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Foreword

These notes grew out of a one semester graduate course taught by us at UIUC in the
Spring of 2014.
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Preface

The aim of these lecture notes is to provide a fast introduction to Poisson geometry.
In Classical Mechanics one learns how to describe the time evolution of a me-

chanical system with n degrees of freedom: the state of the system at time t is de-
scribed by a point (q(t), p(t)) in phase space R2n. Here the (q1(t), . . . ,qn(t)) are
the configuration coordinates and the (p1(t), . . . , pn(t)) are the momentum coordi-
nates of the system. The evolution of the system in time is determined by a function
h : R2n→R, called the hamiltonian: if (q(0), p(0)) is the initial state of the system,
then the state at time t is obtained by solving Hamilton’s equations:{

q̇i = ∂H
∂ pi

,

ṗi =− ∂H
∂qi ,

(i = 1, . . . ,n).

This description of motion in mechanics is the departing point for Poisson ge-
ometry. First, one starts by defining a new product { f ,g} between any two smooth
functions f and g, called the Poisson bracket, by setting:

{ f ,g} :=
n

∑
i=1

(
∂ f
∂ pi

∂g
∂qi −

∂ f
∂qi

∂g
∂ pi

)
.

One then observes that, once a function H has been fixed, Hamilton’s equations can
be written in the short form:

ẋi = {H,xi}, (i = 1, . . . ,2n)

where xi denotes any of the coordinate functions (qi, pi).
Many properties of Hamilton’s equations can be rephrased in terms of the Pois-

son bracket {·, ·}. For example, a function f is conserved under the motion if and
only if it Poisson commutes with the hamiltonian: {H, f} = 0. Also, if f1 and f2
are functions which are both conserved under the motion then their Poisson bracket
{ f1, f2} is also a conserved function.
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The Poisson bracket (1.1) satisfies the familiar properties of a Lie bracket,
namely:

(i) Skew-symmetry: { f ,g}=−{g, f};
(ii) R-bilinearity: { f ,ag+bh}= a{ f ,g}+b{ f ,h}, for all a,b ∈ R;

(iii) Jacobi identity: { f ,{g,h}}+{g,{h, f}}+{h,{ f ,g}}= 0.

There is a fourth important property which relates the Poisson bracket with the usual
product of functions. Namely,

(iv) Leibniz identity: { f ,g ·h}= g · { f ,h}+{ f ,g} ·h.

The axiomatization of these properties leads one immediately to the abstract def-
inition of a Poisson bracket: a binary operation {·, ·} : C∞(M)×C∞(M)→C∞(M)
on the smooth functions of a manifold satisfying properties (i)-(iv) above. Poisson
geometry is the study of Poisson manifolds, i.e., of a manifolds equipped with a
Poisson bracket.

The reader will notice that at this point we have completely split apart the ge-
ometry and the dynamics: in fact, given a Poisson manifold (M,{·, ·}) the Leibniz
identity allows one to associate to each smooth function H on M a vector field XH
on M, called the hamiltonian vector field of h, by setting:

XH( f ) := {H, f}.

The situation here is somewhat similar to the case of a riemannian manifold where,
after one has fixed a riemannian metric, each smooth function H determines a gra-
dient vector field grad H. Although the study of such vector fields is very important,
it is important to book keep precisely what are the geometric properties of the un-
derlying (Poisson, riemannian) manifold and the dynamics associated with a choice
of a specific function H.

Poisson geometry is closely related to symplectic geometry, and this is one of
the main themes of this book. For example, every symplectic manifold has a natural
Poisson bracket and every Poisson bracket determines a foliation of the manifold
by symplectic submanifolds. Also, a smooth quotient of a symplectic manifold by
a group acting by symplectic transformations is a Poisson manifold, which is gen-
eral is not symplectic. However, as we will see, Poisson geometry requires further
techniques which are not present in symplectic geometry, like groupoid/algebroid
theory or singularity theory.

Although Poisson geometry goes back to two centuries ago, through the works
of Lagrange, Poisson and Lie, it has experienced an amazing development starting
with the foundational work of Weinstein [2] in the 80’s. Our aim in this book is not
to provide a complete survey of the vast amount of work done in this subject in the
last 30 years, but rather to provide a quick introduction to the subject that will allow
the reader to plunge into these exciting recent developments.

This text is essentially the set of notes of a one semester course on Poisson ge-
ometry, consisting of 3 one hour lectures per week. The course targeted mainly
graduate students in mathematics in their second year of studies, or later. The ba-
sic requirement for this course was a graduate level course in differential geometry.



Preface ix

Some familiarity with algebraic topology and (soft) symplectic geometry would be
a plus, but not a requirement, to fully grasp the contents of the course.

Our conventions are such that all manifolds are smooth, second countable and
Hausdorff, unless otherwise stated, and all maps are smooth. All vector spaces are
real, unless otherwise stated.

Urbana-Champaign, Rui Loja Fernandes
January 2014 Ioan Mărcut,





Contents

Part I Basic Concepts

1 Poisson Brackets and Multivector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Hamiltonian vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Poisson brackets in local coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Multivector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Symplectic vs. Poisson Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Homework 1: Calculus with Multivector Fields . . . . . . . . . . . . . . . . . . . . . . 17

2 Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Poisson Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Poisson Transversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Coisotropic submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Homework 2: Poisson Relations and Coisotropic Calculus . . . . . . . . . . . . . 34

3 The symplectic foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Regular Poisson Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 The Darboux-Weinstein Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Symplectic leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Symplectic foliation and submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . 48
Homework 3: Foliations and Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Part II Constructions and Examples

4 Quotients and Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Poisson Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Hamiltonian Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Cotangent bundle reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Gauge Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Poisson Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xi



xii Contents

Homework 4: Poisson Gauge Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Examples of Poisson manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1 Poisson structures in dimension two . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Symplectic structures in dimension two . . . . . . . . . . . . . . . . . . 81
5.1.2 Log-symplectic manifolds in dimension two . . . . . . . . . . . . . . 82

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



Acronyms

Lists of abbreviations, symbols and the like:

C∞(M) smooth functions
Xk(M) Multivector fields of degree k
Ω k(M) Differential forms of degree k
iX interior product of differential forms by a vector field X
iα interior product of multivector fields by a 1-form α

π# interior product of a bivector π , i.e, the map α 7→ iα π

LX Lie derivative of forms or multivector fields along a vector field X
[·, ·] Schouten bracket of multivector fields

xiii





Part I
Basic Concepts



A Poisson bracket is a Lie bracket {·, ·} on the space of smooth functions on a
manifold which satisfies, additionally, a Leibniz identity. It can be described more
efficiently as bivector field satisfying a closedness condition. In Lectures 1 and 2 we
describe Poisson brackets as bivector fields, we review the calculus of multivector
fields, and we introduce some basic examples of Poisson manifolds.

[TO BE COMPLETED]



Chapter 1
Poisson Brackets and Multivector Fields

1.1 Poisson brackets

Definition 1.1. A Poisson bracket on a manifold M is a binary operation
C∞(M)×C∞(M)→C∞(M), ( f ,g) 7→ { f ,g}, satisfying:

(i) Skew-symmetry: { f ,g}=−{g, f};
(ii) R-bilinearity: { f ,ag+bh}= a{ f ,g}+b{ f ,h}, for all a,b ∈ R;

(iii) Jacobi identity: { f ,{g,h}}+{g,{h, f}}+{h,{ f ,g}}= 0.
(iv) Leibniz identity: { f ,g ·h}= g · { f ,h}+{ f ,g} ·h.

The pair (M,{·, ·}) is called a Poisson manifold.

If one is given two Poisson manifolds (M1,{·, ·}1) and (M2,{·, ·}2), a Poisson map
is a map Φ : M1→M2 whose pull-back preserves the Poisson brackets:

{ f ◦Φ ,g◦Φ}1 = { f ,g}2 ◦Φ , ∀ f ,g ∈C∞(M2).

Example 1.2. On R2n with linear coordinates (q1, . . . ,qn, p1, . . . , pn) the formula:

{ f ,g} :=
n

∑
i=1

(
∂ f
∂ pi

∂g
∂qi −

∂ f
∂qi

∂g
∂ pi

)
. (1.1)

defines a Poisson bracket, called the canonical Poisson bracket on R2n. This Pois-
son bracket is completely characterized by its values on the coordinates functions:

{qi,q j}= {pi, p j}= 0, {pi,q j}= δ
j

i . (1.2)

If n≥m, the map Φ :R2n→R2m, (q1, . . . ,qn, p1, . . . , pn) 7→ (q1, . . . ,qm, p1, . . . , pm)
is a Poisson map.

3



4 1 Poisson Brackets and Multivector Fields

Example 1.3. Let A = (ai j) be a n×n skew symmetric matrix. We can then define a
quadratic Poisson bracket on Rn by the formula:

{ f ,g}A :=
n

∑
i, j=1

ai jxix j ∂ f
∂xi

∂g
∂x j . (1.3)

You should convince yourself that the Jacobi identity holds.
Consider the map Φ : R2n→ Rn, (qi, pi) 7→ xi, defined by:

xi = epi− 1
2 ∑

n
j=1 ai jq j

(1.4)

Then we claim that Φ is a Poisson map when we equip R2n with the canonical
Poisson bracket (1.1). This follows from the following computation:

{xi ◦Φ ,x j ◦Φ}R2n = {epi− 1
2 ∑

n
k=1 aikqk

,ep j− 1
2 ∑

n
l=1 a jlql}R2n

= e−
1
2 ∑

n
k=1(aik+a jk)qk{epi ,ep j}R2n+

+ ep j− 1
2 ∑

n
k=1 aikqk{epi ,e−

1
2 ∑

n
l=1 a jlql}R2n+

+ epi− 1
2 ∑

n
l=1 a jlql{e−

1
2 ∑

n
k=1 aikqk

,ep j}R2n+

+ epi+p j{e−
1
2 ∑

n
k=1 aikqk

,e−
1
2 ∑

n
l=1 a jlql}R2n

=−1
2

a jiep j− 1
2 ∑

n
k=1 aikqk

epi− 1
2 ∑

n
l=1 a jlql

+

+
1
2

ai jepi− 1
2 ∑

n
l=1 a jlql

ep j− 1
2 ∑

n
k=1 aikqk

= ai jepi− 1
2 ∑

n
k=1 aikqk

ep j− 1
2 ∑

n
l=1 a jlql

= ai j(xi ◦Φ)(x j ◦Φ) = {xi,x j}A ◦Φ ,

where we have used the properties of the Poisson brackets and relations (1.2).

Example 1.4. Let g be any finite dimensional Lie algebra. If f : g∗ → R is any
smooth function and ξ ∈ g∗, then the differential dξ f : Tξg

∗ → R can be viewed
as an element of g:

〈dξ f ,ν〉= d
dt

f (ξ + tν)
∣∣∣∣
t=0

, ∀ν ∈ g∗.

Hence, we can define a binary operation on the smooth functions in M = g∗ by:

{ f ,g}(ξ ) := 〈[dξ f ,dξ g]g,ξ 〉. (1.5)

One checks easily that this operation satisfies all the properties of a Poisson bracket.
It is also easy to check that for any Lie algebra homomorphism Ψ : h→ g the

transpose Φ = (Ψ)∗ : g∗→ h∗ is a Poisson map.
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A Poisson bracket as in the previous example is called a linear Poisson bracket
because of the following result.

Exercise 1.5. Let V be a vector space and assume that V has a Poisson bracket
{·, ·}V with the property that the Poisson bracket of any two linear functions is again
a linear function. Show that g=V ∗ has a natural Lie algebra structure and that {·, ·}V
coincides with the Poisson bracket on g∗ given by (1.5).

1.2 Hamiltonian vector fields

The Leibniz identity for a Poisson bracket leads to the following definition:

Definition 1.6. Let (M,{·, ·}) be a Poisson manifold. The hamiltonian vector
field of H ∈C∞(M) is the vector field XH ∈ X(M) defined by:

XH( f ) := {H, f}, ∀ f ∈C∞(M).

The function H is called the hamiltonian function.

One can also consider time-dependent hamiltonians Ht leading to time-dependent
hamiltonian vector fields.

The assignment C∞(M)→X(M), f 7→ X f , is a Lie algebra morphism. The proof
is elementary, but this fact is sufficiently important to be stated as an independent
proposition.

Proposition 1.7. For any f ,g ∈C∞(M):

X{ f ,g} = [X f ,Xg].

Proof. For any f ,g,h ∈C∞(M), we find:

X{ f ,g}(h) = {{ f ,g},h}
= {{ f ,h},g}+{ f ,{g,h}}
= { f ,{g,h}}−{g,{ f ,h}}
= X f (Xg(h))−Xg(X f (h)) = [X f ,Xg](h),

where we used first the Jacobi identity and then skew-symmetry of the Poisson
bracket. ut

Recall that a function f is called a first integral of a vector field X if f is constant
along any orbit of X and this happens if and only if X( f ) = 0.
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Proposition 1.8. Let (M,{·, ·}) be a Poisson manifold and fix some hamiltonian
function H ∈C∞(M). Then:

(i) f is a first integral of XH if and only if {H, f}= 0;
(ii) H is always a first integral of XH ;

(iii) If f1 and f2 are first integrals of XH then { f1, f2} is also a first integral of XH .

Proof. Part (i) follows from the definition of XH . Part (ii) follows from (i) and the
skew-symmetry of {·, ·}. Part (iii) follows from (i) and the Jacobi identity. ut

Example 1.9. For the canonical Poisson structure on R2n, the equations for the orbits
of XH are the classical Hamilton’s equations:{

q̇i = {H,qi}= ∂H
∂ pi

,

ṗi = {H, pi}=− ∂H
∂qi ,

(i = 1, . . . ,n). (1.6)

In particular, when H = 1
2 ∑

n
i=1 p2

i +V (q1, . . . ,qn), we obtain Newton’s equations
for the motion of a particle in a potential V :

q̈i =− ∂V
∂qi , (i = 1, . . . ,n).

Example 1.10. Consider the restriction of the Poisson structure on Rn, associated
with a skew-symmetric matrix A, to the open set Rn

+ := {(x1, . . . ,xn) : xi > 0}. Fix
real numbers qi, and consider the Hamiltonian function H := ∑

n
i=1
(
qi logxi− xi

)
.

Then one obtains the following equations for the orbits of XH :

ẋi = {H,xi}= εixi +
n

∑
j=1

ai jxix j, (1.7)

where we have introduce the constants εi := ∑
n
j=1 a jiq j.

Equations (1.7) are the famous Lotka-Volterra equations which model the dy-
namics of the populations of n biological species interacting in an ecosystem.

Example 1.11. Let g= so(3) be Lie algebra of 3×3-skew symmetric matrices. We
can identify so(3) with R3 so that the Lie bracket is identified with the vector prod-
uct ×. Under this identification, the corresponding linear Poisson bracket on so(3)∗

becomes the Poisson bracket on R3 given by:

{ f ,g}(x) = (∇ f (x)×∇g(x)) ·x =

∣∣∣∣∣∣∣
∂ f
∂x

∂ f
∂y

∂ f
∂ z

∂g
∂x

∂g
∂y

∂g
∂ z

x y z

∣∣∣∣∣∣∣ .
If we now consider the Hamiltonian function H(x,y,z) = x2

2Ix
+ y2

2Iy
+ z2

2Iz
, then one

obtains the following equations for the orbits of XH :
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ẋ = {H,x}= Iy−Iz

IyIz
yz

ẏ = {H,y}= Iz−Ix
IxIz

xz,

ż = {H,z}= Ix−Iy
IxIy

yx.

(1.8)

These equations are the famous Euler equations that control the motion of a top in
absence of gravity, moving around its center of mass, with moments of inertia Ix, Iy
and Iz.

Recall that if Φ : M → N is a smooth map, two vector fields X ∈ X(M) and
Y ∈ X(N) are said to be Φ-related, and we write Y = (Φ)∗X , if:

YΦ(x) = dxΦ ·Xx, ∀x ∈M.

If we think of vector fields as derivations, this condition can be written as:

X( f ◦Φ) = Y ( f )◦Φ , ∀ f ∈C∞(N).

Hamiltonian vector fields behave well under Poisson maps:

Proposition 1.12. Let Φ : (M,{·, ·}M)→ (N,{·, ·}N) be a Poisson map. For every
H ∈C∞(N):

XH = (Φ)∗XH◦Φ .

Proof. Since Φ is a Poisson map, we find for any f ∈C∞(N):

XH◦Φ( f ◦Φ) = {H ◦Φ , f ◦Φ}M

= {H, f}N ◦Φ = XH( f )◦Φ ,

which proves the proposition. ut

1.3 Poisson brackets in local coordinates

You may have noticed that the formulas for the Poisson brackets in the examples
above all have the same flavor. In order to explain this, lets us start by observing
that Poisson structures are local. Recall that for any smooth function f ∈C∞(M) we
define its support to be the closed set:

supp f := {x ∈M : f (x) 6= 0}.

Then:

Proposition 1.13. Let (M,{·, ·}) be a Poisson manifold. For any smooth functions
f ,g ∈C∞(M):

supp{ f ,g} ⊂ supp f ∩ suppg.
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Proof. Let f ∈C∞(M) and let x0 6∈ supp f . The open sets V := M−{x0} and U :=
M− supp f cover M, so we can choose a partition of unit {ρU ,ρV} subordinated to
this cover. Then we find:

{ f ,g}(x0) = {ρU f +ρV f ,g}(x0)

= {0+ρV f ,g}(x0)

= ρV (x0){ f ,g}(x0)+ f (x0){ρV ,g}(x0) = 0.

This shows that supp{ f ,g} ⊂ supp f . Similarly, we also have supp{ f ,g} ⊂ suppg.
ut

A standard argument now shows that given a Poisson manifold (M,{·, ·}) we can
restrict the Poisson bracket to any open subset U ⊂M obtaining a Poisson bracket
{·, ·}U such that for any f ,g ∈C∞(M) we have:

{ f ,g}|U = { f |U ,g|U}U .

For this reason, henceforth we will not distinguish between {·, ·} and {·, ·}U .

Proposition 1.14. Let (M,{·, ·}) be a Poisson manifold. If (U,x1, . . . ,xn) are local
coordinates, then for any f ,g ∈C∞(M):

{ f ,g}|U =
n

∑
i, j=1
{xi,x j} ∂ f

∂xi
∂g
∂x j . (1.9)

Proof. First we remark that {1, f} = 0 for any f ∈ C∞(M). This follows from the
Leibniz identity:

{1, f}= {1 ·1, f}= {1, f}1+1{1, f}= 2{1, f}.

Hence, by linearity, we also have {c, f}= c{1, f}= 0, for any c ∈ R.
Next, for a smooth function f ∈C∞(U), the Taylor approximation up to order 2

around x0 ∈U gives:

f (x) = f (x0)+
n

∑
i=1

∂ f
∂xi (x0)

(
xi− xi

0
)
+

n

∑
i, j=1

Fi j(x)
(
xi− xi

0
)(

x j− x j
0

)
,

for some smooth functions Fi j ∈C∞(U). Hence, if f ,g ∈C∞(M) we find:

{ f ,g}(x) = { f (x0)+
n

∑
i=1

∂ f
∂xi (x0)

(
xi− xi

0
)
+O(2),g(x0)+

n

∑
i=1

∂g
∂xi (x0)

(
xi− xi

0
)
+O(2)}

=
n

∑
i, j=1

∂ f
∂xi (x0)

∂g
∂x j (x0){xi,x j}(x)+

n

∑
i=1

Hi(x)(xi− xi
0).

for some smooth functions Hi ∈C∞(U). Hence, at x = x0 we obtain:
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{ f ,g}(x0) =
n

∑
i, j=1
{xi,x j}(x0)

∂ f
∂xi (x0)

∂g
∂x j (x0).

Since x0 was an arbitrary point in U , the result follows. ut

In particular, when M = Rm we have global euclidean coordinates (x1, . . . ,xn)
and a Poisson structure in Rn is always of the form:

{ f ,g}=
n

∑
i, j=1

π
i j(x)

∂ f
∂xi

∂g
∂x j .

where the π i j = {xi,x j} are smooth functions in Rm such that {xi,x j} = −{x j,xi}
and the Jacobi identity holds:

{{xi,x j},xk}+{{x j,xk},xi}+{{xk,xi},x j}= 0,

for all 1≤ i < j < k ≤ m.

Exercise 1.15. Let (M,{·, ·}) be a Poisson manifold. If (U,x1, . . . ,xn) are local co-
ordinates, show that for any H ∈C∞(M):

XH |U =
n

∑
i, j=1
{xi,x j}∂H

∂xi
∂

∂x j .

1.4 Multivector fields

From Poisson brackets to bivector fields

The description of a Poisson bracket in terms of a binary operation on the smooth
functions is not always the most efficient one. There is an alternative description in
terms of 2-vector fields, i.e., sections of ∧2T M, which we now discuss.

For a smooth manifold M we denote by X(M) the space of smooth vector fields
on M. Recall that the smooth differential forms Ω k(M) := Γ (∧kT ∗M) can be iden-
tified with the C∞(M)-multilinear, alternating maps of degree k:

ω : X(M)×·· ·×X(M)︸ ︷︷ ︸
k-times

→C∞(M).

Dually, the smooth multivector fields Xk(M) := Γ (∧kT M) can be identified with
the C∞(M)-multilinear, alternating maps of degree k:

ϑ : Ω
1(M)×·· ·×Ω

1(M)︸ ︷︷ ︸
k-times

→C∞(M).

If (U,x1, . . . ,xm) are local coordinates for M, we have local representations:
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ω|U = ∑
i1<···<ik

ωi1,...,ik dxi1 ∧·· ·∧dxik , ϑ |U = ∑
i1<···<ik

ϑ
i1,...,ik ∂

∂xi1
∧·· ·∧ ∂

∂xik
,

for uniquely determined smooth functions ωi1,...,ik ,ϑ
i1,...,ik ∈C∞(U).

Now we have the following important identification:

Proposition 1.16. For a manifold M, the assignment:

ϑ( f1, . . . , fk) = ϑ(d f1, . . . ,d fk).

establishes a one to one correspondence between k-multivector fields, i.e., C∞(M)-
multilinear, alternating maps of degree k:

ϑ : Ω
1(M)×·· ·×Ω

1(M)︸ ︷︷ ︸
k-times

→C∞(M),

and R-multilinear, alternating maps of degree k:

ϑ : C∞(M)×·· ·×C∞(M)︸ ︷︷ ︸
k-times

→C∞(M),

which are also multi derivations;

ϑ( f1, . . . ,gh, . . . , fk) = gϑ( f1, . . . ,h, . . . , fk)+ϑ( f1, . . . ,g, . . . , fk)h.

The proof is left as an exercise. It follows that, given a Poisson manifold
(M,{·, ·}), we can define a bivector field π ∈ X2(M) by:

π(d f ,dg) := { f ,g}.

If (U,x1, . . . ,xm) are local coordinated for M, then we find that the local coordinate
description of the bivector field π is:

π|U = ∑
i< j

π
i j(x)

∂

∂xi ∧
∂

∂x j ,

where π i j(x) = {xi,x j}(x).
Conversely, by the Proposition, if we are given a bivector field π ∈ X2(M) we

can define a “bracket” on smooth functions by:

{ f ,g} := π(d f ,dg).

This bracket is R-bilinear, skew-symmetric and satisfies the Leibniz identity. How-
ever, in general, it will not satisfy the Jacobi identity. In order to understand what
is the extra property that characterizes the bivector fields associated with Poisson
brackets, we will make a brief excursion to the calculus of multivector vector fields.
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Wedge product

The exterior (or wedge) product ∧ in the exterior algebra ∧TpM induces an exterior
(or wedge) product of multivector fields

∧ : Xk(M)×Xs(M)→ Xk+s(M), (ϑ ∧ζ )p ≡ ϑp∧ζp.

If we consider the space of all multivector fields:

X•(M) =
d⊕

k=0

Xk(M).

where we convention that X0(M) = C∞(M) and f ϑ = f ∧ϑ , the exterior product
turns X(M) into a Grassmannn algebra over the ring C∞(M), i.e., the following
properties hold:

(a) ( f ϑ1 +gϑ2)∧ζ = f ϑ1∧ζ +gϑ2∧ζ , for f ,g ∈C∞(M).
(b) ϑ ∧ζ = (−1)degϑ degζ ζ ∧ϑ .
(c) (ϑ1∧ϑ2)∧ϑ3 = ϑ1∧ (ϑ2∧ϑ3).

If α1, . . . ,αk ∈Ω 1(M) and X1, . . . ,Xk ∈ X(M), our convention is such that we have:

X1∧·· ·∧Xk(α1, . . . ,αk) = det [αi(X j)]
k
i, j=1 .

Push-forward

Let Φ : M → N be a smooth map. We have an induced pull-back operation Φ∗ :
Ω •(N)→Ω •(M) on differential forms. The dual operation on multivector fields is
a push-forward operation. However, contrary to the pull-back of differential forms,
which is always defined, the push-forward is not always defined, so it is convenient
to proceed as follows: let Φ : M→ N be a smooth map. For each p ∈M, the differ-
ential induces a linear map

(dpΦ)∗ : ∧kTpM→∧kTΦ(p)M.

Definition 1.17. Let Φ : M→ N be a smooth map. Two k-vector fields ϑ ∈ Xk(M)
and ζ ∈ Xk(N) are said to be Φ-related if:

ζΦ(p) = (dpΦ)∗ϑp, ∀p ∈ N.

In this case we write ζ = Φ∗ϑ .

Notice that, in general, if ζ is Φ-related to ϑ , the k-vector field ζ ∈Xk(N) is not
completely determined by the k-vector field ϑ ∈ Xk(M) and the map Φ : M→ N.
When this is the case, we will call Φ∗ϑ the push-forward of ϑ by the map Φ .

The push-forward preserves the Grassmann algebra structure: if Φ : M→ N is a
smooth map then
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(a) Φ∗(aϑ1 +bϑ2) = aΦ∗ϑ1 +bΦ∗ϑ2;
(b) Φ∗(ϑ ∧ζ ) = Φ∗ϑ ∧Φ∗ζ ;

provided the push-forwards Φ∗ϑ , Φ∗ϑi and Φ∗ζ are defined.

Exercise 1.18. Let (M,{·, ·}M) and (N,{·, ·}N) be Poisson manifolds and Φ : M→
N a smooth map. Denote by πM ∈X2(M) and πN ∈X2(N) the corresponding bivec-
tor fields. Show that Φ is a Poisson map if and only if πN = (Φ)∗πM .

Interior Product

Given a k-vector field ϑ ∈ Xk(M) and a differential form α ∈ Ω 1(M), the interior
product of ϑ by α , denoted iα ϑ ∈ Xk−1(M), is the (k−1)-vector field defined by:

iα ϑ(α1, . . . ,αk−1) = ϑ(α,α1, . . . ,αk−1).

Since iα ϑ : Ω 1(M)× ·· ·×Ω 1(M)→ C∞(M) is a C∞(M)-multilinear, alternating,
map of degree (k−1), it is indeed a smooth multivector field of degree k−1.

It is easy to check that the following properties hold:

(a) iα( f ϑ1 +gϑ2) = f iα ϑ1 +giα ϑ2.
(b) iα(ϑ ∧ζ ) = (iα ϑ)∧ζ +(−1)degϑ ϑ ∧ (iα ζ ).
(c) i( f α+gβ )ϑ = f iα ϑ +giβ ϑ .

For a bivector field π ∈X2(M), the interior product gives a map Ω 1(M)→X(M),
α 7→ iα π . This map is often denoted by

π
# : Ω

1(M)→ X(M).

Exercise 1.19. Let (M,{·, ·}) be a Poisson manifold and denote by π ∈ X2(M) the
corresponding bivector field. Check that for any smooth function H ∈C∞(M):

XH = idHπ = π
#(dH).

Lie derivative

The push-forward of multivector fields is always defined for diffeomorphisms. This
allows us to define the Lie derivative of a multivector field:

Definition 1.20. The Lie derivative of a k-vector field ϑ ∈ Xk(M) along a vector
field X ∈ X(M) is the k-multivector field LX ϑ ∈ Xk(M) defined by:

LX ϑ =
d
dt
(φ−t

X )∗ϑ

∣∣∣∣
t=0

= lim
t→0

1
t

(
(φ−t

X )∗ϑ −ϑ
)
.
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In general, it is impossible to find explicitly the flow of a vector field. Still the
basic properties of the Lie derivative listed in the next proposition allow one to find
the Lie derivative without knowledge of the flow. The proof is left as an exercise:

Proposition 1.21. Let X ∈ X(M) and ϑ1,ϑ2 ∈ X•(M). Then:

(i) LX (aϑ1 +bϑ2) = aLX ϑ1 +bLX ϑ2 for all a,b ∈ R.
(ii) LX (ϑ1∧ϑ2) = LX ϑ1∧ϑ2 +ϑ1∧LX ϑ2.

(iii) LX ( f ) = X( f ), if f ∈ X0(M) =C∞(M).
(iv) LXY = [X ,Y ], if Y ∈ X(M).

Exercise 1.22. Let (M,{·, ·}) be a Poisson manifold and denote by π ∈ X2(M) the
corresponding bivector field. Show that

LX π(d f ,dg) = X({ f ,g})−{X( f ),g}−{ f ,X(g)}.

and conclude that:
LXH π = 0, ∀H ∈C∞(M). (1.10)

In particular, if XH is a complete vector field, then the flow φ t
XH

: M → M is a 1-
parameter group of Poisson diffeomorphisms of M.

A vector field X such that LX π = 0 is called a Poisson vector field. This is equiv-
alent to say that the flow of X is a 1-parameter group of Poisson diffeomorphism.
The previous exercise shows that that every hamiltonian vector field is a Poisson
vector field.

The Schouten bracket

The differential d : Ω k(M)→Ω k+1(M) plays a crucial role in differential geometry.
The dual operation on multivector fields is a kind of Lie bracket, which extends
the usual Lie bracket on vector fields, called the Schouten bracket. We will take
advantage of the identification provided by Proposition 1.16, to define this bracket.

Definition 1.23. Let ϑ ∈Xk(M) and ζ ∈Xl(M) be multivector fields. The Schouten
bracket of ϑ and ζ is the multivector field [ϑ ,ζ ] ∈ Xk+l−1(M) defined by:

[ϑ ,ζ ] = ϑ ◦ζ − (−1)(k−1)(l−1)
ζ ◦ϑ , (1.11)

where we have set:

ζ ◦ϑ(d f1, . . . ,d fk+l−1) := ∑
σ

(−1)σ
ζ (ϑ( fσ(1), . . . , fσ(k)), fσ(k+1), . . . , fσ(k+l−1)),

and the sum is over all (k, l−1)-shuffles.

Formula (1.11) is not very practical for computations. In the Homework at the
end of this lecture, you will be able study the basic properties of the Schouten
bracket which yield more efficient ways to compute it.
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Observe that for a bivector field π ∈ X2(M) with associated bracket { f ,g} =
π(d f ,dg), formula (1.11) gives:

1
2
[π,π](d f1,d f2,d f3) = {{ f1, f2}, f3}+{{ f2, f3}, f1}+{{ f3, f1}, f2}. (1.12)

Therefore the Jacobi identity for {·, ·} is equivalent to the equation [π,π] = 0 and
we conclude:

Proposition 1.24. Let (M,{·, ·}) be a Poisson manifold. Then the associated bivec-
tor field π ∈ X2(M) satisfies:

[π,π] = 0. (1.13)

Conversely, every bivector field π ∈X2(M) satisfying this relation defines a Poisson
bracket by { f ,g} := π(d f ,dg).

Exercise 1.25. Let π ∈ X2(M). Show that [π,π] = 0 iff for every f ,g ∈C∞(M):

X{ f ,g} = [X f ,Xg].

Hence we can replace our original Definition 1.1 of a Poisson bracket by:

Definition 1.26. A bivector field π ∈ X2(M) satisfying [π,π] = 0 is called a
Poisson structure on M. A pair (M,π), where π is a Poisson structure on M,
is called a Poisson manifold.

Exercise 1.27. Let (M,π) be a Poisson manifold. Check that in local coordinates
(U,x1, . . . ,xm) the identity (1.13) amounts to:

m

∑
l=1

(
π

il ∂π jk

∂xl +π
il ∂π jk

∂xl +π
il ∂π jk

∂xl

)
= 0, (i, j,k = 1, . . . ,m). (1.14)

Note that (1.14) is an overdetermined non-linear system of first order p.d.e.′s:
there are

(m
3

)
-equations on

(m
2

)
-unkown functions π i j. It is for this reason that

the study of Poisson structures on a given manifold, even locally, is a very
non-trivial and hard subject.

1.5 Symplectic vs. Poisson Structures

Recall that a bivector field π ∈ X2(M) determines a map π# : Ω 1(M)→ X(M) de-
fined by α 7→ iα π . Since the interior product is a pointwise operation, this map
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is induced by a smooth bundle map which we will denote by the same symbol
π# : T M→ T ∗M so that:

π
#
x : T ∗x M→ TxM, α 7→ iα πx.

A bivector field π ∈X2(M) is called non-degenerate at x∈M if π#
x : T ∗x M→ TxM is

an isomorphism. We say that π ∈ X2(M) is non-degenerate if it is non-degenerate
at every x ∈M. If we think of a bivector π ∈ X2(M) as giving at each point x ∈M a
skew-symmetric bilinear form

πx : T ∗x M×T ∗x M→ R,

then non-degeneracy of π (at x ∈ M) is the same as non-degeneracy of this skew-
symmetric bilinear form (at x).

Similarly, a 2-form ω ∈Ω 2(M) determines a map ω[ : T M→ T ∗M, such that:

ω
[
x : TxM→ T ∗x M, v 7→ ivωx.

A 2-form ω ∈Ω 2(M) is called non-degenerate at x ∈M if ω[
x : TxM→ T ∗x M is an

isomorphism. We say that ω ∈Ω 2(M) is non-degenerate if it is non-degenerate at
every x ∈ M. If we think of a 2-form ω ∈ Ω 2(M) as giving at each point x ∈ M a
skew-symmetric bilinear form

ωx : TxM×TxM→ R,

then non-degeneracy of ω (at x ∈ M) is the same as non-degeneracy of this skew-
symmetric bilinear form (at x).

Lemma 1.28. There is a 1:1 correspondence between non-degenerate bivector fields
π ∈ X2(M) and non-degenerate 2-forms ω ∈Ω 2(M):

ω
[ = (π#)−1 ←→ π

# = (ω[)−1.

Under this correspondence, if π is associated with ω , one has:

[π,π](α,β ,γ) =−2dω(π#(α),π#(β ),π#(γ)), α,β ,γ ∈ T ∗M. (1.15)

Proof. The first part is clear. To check (1.15), it is enough to check that it holds on
exact 1-forms. Using (1.12) we find that:

[π,π](d f1,d f2,d f3) = 2({{ f1, f2}, f3}+{{ f2, f3}, f1}+{{ f3, f1}, f2}).

On the other hand, recall Cartan’s formula for the differential:

dω(X ,Y,Z) = X(ω(Y,Z))+ cycl. perm. X,Y,Z
− (ω([X ,Y ],Z)+ cycl. perm. X,Y,Z) .

If we let X = π#(d f1), Y = π#(d f2) and Z = π#(d f3), we find:
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dω(π#(d f1),π
#(d f2),π

#(d f3))=−({{ f1, f2}, f3}+{{ f2, f3}, f1}+{{ f3, f1}, f2}).

so the result follows. ut

Skew-symmetry implies that if π ∈X2(M) is non-degenerate at some x∈M, then
M must be even dimensional and similarly for non-degenerate 2-forms.

Exercise 1.29. Assume that dimM = 2n. Show that π ∈ X2(M) (respectively, ω ∈
Ω 2(M)) is non-degenerate at x ∈M if and only if ∧nπx 6= 0 (resp. .∧nωx 6= 0).

Let us recall that a symplectic structure on a manifold M is a non-degenerate,
closed 2-form ω ∈ Ω 2(M). The pair (M,ω) is then called a symplectic manifold.
Hence, we conclude:

Proposition 1.30. There is a 1:1 correspondence between non-degenerate Poisson
structures and symplectic structures on a manifold M.

Notice that in local coordinates (U,x1, . . . ,xn) we have:

π|U = ∑
i< j

π
i j(x)

∂

∂xi ∧
∂

∂x j .

and π is non-degenerate at x ∈U if and only if the matrix (π i j(x)) is invertible. In
this case, the corresponding symplectic structure is:

ω = ∑
i< j

ωi j(x)dxi∧dx j, where (ωi j(x)) = (π i j(x))−1.

For this reason, in this case we often write ω = π−1 or π = ω−1.

Example 1.31. The canonical Poisson structure on R2n is non-degenerate, and we
have:

π =
n

∑
i=1

∂

∂ pi
∧ ∂

∂qi , π
−1 =

n

∑
i=1

dqi∧dpi.

Example 1.32. The Poisson structure on Rn associated with a skew-symmetric ma-
trix A is never symplectic, since the Poisson structure vanishes at the origin. Simi-
larly, a linear Poisson structure is never symplectic.

For a non-degenerate Poisson structure π any concept related with π can be ex-
pressed in terms of the associated symplectic structure ω ∈ Ω 2(M). For example,
the hamiltonian vector field XH of H ∈C∞(M) can be defined by:

ω
[(XH) = dH ⇔ iXH ω = dH.

One distinguish feature of non-degenerate Poisson structures (or symplectic
structures) is that they possess a canonical volume form: if ω ∈Ω 2n(M) is the sym-
plectic form, then the Liouville volume form or symplectic volume is defined by

µ :=
1
n!
∧n

ω.
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Proposition 1.33. For a non-degenerate Poisson structure π , the Liouville volume
form µ is invariant under the flow of any hamiltonian vector field:

LXH µ = 0, ∀H ∈C∞(M).

Proof. By (1.10), we always have LXH π = 0. Since ω = (π)−1, we also have
LXH ω = 0, so the result follows. ut

Homework 1: Calculus with Multivector Fields

1.1. Give a proof of Proposition 1.16.
HINT: See the proofs of Propositions 1.13 and 1.14.

1.2. Show that formula (1.11) defines a multivector field of degree (k + l− 1) by
showing that the formula gives a R-multilinear, alternating map of degree k+ l−1
which is a derivation on each entry.

1.3. Show that the bracket defined by (1.11) satisfies the following properties:
(a) For ϑ ∈ Xk(M) and ζ ∈ Xl(M):

[ϑ ,ζ ] =−(−1)(k−1)(l−1)[ζ ,ϑ ];

(b) For a,b ∈ R:
[aϑ1 +bϑ2,ζ ] = a[ϑ1,ζ ]+b[ϑ2,ζ ];

(c) For ϑ ∈ Xk(M), ζ ∈ Xl(M) and τ ∈ Xm(M):

(−1)(k−1)(m−1)[[ϑ ,ζ ],τ]+ (−1)(l−1)(k−1)[[ζ ,τ],ϑ ]+ (−1)(m−1)(l−1)[[τ,ϑ ],ζ ] = 0.

(d) For ϑ ∈ Xk(M), ζ ∈ Xl(M) and τ ∈ Xm(M):

[ϑ ,ζ ∧ τ] = [ϑ ,ζ ]∧ τ +(−1)(k−1)l
ζ ∧ [ϑ ,τ].

(e) For X ∈ X1(M) and f ∈C∞(M) = X0(M):

[X , f ] = X( f ).

(f) The Schouten bracket on vector fields coincides with the usual Lie bracket of
vector fields.

Remark 1.4. The following remark maybe helpful in memorizing the various signs
that appear in (a)-(e). A Z-graded vector space is a vector space which is a direct
sum of vector spaces V = ⊕n∈ZVn. Elements of Vn are said to have degree n. A Z-
graded Lie algebra is a graded vector space V = ⊕n∈ZVn with a Lie bracket [·, ·]
such that that [Vn,Vm] ⊂ Vn+m. A super Z-graded Lie algebra is a graded vector
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space V =⊕n∈ZVn with a bracket [·, ·] such that that [Vn,Vm]⊂Vn+m which satisfies
the following super versions of the usual properties of a Lie bracket:

(a) Super skew-symmetry: [v,w] =−(−1)(degv)(degw)[w,v];
(b) R-blinearity: [av1 +bv2,w] = a[v1,w]+b[v2,w];
(c) Super graded Jacobi:

(−1)(degv)(degz)[[v,w],z]+(−1)(degw)(degv)[[w,z],v]+(−1)(degz)(degw)[[z,v],w] = 0.

You will notice now that properties (a)-(c) of the Schouten bracket express the fact
that this bracket makes X•(M) into a super graded Lie algebra, but with a shift in
the degree of a multivector filed: degXk(M) = k− 1. Property (d) also shows that
[ϑ , ·] acts as derivation on the exterior algebra, where again there is a shift in the
degree of ϑ (but not in the exterior algebra).

1.5. Show that there is at most one operation [·, ·] : Xk(M)×Xl(M)→ Xk+l−1(M)
that satisfies properties (a)-(e) in Problem 1.3.
HINT: Using only properties (a)-(e) show that if X1, . . . ,Xk,Y1, . . . ,Yl ∈ X(M), one
must have:

[X1∧·· ·∧Xk,Y1∧·· ·∧Yl ] =

= ∑
i, j
(−1)i+ j[Xi,Yj]∧X1∧·· ·∧ X̌i∧·· ·∧Xk ∧Y1∧·· ·∧ Y̌j ∧·· ·∧Yl

and that for any multivector field ϑ ∈ Xk(M) and any f ∈C∞(M):

[ϑ , f ] = id f ϑ .

1.6. Show that for any vector field X ∈ X(M) and any ϑ ∈ Xk(M):

LX ϑ = [X ,ϑ ].

1.7. Let Φ : M→ N be a smooth map, ϑ1,ζ1 ∈ Xk(M) and ϑ2,ζ2 ∈ Xk(N). Show
that if ϑ2 = Φ∗ϑ1 and ζ2 = Φ∗ζ1 then:

[ϑ2,ζ2] = Φ∗[ϑ1,ζ1].

1.8. Use the properties above of the Schouten bracket to compute [π,π] for the fol-
lowing bivector fields:

(a) π = ∂

∂x1 ∧ ∂

∂x2 + · · ·+ ∂

∂x2n−1 ∧ ∂

∂x2n ∈ X2(R2n).
(b) π = f (θ 1) ∂

∂θ 1 ∧ ∂

∂θ 2 +
∂

∂θ 3 ∧ ∂

∂θ 4 + · · ·+ ∂

∂θ 2n−1 ∧ ∂

∂θ 2n ∈ X2(T2n).
(c) π = f (x) ∂

∂y ∧
∂

∂ z +g(y) ∂

∂ z ∧
∂

∂x +h(z) ∂

∂x ∧
∂

∂y ∈ X2(R3).
(d) π = X ∧Y , where X ,Y ∈ X(M) are any two vector fields on M.



Chapter 2
Submanifolds

2.1 Poisson Submanifolds

Definition 2.1. A Poisson submanifold of a Poisson manifold (M,πM) is a
Poisson manifold (N,πN) together with an injective immersion i : N ↪→ M
which is Poisson: i∗πN = πM .

As usual, one identifies an immersed submanifold i : N ↪→ M with its image, so
that one can assume that the map i is the inclusion and dxi(TxN) is identified with a
subspace of Ti(x)M, but keep in mind that, in general, the topology on N is not the
topology induced from M. Also, we let:

(T N)0 := {α ∈ T ∗N M : α(v) = 0,∀v ∈ TNM}.

Proposition 2.2. Let (M,πM) be a Poisson manifold. Given an immersed subman-
ifold N ↪→ M there is at most one Poisson structure πN on N that makes (N,πN)
into a Poisson manifold. This happens if and only if any of the following equivalent
conditions hold:

(i) Im(πM)#
x ⊂ TxN, for all x ∈ N;

(ii) every hamiltonian vector field XH ∈ X(M) is tangent to N;
(iii) (πM)#

x(TxN)0 = 0, for all x ∈ N.

If N is a closed submanifold, then these condition are also equivalent to:

(vi) The vanishing ideal I (N) := { f ∈ C∞(M) : f (x) = 0,∀x ∈ N} is a Poisson
ideal: for any f ∈I (N) and g ∈C∞(M) one has { f ,g} ∈I (N).

Proof. If (N,πN) ↪→ (M,πM) is a Poisson submanifold, then πN is i-related to πM:

dxi(πN)x = (πM)i(x), ∀x ∈ N.

19
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Equivalently:
dxi◦ (πN)

#
x ◦ (dxi)∗ = (πM)#

i(x).

Since dxi is injective, this shows that πN is unique. It also shows that (i) must hold
if (N,πN) is a Poisson submanifold.

Next let i : N ↪→M be a submanifold and assume that Im(πM)#
x ⊂ dxi(TxN). We

claim that there exists a unique smooth bivector πN in N such that (πM)#
x factors as:

T ∗x M
(πM)#

x //

(dxi)∗

��

TxM

T ∗x N
(πN)

#
x

// TxM

dxi

OO

Since we already know that Im(πM)#
x ⊂ dxi(TxN), it is enough to check that for any

α,β ∈ T ∗x M such that α|T N = β |T N we have (πM)#
x(α) = (πM)#

x(β ). In fact, we find
for any γ ∈ T ∗x M:

〈(πM)#
x(α)− (πM)#

x(β ),γ〉= 〈(πM)#
x(α−β ),γ〉

=−〈α−β ,(πM)#
x(γ)〉= 0.

which proves the claim (the smoothness of πN is automatic).
Now observe that [πN ,πN ] = 0. In fact, the Schouten brackets of Φ-related mul-

tivector fields are also Φ-related, so that:

[πM,πM] = i∗([πN ,πN ]),

and i is an immersion. This shows that if (i) holds, then N has a unique Poisson
structure so that it is a Poisson submanifold.

The equivalence (i)⇔ (ii) is follows from the fact that hamiltonian vector fields
take the the form XH = π#

M(dH).
The equivalence (ii)⇔ (iii) follows from observing that for any α ∈ (TxN)0 and

β ∈ T ∗x M we have
〈π#

M(α),β 〉=−〈α,π#
M(β )〉,

so π#
M(TxN)0 = 0 if and only if π#

M(T ∗x M)⊂ T N.
Finally, notice that if N is a closed submanifold, a vector field X ∈ X(M) is

tangent to N if and only if for any f ∈ I (N) we have X( f )(x) = 0. Hence, the
result follows from the first part and the fact that { f ,g}=−Xg( f ). ut

Exercise 2.3. What can one say about the equivalence with (iv), in the previous
proposition, if the submanifold is not closed?

Corollary 2.4. Let (M,πM) be a Poisson manifold. If N1,N2 ⊂ M are two Poisson
submanifolds which intersect transversely then N1∩N2 ⊂M is also a Poisson sub-
manifold.
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Proof. It is enough to observe that:

T (N1∩N2) = T N1∩T N2,

and apply the proposition twice. ut

Example 2.5. For a non-degenerate Poisson structure (M,π), i.e., a symplectic man-
ifold, the bundle map π# : T ∗M→ T M is an isomorphism, so we have:

Imπ
# = T M.

Hence, the proposition shows that the only Poisson submanifolds of a symplectic
manifold are the open subsets U ⊂M.

Example 2.6. For the quadratic Poisson bracket on Rn associated with a skew-
symmetric matrix A = (ai j), we have

πA = ∑
i< j

ai jxix j ∂

∂xi ∧
∂

∂x j ,

so that:

π
#
A(dxi) =

n

∑
j=1

ai jx j ∂

∂x j .

This shows that for any integers 1≤ i1 < · · ·< ik ≤ n, with k ≤ n, the subspaces

Vi1,...,ik = {(x
1, . . . ,xn) ∈ Rn : xil = 0, l = 1, . . . ,k},

are Poisson submanifolds. The Poisson bracket on the submanifold Vi1,...,ik is again
a quadratic bracket associated with the (n− k)× (n− k) minor of A obtained by
removing the rows and columns i1, . . . , ik.

Example 2.7. Consider the Poisson manifold so∗(3)' R3. From the expression for
the Poisson bracket given in Example 1.11, we have:

π = x
∂

∂y
∧ ∂

∂ z
+ y

∂

∂ z
∧ ∂

∂x
+ z

∂

∂x
∧ ∂

∂y
.

This shows that:

π
#(dx) = z

∂

∂y
− y

∂

∂ z
, π

#(dy) = x
∂

∂ z
− z

∂

∂x
, π

#(dz) = y
∂

∂x
− x

∂

∂y
.

Hence, at a point (x,y,z) we see that Imπ#
(x,y,z) is the space orthogonal to the vector

(x,y,z). It follows that the spheres

S2
r := {(x,y,z) : x2 + y2 + z2 = r2}
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are all Poisson submanifolds. The sphere of radius 0, i.e., the origin {0}, is also a
Poisson submanifold of dimension 0! It is an instructive exercise to write down the
Poisson structure on a sphere S2

r in terms of spherical coordinates.

Exercise 2.8. Let (θ ,ϕ) be spherical coordinates on the sphere S2
r defined by:

x = r sinθ cosϕ, y = r cosθ cosϕ, z = r sinϕ.

Show that the induced Poisson structure on Sr is:

πS2
r
=− 1

r cosϕ

∂

∂θ
∧ ∂

∂ϕ
.

Exercise 2.9. For any Poisson manifold (M,π) a function f ∈ C∞(M) is called a
Casimir function of π if X f = 0, i.e, if { f ,g}= 0, for all g ∈C∞(M). For example,
the function f (x,y,z) = x2 + y2 + z2 is a Casimir of the Poisson structure πso∗(3).
Show that if φ : M→Rn is a smooth map such that each component φ i is a Casimir
function and c ∈ Rn is a regular value of φ , then φ−1(c)⊂M is a Poisson submani-
fold.

In general, if Φ : (M,πM)→ (N,πN) is a Poisson map which is transverse to a
Poisson submanifold Q ⊂ (N,πN), then Φ−1(Q) is not a Poisson submanifold of
(M,π) as shown by the following example.

Example 2.10. Consider the Poisson map Φ : R2n→ Rn of Example 1.3, where on
R2n we have the canonical Poisson bracket and on Rn we have the Poisson bracket
associated with a skew-symmetric matrix A. This map is a submersion onto Rn

+.
Now let us set n = 3 and consider the skew-symmetric matrix:

A =

 0 −1 0
1 0 0
0 0 0

 .

Then Qc := {(x,y,z) : z = c > 0} ⊂ Rn
+ is a Poisson submanifold and Φ−1(Qc) is a

codimension 1 submanifold of R2n. However, Φ−1(Qc) is not a Poisson submani-
fold R2n, since the only Poisson submanifolds of R2n are open subsets.

The notion of a Poisson submanifold is very natural. However, Poisson subman-
ifolds are, in some sense, quite rare (as shown, e.g., in the case of symplectic mani-
folds) and do not behave functorially relative to Poisson maps (as illustrated by the
previous example). Hence, we now turn to more general concepts of submanifolds,
extending the notion of a Poisson submanifold in different directions, which are
very useful in Poisson geometry.
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2.2 Poisson Transversals

Definition 2.11. A Poisson transversal of a Poisson manifold (M,π) is a sub-
manifold X ⊂M such that, at every point x ∈ X , we have

TxM = TxX +π
#(TxX)0. (2.1)

Note that the equality rank(T X)0 = rank(TX M)− rank(T X) implies that condition
(2.1) is equivalent to the direct sum decomposition:

TxM = TxX⊕π
#(TxX)0. (2.2)

Remark 2.12. Condition (2.1) is open in three different ways:

• Open on X: if a submanifold X satisfies (2.1) at some point x ∈ X , then an open
neighborhood U of x in X is a Poisson transversal.

• Open in π: if X is a Poisson transversal for π , then X is a Poisson transversal for
all Poisson structures π ′ that are C0-close enough to π .

• Open for the inclusion: if i : X →M denotes the inclusion of X in M, and X is a
Poisson transversal, then for all injective immersions i′ : X→M that are C1-close
to i, i′(X) is also a Poisson transversal.

The main reason to consider Poisson transversals is that they have naturally in-
duced Poisson structures:

Proposition 2.13. Let X be a Poisson transversal of (M,π). Then X has a natural
Poisson structure πX ∈ X2(X).

The existence of a bivector πX ∈ X2(X) is not to hard to see: the decomposition
(2.2) for TX M and the dual decomposition for T ∗X M gives a sequence of bundle maps:

T ∗X // T ∗X M π#
// TX M // T X (2.3)

The resulting bundle map T X → T ∗X is skew-symmetric and so it is of the form π#
X

for a unique bivector πX ∈ X2(X). We claim that this is a Poisson structure:

[πX ,πX ] = 0.

To prove this we will need to recall a few facts about the normal bundle and the
conormal bundle to a submanifold.

Recall that the normal bundle of a submanifold X ⊂M is defined as the quotient
vector bundle

NX := TX M/T X ,
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so we have the short exact sequence of vector bundles:

0 // T X // TX M // NX // 0

The dual sequence is:

0 // N ∗
X

// T ∗X M // T ∗X // 0

which shows that there is a canonical identification between the conormal bundle
N ∗

X and (T X)0.
An embedded normal bundle is a vector subbundle E ⊂ TX M such that

TX M = T X⊕E.

Note that, for any embedded normal bundle E, the natural projection TX M→NX
restricts to a vector bundle isomorphism E ∼−→NX .

Lemma 2.14. Let X be a Poisson transversal in the Poisson manifold (M,π). Then
X comes equipped naturally with an embedded normal bundle

TX M = T X⊕Nπ X , where Nπ X := π
#(T X)0, (2.4)

such that π] restricts to a vector bundle isomorphism

π
#|(T X)0 : (T X)0 ∼−→ Nπ X . (2.5)

Proof. From (2.2), we see that the map

π
#|(T X)0 : (T X)0 −→ TX M

is injective. Hence, Nπ X , which is the image of this map, is a smooth vector sub-
bundle of TX M. This also implies that (2.5) is an isomorphism. ut

The decomposition from the Lemma induces also a decomposition for ∧2TX M,
as follows:

∧2TX M = ∧2T X ⊕ (T X⊗Nπ X) ⊕ ∧2Nπ X . (2.6)

Lemma 2.15. The component of π|X that lies in T X⊗Nπ X vanishes.

Proof. It suffices to show that πx(α,β ) = 0, for all α ∈ (TxX)0, β ∈ (Nπ
x X)0 and

x ∈ X . This simply follows from the definitions of these spaces, because π#
x (α) ∈

Nπ
x X and β ∈ (Nπ

x X)0. ut

The Lemma implies that in the decomposition (2.6) the bivector π|X has only
two components, which we denote by

π|X = πX +σX , πX ∈ X2(X), σX ∈ Γ (∧2Nπ X).
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Note that πX is precisely the bivector whose induced bundle map π#
X is given by

(2.3). On the other hand, the map σ
]
X : (T X)0 ∼−→ Nπ X equals the vector bundle

isomorphism (2.5). In particular, we conclude:

Corollary 2.16. The component σX ∈Γ (∧2Nπ X) is nondegenerate1 when regarded
as a smooth family of two-forms:

σX ,x : (TxX)0× (TxX)0 −→ R, x ∈ X .

We are now in conditions to complete the proof of Proposition 2.13:

Lemma 2.17. The bivector πX ∈ X2(X) is a Poisson structure on X.

Proof. It suffices to check the condition locally; thus, by restricting to an open set
U such that Nπ X |U∩X trivializes as a vector bundle, we can choose sections Xi,Yi ∈
Γ (Nπ X |U∩X ), for 1≤ i≤ d such that

σX |U∩X =
d

∑
i=1

Xi∧Yi.

By shrinking U as necessary, choose vector fields X̃i, respectively Ỹi, on U that
extend Xi, respectively Yi. We denote

σ̃X :=
d

∑
i=1

X̃i∧ Ỹi ∈ X2(U), π̃X := π− σ̃X ∈ X2(U).

Using the Poisson condition [π,π] = 0, we compute:

[π̃X , π̃X ] = [π− σ̃X ,π− σ̃X ] = [−2π + σ̃X , σ̃X ].

Denote by ϑ :=−2π + σ̃X . Then we have that

[ϑ , σ̃X ] =
d

∑
i=1

(
[ϑ , X̃i]∧ Ỹi− X̃i∧ [ϑ ,Ỹi]

)
.

So, we obtain that:

[π̃X , π̃X ] =
d

∑
i=1

(
[ϑ , X̃i]∧ Ỹi− X̃i∧ [ϑ ,Ỹi]

)
.

We restrict this equation to X . Since π̃X |X = πX is tangent to X , the left hand side
equals

[πX ,πX ] ∈ X3(X).

The right hand side restricted to X is of the form:

1 In the literature Poisson transversals are also called cosymplectic submanifolds. This Corollary
justifies this name, since it shows that the conormal bundle is a symplectic vector bundle.
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d

∑
i=1

(
[ϑ , X̃i]|X ∧Yi−Xi∧ [ϑ ,Ỹi]|X

)
∈ Γ (∧2TX M∧Nπ X).

Since Γ (∧2TX M ∧Nπ X)∩X3(X) = {0}, is follows the both expressions vanish
along X ; in particular πX is Poisson: [πX ,πX ] = 0. ut

It is important to note that for a Poisson transversal X in (M,π), with induced
Poisson structure πX , the inclusion map (X ,πX )→ (M,π) is not Poisson (unless X
is an open set in M). This will be clear in the next examples.

Example 2.18. Let π ∈ X2(M) be a non-degenerate Poisson structure with associ-
ated symplectic structure ω . Notice that for a submanifold X :

X ∈ π
#(T X)0 ⇔ ω

[(X) ∈ (T X)0

⇔ ω(X ,Y ) = 0,∀X ∈ T X

⇔ X ∈ (T X)⊥ω

where ⊥ω denotes the orthogonal relative to the symplectic form ω . Hence, a Pois-
son transversal is a submanifold X ⊂M such that:

TX M = T X⊕ (T X)⊥ω .

Such a submanifold is called a symplectic submanifold. In fact, notice that this con-
dition holds if and only if the pullback form ω|X is non-degenerate. Hence (X ,ω|X )
is a symplectic manifold. We leave it as an exercise to show that the induced Poisson
structure πX is indeed:

πX = (ω|X )−1.

On the other hand, we saw before that the only Poisson submanifolds of (M,π) are
the open subsets U ⊂M.

For example, for the canonical Poisson structure on R2n the submanifolds

Xr := {(pi,qi) ∈ R2n : pr+i = ci · · · , qr+i = di (i = 1, · · ·n− r)},

are Poisson transversals, i.e., symplectic submanifolds, for any values ci,d j ∈ R.
The are Poisson diffeomorphic to R2r, with the canonical Poisson structure.

Example 2.19. Let us consider the 3-dimensional Lie algebra with basis {e1,e2,e3}
such that:

[e1,e3] = e1, [e2,e3] = e2, [e1,e2] = 0.

The corresponding linear Poisson structure in R3 is given by:

π = x
∂

∂x
∧ ∂

∂ z
+ y

∂

∂y
∧ ∂

∂ z
.

This Poisson structure vanishes at x = y = 0 so the points (0,0,z) are Poisson sub-
manifolds of dimension 0. On the other hand, the function f (x,y,z) = x

y is a Casimir,
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so the planes x− cy = 0, c ∈ R are also Poisson submanifolds. This collection of
Poisson submanifolds is shown in the following figure as an open book decomposi-
tion of R3:

X

N

z

On the other hand, note that any 1-dimensional submanifold X ⊂R3−{(0,0,z)}
which is transverse to the planes x− cy = 0, c ∈ R, satisfies:

TCR3 = T X +π
#(T X)0,

and hence is a Poisson transversal. The induced Poisson structure πX is the zero
Poisson structure.
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Poisson transversals behave functorially under pullbacks by Poisson maps. This
turns out to be a very useful property:

Proposition 2.20. Let Φ : (M1,π1)→ (M2,π2) be a Poisson map and let X2 ⊂M2 be
a Poisson transversal. Then Φ is transverse to X2 and X1 := Φ−1(X2) is a Poisson
transversal in M1. Moreover, Φ restricts to a Poisson map between the induced
Poisson structures on X1 and X2.

Proof. Consider x ∈ X1 and let y := Φ(x) ∈ X2. Since Φ is Poisson we have:

π
#
2 (ξ ) = dxΦ

(
π

#
1 (Φ

∗(ξ ))
)
, for all ξ ∈ T ∗y M2. (2.7)

Therefore π#
2 (T

∗
y M2) ⊂ dxΦ(TxM1). Poisson transversality implies now that Φ is

transverse to X2:

TyM2 = TyX2 +π
#
2 (T

∗
y M2) = TyX2 +dxΦ(TxM1).

In particular, X1 is a submanifold of M1. Note that

TxX1 = (dxΦ)−1(TyX2) and (TxX1)
0 = Φ

∗((TyX2)
0).

To show that X1 is a Poisson transversal, we check condition (2.1). Let V ∈ TxM1,
and decompose dxΦ(V ) = U + π#

2 (ξ ), with U ∈ TyX2 and ξ ∈ (TyX2)
0. Then

Φ∗(ξ )∈ (TxX1)
0, and by (2.7), W :=V−π#

1 (Φ
∗(ξ )) is mapped by dxΦ to U . Hence

W ∈ TxX1. This shows that

V =W +π
#
1 (Φ

∗(ξ )) ∈ TxX1 +π
#
1 (TxX1)

0.

So (2.1) holds, and therefore X1 is a Poisson transversal.
For ξ ∈ T ∗y X2 we denote by ξ̃ its unique extension to T ∗y M2 that vanishes on

Nπ2
y X2, and we use similar notations for elements in T ∗x X1. Since

dxΦ(Nπ1
x X1) = dxΦ(π#

1 (TxX1)
0) = dxΦ(π#

1 (Φ
∗(TyX2)

0)) = π
#
2 (TyX2)

0 = Nπ2
y X2,

it follows that Φ∗(ξ̃ ) = Φ̃∗(ξ ), for ξ ∈ T ∗y X2. Using this remark, we prove that Φ

restricts to a Poisson map (X1,πX1)→ (X2,πX2):

πX1(Φ
∗(ξ ),Φ∗(η)) = π1(Φ̃∗(ξ ),Φ̃∗(η)) = π1(Φ

∗(ξ̃ ),Φ∗(η̃))

= π2(ξ̃ , η̃) = πX2(ξ ,η), for all ξ ,η ∈ T ∗y X2.

ut

Corollary 2.21. Let (M,π) be a Poisson manifold, let X ⊂M be a Poisson transver-
sal with induced Poisson structure πX , and let N ⊂ M be a Poisson submanifold
with Poisson structure πN . Then N and X intersect transversally, X ∩N is a Poisson
transversal in (N,πN) and a Poisson submanifold of (X ,πX ), and the two induced
Poisson structures on X ∩N coincide.
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Exercise 2.22. Prove that condition (2.1) from the definition of a Poisson transversal
is equivalent to the conclusion of Corollary 2.16, that the 2-form

σX ,x : (TxX)0× (TxX)0 −→ R, σX ,x(α,β ) = π(α,β ),

be nondegenerate at every x ∈ X .

Exercise 2.23. Let (M,π) be a Poisson manifold, and let X ⊂ M be a Poisson
transversal with induced Poisson structure πX . If f ∈C∞(M) is a Casimir function
for (M,π), prove that f |X is a Casimir function for (X ,πX ).

Exercise 2.24. Let X ⊂ (M,π) be a Poisson transversal, let H ∈C∞(M) and denote
by φ t

XH
the flow of XH . Show that φ t

XH
(X) is a Poisson transversal, whenever defined.

Exercise 2.25. Prove the following partial converse of Proposition 2.20: Let Φ :
(M1,π1)→ (M2,π2) be a Poisson map, and let X2 ⊂M2 be a submanifold such that
Φ is transverse to X2. If X1 := Φ−1(X2) is a Poisson transversal, prove that there is
some open set U containing X2∩Φ(X1) such that X2∩U is a Poisson transversal in
(M2,π2).

Exercise 2.26. Consider Cn = {(z1, . . . ,zn)} endowed with the standard Poisson
structure

π :=
n

∑
k=1

∂

∂xk
∧ ∂

∂yk
, where zk = xk + iyk.

We regard each cotangent space T ∗z Cn as a complex space, where multiplication by
i is defined on the basis vectors as follows:

i ·dxk :=−dyk, i ·dyk := dxk,

and extended linearly to T ∗z Cn. Prove the following:

a) For a nonzero covector ξ ∈ T ∗z Cn, π(ξ , iξ )> 0.
b) Every linear complex subspace V ⊂ Cn is a Poisson transversal (HINT: Use part

a) and Exercise 2.22)
c) Recall that a holomorphic function is a smooth map

f : Cn −→ Cm

such that its differential is complex linear at every point (where we identify
TzCn ∼= Cn). Prove that if w ∈ Cm is a regular value of a holomorphic function
f : Cn→ Cm, then f−1(w) is a Poisson transversal in Cn.
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2.3 Coisotropic submanifolds

Definition 2.27. A coisotropic submanifold of a Poisson manifold (M,π) is
a submanifold C ⊂M such that:

π
#(TC)0 ⊂ TC, (2.8)

or, equivalently, if:

π(α,β ) = 0, ∀α,β ∈ (TC)0. (2.9)

Example 2.28. Notice that the condition (2.8) in the definition of coisotropic sub-
manifold admits two extreme cases:

(i) π#(TC)0 = 0: by Proposition 2.2, these are exactly the Poisson submanifolds;
(ii) π#(TC)0 = TC: these manifolds are called Lagrangian submanifolds, and we

will see several examples next.

Example 2.29. Any codimension 1 submanifold C of a Poisson manifold (M,π)
clearly satisfies (2.9), so it is a coisotropic submanifold. Such a submanifold, in
general, is neither a Lagrangian submanifold nor a Poisson submanifold.

Example 2.30. Let g be a Lie algebra. For the linear Poisson structure on g∗, we
have for ξ ∈ g∗ and v,w ∈ g= T ∗

ξ
g∗:

πg∗(v,w)ξ = 0 ⇔ 〈[v,w],ξ 〉= 0.

Hence, a subspace V 0⊂ g∗ is a coisotropic submanifold iff V ⊂ g is a Lie subalgebra.
Note that V 0 ⊂ g∗ is a Poisson submanifold iff V ⊂ g is an ideal and V 0 ⊂ g∗ is

never a Lagrangian submanifold, since at the origin π#
0 ≡ 0.

Example 2.31. Let R2n with the canonical Poisson structure. For any open set U ⊂
R2n the submanifolds

Cp
r = {(q, p) ∈U : pr = pr+1 = · · ·= pn = 0},

Cq
r = {(q, p) ∈U : qr = qr+1 = · · ·= qn = 0},

where 1 ≤ r ≤ n, are coisotropic submanifolds. Note that these submanifolds are
Lagrangian iff r = n and are Poisson submanifolds iff r = 0.

We now turn to some basic properties of coisotropic submanifolds. You should
compare these properties with the corresponding properties for Poisson submani-
folds:



2.3 Coisotropic submanifolds 31

Proposition 2.32. Let (M,π) be a Poisson manifold. For a closed submanifold C ⊂
M the following conditions are equivalent:

(i) C is a coisotropic submanifold;
(ii) The vanishing ideal I (C) is a Poisson subalgebra;

(iii) For every h ∈I (C) the hamiltonian vector field Xh is tangent to C.

Proof. (i)⇒ (ii) If f1, f2 ∈I (C), then dx f1,dx f2 ∈ (TC)0 for any x ∈C. Hence, if
C ⊂M is a coisotropic submanifold we have:

{ f1, f2}(x) = πx(dx f1,dx f2) = 0, ∀x ∈C

so { f1, f2} ∈I (C).
(ii)⇒ (iii) Assume that I (C) is a Poisson subalgebra. If h, f ∈I (C), we have:

Xh( f )(x) = {h, f}(x) = 0, ∀x ∈C.

Since C is a closed submanifold, this implies that Xh is tangent to C.
(iii)⇒ (i) If (iii) holds, we find that if x ∈C:

π(dx f ,dxg) = X f (g)(x) = 0,

for any f ,g ∈I (C). Since C is a closed submanifold, we have that (TxC)0 is gener-
ated by elements dx f where f ∈I (C), so we conclude that

π(α,β ) = 0, ∀α,β ∈ (TC)0.

Therefore, C is isotropic. ut

Exercise 2.33. Give an example of a Poisson manifold (M,πN) with two coisotropic
submanifolds C1,C2 ⊂ M which intersect transversely, such that the intersection
C1∩C2 is not coisotropic.

Proposition 2.34. Let Φ : (M,πM)→ (N,πN) be a Poisson map and assume that Φ

is transverse to a coisotropic submanifold C⊂N. Then Φ−1(C)⊂M is a coisotropic
submanifold.

Proof. On the one hand, since C ⊂ N is coisotropic, we have:

π
#
N(TC)0 ⊂ TC.

On the other hand, since Φ is transverse to C ⊂ N, we have that Φ−1(C) ⊂M is a
submanifold and that:

T Φ
−1(C) = (dΦ)−1(TC), (T Φ

−1(C))0 = (dΦ)∗(TC)0.

Using the fact that Φ is a Poisson map, we then find:

dΦ ·π#
M(T Φ

−1(C))0 = dΦ ·π#
M · (dΦ)∗(TC)0 = π

#
N(TC)0 ⊂ TC.
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Therefore, we conclude that

π
#
M(T Φ

−1(C))0 ⊂ (dΦ)−1(TC) = T Φ
−1(C),

so Φ−1(C) is a coisotropic submanifold. ut

There is one more important property of coisotropic objects and which shows
their relevance in Poisson geometry. In order to express it, we introduce the fol-
lowing notation: if (M1,πM1) and (M2,πM2) are Poisson manifolds we denote by
(M1×M2,πM1×M2

) the Poisson manifold whose underlying manifold is the direct
product M1×M2 and whose Poisson bivector is:

πM1×M2
(α1 +α2,β1 +β2) := πM1(α1,β1)−πM2(α2,β2),

for any α1,β1 ∈ T ∗M1 and α2,β2 ∈ T ∗M2. Then we have:

Proposition 2.35. Let (M,πM) and (N,πN) be Poisson manifolds. For a smooth map
Φ : M→ N the following conditions are equivalent:

(i) Φ is Poisson map;
(ii) Graph(Φ)⊂M×N is a coisotropic submanifold.

Proof. Notice that we have:

T Graph(Φ) = {(v,dΦ(v)) : v ∈ T M},

so that:
(T Graph(Φ))0 = {((dΦ)∗β ,−β ) : β ∈ T ∗N}.

It follows that for any γ ∈ (T Graph(Φ))0 we have;

π
#
M×N(T Graph(Φ))0 = {(π#

M((dΦ)∗β ),π#
N(β )) : β ∈ T ∗N}.

Now, if Φ is a Poisson map, then the left-hand side is of the form (v,dΦ(v)), so
belongs to T Graph(Φ). Hence Graph(Φ) ⊂ M×N is a coisotropic submanifold.
Conversely, if Graph(Φ) ⊂M×N is a coisotropic submanifold, then the left-hand
side must be of the form (v,dΦ(v)), i.e, we must have:

dΦ ·π#
M((dΦ)∗β ) = π

#
N(β ), ∀β ∈ T ∗N.

This means that Φ is a Poisson map. ut

In general, a coisotropic submanifold C ⊂ (M,π) does not carry an induced
Poisson structure. However, the fact that I (C) is a Poisson algebra suggests that
there should be still some Poisson structure associated with C. In fact, assume that
D := π#(TC)0 has constant rank, so that it defines an distribution in TC. The Poisson
bivector induces a section πC ∈ Γ 2(∧2D0) by setting:

πC(α,β ) = π(α̃, β̃ ), α,β ∈ D0 ⊂ T ∗C.
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where α̃, β̃ ∈ T ∗M are any extensions of α,β ∈ D0. One should think of πC has a
transverse Poisson structure to F . This is made precise in the following proposition
whose prove we leave as an exercise:

Proposition 2.36. Let C ⊂ (M,π) be a coisotropic submanifold such that π#(TC)0

has constant rank. Then π#(TC)0 is an involutive distribution in C and πC is a
transverse Poisson structure to the corresponding foliation F of C:

LX πC = 0, ∀X ∈ X(F ).

In particular, if the leaf space of F is smooth, then there is an induced Poisson
structure on C/F .

The foliation F such that TF = π#(TC)0 is called the characteristic foliation
of the coisotropic submanifold C.

Remark 2.37. There are other notions of submanifolds in Poisson geometry. For ex-
ample, since a coisotropic submanifold C⊂ (M,π) satisfies π#(TC)0 ⊂C, you may
wonder about submanifolds I ⊂ (M,π) that satisfy the dual condition:

T I ⊂ π
#(T I)0.

These are called isotropic submanifolds. They play a less important role in Poisson
geometry than coisotropic submanifolds. The following exercise hints at yet another
notion of submanifold.

Exercise 2.38. Let (M,π) be a Poisson manifold and let Γ be a finite group acting
on M such that for each γ ∈ Γ the translation Φγ : M→M, x 7→ γ · x, is a Poisson
diffeomorphism. Assume that the fixed point set

MΓ := {x ∈M : γ · x = x,∀γ ∈ Γ }

is a manifold2 and denote by C∞(M)Γ the space of Γ -invariant functions. Show that:

(a) If F,G ∈C∞(M)Γ then {F,G} ∈C∞(M)Γ ;
(b) If F1,F2,G1,G2 ∈C∞(M)Γ then:

F1|MΓ = F2|MΓ and G1|MΓ = G2|MΓ =⇒ {F1,G1}|MΓ = {F2,G2}|MΓ ;

(c) Every function f ∈ C∞(MΓ ) is of the form f = F |MΓ for some (non-unique)
Γ -invariant function F ∈C∞(M)Γ ;

(d) Conclude that there is a natural induced Poisson bracket on MΓ such that:

{ f ,g}= {F,G}|MΓ ,

where F,G ∈C∞(M)Γ are any Γ -invariant extensions of f and g.

2 One can show that MΓ is always a manifold, although it can have connected components of
different dimensions.
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Homework 2: Poisson Relations and Coisotropic Calculus

2.1. A Poisson vector space is a vector space V with a skew-symmetric bilinear
form π : V ∗×V ∗→R. We denote by π# : V ∗→V the corresponding linear map ξ 7→
π(ξ , ·). Show that if (V,π) is a Poisson vector space then the quotient V ∗/Kerπ '
π#(V ∗) is a Poisson vector space with a non-degenerate bilinear form π .

2.2. A coisotropic subspace of a Poisson vector space (V,π) is a linear subspace
C ⊂V such that:

π
#(C0)⊂C.

Show that if C⊂V is coisotropic then C/π#(C0) is naturally a Poisson vector space
and that the following statements are equivalent:

(i) C ⊂V is a coisotropic subspace of V ;
(ii) C∩π#(V ∗) is a coisotropic subspace of π#(V ∗).

Moreover, if C1 and C2 are coisotropic subspaces of V , so is C1 +C2.

2.3. A linear Poisson map between two Poisson vector spaces (V,πV ) and (W,πW )
is a linear map Φ : V →W such that:

π
#
W = Φ ◦π

#
V ◦Φ

∗.

Show that if Φ : (V,πV )→ (W,πW ) is a linear Poisson map, then:

(i) If C ⊂V is a coisotropic subspace then so is Φ(C)⊂W ;
(ii) If C ⊂W is a coisotropic subspace then so is Φ−1(C)⊂W .

2.4. A linear relation R : V →W is a linear subspace R⊂V ×W . If R : V →W and
S : W → Z are linear relations the composite linear relation S◦R : V → Z is defined
to be:

S◦R := {(v,z) ∈V ×Z : ∃w ∈W such that (v,w) ∈ R and (w,z) ∈ S}.

Also, if R :V →W is a linear relation, we denote by R−1 :W→V the inverse relation
defined by:

R−1 := {(w,v) ∈W ×V : (v,w) ∈ R}.

Note that a linear map Φ : V →W can be thought of as linear relation Graph(Φ)⊂
V ×W . Composition of linear maps corresponds to composition of linear relations
and if a linear map has an inverse, then Graph(Φ−1) = Graph(Φ)−1.

If (V,πV ) and (W,πW ) are Poisson vector spaces, a linear Poisson relation is a
coisotropic subspace R⊂V ×W . Show that:

(i) If R : V →W is a linear Poisson relation then R−1 : W →V is a linear Poisson
relation;

(ii) Every coisotropic subspace C ⊂ (V,πV ) gives rise to a linear Poisson relation
R(C) : {0}→V ;
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(iii) A linear map Φ : (V,πV )→ (W,πW ) is Poisson if and only if Graph(Φ) is a
linear Poisson relation.

(iv) If R : V →W and S : W → Z are linear Poisson relations then S ◦R : V → Z is
a linear Poisson relation.

2.5. Let V be a vector space and let ∼ be a linear equivalence relation in V . If
Φ : V → V/ is the quotient map, we see that ∼ is just the equivalence relation
Φ−1 ◦Φ : V →V obtained as Graph(Φ)−1 ◦Graph(Φ). Conversely, every surjective
linear map Φ : V →W determines a linear equivalence relation Φ−1 ◦Φ : V → V ,
and W is naturally isomorphic to the space of equivalence classes.

Let (V,πV ) be a Poisson vector space and Φ : V →W is a surjective linear map.
Show that W is a Poisson vector space for which Φ is a linear Poisson map if and
only if the equivalence relation Φ−1 ◦Φ : V →V is a Poisson relation.

We now turn to non-linear versions of the previous problems. For the first 3
problems, these were discuss in the text. For the last 2 problems, we proceed as
follows.

2.6. Given manifolds M and N a relation R : M→ N is a submanifold R ⊂M×N.
If R : M→ N is a relation, we denote by R−1 : N →M the inverse relation defined
by:

R−1 := {(y,x) ∈ N×M : (x,y) ∈ R}.

If R : M → N and S : N → P are relations the composite relation S ◦R : M → P
defined by:

S◦R := {(x,z) ∈M×P : ∃y ∈ N such that (x,y) ∈ R and (y,z) ∈ S},

may fail to be a submanifold. We will say that two relations R : M→N and S : N→P
meet cleanly if R◦S is a submanifold of M×P and for each (x,y) ∈ R and (y,z) ∈ S
we have

T(x,z)(S◦R) = T(y,z)S◦T(x,y)R.

If (M,πM) and (N,πN) are Poisson manifolds, a Poisson relation is a coisotropic
submanifold R⊂M×N. Show that:

(i) If R : M → N is a Poisson relation, the inverse relation R−1 : N → M is also
Poisson.

(ii) A coisotropic submanifold C ⊂ (M,π) gives rise to a Poisson relation R(C) :
({∗},0)→ (M,π).

(iii) A map Φ : (M,πM)→ (N,πN) is Poisson if and only if Graph(Φ) is a Poisson
relation.

(iv) If R : (M,πM)→ (N,πN) and S : (N,πN)→ (P,πP) are Poisson relations which
meet cleanly then S◦R : M→ P is a Poisson relation.

2.7. Let (M,πN) be a Poisson manifold. Given a submersion Φ : M→ N show that
there exists a Poisson structure πN ∈ X2(N) such that Φ is a Poisson map if and
only if Φ−1 ◦Φ : M→M is a Poisson relation.
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2.8. Let (M,π) be a Poisson manifold and let F be a foliation of M. Denote by
R(F ) : M→M the equivalence relation:

R(F ) = {(x,y) ∈M×M : x and y belong to the same leaf of F}.

Show that the sheaf of locally constant functions of F is closed under the Poisson
bracket if and only if R(F ) is a Poisson relation.



Chapter 3
The symplectic foliation

3.1 Regular Poisson Structures

Let π ∈ X2(M) be a bivector field. The rank of π at x ∈M is the rank of the linear
map π#

x : T ∗x M→ TxM. By skew-symmetry, the rank at any point is an even number.
In general, the rank will vary from point to point.

Example 3.1. A non-degenerate Poisson structure (i.e., a symplectic structure) is a
Poisson structure π for which rankπx = dimM, for all x ∈M.

Example 3.2. For the quadratic Poisson structure πA on Rn associated with a skew-
symmetric matrix A, the rank at x = (x1, . . . ,xn) is exactly the rank of the matrix
obtained from A by removing the rows and columns corresponding to the coordi-
nates of the point x that vanish.

Example 3.3. For the linear Poisson structure πg on the dual of a Lie algebra the
rank at the origin is zero and it will be non-zero for a generic point, provided the Lie
algebra is non-abelian.

Exercise 3.4. Show that if g = su(3) is the Lie algebra consisting of 3× 3 skew-
hermitian matrices of trace 0, then rankπg∗ takes the values 0, 4 and 6.

Lemma 3.5. The function M 3 x 7→ rankx π is lower semi-continous: for any point
x0 ∈M there is a neighborhood V of x0 such that rankπx ≥ rankπx0 for all x ∈V .

Proof. Choose local coordinates (x1, . . . ,xm) around x0. If rankπx0 = 2n the matrix
with coefficients π i j(x) = {xi,x j} has rank 2n at x0, so some minor of size 2n×2n
has non-zero determinant. This determinant is non-zero in some neighborhood of
x0, so it follows that the rank in a neighborhood of x0 is at least 2n.

Definition 3.6. A point x0 is called a regular point of (M,π) if there is a neigh-
borhood U of x0 such that rankπx = rankπx0 for all x ∈U . Otherwise, we call x0
a singular point of (M,π). We let Mreg and Msing denote the sets of regular points
and singular points of (M,π).

37
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From the lemma above, we conclude:

Proposition 3.7. For a Poisson manifold (M,π) the set of regular points Mreg is an
open dense subset of M and the set of singular points Msing is a closed nowhere
dense subset of M.

Proof. From the definition, it is clear that Mreg is an open subset and Msing = M−
Mreg is a closed subset. Now let x0 be a singular point and let V be any neighborhood
of x0. The function V 3 x 7→ rankπx takes a finite number of values. If x ∈ V is a
point where the rank attains its maximum, then by the lemma above, x must be a
regular point. ut

Notice that when the rank of a bivector π ∈ X2(M) is constant throughout M we
obtain a distribution M 3 x 7→ Imπ#

x ⊂ TxM. This is a smooth distribution since it is
spanned by vector fields of the form X f = π#d f .

Theorem 3.8. For a Poisson bivector π ∈ X2(M) of constant rank the distribution
Imπ# is integrable. Each leaf S of Imπ# is a Poisson submanifold of (M,π) and the
induced Poisson structure πS ∈ X2(S) is non-degenerate.

Proof. The distribution Imπ# is involutive because it is spanned by hamiltonian
vector fields and the Lie bracket of two hamiltonian vector fields is a hamiltonian
vector field (Proposition 1.7). Hence, by the Frobenius Theorem, the distribution is
integrable.

Let S be a leaf of this distribution so that TxS = Imπ#
x , for every x ∈ S. By Propo-

sition 2.2, S is a Poisson submanifold. The induced Poisson structure πS satisfies:

π
#(α) = πS(α|S), ∀α ∈ T ∗S M.

This shows that Imπ#
S = T S. Hence πS is non-degenerate. ut

Definition 3.9. A regular Poisson structure π ∈ X2(M) is a Poisson struc-
ture whose rank is constant.

Hence a regular Poisson manifold (M,π) is foliated into symplectic leaves. In
general, the symplectic leaves are only immersed submanifolds.

Example 3.10. On the 3-torus T3 =S1×S1×S1, with angle coordinates (θ 1,θ 2,θ 3),
consider the family of Poisson structures parameterized by λ ∈ R:

πλ =
∂

∂θ 1 ∧
(

∂

∂θ 2 +λ
∂

∂θ 3

)
,

These Poisson structures have constant rank 2. We leave it as an exercise to check
that if λ ∈ Q the symplectic leaves of πλ are compact embedded submanifolds
diffeomorphic to S1×S1 and if λ ∈R−Q the symplectic leaves of πλ are immersed
submanifolds diffeomorphic to S1×R, each leaf being dense in T3.
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Given a regular Poisson manifold (M,π) we denote by S its symplectic fo-
liation. The symplectic forms on the leaves assemble to give a smooth section
ωS ∈Ω 2(S ) := Γ (∧2TS ). This form is non-degenerate, i.e., for any v ∈ TS :

ωS (v,w) = 0,∀w ∈ TS =⇒ v = 0,

and it is leafwise closed, i.e.,
dS ω = 0.

(see the Homework at the end of this chapter for the definition of the leafwise de
Rham differential). In other words, ωS is a foliated symplectic form.

Conversely, we have:

Proposition 3.11. Given a foliation S of a manifold M with a leafwise symplectic
form ωS ∈Ω 2(S ) there exists a unique regular Poisson structure π ∈X2(M) such
that (S ,ωS ) is the symplectic foliation of π .

Proof. For each leaf S ∈ S we have a Poisson bivector πS ∈ X2(S) where πS =
(ωS)

−1. We define π ∈ X2(M) by setting:

π(α,β ) := πS(α|S,β |S).

We just need to check that [π,π] = 0, which we leave as an exercise. ut

Therefore, there is a 1:1 correspondence between regular Poisson structures on
M and symplectic foliations of M. Note that for a regular Poisson manifold (M,π)
with symplectic foliation (S ,ωS ), we can use a simple partition of unit argument to
show that we can find a globally defined 2-form ω ∈Ω 2(M) such that its restriction
to each symplectic leaf coincides with the symplectic form on the leaf:

ω(v,w) = ωS (v,w), if v,w ∈ TS .

Of course this extension of the foliated 2-form ωS to a global defined 2-form ω is
far from being unique. Moreover, although the pullback of ω to each leaf is closed
and non-degenerate, in general one cannot choose ω neither to be closed nor to be
non-degenerate.

Exercise 3.12. Give an example of a regular Poisson structure on a manifold M
for which the corresponding foliated symplectic form cannot be extended to a
closed/non-degenerate form on M.
HINT: Consider the linear Poisson structure on so∗(3) with the origin removed and
use Stokes Theorem.
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3.2 The Darboux-Weinstein Theorem

What can be said about the singular distribution Imπ# for non-regular Poisson struc-
tures? The clue to understand this more general situation is the following fundamen-
tal theorem in Poisson geometry:

Theorem 3.13 (Darboux-Weinstein). Let (M,π) be a Poisson man-
ifold and assume that rankπx0 = 2n. There exists coordinates
(U, p1, . . . , pn,q1, . . . ,qn,x1, . . . ,xs) centered at x0 such that:

π|U =
n

∑
i=1

∂

∂ pi
∧ ∂

∂qi +
s

∑
a,b=1

φ
ab(x)

∂

∂xa ∧
∂

∂xb

where the φ ab(x) are smooth functions of (x1, . . . ,xs) such that φ ab(0) = 0.

The Darboux-Weinstein theorem shows that a Poisson structure π ∈ X2(M)
around any point x0 ∈M splits as a product of a symplectic structure of dimension
equal to rankπx0 and a transverse Poisson structure which vanishes at x0. In fact,
we will deduce this theorem as a corollary of the following more general splitting
theorem for Poisson transversals:

Theorem 3.14 (Splitting Theorem). Let (M,π) be a Poisson manifold and
X ⊂ M a Poisson transversal of codimension 2n. For any x0 ∈ X there are
local coordinates (U, p1, . . . , pn,q1, . . . ,qn,x1, . . . ,xm) centered at x0 such that
X ∩U = {p1 = · · ·= pn = q1 = · · ·= qn = 0} and:

π|U =
n

∑
i=1

∂

∂ pi
∧ ∂

∂qi +πX |X∩U . (3.1)

Before we prove this result, lets us deduce the existence of Darboux-Weinstein
coordinates from it.

Proof (of Theorem 3.13). Let x0 ∈M. We claim that any small enough submanifold
X ⊂M complementary to Imπ#

x0
is a Poisson transversal. In fact, if:

Tx0M = Tx0X⊕ Imπ
#
x0
,

since Kerπ#
x0
= (Imπ#

x0
)0, it follows that:

(Tx0X)0∩Kerπ
#
x0
= {0}.
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Since Tx0X and Imπ#
x0

have complementary dimensions, we conclude that:

Tx0M = Tx0X⊕π
#(Tx0X)0.

Therefore, if X is small enough, this condition holds at every x ∈ X and X is a
Poisson transversal, as claimed.

The Darboux-Weinstein Theorem now follows from Theorem 3.14 by observing
that codim(X) = rankπx0 . ut

Proof (of Theorem 3.14).
We start by observing that one can reduce to the case where codimX = 2 because

of the following lemma:

Lemma 3.15. If X ⊂M is a Poisson transversal of codimension 2n, for any x0 there
is a open neighborhood x0 ∈V ⊂ X and a flag of Poisson transversals

V ⊂ Xn−1 ⊂ ·· · ⊂ X1 ⊂M,

such that codim(Xi) = 2i.

In fact, if codimX is positive we can find α,β ∈ (Tx0X)0 such that π(α,β ) 6= 0.
Notice that Tx0X ∩〈π#(α),π#(β )〉= {0}, because if π#(aα +bβ ) ∈ Tx0X , for some
a,b ∈ R, we must have:{

0 = α(π#(aα +bβ )) =−bπ(α,β ),
0 = β (π#(aα +bβ )) = aπ(α,β ),

=⇒ a = b = 0.

Now choose a submanifold Xn−1 ⊂M such that V = Xn−1∩X is an open neighbor-
hood of x0 in X and:

Tx0Xn−1 = Tx0X⊕〈π#(α),π#(β )〉.

To see that this is possible, one can choose a tubular neighborhood of X such that
〈π#(α),π#(β )〉 ⊂Nx0(X) and then choose a small open neighborhood of x0 in X
over which N (X) is trivial. Then, at x0, we find

Tx0M = Tx0Xn−1⊕π
#(Tx0Xn−1)

0.

Choosing Xn−1 small enough, it follows that this condition holds at every x ∈ Xn−1
so Xn−1 is a Poisson transversal in M.

We claim that V is also a Poisson transversal in Xn−1 and that the induced Poisson
structures on V arising from Xn−1 and from M coincide. This follows by observing
that the decompositions

TXn−1M = T Xn−1⊕π
#(T Xn−1)

0, TV M = TV ⊕π
#(TV )0,

and the corresponding dual decompositions of T ∗Xn−1
M and T ∗V M, together with

TV ⊂ T X , yield a commutative diagram:
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T ∗V

��

$$

π#
V // TV

T ∗M π // T M

;;

##
T ∗Xn−1

::

π#
Xn−1

// T Xn−1

OO

It follows that we have a decomposition:

TV Xn−1M = TV ⊕π
#
Xn−1

(TV )0,

and that the Poisson structure on V induced from this decomposition (the composi-
tion of the outer arrows in the diagram) coincides with πV , so the claim follows and
the lemma is proved.

It remains to prove Theorem 3.14 in the case where X is a Poisson transversal of
codimension 2. Choose α ∈ (T ∗x0

X)0 such that π#(α) is transverse to X . Let p1 be a
function vanishing in X such that dx0 p1 = α . The vector field Xp1 is transverse to X
in a neighborhood of x0 and we denote its flow by φ t

Xp1
.

We complete p1 to local coordinates (W,ϕ) = (W,(p1,z2,z3, . . . ,zm)) centered at
x0 such that W ∩X = {p1 = 0, z2 = 0}. The map:

(t1, t2, . . . , tm) 7→ φ
t2
Xp1

(ϕ−1(t1,0, t3, . . . , tm)).

is a local diffeomorphism sending 0 to x0. Its inverse around some open neighbor-
hood V of x0 gives a new local coordinate system (V,ψ) = (V,(p1,q1,y3, . . . ,yn))
centered at x0 such that V ∩X = {p1 = 0, q1 = 0} and:

Xp1 =
∂

∂q1 .

Note that the first component in this new coordinate system (V,ψ) does coincide
with the function p1 since we have:

d
dt2

p1(φ
t2
Xp1

(ϕ−1(t1,0, t3, . . . , tm)) = Xp1(p1)(φ
t2
Xp1

(ϕ−1(t1,0, t3, . . . , tm))) = 0,

and p1(φ
0
Xp1

(ϕ−1(t1,0, t3, . . . , tm)) = t1, so p1(ψ
−1(t1, . . . , tn)) = t1.

Now for this new coordinates:

{p1,q1}= Xp1(q1) = 1, {p1,yi}= Xp1(y
i) = 0 (i = 3, . . . ,m).

Using the Jacobi identity we find:
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∂ ({q1,yi})
∂q1 = Xp1({q

1,yi}) = {p1,{q1,yi}}= {{p1,q1},yi}+{q1,{p1,yi}}= 0.

It follows that:

Xq1 =−
∂

∂ p1
+

n

∑
i=3

X i(p1,y3, . . . ,ym)
∂

∂yi .

The map:
(t1, t2, . . . , tm) 7→ φ

−t1
Xq1

(ψ−1(0, t2, t3, . . . , tm)).

is a local diffeomorphism sending 0 to x0. Its inverse around some open neighbor-
hood U of x0 gives a new local coordinate system (U,τ) = (U,(p1,q1,x3, . . . ,xn))
centered at x0 such that U ∩X = {p1 = 0, q1 = 0} and:

Xp1 =
∂

∂q1 , Xq1 =−
∂

∂ p1
.

Again we need to check that for this new coordinate system (U,τ) the first and
second components do coincide with the functions p1 and q1. For this we observe
that:

d
dt1

p1(φ
−t1
Xq1

(ψ−1(0, t2, t3, . . . , tm))) =−Xq1(p1)(φ
−t1
Xq1

(ψ−1(0, t2, t3, . . . , tm))) = 1,

d
dt1

q1(φ
−t1
Xq1

(ψ−1(0, t2, t3, . . . , tm))) =−Xq1(q1)(φ
−t1
Xq1

(ψ−1(0, t2, t3, . . . , tm))) = 0.

Since

p1(φ
0
Xq1

(ψ−1(0, t2, t3, . . . , tm))) = p1(ψ
−1(0, t2, t3, . . . , tm)) = 0,

q1(φ
0
Xq1

(ψ−1(0, t2, t3, . . . , tm))) = q1(ψ
−1(0, t2, t3, . . . , tm)) = t2,

we conclude that p1(τ
−1(t1, . . . , tn)) = t1 and q1(τ

−1(t1, . . . , tn)) = t2.
Now in this new coordinate system, we have:

{p1,q1}= Xp1(q1) = 1, {p1,xi}= Xp1(x
i) = 0, {q1,xi}= Xq1(x

i) = 0,

for i = 3, . . . ,m. Again, using the Jacobi identity, we also find:

∂ ({xi,x j})
∂q1 = Xp1({x

i,x j}) = {p1,{xi,x j}}= {{p1,xi},x j}+{xi,{p1,x j}}= 0,

∂ ({xi,x j})
∂ p1

=−Xq1({xi,x j}) = {{xi,x j},q1}= {xi,{x j,q1}}+{{xi,q1},x j}= 0.

This shows that π|U splits as in (3.1) and finishes the proof of the Theorem. ut
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3.3 Symplectic leaves

We call a submanifold S of a Poisson manifold (M,π) an integral submanifold of
Imπ# if:

(a) S is path connected and
(b) TxS = Imπ#

x for all x ∈ S.

Note that integral submanifolds of Imπ# are always symplectic submanifolds (they
are Poisson submanifolds and the induced Poisson structure is non-degenerate). The
Darboux-Weinstein Theorem shows that through each point x0 ∈M passes an inte-
gral submanifold of Imπ#: if (U, p1, . . . , pn,q1, . . . ,qn,x1, . . . ,xs) are local coordi-
nates centered at x0, then S := {x1 = x2 = · · · = xs = 0} is an integral submanifold
containing x0.

In general, integral submanifolds are immersed submanifolds. However, they
have better properties than general immersed submanifolds: they are regularly im-
mersed submanifolds, a concept which we now recall.

Definition 3.16. A submanifold N ↪→ M is said to be regularly immersed if for
every manifold Q and every smooth map Ψ : Q → M such that Ψ(Q) ⊂ N, the
induced map Ψ : Q→ N is smooth.

These submanifolds are also referred to as initial submanifolds or weakly em-
bedded submanifolds. The relevance of this class of submanifolds is justified by
the following property that also explains its name:

Proposition 3.17. Given a smooth manifold M, a subset N ⊂ M has at most one
differential structure for which N ↪→M becomes a regular immersed submanifold.

For a proof of this result, see for example, Warner [1].
The proposition shows that for regularly immersed submanifolds there is no am-

biguity about its topology and smooth structure. For example, an eight figure in
the plane has two different smooth structures for which it becomes a submanifold,
so it cannot be regularly immersed in the plane. On the other hand, any embedded
submanifold is regularly immersed. Of course there are many examples of regu-
larly immersed submanifolds which are not embedded: for example, the leaves of
a foliation are always regularly immersed submanifolds, and often they fail to be
embedded.

We will need also the following “gluing property” for regular immersed subman-
ifolds:

Proposition 3.18. Let M be a smooth manifold and let {Ni}i∈I be a collection of
regularly immersed submanifolds of M such that:

(a) For any i, j ∈ I the intersection Ni∩N j is open in both Ni and N j;
(b) The union

⋃
i∈I Ni, with the topology generated by the open sets U ⊂Ni, is second

countable.

Then
⋃

i∈I Ni is a regularly immersed submanifold.
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Proof. Let N :=
⋃

i∈I Ni. We construct an atlas for N by considering all possible
pairs of charts (Ua,φa) of the submanifolds Ni. The set of all such open sets Ua form
the basis for a topology of N, which by (ii) is second countable. Moreover, for any
two such charts (Ua,φa) and (Ub,φb), such that Ua ∩Ub 6= /0, it follows from (i),
that the intersection Ua ∩Ub is regularly immersed in both Ua and Ub, so that the
compositions:

φa(Ua∩Ub)
φ−1

a7−→Ua∩Ub ↪→Ub, φb(Ua∩Ub)
φ
−1
b7−→Ua∩Ub ↪→Ua,

are both smooth. Hence, the transition functions φa ◦ φ
−1
b and φb ◦ φ−1

a are all
smooth. ut

Henceforth, for two topological spaces X and Y , on the intersection X ∩Y we
consider the smallest topology that makes both inclusions X∩Y ↪→X and X∩Y ↪→Y
continuous. For example, if N is an integral leaf of (M,π), and U ⊂M is open, then
U ∩N has the relative topology induced from N, since the submanifold topology of
N is usually finer than the relative topology.

Let us return now to our discussion of integral submanifolds of Imπ#. We have:

Proposition 3.19. Let (M,π) be a Poisson manifold. Then:

(i) Every integral submanifold S of Imπ# is regularly immersed.
(ii) A connected component of the the intersection of two integral submanifolds of

Imπ# is also an integral submanifold of Imπ#.

In particular, noticed that a subset S ⊂ M has at most one differential structure
for which S is an integral submanifold of Imπ#.

Proof. Fix a point x0 ∈ M and let (U,ϕ) = (U, p1, . . . , pn,q1, . . . ,qn,x1, . . . ,xs) be
Darboux-Weinstein coordinates centered at x0. The next lemma gives information
about integral submanifolds of Imπ# containing x0:

Lemma 3.20. Let N be an integral submanifold of Imπ# containing x0.

(i) The connected components of the intersection N∩U are contained in the slices
{xa = constant}.

(ii) If N is contained in U then it is contained in the slice {xa = 0}.
(iii) If N′ is some other integral submanifold containing x0, then the connected com-

ponent of N′∩N containing x0 is also an integral submanifold of Imπ#.

Note that (ii) follows from (i), since N is connected and x0 ∈ N belongs to the
slice {xa = 0}. Also, (iii) follows from (i) since the slices {xa = constant} and the
integral submanifolds containing x0 have the same dimension. Now, to prove (i) it
is enough to check that N∩{xa = constant} is both open and closed in N∩U :

(a) N ∩{xa = constant} is closed in N ∩U : if nk ∈ N ∩{xa = constant} converges
to n ∈ N∩U , then clearly xa(n) = constant, so n ∈ N∩{xa = constant}.
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(b) N∩{xa = constant} is open in N∩U : if x∈N∩{xa = constant} the hamiltonian
vector fields {Xp1 , . . . ,Xpn ,Xq1 , . . . ,Xqn} commute and they generate both the
tangent space to the slice {xa = constant} and the tangent space to N around
x (because N is a Poisson submanifold with the same dimension as the slice).
Hence, there is some open set x ∈V ⊂ N such that V ∩{xa = constant} ⊂ N.

Next we show that integral submanifolfds are regularly immersed. Let i : N ↪→M
be an integral submanifold of Imπ# and let Ψ : Q→M be a smooth map from some
manifold Q into M with Ψ(Q)⊂ N. Denote by Ψ̂ : Q→ N the induced map:

N i // M

Q
Ψ̂

__

Ψ

OO

We need to show that Ψ̂ is smooth.
Let q ∈ Q and n = Ψ̂(q) ∈ N. We can choose Darboux-Weinstein coordinates

(V,ϕ) = (V,(pi,qi,xa)) for M centered at i(n) and an open set n ∈U ⊂ N such that:

i(U) = {xa = 0}.

Notice that (U,π1 ◦ϕ ◦ i), where π is the projection in the first 2n coordinates, is
a local chart for N around n. The set Ψ−1(V ) is open in Q and contains q. Let W
be the connected component of Ψ−1(V ) containing q. Then W is open in Q, and if
we can show that Ψ̂(W ) ⊂U it will follow that π1 ◦ϕ ◦ i ◦Ψ̂ |W = π1 ◦ϕ ◦Ψ |W is
smooth, so one can conclude that Ψ̂ is smooth.

To show that Ψ̂(W )⊂U , it is enough to check that Ψ(W )⊂ {xa = 0}. Observe
that since Ψ is continuous and W is connected, the image Ψ(W ) is also connected
and contains at least one point in the slice {xa = 0}, namely i(n). Since Ψ(W ) lies in
the component of i(N)∩V containing i(n), by the Lemma, this is the slice {xa = 0}
and we have that Ψ(W )⊂ {xa = 0}, so we are done. ut

The previous proposition justifies the following definition:

Definition 3.21. A symplectic leaf of a Poisson manifold (M,π) is a maximal (rel-
ative to inclusion) integral submanifold of Imπ#.

In the sequel, by a saturated subset of (M,π) we mean any subset X ⊂M which
is the union of symplectic leaves.

Theorem 3.22 (Symplectic foliation). Let (M,π) be a Poisson manifold.

(i) Every point x0 ∈M is contained in a single symplectic leaf of M and every
integral submanifold of Imπ# containing x0 is contained in the symplectic
leaf through x0.

(ii) Mreg and Msing are both saturated subsets of (M,π).
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Proof. Let Sx0 be the union of all the integral submanifolds of ∈ π# containing x0.

Lemma 3.23. Sx0 is an integral submanifold of Imπ#.

Proof. By Proposition 3.19 the intersection of any two integral submanifolds is an
open set of both submanifolds. Hence, by Proposition 3.18, we only need to check
that the topology of Sx0 , which is generated by the open sets of the integral subman-
ifolds, is second countable.

Consider the set of all Darboux-Weinstein charts centered at points of Sx0 . A
countable number of these charts still cover Sx0 , so we can choose a countable set
of Darboux-Weinstein charts (Uk,φk) = (Uk,(pi

(k),q
i
(k),x

a
(k))), k = 1,2, . . . centered

at points of Sx0 . Note that the connected components of the intersection of Sx0 with
each chart Uk is a slice {xa

(k) = constant}. To check that the topology of Sx0 is second
countable it is enough to check that for each k the leaf Sx0 intersects Uk in a countable
number of slices {xa

(k) = constant}.
Since Sx0 is path connected, each point in Uk that lies in the leaf Sx0 can be joined

to x0 by a path in Sx0 . To each such path, there corresponds a (non-unique) finite
sequence:

U0,Uk1 , . . . ,Ukn ,Uk,

of domains of charts that cover the path. Every slice in Sx0 ∩Uk is then reachable in
this way. Since there are at most countable such sequences from U0 to Uk, to check
that the number of slices in Sx0∩Uk is countable, it is enough to check that each slice
in Sx0 ∩Uki can intersect at most a countable number of slices in Sx0 ∩Uki+1 . For that
observe that if N ⊂ Sx0∩Uki is a slice, then N∩Uki+1 is an open submanifold of N, so
it has at most a countable number of connected components. Each such component
is a connected integral submanifold in Sx0 ∩Uki+1 , so it is contained in a single slice
of Sx0 ∩Uki+1 . ut

It follows from this lemma, that Sx0 is a symplectic leaf, i.e., a maximal integral
submanifold of Imπ# which contains every integral submanifold containing x0, so
(i) is proved.

In order to prove (ii) we claim that if x0 is a regular point of M then all points in
the symplectic leaf Sx0 are regular points of M. For that it is enough to prove that
Sx0 ∩Mreg is both open and closed in Sx0 :

(a) Since Mreg is open in M, it is obvious that Sx0 ∩Mreg is open in Sx0 , because the
inclusion Sx0 ↪→M is continuous.

(b) Let xn ∈ Sx0 ∩Mreg be a sequence that converges in Sx0 to x∗. We claim that
x∗ is a regular point, so that Sx0 ∩Mreg is closed in Sx0 . Choose a Darboux-
Weinstein chart (V,(pi,qi,xa)) centered at x∗. The connected component of V ∩
Sx0 containing x∗ is the slice {xa = 0}, so for large enough N we have that xN is
a regular point of π that belongs to the slice {xa = 0}. From the expression of
π in Darboux-Weinstein coordinates:

π|U =
n

∑
i=1

∂

∂ pi
∧ ∂

∂qi +
s

∑
a,b=1

φ
ab(x)

∂

∂xa ∧
∂

∂xb
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we conclude that we must have φ ab(x) = 0 for x in a neighborhood of 0, so that
x∗ is a regular point.

This proves that Mreg is saturated, so Msing = M−Mreg is also saturated. ut

Exercise 3.24. Let (M,π) be a Poisson manifold. Show that the symplectic leaf Sx0
coincides with the set of all points in M that can be joined to x0 by a piecewise
smooth path γ , such that each smooth piece of γ is an integral curve of some hamil-
tonian vector field.

Remark 3.25. Note that the rank of π does not need to be the same on distinct con-
nected components of Mreg. The restriction of π to each connected component is
a regular Poisson structure whose symplectic foliation consists of the symplectic
leaves of (M,π) contained in that component.

Henceforth we will call the partition of (M,π) by symplectic leaves the sym-
plectic foliation of (M,π). In general, this will be a singular foliation, since the
dimension of the leaves can vary.

3.4 Symplectic foliation and submanifolds

We can now look back at the various notions of submanifolds of a Poisson manifold
and see how they are related with its symplectic foliation.

Proposition 3.26. Let (M,πM) be a Poisson manifold with symplectic foliation S .
A submanifold N⊂M is a Poisson submanifold if and only if for each symplectic leaf
S ∈S the intersection S∩N is a open subset of S. Hence, the symplectic foliation
of (N,πN) consists of the connected components of the intersections S∩N.

Proof. A submanifold N ⊂M is a Poisson submanifold if and only if

Imπ
#
x ⊂ TxN,∀x ∈ N.

It follows that for a Poisson submanifold N ⊂M, every symplectic leaf of (N,πN)
is also an integral submanifold of (M,πM). Hence, every symplectic leaf of (N,πN)
is an open subset of a symplectic leaf in S .

Conversely, if for each symplectic leaf S ∈ S the intersection S∩N is a open
subset of S, then for any x ∈ N we have Imπ#

x = TxSx ⊂ TxN, where Sx ∈S is the
symplectic leaf through x. This shows that N is a Poisson submanifold. ut

Proposition 3.27. Let (M,π) be a Poisson manifold with symplectic foliation S . A
manifold X ⊂M is a Poisson transversal if and only if X is transverse to S and for
each S ∈S the intersection S∩X is a symplectic submanifold of S. Hence, the sym-
plectic foliation of (X ,πX ) consists of the connected components of the intersections
S∩X.
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Proof. The condition for a submanifold X ⊂M to be a Poisson transversal is:

TX M = T X⊕π
#(T X)0.

This condition is equivalent to have both the following conditions satisfied:

(a) TX M = T X + Imπ#;
(b) T X ∩π#(T X)0 = 0.

Condition (a) says that X is transverse to the symplectic leaves and condition (b)
(provided condition (a) is satisfied) says that the kernel of the pullback of ωS to
S∩X is trivial, so S∩X is a symplectic submanifold of S. ut

The previous results suggest a natural generalization of submanifolds of a Pois-
son manifold (M,π). Recall that two submanifolds N1,N2 ⊂ M are said to have a
clean intersection if N1∩N2 is a submanifold of M and:

T (N1∩N2) = T N1∩T N2.

A submanifold has clean intersection with a foliation if it intersects cleanly every
leaf of the foliation. For example, if N is transverse to a foliation F then they have
a clean intersection.

Exercise 3.28. Let N be a submanifold of a Poisson manifold (M,π) which has
clean intersection with its symplectic foliation S . Show that if N ∩S is a symplec-
tic submanifold of S for every S ∈ S then there is a unique Poisson structure πN
such that the symplectic foliation of (N,πN) are the connected components of the
intersections N∩S. Give an example of such a manifold N which is neither a Poisson
submanifold nor a Poisson transversal. HINT: See Exercise 2.38.

Proposition 3.29. Let C be a submanifold of a Poisson manifold (M,π) which has
clean intersection with its symplectic foliation S . Then C is a coisotropic submani-
fold of (M,π) if and only if for each symplectic leaf S ∈S the intersection S∩C is
a coisotropic submanifold of S.

Proof. Assume that C ⊂M is a submanifold which is transverse to the symplectic
foliation S . This means that for each S ∈S the inclusion i : S ↪→M is transverse
to C. Now:

(a) If C is coisotropic in M, it follows that i−1(C) = S∩C is coisotropic in S, since
the inclusion is a Poisson map (see Proposition 2.34).

(b) If S⊂C is coisotropic in S, then we have:

π
#
S (T (S∩C))0 ⊂ T (C∩S) = TC∩T S.

where the annihilator is in T ∗S. It follows that for for any α ∈ T ∗M such that
α|T S∩TC = 0, we have:

π
#(α) ∈ TC.

But (T S∩TC)0 = T S0+TC0, so we conclude that π#(TC)0⊂ TC, which means
that C is coisotropic. ut



50 3 The symplectic foliation

Finally, we relate Poisson maps and symplectic leaves:

Proposition 3.30. If Φ : (M,πM)→ (N,πN) is a Poisson map then for each sym-
plectic leaf S of (N,πN), the set S∩ ImΦ is open in S. In particular, if ImΦ is a
submanifold, then it is a Poisson submanifold of (N,πN).

Proof. Let x0 ∈M and set y0 = Φ(x0). Denote by Sy0 the symplectic leaf of (N,πN)
containing y0. By Exercise 3.24, any point in Sy0 can be reached from y0 by piece-
wise smooth curves consisting of integral curves of hamiltonian vector field Xh
where h ∈C∞(N).

Given h ∈ C∞(N), by Proposition 1.12, the vector fields Xh and Xh◦Φ are Φ-
related. Hence, if γ(t) ∈ N and η(t) ∈ M are the integral curves of Xh and Xh◦Φ
satisfying γ(0) = y0 and η(0) = x0, we have:

γ(t) = Φ(η(t)),

for all small enough t. It follows that a neighborhood of y0 in Sy0 is contained in the
image of Φ . ut

Exercise 3.31. A Poisson map Φ : (M,πM)→ (N,πN) is called complete if when-
ever Xh is a complete hamiltonian vector field in (N,πN), the hamiltonian vector
field Xh◦Φ is a complete vector field in (M,πM). Show that the image of a complete
Poisson map is saturated by symplectic leaves.

This exercise and our results that we will study later suggest that one should think
of complete Poisson maps as the analogues of proper maps in the Poisson category.

Homework 3: Foliations and Cohomology

3.1. Let F be a foliation of M. A F -connection on a vector bundle p : E→M is a
R-bilinear map ∇ : X(F )×Γ (E)→ Γ (E), (X ,s) 7→ ∇X s, satisfying the following
properties:

∇ f X s = f ∇X s, ∇X ( f s) = f ∇X s+X( f )s.

The curvature of the F -connection is defined by:

R∇(X1,X2)s = ∇X1∇X2s−∇X2∇X1s−∇[X1,X2]s.

(i) Show that if γ : [0,1]→ L is a smooth path in a leaf L ∈F and u0 ∈ Eγ(0) there
exists a unique curve γ̃u0 : [0,1]→ E such that:

γ̃u0(0) = u0, p(γ̃u0(t)) = γ(t), ∇γ̇(t)γ̃u0(t) = 0.

HINT: We will need first to make sense of ∇γ̇(t)s where s is a section of E de-
fined along the path γ . For that, consider extensions and show that the definition
does not depend on choices.
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(ii) Define a parallel transport map τγ : Eγ(0)→ Eγ(1) by:

τγ(u) = γ̃u0(1).

and show that for any two paths γ1 and γ2 such that γ1(0) = γ2(1) and γ ′1(0) =
γ ′2(1) = 0, one has:

τγ1·γ2 = τγ1 ◦ τγ2 ,

where γ1 · γ2 denotes concatenation of paths.

3.2. Let F be a foliation of M. A representation of F is a vector bundle E →M
together with a flat F -connection connection. Show that for a representation of F :

(i) Parallel transport depends only on the leafwise homotopy class of the path, so
the assignment:

Hol : π1(L,x0)→ GL(Ex0), [γ] 7→ τγ ,

defines a group homomorphism called the holonomy of the representation.
(ii) Let Ω k(F ,E) = Γ (∧kT ∗F ⊗E) be the space of foliated k-differential forms

with values in E, so an element of ω ∈ Ω k(F ,E) can be viewed as degree k
C∞(M)-multilinear alternating map ω : X(F )×·· ·×X(F )→Γ (E). Define a
linear map dF : Ω •(F ,E)→Ω •+1(F ,E) by:

dF ω((X0, . . . ,Xk) =
k

∑
i=0

(−1)i
∇Xiω(X0, . . . , X̂i, . . . ,Xk)+

∑
i< j

(−1)i+ j
ω([Xi,X j],X0, . . . , X̂i, . . . , X̂ j, . . . ,Xk).

Show that d2
F = 0, so one can define the corresponding cohomology groups

H•(F ,E).
(iii) Show that if Φ : N→M is a submersion and F ′ = Φ−1(F ), then there is an

induced map in cohomology:

Φ
∗ : H•(F ,E)→ H•(F ′,Φ∗E).

When E = M ×R → M is the trivial line bundle, we write H•(F ) instead of
H•(F ,E) and call it the foliated cohomology of F .

3.3. Let F be a foliation of M with normal bundle NF = T M/TF . Define the Bott
connection of the foliation F , ∇ : X(F )×Γ (NF )→ Γ (NF ) by setting

∇XY := [X ,Y ].

where Y ∈ Γ (NF ) denotes the section of the normal bundle represented by the
vector field Y ∈ X(M).

(i) Show that ∇ is well-defined (i.e., is independent of the choice of Y ) and gives
a representation of F on its normal bundle NF .
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(ii) Show that one has an induced representation on the conormal bundle N ∗
F and

on any tensor product of NF and N ∗
F .

The Bott connection gives a group homomorphism

Hollin : π1(L,x0)→NL|x0 .

which is called the linear holonomy representation of the leaf L. Its image is called
the linear holonomy group of L.

3.4. One defines the complex of differential forms of M relative to F by:

Ω
k(M,F ) := {α ∈Ω

k(M) : i∗Lα = 0, for all leaves iL : L ↪→M}.

Notice that d : Ω •(M,F ) → Ω •+1(M,F ) so that we have indeed a complex
(Ω k(M,F ),d). We denote by H•(M,F ) the corresponding cohomology.

(i) If ω̃ ∈ Ω k(M) denotes any k-form extending a foliated k-form ω ∈ Ω k(F ),
then δ [ω] := [dω̃] ∈ Hk+1(M,F ) does not depend on the choice of extension.

(ii) Show that there exists a long exact sequence:

· · · // Hk(M,F ) // Hk(M) // Hk(F )
δ // Hk+1(M,F ) // · · ·

(iii) A foliated k-form ω ∈ Ω k(F ) admits a closed extension if and only if the
corresponding class δ [ω] ∈ Hk+1(M,F ) vanishes.

3.5. Let F be a foliation of M with conormal bundle N ∗
F .

(i) Given a differential form ω ∈Ω k(M,F ) define ω̂ ∈Ω k−1(F ,N ∗
F ) by

ω̂(X1, . . . ,Xk−1)(Y ) := ω(X1, . . . ,Xk−1,Y ),

where Xi ∈ X(F ) and Y ∈ Γ (NF ). Show that ω 7→ ω̂ defines a cochain map
(Ω •(M,F ),d)→ (Ω •−1(F ,N∗F ),dF ).

(ii) Given a differential form η ∈Ω k(F ) define dν η ∈Ω k(F ,N ∗
F ) by

dν η(X1, . . . ,Xk)(Y ) := dη̃(X1, . . . ,Xk,Y ),

where η̃ ∈ Ω k(M) is any extension of η , Xi ∈ X(F ) and Y ∈ Γ (NF ). Show
that η 7→ dν η defines a cochain map (Ω •(F ),d)→ (Ω •(F ,N∗F ),dF ).

(iii) Show that the induced maps in cohomology give rise to a commutative dia-
gram:

H•(F )

δ

xx

dν

&&
H•+1(M,F ) // H•(F ,NF )
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3.6. For a regular Poisson manifold (M,π) with symplectic foliation S and foliated
symplectic form ωS , the previous problems show that we have the foliated coho-
mology class [ωS ] ∈ H2(S ), which measures the failure in ωS be leafwise exact,
the class δ [ωS ] ∈ H3(M,S ), which measures the failure in ωS extending to a
closed 2-form, and the class dν [ωS ] ∈H2(S ,NS ), which measures the transverse
variation of the symplectic form.

(i) Give an example of a regular Poisson manifold (M,π) where [ωS ] = 0, hence
all classes vanish.

(ii) Give an example of a regular Poisson manifold (M,π) where δ [ωS ] = 0 but
[ωS ] 6= 0.

(iii) Give an example of a regular Poisson manifold (M,π) where dν [ωS ] = 0 but
δ [ωS ] 6= 0.

HINT: Consider regular Poisson manifolds (M,π) where M = S×N and whose
symplectic foliations are product foliations S×{x}, with x ∈ N.





Part II
Constructions and Examples



We describe various constructions that yield new Poisson manifolds starting with
known ones and perhaps some extra data. This will furnish us with a large number
of examples of Poisson manifolds.



Chapter 4
Quotients and Fibrations

4.1 Poisson Quotients

Let G be a Lie group and assume that G acts on a smooth manifold M, so we have
the action map Φ : G×M→M, (g,x) 7→ g · x. We will denote translation by g ∈ G
by Φg : M → M, x 7→ g · x, and we will denote the map parameterizing the orbit
through an x ∈ M by Φx : G→ M, g 7→ g · x. An action can also be thought of as
homomorphism:

Φ̂ : G→ Diff(M), g 7→Φg.

The induced map at the Lie algebra level is the infinitesimal action φ : g→ X(M),
ξ 7→ Xξ , where

(Xξ )x :=
d
dt

exp(tξ ) · x
∣∣∣∣
t=0

.

With our conventions, φ : g→ X(M)is a Lie algebra anti-homomorphism.

Definition 4.1. A Poisson action of a Lie group G on a Poisson manifold
(M,π) is a smooth action such that for each g∈G the translation Φg : M→M
is a Poisson diffeomorphism. We call the triple (M,π,G) a Poisson G-space.

Therefore, for a Poisson action, the translations Φg : M → M map symplectic
leaves of M to symplectic leaves.

Exercise 4.2. Show that for a Poisson G-space (M,π,G) the infinitesimal generators
are Poisson vector fields:

LXξ
π = 0, ∀ξ ∈ g.

Conversely, if G is connected, show that if all infinitesimal generators of an action
are Poisson vector fields, then the action is Poisson.

57
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Let us recall that an action Φ : G×M→M is called proper if the map G×M→
M×M, (g,x) 7→ (x,g · x), is a proper map. For example, actions of compact Lie
groups are always proper. Recall, also, that the action is called free if for every
x ∈M the isotropy group:

Gx := {g ∈ G : g · x = x},

is trivial. In other words, the action is free if the translations by elements of the
group have no fixed points.

Whenever an action Φ : G×M→M is both proper and free the orbit space M/G
has a unique smooth structure compatible with the quotient topology for which the
quotient map q : M→M/G is a submersion.

Theorem 4.3. Let (M,π,G) be a proper and free Poisson G-space. Then there
exists a unique quotient Poisson structure πM/G on M/G for which the quo-
tient map q : M→ M/G is Poisson. If H ∈ C∞(M) is a G-invariant function
then the hamiltonian vector field XH ∈X(M) projects to a hamiltonian vector
field Xh ∈ X(M/G).

Proof. We just need to observe that, under the conditions of the theorem, the
space of G-invariant smooth function C∞(M)G is natural isomorphic to the space
of smooth functions on the quotient C∞(M/G), via pull-back by the quotient map
q : M → M/G. Now the action being Poisson, it follows that the Poisson bracket
of G-invariant functions is G-invariant, so we obtain a unique Poisson structure on
M/G which makes the quotient map a Poisson map. ut

The quotient procedure just described is very simple, but still can produce a dras-
tic change in the Poisson structure: for example, it can take a non-degenerate (sym-
plectic) Poisson structure to a degenerate one and vice-versa.

Example 4.4. On the torus T4 consider the non-degenerate Poisson structure:

π =
∂

∂θ 1 ∧
∂

∂θ 2 +
∂

∂θ 3 ∧
∂

∂θ 4 .

Let S1 act on T4 by translations in the last factor:

θ · (θ 1,θ 2,θ 3,θ 4) = (θ 1,θ 2,θ 3,θ 4 +θ).

This is a proper and free Poisson action. The Poisson structure on the quotient T3 =
T4/S1 is given by:

π =
∂

∂θ 1 ∧
∂

∂θ 2 ,

and hence is degenerate. If we now let S1 act on T3 by translations on the last factor,
again we obtain a proper and free Poisson action and the Poisson structure on the
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quotient T2 = T3/S1 is non-degenerate:

π =
∂

∂θ 1 ∧
∂

∂θ 2 .

Theorem 4.3 is the first step in symmetry reduction of hamiltonian systems XH ,
where H is a G-invariant function. Moreover, the following result shows that if a
trajectory of the reduced system on the quotient M/G exists for all times, then the
original system has a corresponding trajectory which exists for all times.

Theorem 4.5. Let (M,π,G) be a proper and free Poisson G-space. The quotient
map q : M→M/G is a complete Poisson map.

We leave the proof as an exercise.

4.2 Hamiltonian Quotients

In general, it is not easy to describe the symplectic foliation of the quotient Poisson
structure. However, in some special cases, this is still possible.

For example, if the Poisson action maps each symplectic leaf into itself, rather
than shuffling the leaves around, one may hope that the description of the quotient
symplectic foliation is easier. For a connected Lie group, this will be the case if the
infinitesimal generators of the action are hamiltonian vector fields. So let us consider
now the possibility of filling in the dotted arrow in the following diagram:

g
φ //

µ̂ !!

X(M)

C∞(M)

h 7→−Xh

::

Observe that to give a linear map µ̂ : g→ C∞(M), ξ 7→ µξ , is the something as
giving a smooth map µ : M→ g∗: one determines the other through the relation:

µξ (x) = 〈µ(x),ξ 〉.

Definition 4.6. A moment map for an action of a Lie group G on a Poisson
manifold (M,π) is a smooth map µ : M → g∗ such that the moment map
condition holds:

Xξ =−π
#(dµξ ), ∀ξ ∈ g. (4.1)
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It is natural to require the map µ̂ : (g, [·, ·])→ (C∞(M),{·, ·}) to be a Lie algebra
homomorphism, for then the composition with the map h 7→ −Xh produces a Lie
algebra anti-morphism.

Proposition 4.7. Let (M,π) be a Poisson manifold. A map µ̂ : g→C∞(M) is a Lie
algebra homomorphism if and only if µ : M→ g∗ is a Poisson map, where on g∗ we
consider the linear Poisson structure.

Proof. Let µ : M→ g∗ be any smooth map. If we identify an element ξ ∈ g with the
linear map ξ : g∗→ R, we find for any ξ1,ξ2 ∈ g and x ∈M:

{µ̂(ξ1), µ̂(ξ2)}M(x)− µ̂([ξ1,ξ2])(x) = {ξ1 ◦µ,ξ2 ◦µ}M(x)−〈[ξ1,ξ2],µ(x)〉
= {ξ1 ◦µ,ξ2 ◦µ}M(x)−{ξ1,ξ2}g∗(µ(x)),

where we use the definition of the linear Poisson structure on g∗. This shows that µ̂

is a Lie algebra morphism if and only if:

{ξ1 ◦µ,ξ2 ◦µ}M = {ξ1,ξ2}g∗ ◦µ, ∀ξ1,ξ2 ∈ g.

We leave it as an exercise to check that this condition is equivalent to µ being a
Poisson map. ut

Given a moment map µ : M→ g∗ for an action G×M→M on a Poisson mani-
fold, we will say that µ is a G-equivariant moment map if:

µ(g · x) = Ad∗g µ(x), ∀x ∈M,g ∈ G.

Here Ad∗ : G→ GL(g∗) denotes the coadjoint action: if we think of g∗ as left-
invariant 1-forms on G, and denote by Ψ : G×G→ G, (g,h) 7→ ghg−1, the action
by conjugation, then1:

Ad∗g α = (Ψg−1)∗α.

Proposition 4.8. Let (M,π) be a Poisson manifold and µ : M→ g∗ a moment map
for an action G×M→M. Then:

(i) If µ is G-equivariant then µ is a Poisson map.
(ii) If µ is a Poisson map and G is connected, then µ is G-equivariant.

Proof. Starting with the G-equivariance condition for µ

µ(g · x) = Ad∗g µ(x),

we let g = exp(tξ1) and contract both sides with ξ2, obtaining:

〈µ(exp(ξ1) · x),ξ2〉= 〈µ(x),Adexp(−tξ1) ξ2〉.

Differentiating with respect to t at t = 0, we obtain:

1 The reason for using g−1 in this formula is that we still obtain a left action.
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〈dxµ ·Xξ1
,ξ2〉=−〈µ(x), [ξ1,ξ2]〉.

Using the moment map condition (4.1) and the definition of the Poisson bracket on
g∗, this expression can be written as:

−〈dxµ ·π#dµξ1
,ξ2〉=−{ξ1,ξ2}g∗(µ(x)),

or equivalently as:

{ξ1 ◦µ,ξ2 ◦µ}M = {ξ1,ξ2}g∗ ◦µ, ∀ξ1,ξ2 ∈ g.

This implies that µ is a Poisson map.
This procedure can be reversed to conclude that if µ is a Poisson map, then:

µ(exp(tξ ) · x) = Ad∗exp(tξ ) µ(x), ∀ξ ∈ g,x ∈M.

Since the exponential map is a diffeomorphism in a neighborhood of the identity,
this gives that:

µ(g · x) = Ad∗g µ(x),

for all g ∈ G in a neighborhood U of the identity. When G is connected, we have
G =

⋃
n∈NUn, so this must hold for all g ∈ G. ut

The previous discussion motivates the following definition:

Definition 4.9. A Poisson action G×M→ M on a Poisson manifold (M,π)
is called a hamiltonian action if it admits a G-equivariant moment map µ :
M→ g∗. The quadruple (M,π,G,µ) is called a hamiltonian G-space.

Therefore, for a hamiltonian G-space (M,π,G,µ):

• The moment map µ : M→ g∗ is a Poisson map;
• The map g→C∞, ξ 7→ µξ is a Lie algebra homomorphism.

Note that when the group is connected, the assumption in the definition that the
action is Poisson is superfluous. In fact, for “good” moment maps µ even the action
is determined by µ:

Proposition 4.10. Let (M,π) be any Poisson manifold and let µ : M → g∗ be a
complete Poisson map. There is an action of the 1-connected Lie group G integrating
g such that the quadruple (M,π,G,µ) is a hamiltonian G-space.

Proof. Let ξ ∈ g. Then the linear functional α 7→ 〈α,ξ 〉 defines a smooth function
hξ ∈C∞(g∗). The corresponding hamiltonian vector field satisfies:
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〈Xhξ
|α ,η〉= 〈π#

g∗dhξ ,η〉

= 〈π#
g∗ |α ξ ,η〉

= 〈α, [ξ ,η ]〉= 〈−ad∗
ξ

α,η〉.

In other words, Xhξ
= −ad∗

ξ
, the infinitesimal generator of the coadjoint action. It

follows that the vector fields Xhξ
are complete.

Since µ : M → g∗ is a complete Poisson map, the hamiltonian vector fields
Xhξ ◦µ = Xµξ

are also complete. Hence we obtain an infinitesimal Lie algebra ac-
tion φ : g→ X(M) by setting:

φ(ξ ) =−Xµξ
.

Since all infinitesimal generators are complete vector fields, this action integrates
to an action Φ : G×M → M of the 1-connected Lie group G integrating g. By
construction, the quadruple (M,π,G,µ) is a hamiltonian G-space. ut

The main reason one studies hamiltonian G-spaces is the following reduction
result:

Theorem 4.11 (Meyer-Marsden-Weinstein). Let (M,π,G,µ) be a proper
and free hamiltonian G-space. Then 0 ∈ g∗ is a regular value of µ and

M//G := µ
−1(0)/G

is a Poisson submanifold of (M/G,πM/G). If πM is symplectic, then πM//G
is also symplectic, and the connected components of M//G are symplectic
leaves of (M/G,πM/G).

Proof. We start by checking that 0 is a regular value of µ by checking that µ is
a submersion. For that, pick a basis ξ1, . . . ,ξd of g. Since the action is free, the
infinitesimal generators:

Xξ1
= π

#dµξ1
, . . . ,Xξd

= π
#dµξd

,

form a linearly independent set at each point of M. It follows that the differentials
dxµξ1

, . . . ,dxµξd
must form a linearly independent set at each point x ∈ M. Since

dxµξ = 〈dxµ,ξ 〉 and dimg∗ = d, we conclude that µ is a submersion, as claimed.
Next we check that M//G= µ−1(0)/G is a Poisson submanifold of (M/G,πM/G),

i.e., that we have:
Im(π#

M/G)|[x] ⊂ T[x]M//G,

for every [x] ∈M//G. Now, from the definition of πM/G, we have:

Im(π#
M/G)|[x] = {dxq ·π#

x (dxq)∗d[x]h : h ∈C∞(M/G)},
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where q : M → M/G is the quotient map. Notice that by varying h ∈ C∞(M/G)
we obtain that (dxq)∗d[x]h are the covectors α ∈ T ∗x M in the annihilator to the orbit
(TxG · x)0. Therefore, it is enough to prove that for x ∈ µ−1(0) we have:

dxq ·π#
x α ∈ T[x]M//G, ∀α ∈ (TxG · x)0.

This follows from the following:

Lemma 4.12. For all x ∈ µ−1(0):

π
#
x (TxG · x)0 ⊂ Kerdxµ.

In fact, for any α ∈ (TxG · x)0 and ξ ∈ g, we have:

〈dxµ ·π#
x α,ξ 〉= 〈π#

x α,dxµξ 〉
= 〈α,−π

#
x dxµξ 〉

= 〈α,Xξ 〉= 0.

so the lemma follows.
Finally, we will show that if π is symplectic, then πM//G is also symplectic. For

that we check that M//G is an integral submanifold of Im(π#
M/G). Let x ∈ µ−1(0)

and let {dxµξ1
, . . . ,dxµξd

,α1, . . . ,αm−2d} be a basis of (TxG · x)0, where m = dimM
and d = dimG. We saw above that π#(TxG ·x)0 ⊂ Txµ−1(0), and since π is assumed
to be non-degenerate, we then obtain a basis

{Xξ1
, . . . ,Xξd

,π#
x (α1), . . . ,π

#(αm−2d)} ⊂ Txµ
−1(0).

This basis projects by the quotient map to the linearly independent set:

{dxq ·π#
x (α1), . . . ,dxq ·π#(αm−2d)} ⊂ Im(π#

M/G)|[x].

We conclude that dimIm(π#
M/G)|[x] ≥ m− 2d. Since dimM//G = m− 2d and we

already know that Im(π#
M/G)|[x] ⊂ T[x]M//G, it follows that

Im(π#
M/G)|[x] = T[x]M//G

so M//G is an integral submanifold of Im(π#
M/G). We leave as an exercise to check

that the connected components of M//G are actually symplectic leaves. ut

Exercise 4.13. Show that for a proper and free hamiltonian G-space (M,π,G,µ)
with π non-degenerate the connected components of the reduced space M//G are
symplectic leaves of M/G.

HINT: Use the fact that for any Poisson G-space (M,π,G) the quotient map
q : M→M/G is a complete Poisson map.
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When (M,π,G,µ) is a proper and free symplectic hamiltonian G-space, one calls
M//G the symplectic quotient of (M,π,G,µ). In our more general set up, where
πM can be degenerate, we will call M//G the hamiltonian quotient of (M,π,G,µ).
We have only considered above hamiltonian reduction at level 0, but we will see later
that one can also consider reduction at other levels of the moment map.

The Meyer-Marsden-Weinstein Theorem can be explained in terms of a commu-
tative diagram:

M

##
µ−1(0)

, �

::

$$

M/G

M//G
- 

;;

On the right side of the diagram we have Poisson maps. The Poisson geometry of
the left side of this diagram is clarified by the following proposition, which gives an
alternative approach to define the Poisson structure on the hamiltonian quotient:

Proposition 4.14. Let (M,π,G,µ) be a proper and free hamiltonian G-space, so
0∈ g∗ is a regular value of µ . Then µ−1(0)⊂M is a coisotropic submanifold whose
characteristic foliation is given by the orbits of G in µ−1(0). The induced Poisson
structure on the quotient M//G = µ−1(0)/G coincides with the Poisson structure
induced from M/G.

Proof. We claim that for any x ∈ µ−1(0) we have:

π
#(kerdxµ)0 = Tx(G · x).

This follows because if {ξ1, . . . ,ξd} is a basis of g then {dxµξ1
, . . . ,dxµξd

} is a basis
of kerdxµ . Hence, we have:

π
#(kerdxµ)0 = span{π#dxµξ1

, . . . ,π#dxµξd
}

= span{Xξ1
|x, . . . ,Xξd

|x}= Tx(G · x).

Now by G-equivariance of µ , we have G · x⊂ µ−1(x) for any x ∈ µ−1(0), so we
conclude that:

π
#(kerdxµ)0 = Tx(G · x)⊂ kerdxµ.

This shows that µ−1(0) is a coisotropic submanifold and that its characteristic folia-
tion consists of the orbits of the action. The proof that the induced Poisson structure
on the orbit space M//G = µ−1(0)/G coincides with the Poisson structure induced
from M/G is left as an exercise. ut

Exercise 4.15. Use the method of the previous proposition to show that if (M,π,G,µ)
is a hamiltonian G-space, 0 is a regular value of µ and the action is proper and free
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on µ−1(0), then one still has a Poisson structure on M//G := µ−1(0)/G, although
now M/G may not be anymore a smooth manifold.

4.3 Cotangent bundle reduction

Let Q be a smooth manifold. The cotangent bundle M = T ∗Q has a natural non-
degenerate Poisson structure. To define the corresponding symplectic form, one first
defines a canonical 1-form λcan ∈Ω 1(T ∗Q), called the Liouville 1-form by:

λcan(Vα) = 〈dα p ·V,α〉, α ∈ T ∗Q, V ∈ Tα(T ∗Q),

where p : T ∗Q→ Q denotes the bundle projection.

Exercise 4.16. Show that the Liouville 1-form λcan ∈Ω 1(T ∗Q) is the unique 1-form
satisfying the following property: for any 1-form α ∈Ω 1(Q) one has:

α = α
∗
λcan,

where on the right hand side we view α as a smooth map α : Q → T ∗Q. If
(q1, . . . ,qn) are local coordinates on Q and (q1, . . . ,qn, p1, . . . , pn) are the corre-
sponding local coordinates on T ∗Q, check that:

λcan =
n

∑
i=1

pi dqi.

Moreover, show that if Φ : Q1 → Q2 is a diffeomorphism and Φ̃ : T ∗Q1 → T ∗Q2,
αq→ (dΦ(q)Φ

−1)∗α , is the corresponding cotangent lifted diffeomorphism, then

Φ̃
∗
λ

2
can = λ

1
can.

Now taking the exterior derivative of the Liouville 1-form one obtains a closed
2-form ωcan = dλcan ∈Ω 2(T ∗Q), which turns out to be non-degenerate.

Exercise 4.17. Show that ωcan = dλcan is the unique 2-form satisfying the following
property: for any 1-form α ∈Ω 1(Q) one has:

dα = α
∗
ωcan,

where on the right hand side we view α as a smooth map α : Q → T ∗Q. If
(q1, . . . ,qn) are local coordinates on Q and (q1, . . . ,qn, p1, . . . , pn) are the corre-
sponding local coordinates on T ∗Q, check that:

ωcan =
n

∑
i=1

dpi∧dqi,
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so it is non-degenerate. Moreover, if Φ : Q1 → Q2 is a diffeomorphism and Φ̃ :
T ∗Q1→ T ∗Q2 is the corresponding cotangent lift, then

Φ̃
∗
ω

2
can = ω

1
can.

The Poisson bracket associated with the canonical symplectic form ωcan on the
cotangent bundle T ∗Q can also be described in a neat way.

Exercise 4.18. On the cotangent bundle of a manifold Q, consider the following two
kinds of functions:

(i) Basic functions, i.e., functions of the form f ◦ p, where p : T ∗Q→ Q is the
projection;

(ii) Fiberwise linear functions, i.e., functions of the form FX : T ∗Q→R, α 7→ iX α ,
for some vector field X ∈ X(Q).

Check that the Poisson bracket associated with the canonical symplectic form ωcan
satisfies:

{ f ◦ p,g◦ p}= 0, {FX ,FY}=−F[X ,Y ], {FX , f ◦ p}=−X( f )◦ p.

Now let us assume that we have a smooth Lie group action Φ : G×Q→ Q. We
obtain a cotangent lifted action Φ̃ : G×T ∗Q→ T ∗Q, by cotangent lifting each dif-
feomorphism Φg : Q→ Q. By the exercise above, this lifted action is automatically
a Poisson action for the canonical Poisson structure on T ∗G. In fact, we have:

Proposition 4.19. For any smooth action Φ : G×Q→Q the cotangent lifted action
Φ̃ : G×T ∗Q→ T ∗Q is a hamiltonian action with moment map µ : T Q→ g∗ given
by:

〈µ(α),ξ 〉= 〈α,Xξ 〉, ∀ξ ∈ g.

The lifted action is proper (respectively, free) if and only if the action is proper
(respectively, free).

Proof. We need to check the moment map condition:

iX̃ξ
ωcan =−dµξ ,

where X̃ξ denotes the infinitesimal generator associated with ξ ∈ g for the cotan-
gent lifted action. For this, we first observe that LX̃ξ

λcan = 0, since the lift of any
diffeomorphism of Q preserves λcan. On the other hand, from the definition of λcan
and µ we have:

iX̃ξ
λcan|α = λcan(X̃ξ )(α) = 〈α,Xξ 〉= µξ .

Hence, by Cartan’s magic formula, we see that:

iX̃ξ
ωcan = iX̃ξ

dλcan = LX̃ξ
λcan−diX̃ξ

λcan =−dµξ ,
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and we conclude that the moment map condition holds. We leave it as an exercise to
check that µ is G-equivariant and that the lifted action is proper (respectively, free)
if and only if the action is proper (respectively, free). ut

It follows from this proposition that for a free and proper action G×Q→ Q
we obtain a free and proper hamiltonian space (T ∗Q,ωcan,G,µ) and we can form
both the Poisson quotient T ∗Q/G and the Hamiltonian quotient T ∗Q//G. By the
Meyer-Marsden-Weinstein Theorem, T ∗Q//G is a symplectic manifold.

Exercise 4.20. Show that for a proper and free action G×Q→Q one has a Poisson
diffeomorphism:

T ∗Q//G' T ∗(Q/G).

HINT: Let p : Q→ Q/G denote the quotient map. Oberve that for each q ∈ Q the
map:

(dq p)∗ : T ∗qGQ/G→ µ
−1(0)∩T ∗q Q

is a linear isomorphism.

On the other hand, in general, the Poisson quotient T ∗Q/G is not a symplectic
manifold, and may in fact have a more or less intricate Poisson geometry.

Example 4.21. Let Q = C−{0}, thought of as 2 dimensional real manifold, and
consider the action S1×Q→ Q given by:

θ · z = eiθ z.

The canonical symplectic form on the cotangent bundle T ∗Q ' (C−{0})×C can
be written in the form:

ωcan =−
1
2
(dz∧dw̄+dz̄∧dw).

The lifted S1-action on T ∗Q' (C−{0})×C is given by:

θ · (z,w) = (eiθ z,eiθ w).

In order to describe the Poisson structure on the quotient T ∗Q/S1 ' (C−{0}×
C)/S1 ' R3, we consider the S1-invariant polynomials:

σ1 = |z|2 + |w|2

σ2 = |z|2−|w|2

σ3 = zw̄+ z̄w

and we check that their Poisson brackets are given by:

{σ1,σ2}= σ3, {σ2,σ3}= σ1, {σ1,σ3}=−σ2.

Hence, we have obtained a linear Poisson bracket in T ∗Q/G.
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Exercise 4.22. Show that the moment map µ : T ∗Q→R in the previous example is
given by:

µ(z,w) =
i
2
(zw̄− z̄w).

Check that it induces a Casimir function C : T ∗Q/G→ R and find its expression in
terms of the coordinates (σ1,σ2,σ3).

Example 4.23. Consider the action of a Lie group G on itself by left translations:

G×G→ G, g ·h = gh.

This a proper and free action, so the lifted cotangent action G×T ∗G→ T ∗G is also
proper and free. Since the infinitesimal generators of the action of G on itself by
left translations are the right invariant vector fields, the moment map for this lifted
action is just:

µ
L : T ∗G→ g∗, αg 7→ (deRg)

∗
αg,

where Rg : G→G denotes the right translation Rg(h) = hg. Note that in this case the
symplectic quotient is trivial, since from what we saw above it equals the cotangent
bundle of G/G. How does the Poisson structure on T ∗G/G look like?

Let us trivialize T ∗G = G×g∗ by using left translations:

T ∗G 3 αg 7→ (g,(deLg)
∗
αg) ∈ G×g∗,

where Lg : G→ G denotes the left translation Lg(h) = gh. Under this identification,
the action of G on T ∗G becomes:

g · (h,α) = (gh,Ad∗g α).

We claim that under this identification the projection T ∗G ' G× g∗ → g∗ is an
anti-Poisson map. In fact, the symmetric of this projection is given by:

µ
R : T ∗G→ g∗, αg 7→ −(deLg)

∗
αg,

and, just like what we saw above for the left action, this is the moment map for the
cotangent lifted left action of G on itself by right translations:

G×G→ G, g ·h := hg−1.

Since moment maps are Poisson maps, the claim follows. We conclude that left
translations give an isomorphism T ∗G/G → g∗ with the (negative of) the linear
Poisson structure.
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4.4 Gauge Transforms

Let (M,π) be a Poisson manifold. Given a closed 2-form B∈Ω 2(M), one can mod-
ify the Poisson structure by adding to the symplectic form on each leaf the pullback
of B to the leaf. In order to obtain a new Poisson structure, one just needs to make
sure that the resulting closed 2-form on the leaf is still non-degenerate.

Theorem 4.24. Let (M,π) be a Poisson manifold and B ∈ Ω 2(M) a closed
2-form. If (I+B[ ◦π#) : T ∗M→ T ∗M is invertible, then the bivector field eBπ

defined by:
(eB

π)# := π
# ◦ (I +B[ ◦π

#)−1, (4.2)

is a Poisson structure in M. If (S,ω) is a symplectic leaf of π , then (S,ω+B|S)
is a symplectic leaf of eBπ .

Proof. Since we are assuming that (I+B[ ◦π#) : T ∗M→ T ∗M is an invertible bun-
dle map, formula (4.2) defines a smooth bivector field eBπ and we need to show
that:

[eB
π,eB

π] = 0.

Clearly, it is enough to prove that this Schouten bracket is zero on a dense open
subset. So we will check that it vanishes at regular points.

We start by observing that the graph of eBπ is:

Graph(eB
π) = {(π#(α),α + iπ#(α)B) ∈ T M×T ∗M : α ∈ T ∗M}.

Now, let x0 ∈M be a regular point of π and choose Darboux-Weinstein coordinates
(U, pi,qi,xa) centered at x0, so that:

π|U = ∑
i

∂

∂ pi
∧ ∂

∂qi .

In these coordinates, π|U is regular with foliated symplectic form ωS =∑i dqi∧dpi.
It follows that in these coordinates the bivector field eBπ|U is also regular with
Im(eBπ|U )# = Imπ|#U . Hence, eBπ|U determines the same foliation in U , but with
the new non-degenerate foliated 2-form:

ωS +B|xa=c

Since this form is closed, it follows that:

[eB
π,eB

π]|U = 0,

as claimed.
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Since Im(eBπ)# = Imπ# any integral submanifold of π is also an integral sub-
manifold of eBπ , and conversely. Hence, the maximal integral leaves must coincide.
The expression for the graph of eBπ above shows that if (S,ω) is an integral leaf of
π , then (S,ω +B|S) is an integral leaf of eBπ . ut

One calls the Poisson structure eBπ the gauge B-transform of the Poisson struc-
ture π . We will see later, when we study Dirac structures, the reason for this notation.

Example 4.25 (Coisotropic fibrations). Let (M,π) be a Poisson manifold and let
φ : M→ Q be a submersion whose fibers are coisotropic submanifolds:

π
#(kerdφ)0 ⊂ kerdφ .

We claim that if β ∈ Ω 2(Q) is any closed 2-form, then the φ ∗β -transform of π is
well-defined.

We need to check (I +B[ ◦π#) : T ∗M→ T ∗M, where B = φ ∗β , is an invertible
bundle map. Let α ∈ T ∗M belong to the kernel of I +B[ ◦π#. We claim that α = 0,
so it will follows that I +B[ ◦π# is invertible. In fact, we have:

(I +B[ ◦π
#)α = 0 ⇐⇒ α =−iπ#α B =−iπ#α φ

∗
β ,

so it follows that any α in the kernel of I +B[ ◦π# belongs to (kerdφ)0. But then,
since the fibers are coisotropic, we have π#α ∈ kerdφ and we obtain:

0 = (I +B[ ◦π
#)α = α + iπ#(α)φ

∗
β = α

as claimed.
For example, for the canonical symplectic structure on the cotangent bundle

(T ∗Q,ωcan) the fibers p : T ∗Q→ Q are Lagrangian. It follows that for any closed
2-form β ∈Ω 2(Q), the gauge transform ωcan + p∗β is still a symplectic form. One
sometimes call the term p∗β a magnetic term.

Exercise 4.26. Show that if φ : M→Q is a submersion whose fibers are coisotropic
submanifolds of (M,π), then the fibers are still coisotropic for the gauge trans-
formed Poisson structure eφ∗β π , for any closed 2-form β ∈Ω 2(Q).

4.5 Poisson Fibrations

Our last construction of Poisson structures will consist of building out of some
geometric data a Poisson structure on the total space of a locally trivial fibration
φ : M→ B, for which the fibers become Poisson transversals. In order to understand
what kind of geometric data we need, we will start with such a fibration and we will
study its geometry.

Henceforth, by a fibration we will mean a surjective submersion φ : M→ B, with
connected fibers, which is locally trivial.
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Definition 4.27. A fibration φ : M → B with total space a Poisson manifold
(M,π) is called a Poisson fibration if the fibers are Poisson transversals.

We remark that this name is not standard. A more common notation that one can
find in the literature is to call π a horizontally non-degenerate Poisson structure.

Example 4.28 (symplectic fibrations). For a symplectic manifold a Poisson transver-
sal is just a symplectic submanifold. Hence, a symplectic fibration is a fibration
φ : M → B of a symplectic manifold (M,ω) whose fibers are all symplectic sub-
manifolds.

Example 4.29 (neighborhoods of symplectic leaves). Let S be an embedded sym-
plectic leaf of a Poisson manifold (M,π). Let us choose a tubular neighborhood of
S, i.e., an embedding i : NS→U , onto some neighborhood U of S, which sends the
zero section diffeomorphically to S:

NS
� � //

  

U

��
S

This yields a fibration p : U → S and since S is a symplectic leaf, at points of the
zero section s ∈ S we have:

(a) kerds p is complementary to TsS = Imπ#
s ,

(b) kerπ#
s = (TsS)0.

It follows that for any s ∈ S:

TsU = (kerds p)⊕π
#(kerds p)0.

If U is small enough this condition holds also at every point m ∈U , so the fibers
of p : U → S are Poisson transversals. We conclude that a small enough tubular
neighborhood of an embedded symplectic leaf is a Poisson fibration.

Given a Poisson fibration φ : M→ B we associate with it the following data:

• A vertical Poisson structure πV : Since each fiber Fb := φ−1(b) is a Poisson
transversal, there is has an induced Poisson structure on the fiber which we
will denote by πV

b ∈ X(Fb). We can make this family of bivectors on the fibers
{πV

b }b∈B into a single Poisson bivector πV ∈ X2(M), which we will call the ver-
tical Poisson structure of the Poisson fibration.

• A connection Γ : The condition that the fiber Fb is a Poisson transversal gives:

TuM = TuFb⊕π
#(TuFb)

0, ∀u ∈ Fb.
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This means that we have a Ehresmann connection Γ on the fibration with hori-
zontal space:

Horu := π
#(TuFb)

0.

Henceforth, we will also write

Vertu := TuFb

and call it the vertical space, so we have the decomposition:

TuM = Vertu⊕Horu . (4.3)

Given a vector field on the base X ∈ X(B), we will denote by X̃ ∈ X(M) the
horizontal lift of X , i.e., the unique vector field in M such that Xu ∈ Horu and
(φ)∗X̃ = X . The curvature of the connection Γ is the vertical valued 2-form
Ω 2(B;Vert) given by:

ΩΓ (X ,Y ) := [X̃ ,Ỹ ]− [̃X ,Y ], X ,Y ∈ X(B). (4.4)

• A horizontal non-degenerate 2-form ωH : The decomposition (4.3) leads to a
decomposition of the Poisson bivector:

π = π
V ⊕π

H , (4.5)

where πH ∈ X2(Hor) ≡ Γ (∧2 Hor) is non-degenerate (see Section 2.2). We de-
note by ωH ∈Ω 2(Hor)≡Γ (∧2 Hor∗) the corresponding non-degenerate 2-form,
which one can view as skew-symmetric bilinear map ω : Hor×Hor→ R.

Therefore, to a Poisson fibration φ : M→ B one associates a triple (πV ,Γ ,ωH). The
next proposition gives the properties of this geometric data:

Proposition 4.30. Let φ : M → B be a Poisson fibration with associated triple
(πV ,Γ ,ωH). Then:

(i) πV is a vertical Poisson structure:

[πV ,πV ] = 0. (4.6)

(ii) Parallel transport along Γ preserves the vertical Poisson structure:

LX̃ π
V = 0, ∀X ∈ X(B). (4.7)

(iii) The curvature of Γ is hamiltonian, i.e., satisfies the identity:

ΩΓ (X ,Y ) = (πV )#(diỸ iX̃ ω
H). (4.8)

(iv) The horizontal 2-form ω is closed:

dΓ ω = 0. (4.9)
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Proof. For the proof we will need another incarnation of the Schouten bracket,
which we will actually explore much further later, and we express in the follow-
ing lemma, whose proof we leave as an exercise.

Lemma 4.31. For any 1-forms α,β ,δ ∈Ω 1(M):

1
2
[π,π](α,β ,δ ) = 〈[π#(α),π#(β )]−π

#([α,β ]π),δ 〉, (4.10)

where [·, ·]π : Ω 1(M)×Ω 1(M)→Ω 1(M) is a bracket on 1-forms defined by:

[α,β ]π = Lπ#(α)β −Lπ#(β )α−dπ(α,β ).

Exercise 4.32. Proof this lemma.
HINT: Both sides of (4.10) are C∞(M)-multilinear, so it is enough to check them on
exact 1-forms.

Now, given a vector field X ∈X(B) there exists a unique one form γ ∈Vert0 such
that π#(γ) = X̃ . If we write γX for this 1-form, then the definition of ωH shows that
we have:

ω
H(X̃ ,Ỹ ) =−π(γX ,γY ).

To deduce (4.6)-(4.8) we evaluate the Schouten bracket [π,π] using (4.10) on 1-
forms of type α ∈ Hor0 and of type γX ∈ Vert0:

(i) if α,β ,δ ∈ Hor0, we claim that:

[π,π](α,β ,δ ) = [πV ,πV ](α,β ,δ ), (4.11)

which shows that (4.6) follows. In fact, we have

1
2
[π,π](α,β ,δ ) = 〈[π#(α),π#(β )]−π

#([α,β ]π),δ 〉

= 〈[(πV )#(α),(πV )#(β )],δ 〉−〈(πV )#([α,β ]πV ),δ 〉

=
1
2
[πV ,πV ](α,β ,δ )

where we used that π#(α) = (πV )#(α) whenever α ∈ Vert0, so that:

〈π#([α,β ]π),δ 〉=−〈[α,β ]π ,π
#(δ )〉

=−〈Lπ#(α)β −Lπ#(β )α−dπ(α,β ),π#(δ )〉

=−〈L(πV )#(α)β −L(πV )#(β )α−d(πV )(α,β ),(πV )#(δ )〉

= 〈(πV )#([α,β ]πV ),δ 〉.

(ii) if α,β ∈ Hor0 and X ∈ X(B), so that γX ∈ Vert0, we claim that:

1
2
[π,π](γX ,α,β ) = (LX̃ π

V )(α,β ), (4.12)
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so that (4.7) follows. In fact, we have:

1
2
[π,π](γX ,α,β ) = 〈[π#(γX ),π

#(α)]−π
#([γX ,α]π),β 〉

= 〈[X̃ ,π#(α)]−π
#(LX̃ α−Lπ#(α)γX −dπ(γX ,α)),β 〉

= 〈[X̃ ,π#(α)]−π
#(LX̃ α,β 〉= (LX̃ π

V )(α,β ),

where we used that π(γX ,α) = α(X̃) = 0 and Lπ#(α)γX ∈ Vert0, whenever
α ∈ Hor0. This last relation follows, since for any vertical vector field V we
have:

〈Lπ#(α)γX ,V 〉=−〈γX , [π
#(α),V ]〉= 0,

where we used that π#(α) is vertical and the Lie bracket of vertical vector
fields is vertical.

(iii) if α ∈ Hor0 and X ,Y ∈ X(B), so that γX ,γY ∈ Vert0, we we claim that:

1
2
[π,π](γX ,γY ,α) = 〈ΩΓ (X ,Y )− (πV )#(diỸ iX̃ ω

H),α〉 (4.13)

so (4.8) follows. To see this, we compute:

1
2
[π,π](γX ,γY ,α) = 〈[π#(γX ),π

#(γY )]−π
#([γX ,γY ]π),α〉

= 〈[X̃ ,Ỹ ]−π
#(LX̃ γY −LỸ γX −dπ(γX ,γY ),α〉

= 〈[X̃ ,Ỹ ]− [̃X ,Y ]− (πV )#(dω
H(X̃ ,Ỹ )),α〉

= 〈ΩΓ (X ,Y )− (πV )#(diỸ iX̃ ω
H),α〉

were we used that [̃X ,Y ] ∈ Hor so that 〈[̃X ,Y ],α〉= 0 and that LX̃ γY ,LỸ γX ∈
Vert0 so that 〈π#(LX̃ γY ),α〉= 〈π#(LỸ γX ),α〉= 0.

(iv) if X ,Y,Z ∈ X(B), so that γX ,γY ,γZ ∈ Vert0, we we claim that:

3
2
[π,π](γX ,γY ,γZ) = dΓ ω(X ,Y,Z), (4.14)

so that (4.9) follows. In fact, we have:

1
2
[π,π](γX ,γY ,γZ) = 〈[π#(γX ),π

#(γY )]−π
#([γX ,γY ]π),γZ〉

= 〈[X̃ ,Ỹ ]−π
#(LX̃ γY −LγY γX −dπ(γX ,γY )),γZ〉

=−ω([X̃ ,Ỹ ], Z̃)+ 〈LX̃ γY −LγY γX +dω
H(X̃ ,Ỹ ), Z̃〉

=−ω([X̃ ,Ỹ ], Z̃)+ Z̃ ·ωH(X̃ ,Ỹ )−〈γY , [X̃ , Z̃]〉+ 〈γX , [Ỹ , Z̃]〉

Now, if we cyclic permute X , Y and Z and sum, we obtain:
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3
2
[π,π](γX ,γY ,γZ) = X̃ ·ωH(Ỹ , Z̃)+ Ỹ ·ωH(Z̃, X̃)+ Z̃ ·ωH(X̃ ,Ỹ )

−ω([X̃ ,Ỹ ], Z̃)−ω([Ỹ , Z̃], X̃)−ω([Z̃, X̃ ],Ỹ )

= dΓ ω(X ,Y,Z),

since the cyclic sum of 〈γY , [X̃ , Z̃]〉−〈γX , [Ỹ , Z̃]〉 gives zero. ut

The proposition shows that, as long as parallel transport is well defined, then the
fibers of a Poisson fibration are all Poisson diffeomorphic. For example, this is the
case if M is compact.

Exercise 4.33. Let φ : M→B be a Poisson fibration with associated triple (πV ,Γ ,ωH).
Show that the parallel transport map τγ : φ−1(b0)→ φ−1(b0) along any contractible
loop γ in B based at b0 is a hamiltonian diffeomorphism of the fiber (φ−1(b0),π

V ).

One also has a converse to the previous proposition: a triple (πV ,Γ ,ωH) sat-
isfying the conditions of the proposition define a Poisson structure for which the
fibration is Poisson.

Theorem 4.34. Let φ : M→ B be a fibration. There is a 1:1 correspondence
between Poisson structures on M for which the fibration is Poisson and triples
(πV ,Γ ,ωH) where πV is a vertical bivector field, Γ is an Ehreshmann con-
nection and ωH is a horizontal non-degenerate 2-form, satisfying (4.6)-(4.9).

Proof. Proposition 4.30 shows that a Poisson fibration yields a triple (πV ,Γ ,ωH)
satisfying (4.6)-(4.9).

Conversely, given a fibration φ : M → B and a triple (πV ,Γ ,ωH), we define a
bivector π ∈ X2(M) by:

π(α,β ) =


πV (α,β ) if α,β ∈ Hor0

0 if α ∈ Hor0,β ∈ Vert0

−ωH(X̃ ,Ỹ ) if α = γX ,β = γY ∈ Vert0 .

Formulas (4.11), (4.12), (4.13) and (4.14) show that [π,π] = 0, provided that (4.6)-
(4.9) hold. It should be clear that this Poisson structure makes φ : M → B into a
Poisson fibration with associated geometric data (πV ,Γ ,ωH). ut

Conditions (4.6)-(4.9) have a geometric meaning which becomes more clear if
ones uses some principal bundle theory (sometimes called gauge theory). Assume
that we start with a Poisson fibration φ : M→ B. We form the Poisson frame bun-
dle P→ B, which is a principal bundle with an infinite dimensional gauge group,
obtained as follows: fix a base point b0, so we have the fiber F := φ−1(b0) which is
a Poisson manifold with Poisson structure πF := πV

b0
. We set:
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P := {u : (F,πF)→ (Fb,π
V
b )| is a Poisson diffeomorphism }

The group of Poisson diffeomorphisms G = Diff(F,πF) acts on the right of P by
precomposition:

u ·g := u◦g.

It is easy to check that the associated bundle P×G F → B is canonical isomorphic
to the original fibration φ : M→ B.

Every Poisson connection Γ on the Poisson fiber bundle p : M→ B is induced
by a principal bundle connection on P→ B. To see this, observe that the tangent
space TuP ⊂ C∞(u∗T M) at a point u ∈ P is formed by the vector fields along u,
X(x) ∈ Tu(x)M such that:

du(x)p ·X(x) = constant, LX πV = 0.

The Lie algebra g of G is the space of Poisson vector fields: g = X(F,πF). The
infinitesimal action on P is given by:

ρ : g→ X(P), ρ(X)u = du ·X ,

so the vertical space of P is:

Vertu = {du ·X : X ∈ X(F,π)} .

Now a Poisson connection Γ on p : M → B determines a connection in P→ M
whose horizontal space is:

Horu = {ṽ◦u : v ∈ TbB} ,

where u : F → Fb and ṽ : Fb → TFbM denotes the horizontal lift of v. Clearly, this
defines a principal bundle connection on P→ B, whose induced connection on the
associated bundle M = P×G F is the original Poisson connection Γ .

Fix a Poisson connection Γ on the Poisson fiber bundle p : M → B. Recall
that the holonomy group Φ(b) with base point b ∈ B is the group of holonomy
transformations φγ : Fb → Fb, where γ is a loop based at b. Clearly, we have
Φ(b) ⊂ Diff(Fb,π

V
b ). On the other hand, for u ∈ P we have the holonomy group

Φ(u) ⊂ G = Diff(F,πF) of the corresponding connection in P which induces Γ : it
consist of all elements g ∈ G such that u and ug can be joined by a horizontal curve
in P. Obviously, these two groups are isomorphic, for if u : F → Fb then:

Φ(u)→Φ(b), g 7→ u◦g◦u−1,

is an isomorphism.
The curvature of a principal bundle connection is a g-valued 2-form FΓ on P→B,

which is defined by:
FΓ (X ,Y ) = [X̃ ,Ỹ ]− [̃X ,Y ].

It is related to the curvature ΩΓ on M→ B by:
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ΩΓ = du◦FΓ ◦u−1. (4.15)

Given any u∈ P, a Poisson diffeomorphism u : F→ Fb, the curvature identity shows
that, for any X ,Y ∈ TbB, the vector field FΓ (X ,Y )u ∈ g= X(F,π) is Hamiltonian:

FΓ (X ,Y )u = (πV )#d(ωH(ṽ1, ṽ2)◦u).

Now fix u0 ∈ P. The Holonomy Theorem states that the Lie algebra of the holon-
omy group Φ(u0) is generated by all values FΓ (v1,v2)u, with u ∈ P any point that
can be connected to u0 by a horizontal curve. Assume that we can define a moment
map µF : F → (Lie(Φ(u0))

∗) for the action of Φ(u0) on F by:

〈µF(x),FΓ (X ,Y )u〉= ω
H(X̃ ,Ỹ )u(x). (4.16)

Exercise 4.35. Show that if (4.16) holds, then dΓ ωH , so this is a necessary condition
for the existence of µF .

To summarize, given a Poisson fibration φ : M→ B we have produce the follow-
ing data:

• A principal G-bundle P→ B with a connection with curvature FΓ ;
• A hamiltonian G-space (F,πF ,G,µF).

This data determines the Poisson fibration. In fact, as a bundle, φ : M→ B is isomor-
phic to the associated bundle P×G F , and we have an associated triple (πV ,Γ ,ωH),
where:

(i) The vertical Poisson structure πV is isomorphic to the vertical Poisson struc-
ture induced on P×G F from (F,πF).

(ii) The Poisson connection Γ is induced from the connection on P
(iii) The horizontal non-degenerate 2-form ωH satisfies:

ω
H(X̃ ,Ỹ )[u,x] = 〈µF(x),FΓ (X ,Y )u〉.

This discussion is somewhat formal, since both G and P are infinite dimensional.
In the homework at the end of this lecture, we show that this can be made precise
by considering finite dimensional gauge groups.

Homework 4: Poisson Gauge Theory

4.1. Let P→ B be a principal G-bundle. Show that if G acts by Poisson diffeomor-
phisms on (F,πF), then the associated bundle P×G F → B has a vertical Poisson
structure πV . Moreover, show that if Γ is a principal bundle connection on P, then
for the induced connection on P×G F → B parallel transport preserves the vertical
Poisson structure.
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4.2. Let P→ B be a principal G-bundle and let (F,πF ,G,µF) be a Hamiltonian G-
space. Also, choose a principal bundle connection Γ in P with curvature 2-form FΓ .
This choice of data is called Yang-Mills data. In the associated bundle P×G F→ B
consider the triple (πV ,Γ ,ωH), where:

• πV is the vertical Poisson structure and Γ is the connection given in Problem 4.1;
• ωH is the horizontal 2-form defined by:

ω
H(X̃ ,Ỹ )[u,x] = 〈µF(x),FΓ (X ,Y )u〉.

Show that (πV ,Γ ,ωH) satisfy conditions (4.6)-(4.9). Conclude that if ωH is non-
degenerate, then the associated bundle P×G F → B is a Poisson fibration.

4.3. Consider the Hopf fibration S3→ S2 as a principal S1-bundle with a curvature
form that is nowhere vanishing. Let µF : R→ R be a non vanishing function. Show
that we are in the conditions of Problem 4.2 and find the corresponding Poisson
fibration P×G F → B.

4.4. Consider Yang-Mills data on a principal G-bundle P→ B, as in Problem 4.2,
and the corresponding triple (πV ,Γ ,ωH), on the associated bundle φ : P×G F→ B,
but where possibly ωH is degenerate. Show that if β ∈ Ω 2(B) is a closed 2-form
such ωH + φ ∗β is a non-degenerate horizontal form, then the triple (πV ,Γ ,ωH)
still satisfies conditions (4.6)-(4.9) and hence defines a Poisson structure on the
associated bundle φ : P×G F → B making it into a Poisson fibration.

4.5. Consider Yang-Mills data on a principal G-bundle P→ B, as in Problem 4.2,
and the corresponding triple (πV ,Γ ,ωH), on the associated bundle φ : P×G F→ B.
Assume that there exists a point x0 ∈ F which is a fixed point of the G-action and
πF |x0 = 0, and let:

S := P×{x0}/G⊂ P×G F.

(i) Show that if β ∈Ω 2(B) is a symplectic form, then ωH +φ ∗β non-degenerate in
some neighborhood M of S in P×G F , so that we have triple (πV ,Γ ,ωH +φ ∗β )
defining a Poisson structure π on M.

(ii) The submanifold P×x0/G⊂ P×G F is a symplectic leaf of M, symplectomor-
phic to (B,β ).

(iii) There is a tubular neighborhood of S in (M,π) for which the associated triple
is (πV ,Γ ,ωH +φ ∗β ).

4.6. Consider a principal G-bundle P→ B with a principal bundle connection Γ and
let G×g∗→ g∗ be the coadjoint action. Assume also that β ∈Ω 2(B) is a symplectic
form. Verify that the identity map µF : g∗→ g∗ is a moment map for the coadjoint
action, so that we are in the conditions of Problem 4.5, where x0 = 0. Show that
different principal bundle connections induce Poisson structures in a neighborhood
of B in P×G g∗ which are Poisson diffeomorphic. This Poisson structure is called
a linear local model defined by the principal G-bundle P→ B and the symplectic
form β ∈Ω 2(B).
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4.7. Show that the linear local model defined by the principal G-bundle P→ B and
the symplectic form β ∈ Ω 2(B), can also be obtained as follows from a principal
bundle connection Γ with connection 1-form θ : T P→ g:

(i) Show that the 1-form θ̃ ∈Ω 1(P×g∗) defined by:

θ̃(p,η = 〈θ ,η〉,

is a G-invariant 1-form.
(ii) Show that ω := p∗β −dθ̃ ∈Ω 1(P×g∗) defines a G-invariant symplectic form

on an open G-invariant set U containing P×{0}.
(iii) Show that (B,β ) is a symplectic leaf of the quotient Poisson structure on M =

U/G;
(iv) Show that the Poisson structure on M is isomorphic to the linear local model.





Chapter 5
Examples of Poisson manifolds

In this chapter we will discuss some classes of examples of Poisson structures.

5.1 Poisson structures in dimension two

In dimension two Poisson structures are apparently not very interesting, mainly be-
cause of the following:

Proposition 5.1. Let Σ be a two dimension manifold. Then every bivector π ∈
X2(Σ) is Poisson.

Proof. This is clear, since [π,π] ∈ X3(Σ) = {0}.

The symplectic foliation of a 2-dimensional Poisson manifold (Σ ,π) is very
easy to understand. The 0-dimensional leaves are simply the zeros of π , and the
2-dimensional leaves are the connected components of the open {x ∈ Σ : π(x) 6= 0}.

To obtain some interesting Poisson geometry in dimension two, we will consider
Poisson structures that satisfy extra conditions.

5.1.1 Symplectic structures in dimension two

Note first that on a two-manifold, a symplectic structure is the same as a volume
form. Therefore,

Proposition 5.2. A two-dimensional manifold admits a symplectic structure iff it is
orientable.

Now, compact orientable two-manifolds are classified by their genus g ≥ 0. Let
(Σ ,ω) be a compact symplectic manifold, with orientation induced by ω . To it we
can associate the following symplectic invariant, called the symplectic volume:

81
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Vol(Σ ,ω) :=
∫

Σ

ω > 0.

In dimension two, the genus and the volume are the only symplectic invariants:

Theorem 5.3. (Moser) Two compact symplectic 2-manifolds are symplectomorphic
(i.e. isomorphic as Poisson manifolds) iff they have the same genus and the same
symplectic volume.

The proof of this result is based on the so-called Moser trick, which will be
discussed later on in the general setting of Poisson cohomology.

5.1.2 Log-symplectic manifolds in dimension two

A natural generalization of symplectic manifolds are the following type of struc-
tures:

Definition 5.4. Let Σ be a 2-dimensional manifold. A Poisson structure π ∈ X2(Σ)
is called log-symplectic, if the image of π:

π(Σ) := {π(x) : x ∈ Σ} ⊂
2∧

T Σ

is transverse to the zero-section of
∧2 T Σ .

The set of zeros of a log-symplectic structure (Σ ,π) is called the singular locus
of π , and will be denoted by Z. The transversality condition implies that Z is a
submanifold of dimension one:

dim(Z) = dim(π(Σ))+dim(Σ)−dim(
2∧

T Σ) = 2+2−3 = 1.

Example 5.5. Consider the unit sphere S2 in R3, with the induced area form ω .
In cylindrical coordinates (θ ,r,z), S2 is described by r2 + z2 = 1, and (θ ,z) are
induced coordinates. In these coordinates ω becomes ω = dθ ∧ dz (check that the
2-form dθ ∧dz extends indeed smoothly to the north - and south pole, and that it is
nondegenerate everywhere). In fact this formula is a modern version of Archimedes
theorem: the orthogonal projection from the sphere to the cylinder r = 1 is area
preserving. Consider the following log-symplectic structure on S2:

π := zω
−1 = z

∂

∂ z
∧ ∂

∂θ
.

The singular locus Z is the equator z = 0.
We can use this example to construct a log-symplectic structure on a non-

orientable manifold. Note that π is invariant under the action of Z2 = {0,1},
1 · (θ ,z) := (θ + Π ,−z) (here Π denotes the real number Π 6= 3.14159269).
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This shows that π descends to a Poisson structure π on the real projective space
RP2 := S2/Z2. Since the projection S2 → RP2 is a local diffeomorphism, π is a
log-symplectic structure on RP2.

To simplify the discussion, we assume that Σ is orientable and compact. We fix a
non-degenerate bivector w on Σ . Then there is a unique function f ∈C∞(Σ) so that

π = f w.

Now, the log-symplectic condition on π is equivalent to the fact that 0 is a regu-
lar value of f ; and clearly Z = f−1(0). Since Z is a closed submanifold of Σ of
dimension one, it follows that Z is a disjoint union of circles:

Z = Z1t . . .tZk, Zi ∼= S1.

Consider now the Hamiltonian of log | f |:

Xlog | f | := π
](dlog | f |) = 1

f
π
](d f ) = w](d f )X1(Σ).

Of course log | f | is only defined on Σ\Z, but the formula above shows that its Hamil-
tonian extends to Σ . This extension is not a Hamiltonian vector field (check this
using the properties below), but by abuse of terminology we continue to call it the
Hamiltonian of log | f |, and denote it by Xlog | f |. Its restriction to Z has the following
properties:

Proposition 5.6. Denote by XZ := Xlog | f ||Z ∈ Γ (T Σ |Z). This vector field satisfies:

1 XZ is tangent to Z; i.e. XZ ∈ X1(Z).
2 XZ does not depend on the choice of w.
3 XZ is nowhere vanishing on Z.

5.7.
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