
p-ADIC COHOMOLOGY AND COUNTING POINTS ON VARIETIES OVER

FINITE FIELDS

MASHA VLASENKO

These notes were written to prepare a course for the Advanced School on L-functions and Modular
Forms held at ICTP Trieste on September 1-5, 2014. The goal is to describe Kedlaya’s algorithm for
computing zeta functions of hyperelliptic curves over finite fields (see [Ked01] and [Ed03]). It involves
explicit construction of a matrix of the Frobenius operator on the p-adic cohomology modulo a given
power pN . The algorithm is implemented in Sage and Magma, e.g.

C := HyperellipticCurve(x^5-x^2+1);

p:=11;

FrobeniusMatrix(C,p);
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1. Point counting via cohomology

Let p be a prime number and q be a power of p. For an algebraic variety X over the finite field Fq we
denote Ns = #X(Fqs) for s ≥ 1, and the zeta function of X is defined as the formal power series

Z(X/Fq, T ) = exp
( ∞∑
s=1

Ns
T s

s

)
∈ Q[[T ]] .

André Weil conjectured in late 1940’s that Z(X/Fq, T ) is always a rational function of T , and more
things in the case when X is a smooth projective variety of dimension n:

Z(X/Fq, T ) =

2n∏
i=0

Pi(T )(−1)
i−1

=
P1(T ) . . . P2n−1(T )

P0(T ) . . . P2n(T )
.

where Pi(T ) are polynomials with integer coefficients and constant term 1 satisfying

• Pi(T ) =
∏βi

j=1(1− αijT ), αij ∈ Q, |αij | = qi/2

• if X is a reduction modulo p of a smooth variety X over a number field then βi = dimHi(X(C);C)
• Z

(
X/Fq, 1

qnT

)
= (−qn/2T )χ(X) Z(X/Fq, T ) where χ(X) = β0 − β1 + β2 − . . . is the Euler

characteristic of X; in particular, for every αij we have that qn/αij = α2n−ij′ is a reciprocal root
of P2n−i

Weil proposed a plan for proving his conjectures based upon an as yet unknown cohomology theory.
If F : X → X is the q-power Frobenius map, then X(Fqs) is precisely the set of fixed points of F s :

X(Fq) → X(Fq). Since late 1930’s the following “trace formula” was known due to Solomon Lefschetz:
for a continuous mapping of a compact topological space to itself the number of fixed points (if finite,
and counted with proper multiplicities) is equal to the alternate sum of the traces of the induced map on
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the rational cohomology groups of the space. The cohomology theory conceived by Weil would associate
to a variety X/Fq vector spaces Hi(X;K) of finite dimension over some K, a field of characteristic 0,
with an induced action of Frobenius F∗ on them, such that

(1.1) Ns =

2n∑
i=0

(−1)i tr
((
qnF−1∗

)s ∣∣∣Hi(X;K)
)
,

where n = dimX. This would immediately imply the rationality, along with the formula

(1.2) Z(X/Fq, T ) =
∏
i

det
(

1 − qnF−1∗ T
∣∣∣Hi(X;K)

)(−1)i
.

The rationality part of Weil’s conjectures was first proved by Bernard Dwork around 1960. Surpris-
ingly, his proof didn’t rely on any cohomology theory. Dwork proved instead that the zeta function is
meromorphic as a p-adic function, and then deduced that it must be rational by means of p-adic analysis.
We will come back to Dwork’s proof in a moment.

First cohomology theory of the kind described by Weil was the étale cohomology, constructed in early
1960’s by Alexander Grothendieck and Michael Artin. Given any prime l 6= p, one has the l-adic étale
cohomology groups Hi(X;Ql). Every l works equally well, they are finite dimensional Ql-vector spaces
whose dimension is independent of l. In late 1970’s Pierre Deligne proved the remaining part of the Weil
conjectures (local Riemann hypothesis) with the help of l-adic cohomology.

In his proof of rationality, Dwork also interpreted the number of points as a trace of a linear operator
on a vector space over Qp, but his space was of infinite dimension. Inspired by Dwork’s ideas, Monsky
and Washnitzer constructed in late 1960s a functor which associates with each smooth affine variety X
over Fq vector spaces Hi(X;K) where K = Qq is the unramified extension of degree logp(q) of the field
of p-adic numbers (see [vdP84] for a simplified and refined account of their work). However, no one could
prove those spaces were finite dimensional. Monsky was able to make sense of both (1.1) and (1.2) using
the concept of nuclear operators. Eventually, the construction of p-adic cohomology was accomplished in
both directions: it was defined for more general varieties and schemes (rigid cohomology) and the groups
were proved to be of finite dimension. The finiteness theorems were proved in various versions and
generalizations by Berthelot (“Finitude et pureté cohomologique rigide en cohomologie rigide”, 1997),
Grosse-Klönne (“Finiteness of de Rham cohomology in in rigid analysis”, 2002), Kedlaya (“Finiteness of
rigid cohomology with coefficients”,2003), Mebkhout (“Analogue p-adique du Théorème de Turrittin et le
Théorème de la monodromie p-adique”,2002) and Tsuzuki (“Cohomological descent of rigid cohomology
for proper coverings”, 2003).

In contrast to étale cohomology, the p-adic construction appears to be very useful if one wants to
actually compute zeta functions. It was Kedlaya’s paper [Ked01] that introduced p-adic cohomology in
the computational world by giving a general algorithm for hyperelliptic curves.

2. Algebraic de Rham cohomology

2.1. Smooth affine varieties. Let K be a field of characteristic zero, and let R be a finitely generated,
reduced (i.e., it has no non-zero nilpotent elements) K-algebra and X = SpecR be the corresponding
affine variety over K.

The module of Kähler differentials ΩR/K is the R-module generated by symbols dr for r ∈ R, modulo
the relations dr for r ∈ K and d(ab) − a db − b da for a, b ∈ R. The module ΩR/K is finitely generated
over R, and the map d : R → ΩR/K is a derivation. It has the universal property that for any K-linear
derivation D : R → M to an R-module M , there is a unique R-linear map ψ : ΩR/K → M such that
D = ψ ◦ d.

Assume that X is smooth and dim(X) = n. In this case ΩR/K is a projective R-module of rank n.
Let

ΩiR/K = ΛiR ΩR/K

be the i-th alternating power of ΩR/K over R. The map d induces maps d : ΩiR/K → Ωi+1
R/K , and the

composition d ◦ d is zero. We thus have a complex

R
d→ ΩR/K

d→ Ω2
R/K

d→ . . .
d→ ΩnR/K ,

called the de Rham complex of X.
The elements of ΩiR/K are referred to as i-forms. An i-form is closed if it is in the kernel of d : ΩiR/K →

Ωi+1
R/K , and exact if it is in the image of d : Ωi−1R/K → ΩiR/K . The quotient of the space of closed i-forms
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by the space of exact i-forms is called the (algebraic) de Rham cohomology of X, denoted Hi
dR(X). Note

that for i > n, ΩiR/K = 0 and so Hi
dR(X) = 0.

Example 2.1.1. (affine spaces) X = An, R = K[x1, . . . , xn], H0
dR(An) = K, Hi

dR(An) = 0 for i > 0.

Example 2.1.2. (punctured affine line) Let Q(x) ∈ K[x] be a monic polynomial with distinct roots,
degQ = d. Consider

X = A1 \ roots of Q .

Here R = K[x, y]/(yQ(x)− 1). Since

Q(x)dy + yQ′(x)dx = 0 ,

dy = −y2Q′(x)dx ,

we see that ΩR/K = Rdx, the free R-module of rank 1 generated by dx. Every element of R can be
uniquely written as ynP (x) with n ≥ 0 and Q - P , and we have

d(ynP ) = (ynP ′ − nyn+1PQ′)dx

= yn+1(QP ′ − nPQ′)dx

It is clear that H0
dR(X) = K. In H1

dR(X) we interpret the above formula for n > 1 as

ynPQ′dx ∼ 1

n− 1
P ′yn−1dx

(∼ means being homologous, that is differing by an exact differential). Since Q has no double roots,
Q(x) and Q′(x) are coprime and there exist polynomials A(x), B(x) ∈ K[x] such that AQ + BQ′ = 1.
The following reduction process

ynSdx = yn(AQ+BQ′)Sdx = yn−1ASdx+ ynBSQ′dx

∼ yn−1ASdx+ ynBSQ′dx ∼ yn−1
(
AS +

1

n− 1
(BS)′

)
dx

will then bring any 1-form to the shape (S(x) + T (x)y)dx. Moreover, one can clearly assume that
deg T < d and S = 0, since S(x)dx is always exact. We are left with the forms T (x)y dx, deg T < d.
One can easily see that such a from is exact if and only if T = 0, hence

y dx, xy dx, . . . , xd−1y dx

form a basis of H1
dR(X) = Kd.

Example 2.1.3. (affine hyperelliptic curve)

Q(x) = xd + . . . ∈ K[x]

monic, of degree d, without double roots

R = K[x, y] / (y2 −Q(x))

C = SpecR

Let us first show that the module of Kähler differentials ΩR/K is a free R-module of rank 1. As R
is generated over K by x and y, we have that ΩR/K is generated over R by dx and dy subject to the

relation 0 = d
(
y2 −Q(x)

)
= 2 y dy − Q′(x) dx, that is

ΩR/K = Rdx+Rdy / (2ydy −Q′(x)dx) .

Since Q has no double roots, Q(x) and Q′(x) are coprime and there exist polynomials A(x), B(x) ∈ K[x]
such that AQ+BQ′ = 1. Consider

ω = Ay dx+ 2B dy

so that
dx = (AQ+BQ′)dx = Ay2dx + 2Bydy = y ω ,

dy = (AQ+BQ′)dy = Ay2dy + BQ′dy

=
1

2
AyQ′dx + BQ′dy =

1

2
Q′ω .

We see that ΩR/K = Rω. Hence de Rham complex is given by

d : R→ ΩR/K
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and Hi
dR(C) = 0 when i > 1. To compute H0

dR(C) = Ker(d) and H1
dR(C) = Coker(d), we observe

that
R = K[x]⊕K[x]y ,

and the differential is given by

d
(
P (x) + S(x)y

)
= P ′(x)dx+ S′(x)ydx+ S(x)dy

=
(
P ′(x)y + S′(x)y2 +

1

2
Q′(x)S(x)

)
ω

=
((
S′Q+

1

2
Q′S

)
+ P ′y

)
ω .

Therefore P (x) + S(x)y ∈ Ker(d) if and only if

P ′ = 0 ⇔ P = const ,

S′Q+
1

2
Q′S = 0 ⇔ S = 0 .

(The latter is true because if S = axk+. . . then the leading term of S′Q+ 1
2Q
′S is given by a(k+d

2 )xk+d−1.)
It follows that

H0
dR(C) = K .

Since P ′ can be any polynomial in K[x] and we have just seen that S′Q+ 1
2Q
′S can have leading term

of any degree ≥ d− 1, it follows that
ω, xω, . . . , xd−2ω .

form a basis of H1
dR(C) = Kd−1.

Example 2.1.4. (affine hyperelliptic curve without points where y = 0)

Q(x) = xd + . . . ∈ K[x]

monic, of odd degree d, without double roots

R = K[x, y, z] / (y2 −Q(x), yz − 1)

C ′ = SpecR

(The answer is different when d is even. Please find out the difference as an exercise.) We write
R = K[x, y, y−1] / (y2 − Q(x)). Clearly, ΩR/K is again a free R-module of rank 1. This time we can

use as a generator simply dx, and dy = 1
2Q
′(x)y−1dx. Every element of R can be represented in the

form (P (x) + S(x)y)y−2k for some non-negative k, and the differential is then given by

d
(P (x) + S(x)y

y2k

)
=

P ′(x)

y2k
dx + (−2k)

P (x)

y2k+1

Q′(x)

2y
dx

+
S′(x)

y2k−1
dx + (1− 2k)

S(x)

y2k
Q′(x)

2y
dx

=
(P ′Q− kPQ′

y2k+2
+
S′Q+

(
1
2 − k

)
SQ′

y2k+1

)
dx

It will be useful to observe that there is an involution acting on R which sends x 7→ x, y 7→ −y. R
can be thus decomposed into ‘+’ and ‘-’ eigenspaces of this involution R = R+ ⊕ R−, elements of R+

being of the form P (x)y−2k and elements of R− being S(x)y1−2k. This involution commutes with the
differential and leads to the decomposition of the de Rham complex and the de Rham cohomology groups
Hi
dR(C ′) = Hi

dR(C ′)+ ⊕Hi
dR(C ′)− for i = 0, 1. The +-groups we compute from

d :R+ → R+ dx

P (x)y−2k 7→ (P ′Q− kPQ′)y−2k−2 dx

P (x)y−2k belongs to H0
dR(C ′)+ precisely when P ′Q = kPQ′. If k = 0 then P ′ = 0, so P = const. If

k > 0, since Q and Q′ are coprime, it follows that P is divisible by Q, so we can represent our element
with a smaller k. Therefore H0

dR(C ′)+ = K. To compute H1
dR(C ′)+ we interpret the above formula for

the differential as the forms
P ′

y2k
dx ∼ k

PQ′

y2k+2
dx

being cohomologous (i.e., they differ by an exact form). If k > 1 we have

P (x)

y2k
dx =

P (AQ+BQ′)

y2k
dx ∼ PA

y2k−2
dx +

1

k − 1

(PB)′

y2k−2
dx ,
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so every form can be reduced to something of the form E(x)y−2dx. Further, subtracting multiples of
Q(x)y−2dx (those are exact forms), we can assume that degE < degQ = d. Let us check that the form
E(x)y−2dx with degE < d is exact if and only if E = 0. Suppose for some P and non-negative k we
have

P ′Q− kPQ′

y2k+2
=

E

y2
.

If k = 0, this is possible only when P ′ = 0, and so P = const and E = 0 in this case. If k > 0, it follows
that

P ′Q− kPQ′ = EQ2k

and therefore P is divisible by Q, which means one can make k smaller. This proves that the forms

dx

y2
, x
dx

y2
, . . . , xd−1

dx

y2

form a basis of H1
dR(C ′)+ = Kd.

To compute the −-cohomology groups, we work with

d :R− → R− dx

S(x)y1−2k 7→
(
S′Q+ (

1

2
− k)SQ′

)
y−1−2k dx

The expression S′Q+ ( 1
2 − k)SQ′ can vanish only when S = 0 (because d = degQ is odd, we used this

argument earlier), hence H0
dR(C ′)− = 0. In H1

dR(C ′)− we have

S′

y2k−1
dx ∼ (k − 1

2
)
SQ′

y2k+1
dx ,

so the same way as above we can reduce any form to E(x)y−1dx. Further, using the above formula with
k = 0, the expression S′Q+ 1

2SQ
′ can have its leading term of any power ≥ d− 1, hence we can reduce

to the case degE < d− 1. Let us show that E(x)y−1dx with degE < d− 1 is exact if and only if E = 0.
Suppose for some S and non-negative k we have

S′Q+ ( 1
2 − k)SQ′

y1+2k
=

E

y
.

If k > 0, it follows that Q divides S and we can decrease k. If k = 0 comparing degrees we see that we
can only have S = 0 and E = 0. Therefore we proved that

dx

y
, x
dx

y
, . . . , xd−2

dx

y

form a basis of H1
dR(C ′)− = Kd−1.

2.2. Cohomology of projective varieties, excision and comparison with topological cohomol-
ogy. Here is Grothendieck’s definition of the algebraic de Rham cohomology of a smooth (not necessarily
affine) variety X. For a variety X over K one constructs a sheaf ΩX/K of Kähler differentials, which is
coherent. If X is smooth of dimension n then ΩX/K is locally free of rank n. The exterior derivative is
now a map of sheaves d : OX → ΩX/K and we construct the de Rham complex of X

0→ OX
d→ ΩX/K

d→ Ω2
X/K

d→ . . .
d→ ΩnX/K → 0.

The algebraic de Rham cohomology Hi
dR(X) is defined as hypercohomology Hi(Ω·X/K).

We will not use the above definition in actual computations, so the reader unfamiliar with sheaf
cohomology might simply skip it. We will list several properties which will be important for us.

• Unlike in the affine case, we no longer automatically have Hi
dR(X) = 0 whenever i > dim(X).

(This happens because we use hypercohomology to define algebraic de Rham cohomology.) We
will see some examples soon.

• Let X be smooth and K = C. The set of complex points of X is a complex analytic variety
denoted by Xan, the analytification of X, and there is a functorial isomorphism

Hi
dR(X)→̃Hi

Betti(X
an,C) .

• There is an excision exact sequence in de Rham cohomology. If X is a smooth K-variety, Z is a
smooth subvariety of pure codimension m, and U = X \ Z, then

. . .→ Hi−2m
dR (Z)→ Hi

dR(X)→ Hi
dR(U)→ Hi−2m+1

dR (Z)→ . . .
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Topological comparison allows one compute dimensions of cohomology groups in certain situations,
while excision allows to reduce computation of de Rham cohomology to affine pieces.

Example 2.2.1. We know that H0
dR(An) = K and Hi

dR(An) = 0 when i > 0. Using excision and
induction on n one can show that

Hi
dR(Pn) =

{
K 0 ≤ i ≤ 2n, i even

0, otherwise

(Check that this agrees with topological picture when K = C.)

Example 2.2.2. Compute Hi
dR(A1 \ {Q(x) = 0}) (see Example 2.1.2) using excision. Do the same

using topological comparison.

Example 2.2.3. Let’s see how the above properties work in the relation to hyperelliptic curves. Assume
K = C. An affine hyperelliptic curve

C = {y2 = Q(x)} , degQ = d , res(Q,Q′) 6= 0

can be completed to a smooth projective curve C (here we don’t explain why this is always the case).
Since we have a degree 2 map from C to P1 (given by x on C)

C ↪→ C
x ↓ ↓
A1 ↪→ P1

C \ C will consists of one or two points. Let’s find out how many.

Let us denote Z = C \ C and ε = #Z, which is 1 or 2. As C is a Riemann surface, we denote its
genus by g. We triangulate P1(C) using the roots of Q(x) = 0 and ∞ as vertices (d + 1 points, which
are lifted to d+ ε points on C), some d 1-cells joining them (they lift to 2d 1-cells) and one 2-cell (lifts
to two). For the Euler characteristic of C we then have

χ(C) = d+ ε − 2d + 2 = 2− 2g

Therefore we have 2g = d− ε and ε = 1 or 2 when d is odd or even respectively.
Next, let’s show that H1

dR(C) ∼= H1
dR(C) when d is odd. (Our computation in Example 2.1.3 suggests

this, but we want to obtain this result using properties of cohomology rather than direct computation.)
Excision gives

0→ H0(C)→ H0(C)→ 0→ H1(C)→ H1(C)→ H0(Z)→ H2(C)→ 0

We know dimensions of Hi(C) from topological comparison (Betti numbers of a Riemann surface of
genus g are 1, 2g, 1), and Z has only H0 of dimension #Z = ε. We know that Hi(C) = 0 for i > 1,
because C is affine. It follows immediately that H0(C) ∼= H0(C), and H1(C) ∼= H1(C) when d is odd.

Example 2.2.4. Show that H1
dR(C ′)− ∼= H1

dR(C) when d is odd, where C ′ is the hyperelliptic curve
without the divisor of y (see Example 2.1.4)

Let Z ′ = C \ C ′. The excision sequence looks like in the previous example, we consider the part

0→ H1(C)→ H1(C ′)→ H0(Z ′)→ H2(C)→ 0 ,

and split it under the hyperelliptic involution

0→ H1(C)+ → H1(C ′)+ → H0(Z ′)+ → H2(C)+ → 0

0→ H1(C)− → H1(C ′)− → 0 → H2(C)− → 0

observing that H0(Z ′)− = 0 because Z ′ is invariant under the involution. Here we will cheat a bit
by using our previous computations: we observe that H1

dR(C) has only differentials odd with respect
to hyperelliptic involution in its basis, meaning that H1

dR(C)+ = 0 and H1
dR(C) = H1

dR(C)−. The

same is true for H1
dR(C) by the isomorphism from the previous example. Therefore H1

dR(C)+ = 0 and

H1
dR(C) = H1

dR(C)− ∼= H1
dR(C ′)−.

In this section we established thatH1
dR(C) ∼= H1

dR(C) ∼= H1
dR(C ′)−, and according to our computations

in the previous section, a basis in those cohomology spaces is given by the forms

dx

y
, x
dx

y
, . . . , xd−2

dx

y
.
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3. Monsky-Washnitzer cohomology

3.1. Definition. Let X be a smooth affine variety over k = Fq with coordinate ring R. The Monsky-

Washnitzer cohomology of X is the de Rham cohomology of a certain lift of R to characteristic 0 on
which the Frobenius action is also defined. Below we sketch a construction of such a lift following [vdP84,
Section 2].

Let V be a complete discrete valuation ring with V/πV = k, where π is a uniformizer in V (a generator
of the the maximal ideal). We denote by K the field of fractions of V . Note that charK = 0. For example,
one could take V = Zq = W (Fq). In this case K = Qq is the unique unramified extension of Qp of degree
logp q. The lift of Frobenius to K is denoted by σ. We have σ(x) ≡ xp mod π.

According to a result of R. Elkik (“Solutions d’équations á coefficients dans un anneau henselienne”,
1973) there exist an V -algebra R0, finitely generated and smooth over V such that R0/πR0 ≡ R. Write

R0 = V [t1, . . . , tr]/(f1, . . . , fm) .

Consider the rings

V 〈t1, . . . , tr〉 =
{∑

α

aαt
α | aα ∈ V, lim

|α|→∞
aα = 0

}
and

V 〈t1, . . . , tr〉† =
{∑

α

aαt
α | aα ∈ V , lim inf

|α|→∞

ordpaα
|α|

> 0
}
.

Exercise 3.1.1. Prove that the following definitions of the “dagger ring” are equivalent to the one above:

(i)
{∑

α aαt
α | aα ∈ V , |aα| < cρ|α| for some c > 0 and 0 < ρ < 1

}
;

(ii)
{∑∞

m=0 p
mAm(t1, . . . , tr) | Am ∈ V [t1, . . . , tr] , degAm < C(m+ 1) for some C > 0

}
.

The elements of V 〈t1, . . . , tr〉† are called overconvergent power series. Every element converges in a
polydisc {(t1, . . . , tr) ∈ Kn| |t1| ≤ ρ1, . . . , |tr| ≤ ρr} with all ρi > 1.

For any ring A over V we write Â = lim
←
A/πnA for its π-adic completion. Clearly, V 〈t1, . . . , tr〉 is

the π-adic completion of both V [t1, . . . , tr] and V 〈t1, . . . , tr〉†. We define ||
∑
α aαt

α|| = supα |aα|, which
makes sense in all three rings.

Proposition 3.1.2. (i) The ring V 〈t1, . . . , tr〉† is Noetherian.
(ii) V [t1, . . . , tr]→ V 〈t1, . . . , tr〉† is flat.

A weakly complete finitely generated (w.c.f.g.) algebra over V is a homomorphic image of some
V 〈t1, . . . , tr〉†. For a w.c.f.g. algebra

R = V 〈t1, . . . , tr〉†/(f1, . . . , fm)

one defines a module of differentials

D1(R) = Rdt1 + . . .+Rdtr/ the submodule generated by

∂fi
∂t1

dt1 + . . .+
∂fi
∂tr

dtr , i = 1, . . . ,m

This is the universal finite module of continuous differentials of R/V . It doesn’t depend on the chosen
representation of R.

Proposition 3.1.3. (i) R/πR ≡ R
(ii) D1(R)⊗R ≡ Ω1

R/k

(iii) D1(R) is a projective module of rank n = dimR

The de Rham complex of R is defined as

D0(R)
d→ D1(R)

d→ D2(R)
d→ . . .

d→ Dn(R) ,

where Di(R) = ΛiD1(R) and d is the exterior differentiation. The ith cohomology group of the complex
D(R) is denoted by Hi(X;V ) or Hi(R/V ). Further Hi

MW (X;K) := Hi(X;V )⊗V K is the definition of
the Monsky-Washnitzer cohomology.
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Exercise 3.1.4. (Monsky-Washnitzer cohomology of the affine line) Consider cohomology of the follow-
ing complexes:

Zp[x]
d7→ Zp[x] dx

Zp[[x]]
d7→ Zp[[x]] dx

Zp〈x〉
d7→ Zp〈x〉 dx

Zp〈x〉†
d7→ Zp〈x〉† dx

Notice that H0 ∼= Zp in all cases. Show that H1 is torsion in the first and last cases and non-torsion
in the middle two. In particular, we see that H1

MW (A1;Qp) = 0.

For a smooth and finitely generated k-algebra, a w.c.f.g. algebra A is called a lift of A if A is flat
over V and A/πA ≡ A. The following theorem (from [vdP84]) shows that Frobenius can be lifted to the
de Rham complex and that its action on Monsky-Washnitzer cohomology is independent of the choices
that one makes in this construction.

Proposition 3.1.5. There exists a lift A of A. Moreover:

(i) Every lift of A is isomorphic to A.
(ii) Let C/k be smooth and finitely generated, let C be a lift of C and let f : A→ C be a morphism

of k-algebras. There exists a V -homomorphism F : A→ C lifting f .
(iii) Let B be a w.c.f.g. algebra and F0, F1 : A→ B two homomorphisms with F0 = F1 mod π. The

induced mappings

(F0)∗, (F1)∗ : D(A)⊗V K → D(B)⊗V K
are homotopic.

Exercise 3.1.6. Let Q ∈ Zp[x] be a monic polynomial of degree d without double roots modulo p. We
would like to compute Monsky-Washnitzer cohomology of the punctured affine line, as in Example 2.1.2.
Consider R = Zp〈x, y〉†/(yQ(x)− 1). Show that R is isomorphic to the ring of Laurent series∑

n∈Z
Pn(x)yn

where Pn ∈ Zp[x] are polynomials of degree at most d− 1 such that

lim inf
n→+∞

νp(Pn)

n
> 0 and lim inf

n→+∞

νp(P−n)

n
> 0 .

3.2. Kedlaya’s estimates for p-powers in the reduction process on hyperelliptic curves. Let
Q(x) ∈ Fq[x] be a polynomial of odd degree d = 2g + 1 over Fq without repeated roots, so that the

normalization of the projective closure of the affine curve y2 = Q(x) is a smooth hyperelliptic curve of
genus g. Let C ′ be the affine curve obtained by deleting the support of the divisor of y (that is, the point
at infinity and the Weierstrass points). Let Q(x) ∈ Zq[x] be an arbitrary monic lift of Q(x). Consider

R0 = Zq[x, y, y−1]/(y2 −Q(x))

and its weak completion

R = Zq〈x, y, y−1〉†/(y2 −Q(x)) .

The elements of R can be viewed as series∑
n∈Z

(Pn(x) + Sn(x)y)y2n

where Pn, Sn ∈ Zq[x] are polynomials of degree at most d− 1 such that

lim inf
n→+∞

νp(Pn)

n
, lim inf
n→+∞

νp(P−n)

n
, lim inf
n→+∞

νp(Sn)

n
, lim inf
n→+∞

νp(S−n)

n

are all positive. (Exercise: check that.)
Now we lift the p-power Frobenius map to Ψ : R → R. Let σ : Zq → Zq be the canonical Frobenius,

and Ψ(x) = xp. Consider the polynomial

E(x) =
Qσ(xp)−Q(x)p

p
∈ Zq[x]
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and define

Ψ(y) = yp
(

1 +
pE(x)

y2p

)1/2
= yp

∑
k≥0

(
1/2

k

)
pkE(x)ky−2pk ,

Ψ(y−1) = y−p
(

1 +
pE(x)

y2p

)−1/2
= y−p

∑
k≥0

(
−1/2

k

)
pkE(x)ky−2pk .

One can prove that
(±1/2

k

)
∈ Zp (we assume p 6= 2). Exercise: Check that the above series are

overconvergent.
Further, we compute the matrix of Frobenius on H1(C ′;Qp)− in the basis

dx

y
, x
dx

y
, . . . , xd−2

dx

y

from Example 2.1.4.

Ψ
(
xi
dx

y

)
=
(
pxp(i+1)−1y1−p

∑
k≥0

(
−1/2

k

)
pkE(x)ky−2pk

) dx
y

=
(
y1−p

∑
k≥0

(
−1/2

k

)
pk+1E(x)kxp(i+1)−1y1−p(1+2k)

) dx
y

The degree of E is at most pd− 1, i ≤ d− 2, hence the degree of E(x)kxp(i+1)−1 is at most

k(pd− 1) + p(d− 1)− 1 < (k + 1)pd .

So, for k ≥ 0 we can write(
−1/2

k

)
E(x)kxp(i+1)−1y1−p(1+2k) =

∑
−(2k + 1)p < j < p

j even

ci,k,j(x) yj

(
ci,k,j ∈ Zq[x] , deg ci,k,j < d

)
Ψ
(
xi
dx

y

)
=
( ∑

k ≥ 0, j even

−(2k + 1)p < j < p

pk+1 ci,k,j(x) yj
) dx
y

Proposition 3.2.1 (see [Ked01, Ed03]). Let c(x) ∈ Zq[x] , deg c(x) < d. Then

(i) for m > 0, the reduction of c(x)dx/y2m+1 becomes integral upon multiplication by pblogp(2m−1)c;

(ii) for m ≥ 0, the reduction of c(x)y2m dx/y becomes integral upon multiplication by pblogp(d(2m+1))c.

Proof. (i) Let c(x)dx/y2m+1 ∼ b(x)dx/y, b ∈ Qq[x], deg b < d − 1. By our reduction algorithm there
exists f =

∑
j odd fj(x)yj , fj ∈ Qq[x], deg fj(x) < d such that

df = c(x)dx/y2m+1 − b(x)dx/y .

The expansion of f is unique and each term contributes as

d
(
fj(x)yj

)
=
(
f ′j(x)yj+1 +

j

2
fj(x)Q′(x)yj−1

)dx
y

=
(
gj(x)yj+1 + ej(x)yj−1

)dx
y

where

j

2
fj(x)Q′(x) = ej + hjQ , ej 6= 0, deg ej < d, deg hj < d− 1

gj = f ′j + hj ⇒ deg gj < d− 1

Since ej 6= 0 we see that summation in f =
∑
fjy

j must start with j = 1− 2m. To see what’s the upper
bound let’s analyse whether gj = 0 is possible:

gj = 0⇒ hj = −f ′j

ej =
j

2
fjQ

′ + f ′jQ⇒ fj = const
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In this case ej = j
2fjQ

′ has degree d−1 which can’t be changed by adding gj−2 because deg gj−2 < d−1.
Since the leading term in df is b(x)dx/y and deg b < d − 1 it follows that the summation should go up
to j = −1:

f =

−1∑
j = 1 − 2m

odd

fj(x)yj .

Let r be a root of Q(x) in Zq (actually, in some finite extension Zqf ). Then (x, y) = (r, 0) is a point
on our curve, y is a uniformizer at this point and (Exercise) x can be written as a power series in y
with integral coefficients (that is, in Zqf ). Locally near (r, 0) we write

df = c(x)dx/y2m+1 − b(x)dx/y =

∞∑
j=−2m

cj y
j dy

with cj ∈ Qqf , and cj ∈ Zqf when j < 0 because c(x) ∈ Zq[x]. Then

f =

∞∑
j=−2m

cj
j + 1

yj+1 .

Let e = blogp(2m− 1)c. It follows that

pe f1−2m(r) = pe lim
(x,y)→(r,0)

y2m−1f = pe
c−2m

1− 2m
∈ Zqf .

This is true for any root of Q(x) in the place of r, and therefore f2m−1(x) ∈ Zq[x]. Indeed, let e′ be the

smallest power of p such that pe
′
f1−2m(x) ∈ Zq[x]. If e′ > e then the reduction of pe

′
f1−2m(x) modulo p

(this is a non-zero polynomial over Fq) has d distinct roots in Fqf (if we assume that all roots of Q(x) are
in Zqf ), namely the reductions of the roots of Q(x) modulo p. This is impossible since deg f1−2m < d.
We proved that e′ ≤ e, and in particular pef1−2m ∈ Zq[x].

Now, pef−pef1−2m(x)/y2m−1 has integral coefficients near negative powers when expanded as a power
series in y near (r, 0) for every root r of Q(x). By the same argument as above pef3−2m(x) ∈ Zq[x], and
so on. We have that pefj(x) ∈ Zq[x] for every j, and hence peb(x) ∈ Zq[x].

(ii) Let first m > 0. Consider again the function f such that df = c(x)y2mdx/y − b(x)dx/y. By the
same arguments as in part (i), the bounds of summation in the unique representation f =

∑
j odd fj(x)yj ,

deg fj < d are

f =

2m+1∑
j = 1

odd

fj(x)yj ,

and f2m+1 6= 0 only when deg c(x) = d− 1, in which case f2m+1 = const.

Uniformizer at ∞ is z = x
d−1
2

y and we have v∞(x) = −2, v∞(y) = −d (Exercise). Therefore

v∞
(dx
y

)
= d− 3

v∞
(
b(x)

dx

y

)
≥ −2(d− 2) + d− 3 = 1− d

v∞
(
c(x)y2m

dx

y

)
≥ −2(d− 1)− 2md+ d− 3 = −(2m+ 1)d− 1

and in the local coordinate at infinity

df =
( ∞∑
k=−(m+1)d−1

ck z
k
)
dz , ck ∈ Qq

ck ∈ Zq when k < 1− d

If we define e = blogp((2m+ 1)d)c, then

f =

∞∑
k=−(2m+1)d−1

ck
k + 1

zk+1 =

∞∑
k=−(2m+1)d

ak z
k

pe ak ∈ Zq when k < 2− d
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Since the valuations v∞(xiyj) = −2i− dj for 0 ≤ i < d, j ≥ 1 are all different and all less then 2− d, we
conclude that pefj(x) ∈ Zq[x] for 1 ≤ j ≤ 2m+ 1, and hence peb(x) ∈ Zq[x].

If m = 0 we only have to reduce the term xd−1dx/y:

dy =
1

2
Q′(x)

dx

y
=
(d

2
xd−1 + terms of smaller degree

)dx
y
,

hence the reduction of xd−1dx/y becomes integral after multiplication by pblogp(d)c. �

It follows that

ci,k,j(x)yj
dx

y
∼ bi,k,j(x)

dx

y

bi,k,j(x) ∈ Qq[x] , deg bi,k,j(x) ≤ d− 2

pblogp(−j−1)cbi,k,j(x) ∈ Zq[x] (j < 0) ,

pblogp

(
d(j+1)

)
cbi,k,j(x) ∈ Zq[x] (j ≥ 0) .

Let

mk = max
(

max
−(2k + 1)p < j < 0

j even

blogp(−j − 1)c , max
0 ≤ j < p

j even

blogp

(
d(j + 1)

)
c
)

= blogp max
(

(2k + 1)p− 2 , dp
)
c .

We then have

Ψ
(
xi
dx

y

)
∼
(∑
k≥0

pk+1 bi,k(x)
) dx
y

with

bi,k

(
=
∑
j

bi,j,k

)
∈ Qq[x] , deg bi,k(x) ≤ d− 2

pmkbi,k(x) ∈ Zq[x] .

Therefore if we need the matrix of Ψ mod pN we should make k in the above summation to run while

k + 1−mk < N .

The q-power Frobenius is then given by F = σf−1(Ψ) · . . . σ(Ψ) ·Ψ where f = logp(q).

3.3. The algorithm. We have

Z(C/Fq, T ) =
P (T )

(1− T )(1− qT )

where
P (T ) = det(1− qF−1T |H1

MW (C)) ∈ Z[T ]

is a polynomial of degree 2g = d− 1. According to the Weil conjectures, the reciprocal roots α1, . . . , α2g

(= eigenvalues of qF−1) can be numbered so that αiαg+i = q for i = 1, . . . , g. It follows that qF−1 and
F have the same eigenvalues: P (T ) = det(1 − qF−1T ) = det(1 − FT ). Since H1

MW (C) is the same as
H1
MW (C ′)−, we will use the formula

P (T ) = det(1− FT |H1
MW (C ′)−) .

It remains to analyse what is the smallest power pN modulo which it is sufficient to know the matrix F .
Consider the coefficients

P (T ) =

2g∏
i=1

(1− αiT ) = 1 + a1T + a2T
2 + · · ·+ a2g−1T

2g−1 + qgT 2g .

We have the following estimate

|ai| ≤
(

2g

i

)
qi/2 .

Since P (T ) = qgT 2gP (1/(qT )) (a2g−i = qg−iai) it is enough to determine only a1, . . . , ag. Therefore we

want to know P (T ) modulo pN1 where N1 = dlogp(2
(
2g
g

)
qg/2)e.

Let N2 = mink≥0(k+ 1−mk). If N2 ≥ 0 then Ψ is integral and we need to know Ψ modulo N = N1.
(Exercise: Show that if p > d then N2 ≥ 0.) If N2 < 0 there might be entries with negative valuation
in Ψ, but the valuation is at most N2. Therefore it is enough to know F modulo

N = N1 + f(d− 1) max(0,−N2)
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in order to know the determinant of F = Ψ · σ(Ψ) · . . . · σf−1(Ψ) modulo N1.

———————————————————-

We will describe the algorithm in the simple case when q = p and the curve y2 = Q(x) is given to
us with Q ∈ Q[x] and p is such that reduction modulo p is good: p divides neither denominators of the
coefficients of Q(x) nor the resultant of Q(x) and Q′(x). Then:

• Determine N such that we need to know the matrix of F modulo pN .
• Find M = M(N) such that k + 1−mk > N for k > M .
• Consider S(x) = Q(xp) − Q(x)p. (S(x) = pE(x) is the notation of the previous section.) For

each i = 0, . . . , d− 2 reduce the form(
pxp(i+1)−1y1−p

M∑
k=0

(
−1/2

k

)
S(x)ky−2pk

) dx
y

∼ bi(x)
dx

y
=

d−2∑
j=0

bjix
j dx

y
.

It follows from the estimates in the previous section that F ≡ (bji)
d−2
j,i=0 mod pN .

Exercise: Program the above algorithm. Compare your results with functions FrobeniusMatrix() in
Magma and frobenius polynomial() in Sage.

———————————————————-

In the general case we have q = pf and the curve is given by Q ∈ Fq[x]. One then lifts Q to a
polynomial Q with coefficients in Qq. Actually, it is enough to work modulo some high power of p. The
reader can find details in the literature.
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A sample program in PARI/GP

\\ Q: monic polynomial of odd degree with integer coefficients

\\ p: prime

\\ N: integer (default value = 5)

\\ returns Frobenius matrix on the 1st p-adic cohomology of the hyperelliptic curve (y^2=Q(x) mod p) with precision O(p^N)

frobenius(Q,p,{N=5})={

local(d,M,r,q,a,b,A,B,E,F,s,dw,w,da);

d=poldegree(Q);

if(p<=d,print("choose prime p > ",d);return(0));

if(!isprime(p),print(p," is not a prime number");return(0););

if(polresultant(Q,deriv(Q))%p==0,print("the polynomial has double roots mod ",p);return(0));

\\STEP 1: find M such that M terms in the expression for Frobenius on y^{-1} are enough

M=0;

while(M+1-floor(max(log((2*M+1)*p-2),log(d*p))/log(p))<N,M++);

print("M=",M);

\\STEP 2: construct A,B such that AQ+BQ’=1 using the Euclidean algorithm

r=vector(d+2);

r[1]=Q;

r[2]=deriv(Q);

q=vector(d+2);\\ r[i]=q[i]*r[i+1]+r[i+2]

i=1;

while(poldegree(r[i+1])>0,r[i+2]=r[i]%r[i+1];q[i]=(r[i]-r[i+2])/r[i+1];if(q[i]==0,print("AQ+BQ’=1 doesn’t work");break;);i++);

a=vector(i-1,j,0);b=vector(i-1,j,0);\\1=a[j]*r[j]+b[j]*r[j+1]

a[i-1]=1/r[i+1];b[i-1]=-q[i-1]/r[i+1];

forstep(j=i-1,2,-1,a[j-1]=b[j];b[j-1]=a[j]-b[j]*q[j-1]);

A=a[1];B=b[1];

\\STEP 3 : compute Frobenius on y^(-1)

E=subst(Q,x,x^p)-Q^p; \\ E is divisible by p

a=vector(p*M+1+(p-1)/2,i,0);

a[1+(p-1)/2]=1;

for(k=1,M,a[1+(p-1)/2+k*p]=E*(-1/2-k+1)/k*a[1+(p-1)/2+(k-1)*p]);

\\ F(y^-1) = sum(i>=0, a[1+i]*y^(-2i) 1/y )

\\STEP 4 : compute Frobenius matrix on differentials

\\ F(x^i dx/y) = sum(j>=0, s[1+j]*y^(-2j) ) dx/y

F=matrix(d-1,d-1);

for(i=0,d-2,\

s=vector(p*M+1+(p-1)/2,j,p*x^(p*i+p-1)*a[j]);\

forstep(j=p*M+(p-1)/2,1,-1, s[j]=s[j]+s[j+1]*A+deriv(s[j+1]*B/(j-1/2)));\

while(poldegree(s[1])>=d-1,dw=poldegree(s[1]);w=polcoeff(s[1],dw);da=dw-d+1;s[1]=s[1]-w/(da+d/2)*(da*x^(da-1)*Q+x^da*deriv(Q)/2));\

for(k=0,d-2,F[1+k,1+i]=polcoeff(s[1],k)+O(p^N));\

);

return(F);

}


