ON A TAPERED FLOATING POINT SYSTEM*

Aqil M. Azmi+ and Fabrizio Lombardi++

++Texas A&M University
Department of Comp. Science

College Station, Tx 77843

+University of Colorado
Department of ECE, Boulder

Abstract

Morris [Mor71] suggested adding an extra field to that
of the fixed floating point system, thus exponents can be
stored more efficiently. The exponents are stored in the
smallest possible space, passing the extra bits to the man-
tissa. The extra field is used to monitor the current length
of the exponent. The gain in precision and/or exponent
range outweights the overhead of the extra field and the
processing speed. Unfortunately Morris’ paper lacked the
implementation detail and the comparison with existing
systems. In this paper we provide implementation details,
error analysis and some future research ideas. Simulation
results are provided for comparison purposes.

1 Introduction

A floating point system can be defined by a 3-tuple (r, g, p) where
r is the radix of the exponent, ¢ and p are respectively the
exponent’s and mantissa’s length in bits. Any new floating point
system addresses one or more of the following issues:

o Precision: This measure of accuracy in the calculation. A
simple, but not always practical solution is to increase the
size of the mantissa field.

e Range: To be able to access larger and larger numbers.
The easiest solution is to increase the size of the exponent
field, or to use higher radix for the exponent.

Morris [Mor71] suggested a “tapered” system, where there is
a tradeoff between the exponent range and the precision of the
floating point. Unfortunately Morris didn’t discuss implementa-
tion issues nor gave them an analysis for it. The reason behind
a “tapered” system can be attributed to

1. Most applications which require the greatest accuracy of
representation, are likely not to generate numbers of ex-
tremely large or extremely small magnitude [Mor71].

2. Exponents are certainly not equally distributed. They
mostly follow the Gaussian distribution (Ham?70].

*This research supported in part by grants from NATO and AT&T.

CH2757-3/89/0000/0002$01.00 © 1989 IEEE

In [Mat81}, the extension of this method for avoiding over-
flow/underflow is presented. This approach is very elegant, but
impractical due to the complex process involved in conversion
from one format to another (when the lengths of the exponent
fields are different).

In [Olv87A] and [Olv87B] , the concept of level-index arith-
metic is introduced. The closure property of this system which
prevents overflow/underflow, is fully characterized. It is proven
that a gradual erosion of relative precision occurs. An imple-
mentation based on partial table loop-up is proposed.

In this work, we further investigate Morris’ suggested sys-
tem. The implementation is discussed, the performance analysis
compared with that of a fixed floating point is also given.

2 The Implementation of Tapered Sys-
tem

In a fixed floating point system, exponents occupy the same
space regardless of their value, which can be otherwise used to
get higher precision [Mor71]. The TFP floating point system
takes advantage of this drawback. The TFP system attempts
to efficiently distribute the storage between the exponent and
the mantissa.

Let S denote the sign field; E and M denote the exponent
and the mantissa fields. The TFP is a three field < G, S, W > of
fixed length floating point system with the exponent and man-
tissa combined into a single field W =< E, M >. This is due
to their varying lengths, however the combined length is fixed.
The G-field t keeps track of the current length of the exponent.

Kornerup [Ko83] uses a similar k-field to indicate the position
of the slash in the floating-slash arithmetic unit.

A TFP system can be characterized by a 3-tuple (r,g,w),
where r is the radix of the exponent, g is the length of the G-
field in bits, w is the length of W-field (Figure 1).

A notation is devised to differentiate between the 3-tuples of
a fixed floating point with that of TFP, or to describe the size
of the exponent (mantissa) field of a TFP system at a certain
instant. The notation consists of subscripting the parenthesis of
the 3-tuples either by f or ¢t for fixed TFP, respectively. The
tuple (2,3,29); means that a TFP system? is considered. This
system has radix r = 2, length of the G-field g = 3 bits, while
the length of W-field is 29 bits. Similarly the tuple (2,8,24);

Following Morris’notation.

means the radix r = 2, ¢ = 8 and p = 24 bits, these are the
length of the exponent and mantissa respectively.

The simplest TFP arithmetic processor can be thought of as
a fixed floating point processor with a pre- and post-processing
stages (Figure 2). Let two inputs A and B be given in TFP
format. The pre-processing stage (unpack operation) converts
them to fixed floating point format A and B. The fixed float-
ing point format output C has to undergo a pack operation to
convert back to a TFP format.

For a given (r,g,w); TFP system, the fixed floating point
processor should be able to handle all possible numbers, such
as exponents of length 29 bits and simultaneously w — 1 bits
mantissa. This implies a fixed floating point processor of 29 bits
for the exponent, and at least w — 1 bits in the manitssa. The
unpack operation transforms a TFP input A(r,q4,w — g4)s to
A(r,29,w — 1)7,94 — 1 zeros are appended to the lower order
mantissa bits. The pack operation retransforms the result from
C(r,2,w—1)s to C(r,gc, w — ¢c), where the g; — 1 lower order
mantissa bits will not be used.

The pack processor (Figure 3) transforms the output of the
fixed floating point processor C(r,29,w — 1)s to C(r,qe, w = ¢c)f
in the TFP format.

The pack processor includes the rounding mechanism. The

packing operation must be performed after the normalization
process and prior to rounding. This is due to the dispossession
of the lower g. — 1 mantissa bits during the packing. The dis-
possessed bits will be used in the rounding. The g. exponents
bits must have the least number of bits to accommodate the
exponent and achieve the best possible precision. Any non-zero
integral number o will require at least |1+ 1log, | a || + 1 bits to
be representable uniquely. The extra bit is needed in order for
the positive and negative numbers to be unique. The transfor-
mation process must be also as simple as possible.

Exponent €% PR y°
0! 100....... 0|1 000
-1 011....... 110 000
1| 100.....01 | 11 001
-2 1 011.....10 | 00 001
21 100....010 { 110 | 010
-3 | 011....101 | 001 010
3| 100....011 | 111 010
-4 | 011....100 | 000 | 010
4 | 100...0100 | 1100 | 011
-5 011....011 | 0011 | O11

biased exponent of the fixed floating point C.
bhiased exponent of the TFP number C.
ccontents of the G-field, g = 3 is assumed.

Table 1: The pack operation table.

Based on the model in which smaller exponents in the ab-
solute term are used more frequently than larger ones, e.g the
numbers 10°, 10! are more frequently used than 102 or 102,
Huffman coding technique assigns codes of length inversely pro-
portional to the frequency of occurrence [Hu52]. This is a com-
mon technique for encoding information. A simple and elegant

!This system fits into 32 bits, as we take the advantage of the implicit
bit whenever radix r = 2 is used.

systematic exponent packing algorithm similar to Huffman cod-
ing principles had been found as shown in Table 1. Numbers
around 1.0 will have the highest precision. Figure 4 shows an
example of packing.

Let 4 be the contents of the G-field. The TFP exponent e

is biased by 27. The actual exponent value therefore is e, — 27.
This can be viewed as a viewed as a variable bias exponent.

Definition 1. The packing operation is a mapping pack :
N-NXxN

§22(1,), (1)
where N is the set of non-negetive integers, € is the biased expo-
nent in the fixed floating point format. v and e are the contents
of the G-field and the biased exponent in the TFP format re-
spectively.

4 and e are computed as follows. Let ¢ be the number of
bits in the exponent of the fixed floating point. & is biased by
2¢-1, Hence,

B (7,6 - 2771 4 2), @

such that

if the unbiased expornent is zero
otherwise,

0,
7= { 11 +log, |~ 2971|| - ¢,
®3)

where,

€= 1, if the unbiased exponent = —2¢,i > 0 4
~] 0, otherwise. “

Lemma 1. The pack operation is unique.

Proof: It is required to show that for two exponents €, and
é2,61 # & in the fixed floating point format, and the trans-
formation & 2% (v,€), results in (711,€e1) # (72,€2). This can
easily be shown by contradiction. Assume (vy1,€1) = (72, €2),
then using the previous Definition

e} — €2 =é1—é2+271_2“ﬂ (5)

=0,

which implies &; = €3, a contradiction. O

The packing operation can be described algorithmically as
follows:
let COUNT be a g-bit counter, and let SR be a shift register
of (29 + w — 1) bits long. SR is the leftmost bit.

Step 1: Load the shift register SR with the exponent concate-
nated with the mantissa of C.

Step 2: Set all the bits of the COUNT to 1.

Step 3:
While SRy # SRy and COUNT # 0

o shift left the contents of SR, such
that SR is

unchanged,
SR; — SRi4y forall i > 1.
o decrement COUNT.
}

Step 4: Load COUNT into the G-field of C.

Step 5: Load the contents of the shift register SR into the W-
field of C.

Step 6: Perform the rounding operation on the mantissa of C.
Step 7: Copy the sign bit of CtoC.

The unpack processor (Figure 5) is the preprocessing stage to
the fixed floating point processor. An input in the TFP format
is transformed to a fixed floating point format. It can be shown
that the unpack operation is unique, i.e.,

pack
¢ 5 (ne (6)
unpack
Unpacking can be described by an algorithm similar to the
packing algorithm.

3 Theoretical Analysis of Tapered Arith-
metic

Theoretical analysis of floating point is not limited to error anal-
ysis, but it certainly is the main object. Error analysis of floating
point operations has proved to be rather complicated.

The exponent range (ER) of a (2*, ¢, p); fixed floating point
of radix r = 2* is defined as

ER(2*,q,p); = 27 x k- 1. @)

This equation appears (incorrectly) as k x (297! — 1) in the
original definition [Bro69)]. Unfortunately Cody [Cod73] has mis-
quoted (6) and others [Hw79], [Wa82] copied his mistake. For a
TFP system,

ER(2%,g,w), = 27"V x k- 1. (8)
To increase the exponent range of a TFP system over that
of a fixed floating point of same radix, the length of the G-field

g must be greater than log, ¢. The values of ER for some TFP
systems of different radices are given in Table 2.

Table 2 ER for different TF P systems

Largest Smallest
r g w | mant. (bits) | mant. (bits) | ER
2 3 29 28 21 127
2 4 28 27 12 32767
4 3 28 27 20 255
16 3 28 27 20 511

Let X be a real number with exponent z within the system
range. The maximum relative representation error (M RRE)
[Wilk63] over all normalized fractions for a TFP system can be
written as

maximum representation error

MRRE(r,g,w)

1 X 2‘(‘”'2’)73‘
= .21—_ 9)
y Xre
_ 2—(w—2°+1) X r.

From (8), smaller radix would reduce the M RRE. And as
might be expected the MRRE of a TFP system is worse than
that of a fixed floating point system of same size and radix. This
is due to the space allotted to the G-field. Table 3 shows the
MRRE of some different TFP systems.

Table 3. M RRE for different TFP systems

r g w MRRE
2 3 29 2-21
2 4 28 2-12
4 3 28] 4x2°2
16 3 28| 16x2~%

The average length of the mantissa P,,4 is obtained by ap-
plying the Huffman codes average length equation [Hu52]

Paug(gy w) Zpl' - Prob(pg) (10)

> pi - Prob(gs),
:

where p; and ¢; are the mantissa and exponent length corre-
sponding to 7 in the G-field. For each i,0 < i < 29 in the
G-field, the range R; of representable exponents is

Ri={ [_1v0]9 ifi=0 (11)

[-2f, 21 — 1]J[2"~1,2' — 1], otherwise.

There is no good model available for the distribution of the
exponents. Sweeney [Sw65) analyzed floating point addition.

His analysis was based on collecting almost two hundred thou-
sand floating point numbers and finding the average length of
the shift during normalization. No model was given. Hamming
[Ham70] mentioned that it is reasonable to consider exponents
to be normally distributed.

The unbiased exponent —22°=1 < e < 2%°~! takes on discrete
values. Their distribution will be approximated by a normal
distribution of zero mean and standard deviation g, then

Prob(q;) = \/2175 / e, (12)

The following expression has been used to facilitate the in-
tegration

R = [-15,05], ' _ ifi=0
T (-2 -0.5,-2 — 0.5]Y[2°! - 0.5,2° — 0.5], otherwise.
(13)

so that the discrete probabilities will add to one. The contents
of the G-field in a TFP system is one less than the exponent’s
length. Equation (9) can be rewritten as

e———w - fieti— A@ é
G | S| Exp. Mantissa
s e

S e
g bits w bits

fixed fioaling
point ALU

(r, 2%, w-1),

Figure 1. An (r,g,w), TFP floating point representation.

Figure 2. TFP arithmetic processor.
A, B, and C are in TFP format. A, B, and C are in fixed format.

g, 28, w-1)
. Pack
Processor

C(r.a., w-a.),

Figure 3. The pack processor

Sign Exp. Mantissa
0 |100..... 01[010010...ccirinans 0 Fixed Format
001101 11[010010 s 0 TFP Format
G-field & EXp. Mantissa

Figure 4. An example of packing a fixed floating point.

Figure 5. The unpack processor.

:u
- [}
A (r, QA,W q‘)r E 28.
g,
Unpack w289
Processor °
@ = (2,3,29)¢
&0
& 24.0f
2
- g .
A(r,2°, w ')r go
8
g 22955 =) 356 3608 Zo.0
<

Standard deviation o

Figure 6. Average length of the mantissa
P,,g as a function of standard deviation o

29-1

Pavg(g, w) = \/—21“——0 ;(w— i 1)-/”'_ =z (14)

Figure 6 shows P,y for different values of the standard de-
viation o.

As a consequence of the exponential factor, the interval be-
tween one floating point number and the next, is not the same
over the whole range of representable numbers. For normalized
mantissas within the range 1/r < z < 1, Hamming [Ham70]
demonstrated that the reciprocal distribution approaches the
form

1

Prob(z) = zXInr

(15)
Let p be the number of bits in the mantissa. Then, the
mantissa bits subdivide the range from 1/r to 1 into intervals

of size 277. Numbers lying within one of these intervals must
be represented by the nearest boundary value. The maximum
value of the representation error is thus % x 27P. The average
value of the error in an interval is % x 27P = 2=(P+2)_If z is the
value of the mantissa being represented, then the relative error
may be taken as [Sc85]

Q=2 (16)

Assume the reciprocal distribution of the mantissa. More
mant’ sas will be having small values, that is, large relative rep-
resentation errors. The Average Relative Representation Error
(ARRE) [McK67| is defined as

ARRE(r,q,p)s

1]

/1 ; Prob(z) X Q(z)dz (17)

(T - 1) -p
dlnr * .
The smaller ARRE is, the better it is. For the TFP system
substitute P,yg in place of p, so
r—1 P,
= —= x 2~ Favg
ARRE(r,q,w); 7 < 2~ Fave, (18)

The values of ARRE over different o’s for some TFP systems
are given in Table 4.

Table 4. ARRE for different TFP systems (g = 3)

Average Relative Representation Error

r w o=15 o=20 g=25 =30
2 29|.26x27#| 35x2M [22x2- B[26x2"3
4 28| .39x2°B| 52x2°8| 32x2722 39x2-%2
16 28| .98x 2-2 | 13x 2722 | 81 x2-22| 97 x 2722

4 Applications

Simulation was used to evaluate some functions, or to solve a sys-
tem of equations. Since it is not always possible to have an inte-
gral number of decimal digits in improvement/disimprovement,
it seems more natural to use a model that indicates relative
improvement. Further detail about simulation software can be

found in [Az87).
Two new definitions are introduced. The definition will sim-

plify the task of comparing different systems. Given the number
z and the function f, let

y = f(z) exact or most precise value
% = [f(z)i f(z) evaluated using method i
y;i = [f(z)]; f(z) valuated using method j.

Definition 2. The Relative Decimal Improvement (RDI)
of calculating f(z) using method i over the method j is given
by

(v, v:)
RDI(y;,y;) = -1 19
(%i,9;) Og10 [e(y,yj) » (19)
where €(y,) is the relative error of § with respect to y.

As the relative error ¢(y,§) = |y — 9|/|y|, the RDI can be
rewritten as

Y- U
¥y—-U;

RDI(yi,y; = —logyo (20)

As an example, consider the precise value of some calculation
to be y = 0.5432. Also assume that y; = 0.5429 and y, = 0.5439
to be values corresponding to same calculation using methods
one and two. By inspection y; has only two correct decimal
digits, while y; has three. RDI(y1,y2) = — log;o 20002 = 0.368.
This can be thought as y; having an improvement of 0.37 decimal

digits over y, with respect to the correct value y. RDI can be
summarized as

RDI(yi,y;) =

> 0, y;is better thany;compared to the precise value

=0, no improvement

< 0, yis not as good asy;compared to precise value.

: (21)

The larger RDI is, the higher improvement is, and vice versa.

In the case when vectors are involved, RDI of individual
vector elements is not expected to be the same. The following
definition will be useful in this case

Definition 3. The Vector Relative Decimal Improvement
(VRDI) in calculating the vector = (z1,22,...,2,) using
method i over that calculated using method j is

VRDI([z];,(z};) average of RDIfor all the vector eleméf®y

- % ; RDI([z4);, [z4];).

As with vector norms, this is not the only possible definition
for VRDI. We could have defined it as maxg RDI([z);, [z);).
The given definition is preferred, for example, let (2.0, 0.5, —1.8)
be the set of RDI’s of calculating a vector. The averageof RDI’s
is =0.1, while the maximum of RDI’s is 2.0.

A brief comparison of calculating some functions using differ-
ent precisions follows. The TFP precision is based on simulating
a(2,3,29); TFP system.

Sine & Cosine: Can be calculated by using the Maclaurin

expansion [Th79]. Figure 7 (Figure 8) shows the RDI([sin 8], [sin 6],) floating point system both of which are 32 bits long. The fixed

t (RDI([cos6}:,[cosb],)) corresponding to angle 8 = 1,2,...,60
degrees.

The RDI of sin 8 is positive and it improves as # increases.
Overall cos @ outperforms sin# in the range 8 € [0,60]. This is
not a coincidence as 0.5 < cos < 1.0 for § < 60, and TFP
performs best for numbers around one.

Exponential: This can be calculated using again the Maclau-

rin expansion of e* [Th79]. The RDI([e%};, [€7],) is positive (Fig-
ure 9) and as z reaches a certain value, RDI starts declining. For

z = 0,RDI is zero as expected since no fractions are involved
and €° = 1. The e performs best in the region z € [—1,0}.
This again can be attributed to 0.367 < e* < 1.0 for z € {-1,0].
Range reduction technique can be employed to map any z to
% € [-1,0]. This will guarantee a better approximation of e*.
Simultaneous Linear Equations: Solving simultaneous
linear equations, AZ = b for Z will give another look at the
performance of the TFP system. Of special interests are those
systems where A is an ill-conditioned matrix. An ill-conditioned
problem is where the exact solution is extremely sensitive to
“small” perturbations in the data. In solving such problems,
therefore, the introduction of rounding errors can be disastrous.
The LU factorization of an ill-conditioned matrix yields diagonal

elements of extreme magnitudes that could cause over/underflow.

This is a good test for TFP performance at extreme magnitudes.
The Hilbert matrix A of order n [At83] is defined as

1

hen =[]
[]]n)(n 1+] -1 1<ij<n

(23)
and it is well known to be notoriously ill-conditioned. Let the so-
lution of the Hilbert linear system given by ZT = (21, z3,...,25),
as the RDI varies for each z;, VRDI will be used to get an over-
all view. Figure 10 shows the VRDI([Z],[Z],) of the solution of
Hilbert system versus the order of the Hilbert matrix. Except
for a Hilbert matrix of order 17, TFP performed better than
single precision. No explanation was found for the abnormal
behaviour of the TFP for Hilbert matrix of order 17.

5 Discussion

From the error analysis and the modeling results, some improve-
ments in the precision have been accomplished over the fixed
floating point system. The improvement is highly application
dependent.

A 32 bit word can store numbers in (2, 3,29); TFP format,
or (2,8,24)y fixed floating point format. The ARRE of the
(2,8,24); is 0.36 x 2724 This is almost the same as that of the

(2,3,29); system when o = 20 (see Table 4). Higher precision
would be achieved if the exponents used are normally distributed
with standard deviation o < 20. The (2,4,28); TFP system,
also fits into a 32 bit word and is able to maintain at least 12
bits in the mantissa (around 3 ~ 4 decimal digits) while simul-
taneously holding numbers as large (small) as 109864(10-9%%4).
However, is there any gain in giving up mantissa bits to the
G-field as compared to giving it up to normalization of the fixed
floating point of radices » > 27 Consider a fixed and a TFP

1Subscripts ¢ and s denote tapered and single precision respectively.

floating point is the (2",¢,31 —¢); system with radix r = 2", for
n > 1, while the (2, 9,32~ g); is a TFP system of binary radix.

If the exponent range ER of the TFP system is to be at least
as large as that of fixed floating point, then equating exponent
ranges this gives

29 =g +log; n (24)

hence, the length of the G-field is

g = [logy(g + log, n)]. (25)

Let gmin, (where gmin < 29) correspond to the smallest length
of the exponent of the TFP system that achieves the exponent
range at least as good as that of the fixed floating point, there-
fore

[g+ log, n] (26)
q + [logy n].

dmin

For example, if the ER of the (8, 8,23); fixed floating point is
to be matched, then the length of the G-field g = 4 bits, though
we can have exponents up to 16 bits long, ¢ni, = 10 bits are
sufficient to achieve the exponent range.

To compare the maximum relative representation error M RRE
of both systems, given that ER is to be matched, we will use the
ratio p as the ratio of the MRRE of the TFP system to that

of the fixed floating point. The M RRE of the TFP system is

based on the length of the exponent not to exceed §min bits, this
gives

_ MRREOf(2, Gmin, 32— g ~ Gmin) T F Psystem (27)
~ MRREof(2",q,31 — q)fixed floating point
= 99H(dmin—a)-n

= gutllomnl-n,

From equation (28) it is clear that p > 1 means that the
MRRE of the TFP system is inferior to that of fixed floating
point, and the larger the worse it is. Table 5. tabulates p for
different TFP systems that matches the exponent range of the
corresponding fixed floating point. Note that in our case the
MRRE of the TFP system is always inferior than that of a
fixed floating point.

Table 5. The ratio of p of the M RRE of a TFP system to
that of fixed floating point, both share the size & the ER

fixed corres.

FP TFP P
(4,7,24); | (2,3,29). | 22
(8,8,23)5 | (2,4,28) 238
(16,7,24)s | (2,4,28): 22

If the average relative representation error ARRE of the
TFP system should be as least as good as that of fixed float-

ing point, given that ER is to be matched. Then, we have the
following condition for the Payg

n
2n_1)—q‘

Pavg = 31 + logy((28)

In the TFP system, the Pavg depends on the standard devi-
ation o of the normally distributed exponents. Table 6. shows
the standard deviation needed so that the ER and the ARRE of
both systems match. For example, the ARRE of the (2,3,29),

TFP system is same as that of (4,7,24) ¢ fixed floating point if
o 2 31, and if 0 < 31 we can expect a better ARRE for the
TFP system, and worse if & > 31.

Table 6. The standard deviation ¢, such that the ARRE of
both systems is the same, given that ER is matched.

fixed corres. | Std dev
FP TFP 4
4,7, 24)/ (2, 3,29), 31
(8,8,23); | (2,4,28), | 49
(167 7’24)1 (274728)1 39

From Tables 5. and 6. we conclude that given a TFP system
that matches the exponent range of a fixed floating point, it is
possible that the TFP will match the ARRE of a fixed floating
point provided that the exponents are distributed in such a way
80 that Pavg satisfies equation (27), but in no way the TFP will
match the M RRE of any fixed floating point.

Let g be the length of the exponent corresponding to v in
the G-field. We can think of the relation between 7and ¢ as a
mapping ® : ¥ — ¢. In this work we tackled the TFP system
where the contents of the G-field is one less than the length
of the exponent, that is & : v — v+ 1. In fact there exist
a whole family of TFP systems depending on the mapping ®.
There is no reason to restrict ourselves to only linear mapping.
Nonlinear mapping is also applicable. For example, if we used
the mapping ® : v — 27, then we can still have exponents up to
8 bits long with only two bits allocated to the G-field. Smaller
G-field means better M RRE, but the effect on the ARRE needs
further research.

It turns out that for any non-binary fixed floating point sys-
tem there exists a binary TFP system that can match the ER
and the MRRE and have a better ARRE. For example, the
(2,2,30); TFP system can match the ER and MRRE of the
(16, 7,24) fixed floating point system, provided that the largest
exponent of the TFP system is 9 bits long. A possible scheme
for the case is @ : v — 2y + 3, another valid mapping is & :
Y — 27 + 1. The choice of the mapping scheme that has the

same upper bound on the exponent length and that occupies
the same space for the G-field, needs further investigation.

6 Conclusions
The main reasons behind the TFP can be summarized as follows:
¢ In a fixed floating point, exponents occupy the same space

regardless of their value, which could have been used to
get higher precision [Mor71].

e Most applications that require the greatest accuracy are
not likely to generate numbers of extreme magnitude.

¢ Exponents mostly follow the Gaussian distribution [Ham?70].

The overhead in the TFP system is in the introduction of an
extra field that does the housekeeping job, and some additional
hardware in the arithmetic unit. Furthermore the pack and
unpack operation will affect the speed of performing arithmetic
operations. Though the original system suggested by Morris’
has an inferior M RRE when compared to a fixed floating point,
it has a somewhat promising ARRE. Nevertheless there are
TFP systems that use a different mapping scheme that could
match the M RRE and the ER of a fixed floating point of radix
T > 2, and in this case the TFP will have a superior ARRE.

The proposed method is a very simple extension of [Mor71];
however its practicality both for VLSI implementation and preci-
sion characteristics, makes it viable when compared with elegant
but more complex approaches [Mat81], [Olv87B].

References

[At83] L.V. Atkinson, et al, “An Introduction to Numerical

Methods with Pascal,” Addison- Wesley, 1983.

[Az87] A.M. Azmi, “A Floating Point System with Variable
Length Exponent,” Masters Thesis, Univ. of Colorado,
May 1987.

[Bro69) W.S. Brown, et al, “The Choice of Base,” Comm.
ACM, Vol. 12, Oct. 1969, pp. 560-561.

[Cod73] W.J. Cody, Jr., “Static and Dynamic Numerical Char-

acteristics of Floating Point Arithmetic,” JEEE Trans.
Comput., Vol. C-22, Jun. 1973, pp. 598-601.

{Ham70] R.W. Hamming, “On the Distribution of Numbers,”
Bell Syst. Tech. J., Vol. 49, Oct. 1970, pp. 1609-1625.

D.A. Huffman, “A Method for the Construction of
Minimum Redundancy Codes,” Proc. of IRE, Vol. 40,
Sep. 1952, pp. 1098-1101.

[Hu52}

[Hw79] K. Hwang, “Computer Arithmetic: Principles, Archi-

tecture, and Design,” John Wiley, 1979.

[Ko83] P. Kornerup, et al, “Finite Precision Rational Arith-
metic: An Arithmetic Unit,” IEEE Trans. Comput.,

Vol. C-32, April 1983, pp. 378-387.

S. Matsui and M. Iri, “An Overflow/Underflow-Free
Floating Point Representation of Numbers,” J. of Inf.
Proc., Vol. 4, No. 3, 1981, pp. 123-133.

[Mat81]

[McK67] W.M. McKeeman, “Representation Error for Real
Numbers in Binary Computer Arithmetic,” IEEE
Trans. Electron. Comput., Vol. EC-16, Oct. 1967, pp.
682-683.

[Mor71] R. Morris, “Tapered Floating Point: A New Floating-
Point Representation,” IEEE Trans. on Comput., Vol.

TC-20, Dec. 1971, pp. 1578-1579.

[O1v87A] F.W.J. Olver, “A Closed Computer Arithmetic,”
Proc. IEEE Arith. Symp., 1987, pp. 139-143.

[O1v87B] F.W.J. Olver and P.R. Turner, “Implementation of
Level-Index Arithmetic Using Partial Table Look-Up,”

[Sc85)

[Swe65]

Proc. IEEE Arith. Symp., 1987, pp. 144-147. (Th79]

N.R. Scott, “Computer Number Systems & Arith-
metic,” Prentice Hall, 1985. [Was2]

D.W. Sweeney, “An Analysis of Floating-Point Addi-

G.B. Thomas, Jr., “Calculus and Analytical Geome-
try,” Addison-Wesley, 4th edition, 1977.

S. Waser, et al “Introduction to Arithmetic for Digital
Systems Designers,” CBS College Publishing, 1982.

tion,” IBM Syst. J. Vol. 4, 1965, pp. 31-42. [Wilk63] J.H. Wilkinson, “Rounding Errors in Algebraic Pro-

N
2
~ =
= o
= 3
@ . 2
= ~
s
]
l o.=.
=
=
°-Css XS] 350 OEx:) €o.0
The angle 8 (degree)
Figure 7. RDI ([sin 8],,[sinf],), w = 29 bits.
=
w
3
h‘i 1.
&E 2.
8
(3] 0.8
£ 2.
-~
Q —
- -
0.0 130 I0 0 <20 £0.0 _li b}
The angle 6 (degree) =
H oo
Figure 8. RDI ([cos 8], [cos8],), w = 29 bits. E °
31
N~ -0
-1
-
Figure 10.

o

[

cess,” N.J., Prentice-Hall, 1963.

v

275 5.5 G0 5.5 1.0
The power z

Figure 9. RDI ({e*];,[e*],), w = 29 bits
sampled with step size z = .05.

5o 5.0 50 26.0 25.0
Order of Hilbert matrix (n)

VRDI ([z],]z],) of Hilbert linear system of order n.

