem.

Parallel distributed processing Approach to cognitive science that models thinking
by artificial neural networks with distributed representations.

Philosophy Study of the fundamental nature of knowledge, existence, and
morality.

Positron emission tomography (PET) Technique that uses radioactive isotopes
to produces images of the chemical function of organs such as blood flow in the
brain.
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Prefrontal cortex Area of the brain at the front of the front of the cortex, respon-
sible for the highest cognitive functions such as reasoning.

Production rule a representation of the form IF something THEN something.
Psychology Study of the minds of humans and other animals.

Rationalism The philosophical view that knowledge comes primarily by reasoning
that is independent of sensory experience.

Recurrent network Neural network in which the output of some neurons feeds back
via intervening connections to become input to them.

Relaxation Process in which an artificial neural network reaches a state of stable
activations.

Representation A structure or activity that stands for something.

Robot Machine capable of performing complex physical acts similar to ones done
by humans.

Rule A mental representation of the form IF something THEN something.
Schema A mental representation of a class of objects, events, or practices.

Search A computational process of looking for or carrying out a sequence of
actions that lead to desired states.

Situated action Action that results from being embedded in a physical or social
world.

SOAR “State, Operator, And Result”—A computational theory of thinking devel-
oped by Allen Newell and others.

Social cognition Study of how people think about each other.

Social epistemology Study of social practices that encourage or inhibit the devel-
opment of knowledge.

Somatic marker Brain signal corresponding to states of the body relevant to
emotions.

Source analog Set of objects, properties, and relations that suggests conclusions
about a target analog.

Spike train Firing pattern of a neuron, consisting of a sequence of firing episodes.

Spreading activation Computational process in which the activity of one structure
leads to the activity of an associated structure.

Syllogism Kind of deduction in which the premises and conclusions have forms
such as “All A are B” and “No A are B.”
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Synapse Space in which a signal passes from one neuron to another.

Target analog Set of objects, properties, and relations that can be learned about
by comparison to a source analog.

Theory Set of hypotheses that explain observations.
Thought experiment Use of the imagination to investigate nature.
Ventromedial prefrontal cortex The bottom-middle part of the prefrontal cortex.

Whorf hypothesis Conjecture that language determines how we perceive and think
about the world.
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