
Optimization of Webpage Downloading Performance with
Content-aware Mobile Edge Computing

Peng Qian, Ning Wang, Bong-Hwan Oh, Chang Ge, Rahim Tafazolli
5GIC, Institute for Communication Systems, University of Surrey

Guildford, UK GU2 7XH
p.qian,n.wang,b.oh,c.ge,r.tafazolli@surrey.ac.uk

ABSTRACT

With increased complexity of webpages nowadays, computation

latency incurred by webpage processing during downloading oper-

ations has become a newly identi�ed factor that may substantially

a�ect user experiences in a mobile network. In order to tackle this is-

sue, we propose a simple but e�ective transport-layer optimization

technique which requires necessary context information dissemina-

tion from the mobile edge computing (MEC) server to user devices

where such an algorithm is actually executed. The key novelty in

this case is the mobile edge’s knowledge about webpage content

characteristics which is able to increase downloading throughput

for user QoE enhancement. Our experiment results based on a real

LTE-A test-bed show that, when the proportion of computation

latency varies between 20% and 50% (which is typical for today’s

webpages), the downloading throughput can be improved up to

34.5%, with reduced downloading time by up to 25.1%

CCS CONCEPTS

• Networks → Middle boxes / network appliances; Network

services; In-network processing;

KEYWORDS

Mobile computing, webpage downloading, computation time

ACM Reference format:

Peng Qian, Ning Wang, Bong-Hwan Oh, Chang Ge, Rahim Tafazolli. Copy-

right 2017. Optimization ofWebpageDownloading Performancewith Content-

aware Mobile Edge Computing. In Proceedings of MECOMM’17, Los Angeles,

CA, USA, August 21, 2017, 6 pages.

DOI: http://dx.doi.org/10.1145/3098208.3098214

1 INTRODUCTION

Nowadays Hypertext Transfer Protocol (HTTP) based applications

account for the majority of content tra�c volume in mobile net-

work environments [1]. The wide variety of HTTP applications

such as web browsing, DASH (Dynamic Adaptive Streaming over

HTTP) based video-on-demand and live-streaming, have distinctive

features in terms of tra�c patterns and user’s Quality of Experience

(QoE) models. Given the dynamicity and uncertainty of network

resource availability in mobile environments, providing assured

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

MECOMM’17, Los Angeles, CA, USA

© Copyright 2017 ACM. ISBN 978-1-4503-5052-5/17/08. . . $15.00
DOI: http://dx.doi.org/10.1145/3098208.3098214

QoE for such types of application has become a distinct challenge.

Among various strategies to tackle this challenge, making HTTP

and its supporting transport layer protocols such as Transmission

Control Protocol (TCP), Quick UDP Internet Connection (QUIC) [2]

adaptive to dynamic network conditions and di�erent content char-

acteristics has become an attractive solution option.

In the literature, content and network adaptations on DASH-

based video applications have been widely investigated. On the

other hand, one unique feature of today’s short-lived content ap-

plications (e.g. webpage downloading) is that computation time on

the client device side accounts for non-negligible portion of the

overall content access time given the signi�cant growth of webpage

complexity, especially due to the introduction of JavaScript �les

which requires a synchronous evaluation time [3, 4] in terms of

parsing embedded objects within a webpage. Such a feature is ex-

pected to have substantial impact on the throughput performance

of TCP which was designed to cater for network conditions rather

than web content complexity involving large number of embedded

objects with complex interdependency. With substantially grow-

ing complexity of web content nowadays, it will take a signi�cant

computation time for a mobile device to complete the parsing tasks

of the embedded JavaScript �les, and such computation latency

typically blocks the network transmission and hence no follow-up

objects can be downloaded until the parsing task is completed[3].

Recent research works have revealed that this computing latency

can account for even more than 50% of the total content download-

ing time on mobile devices, due to the limited processing ability

of mobile CPU, whereas its impact on more powerful terminals

such as normal computers is much less of an issue [5]. As such,

in a mobile network environment, this computation latency will

substantially degrade the downloading throughput as well as the

user’s QoE in terms of content access delay [4, 5].

In order to eliminate, or at least to minimize this negative e�ect

introduced from computation latency, the main research question

to be tackled in this paper is how to compensate the throughput

gap caused by the computation latency during short-lived application

loading by only adapting the transport-layer protocol? The bene�t of

addressing this issue at transport layer is that it is not a�ected by

any application layer constraints such as HTTPs content encryp-

tion and security policy. On the other hand, it has been recently

advocated to embed network intelligence at mobile edge in order

to enable end-to-end performance enhancements at the application

layer, and the ETSI Mobile Edge Computing (MEC) paradigm [6]

is one of the representative examples. The application of MEC can

be either direct involvement of user/data plane operations such as

in-networking content caching and prefetching [7], or alternatively

without breaking the end-to-end connection but instead only by

MECOMM’17, August 21, 2017, Los Angeles, CA, USA P. Qian et al.

providing necessary knowledge (typically network conditions) back

to the application layer which is able to perform adaptive operations

against various dynamicity [8]. In order to address the aforemen-

tioned technical problems, this paper introduces a MEC-based solu-

tion with extended knowledge for enhancing short-lived content

application performances, including not only network conditions

but also context-information about (popular) web content character-

istics, more speci�cally the required computation time/complexity

on the device side for processing the webpage during downloading

operations. As such, both types of complementary context informa-

tion can be fed back to application clients (e.g. a mobile device) in

order to execute smart operations at the transport layer, speci�cally

through the optimization of TCP initial window (IW) size. This is

particularly useful giving that for short-lived applications such as

webpage downloading, where content downloading is normally

completed during the TCP slow-start phase. On the other hand,

compared to the MEC-based reporting of network conditions, the

mobile edge’s awareness of the computation time on the device

side has not been considered, but it does play an important role in

webpage downloading performance. In this context, we propose a

MEC-based solution with a plug-and-play optimization algorithm

based on harvested knowledge on both network conditions and

device computation time for given (popular) webpages in the In-

ternet. To our best knowledge, this is the �rst piece of work that

proposes content-aware mobile edge computing in order to tackle

the performance deterioration of web content applications due to

the introduction of webpage computation latency.

We have implemented the proposed MEC-based solution and

evaluated it in our real LTE-A testing infrastructure. Since such a

technique can be applied in both traditional TCP and the emerg-

ing QUIC scheme that share the same congestion control mech-

anism [2], we use QUIC as the underlying protocol as it o�ers a

better implementation �exibility and also increasing popularity

today. Our experiment results reveal that, when the computation

latency accounts for less than 20% of the overall downloading time,

the throughput gap can be fully compensated. When the proportion

of computation latency varies between 20% and 50%, the through-

put can be improved up to 34.5%. Such improved downloading

throughput has led to the reduced webpage downloading time by

up to 25.1%.

2 MEC FRAMEWORK OVERVIEW FOR
WEBPAGE DOWNLOADING
ACCELERATION

As previouslymentioned, the design goal of theMEC-based solution

is to achieve optimized webpage content downloading performance

by intelligently setting TCP/QUIC IW sizes according to the de-

vice’s knowledge on network conditions and webpage processing

complexity. It is worth noting that such embedded computing tasks

often have dependency between individual content object down-

loading, meaning that some webpage objects cannot be downloaded

until the webpage processing task has been completed [3, 4]. In

addition, due to the relatively low CPU resources capabilities on mo-

bile devices, the impact on TCP/QUIC performance from the time

spent on the webpage processing cannot be neglected. In Section 3

we will provide detailed elaboration on: 1) how such computation

MEC

server

Remote web

server

TaaS cloud service provider

Content attribute

query and update

3) HTTP request with

optimized TCP/QUIC IW values 2) Local Algorithm to

decide optimized IW UE

Offline behavior

Online behavior

Figure 1: Overview of proposed MEC framework

latency may a�ect the content transmission throughput and down-

loading performance, and 2) our proposed scheme to mitigate such

a problem with a TCP/QUIC-based optimization technique that is

executed at the mobile device side. Before introducing the theory

part of the solution, in this section we �rst describe how a mobile

device can obtain necessary knowledge as input for enabling such

an optimization through the help from a MEC framework.

Speci�cally required attributes include the information of total

webpage size and the computation latency to be experienced by

the mobile device which represents the network idle time while de-

livering webpage objects. It is worth mentioning such information

is di�cult to be obtained directly from mobile clients which previ-

ously visited that webpage, since 1) a mobile divide cannot explicitly

report out this computation latency and 2) the webpage attribute

can be updated since previous visit by other clients. In addition

to the knowledge about content attributes, the MEC server also

needs to achieve an optimized trade-o� between individual QoE

performances and the overall network resource utilization. Towards

this end, the MEC server also passes on to the mobile a speci�c

control parameter as input to calculate the optimized IW size, but

without incurring resource competition between concurrent down-

loading sessions. Detailed description on such a parameter will be

introduced in Section 3.

Figure 1 illustrates the proposed framework in which a MEC

server is responsible for obtaining necessary context information

and feeding parameters to the mobile devices for optimizing web-

page downloading performances. We �rst focus on how the MEC

server is able to acquire its knowledge about webpage content at-

tributes. First of all, it is worth mentioning that practically it is

not possible or necessary to have MEC involved in every single

webpage in the public Internet due to scalability concerns. Instead,

such an approach is mainly useful for accessing popular webpages

with a large number of embedded content objects, (e.g. the default

webpages of news websites). According to [7, 9, 10], the concept of

“Testing as a service (TaaS)” has been promoted by cloud service

providers in the sense that they are able to perform speci�c test-

ing/measurement services upon requests from any stakeholders in

the public Internet. For instance, if a MEC server determines to per-

form downloading acceleration of a webpage which is frequently

visited by its local clients, it may decide to obtain the information

on the attributes of the webpage, including the computation latency

by typical mobile devices and the webpage size. Towards this end,

the MEC server can issue a customized script to a TaaS cloud test

platform (e.g. Google �rebase [11]) or a trusted remote proxy (e.g.

Optimization of Webpage Downloading with Mobile Edge Computing MECOMM’17, August 21, 2017, Los Angeles, CA, USA

Google Flywheel [10]). Furthermore, deep web content loading

analysis tool like WProf-M [5] can be easily integrated to such

platforms in order to return the detailed webpage loading proce-

dure. By leveraging such TaaS cloud content analysis platforms, the

computation latency can be obtained and maintained at the MEC

server side. Also it is important to note that, according to measure-

ments conducted in [5], for a given webpage the actual computation

latency is approximately the same for smart mobile phones with

di�erent CPU computing capabilities, while such latency is very

much di�erent for computers/laptops. This observation suggests

that one single obtained computation latency value for a given page

can be applicable to a wide range of mobile phones. On the other

hand, such an approach is mainly used for low/medium CPU load

scenarios, since high CPU load on the mobile phone side will get

the computation time become the major bottleneck so that even

increasing the TCP/QUIC IW size on the network side will not

help much. Another content attribute that needs to be obtained by

the MEC server is the total size of the webpage, and in fact such

information is also required by the TaaS cloud service provider re-

sponsible for measuring the computation latency by mobile phones.

In this case, a web-based content analysis tool needs to be deployed

at the web server side, and upon a signi�cant change in the total

size of a webpage under consideration, the web server will notify

the cloud service provider about such update through mechanisms

such as that is provided in [12].

According to [6], a MEC server can be embedded with a DNS

function such that a URL resolution request from a mobile phone

can be handled locally at theMEC server. According to our proposed

scheme, apart from the conventional DNS mapping the MEC server

also maintains content attributes of popular requested URLs, includ-

ing the up-to-date total webpage size and the computation latency,

both of which are updated from the TaaS cloud server. Once receiv-

ing a DNS query from a mobile client, the MEC server will resolve

the request and also return the recorded content size, estimated

computation latency, together with a policy control parameter α

(explained in Section 3) through the DNS response message. Upon

receiving the DNS response, the client will perform a handshake

to the resolved web server and hence calculate the round trip time

(RTT) by inspecting the corresponding handshake messages. Such

information obtained directly from the mobile device will also be

used as input for determining the optimized IW value. With all

necessary input, an optimal IW can be computed by our proposed

algorithm that is executed at the mobile phone side (see details

in Section 3), and such a value will be embedded in the very �rst

HTTP message to be enforced by the remote web server.

3 TACKLING PERFORMANCE
DETERIORATION CAUSED BY
COMPUTATION LATENCY

From the perspective of the network side, the major negative e�ect

caused by the computation latency is that it unnecessarily prevents

the congestion window from increasing during the slow start phase,

and hence limits the data transmission throughput even when

su�cient bandwidth is available. To tackle such a problem, we

propose an e�cient algorithm to determine an optimal IW size

which takes into account the trade-o� between the increased initial

(c) TCP slow start with
throughput compensation
through optimized IW

(b) TCP slow start with
computation activity
(application likes web page)

� a l t

cwnd

� �a i
�� ��� �

(a) TCP slow start principle

� �� � t

cwnd ��
� t

cwnd

� �a i

Figure 2: Throughput gap due to computation activity

bandwidth consumption and the QoE improvement (de�ned as

user-perceived content completion time [13]).

We use a set of simple diagrams in Figure 2 to explain how the

computation latency a�ects the overall throughput performance

and how such ine�ciency can be potentially compensated by opti-

mizing IW size. Figure 2(a) depicts the normal exponential conges-

tion growth during the slow start phase, but without any necessary

computation time involved. The throughput in this simple case

can be represented as thpr inciple =
S

tpr inciple
, where S is the con-

tent size and tpr inciple is the time for transmitting this content.

However, for a short-lived application (e.g. web-based application),

a computation activity may exist in the middle of the slow start

phase [3]. As it is shown in Figure 2(b), this computation activity

blocks the data transmission at the network side. In this case, ac-

cording to the default TCP behaviour, the actual completion time of

a webpage tdef ault includes both the data transmission time and

computation time, which results in sub-optimal overall throughput

performance thdef ault =
S

tdef ault
as compared to the principle

throughput in Figure 2(a). In order to maximally compensate this

throughput gap (thpr inciple − thdef ault), our main strategy is to

accelerate the data transmission of this short-lived application with

embedded computation time through an increased initial conges-

tion window size. It can be seen in Figure 2(c) that for a given

content size S , if the completion time of this webpage is shorten to

topt which is expected to be as close as tpr inciple , then the through-

put gap can be minimized, and ideally if topt = tpr inciple (meaning

that the total computation time can be fully compensated), then

the optimized throughput thopt =
S

topt
can be retained same as

the normal TCP situation. Towards this end, the key technical chal-

lenge is the knowledge on the actual computation latency in order

to determine the IW size. According to our proposed framework,

such knowledge is obtained from the MEC-based technique we in-

troduced in Section 2, and now we formally present the algorithm

for determining the optimized IW size baesd on such knowledge.

3.1 Context-aware throughput compensation
algorithm

The proposed throughput compensation algorithm (see in Algo-

rithm 1) includes two steps: the �rst step is �nd an adequately large

IW size which can minimize the throughput gap and this increased

IW size will be set as IWmax which is the upper bound of the �nal

optimal IW size. The second step is to search an optimal IWopt

which takes into account the trade-o� between QoE improvement

and increased initial bandwidth consumption.

In the �rst step, at client side, once receiving the knowledge of

content size, the computation latency from the MEC server and

MECOMM’17, August 21, 2017, Los Angeles, CA, USA P. Qian et al.

the measured RTT from handshake messages, the principle trans-

mission time tpr inciple will be estimated. Given that webpages

typically have a small content size, it can be assumed that the cor-

responding transmission normally �nishes within the slow-start

phase. Therefore we borrow the model [14] to approximately esti-

mate the tpr inciple as:

tpr inciple = RTT ∗ (⌈logγ

(

S

IWdefault ∗ smss

)

⌉), (1)

where RTT is the Round Trip Time between the client and the web

application server, the IWdefault is the initial congestion window

with the default value of 10 according to [15]. smss is the TCP

maximum segment size and γ is a constant 1.5 if the delayed ACK

is enabled.

The estimated tpr inciple for a content can be obtained by Eq. (1)

where the IW size is set to IWdefault. If tpr inciple 6 tcomputation , it

indicates that retaining the principle throughput is impossible, and

in this case, in order to minimize the throughput gap, all content

data should be sent in the �rst round, therefore the IW size should be

set as IWmax = S/smss . If tpr inciple > tcomputation , given that the

content size, computation latency from MEC server and inspected

RTT from handshake messages are the same for the same content,

in order to achieve same throughput performance as the normal

TCP without any disruption from computation latency, a larger

IW size rather than IWdefault can be computed to reduce the data

transmission time towards the target of (tpr inciple − tcomputinд)

according to Eq. (1). We de�ne the function which obtains the IW

as f (tcomputation , S,RTT) for the calculation of this larger IW size.

However, at the application layer, the eventual bene�t of this

throughput compensation results in a better user QoE but it comes

at a cost of a larger initial bandwidth consumption. In order to retain

the bene�t of compensating the throughput as well as that of mini-

mizing the impact of initial bandwidth consumption, in the second

step, we use a threshold parameter α as a con�gurable threshold to

balance the trade-o� between the improvement of user QoE and

increased initial bandwidth consumption, and such a value is typi-

cally returned from the MEC server according to speci�c network

policies. The rationale behind this control parameter is that from

Eq (1) and [13], the QoE improvement requires an exponentially

increased IW size, hence it is not desirable to set the IW size to an

excessively large value. We borrow the QoE model from [13] to

de�ne the QoE improvement by an increased IW size as

∆QoE(IWopt, S, tcomputation ,RTT) =

ln

(

tdef ault (IWdefault, S, tcomputation ,RTT))

topt (IWopt, S, tcomputation ,RTT))

)

(2)

And the increased initial bandwidth consumption can be de�ned as

∆Cost(IWopt,RTT) = (IWopt − IWdefault) ∗ Smss/RTT .

Then the tradeo� function between QoE improvement over the

increased initial bandwidth consumption can be expressed as:

∆QoE(IWopt, S, tcomputation ,RTT)/∆Cost(IWopt,RTT).

According to the algorithm, to �nd a optimal IWopt, a tempo-

rary variable IWtest is set to IWdefault as a starting point and this

IWtest gradually increases by multiplying γ within the range from

IWdefault to IWmax in each iteration. Once the corresponding
∆QoE
∆Cost

DNS/MEC server

QUIC server

TaaS Server

QUIC Client
(Laptop with nexus
6p tethering)

Content source

Content attributes

Figure 3: Proof-of-concept implementation in LTE-A test bed

is less than the pre-con�gured threshold parameter α , the algorithm

for compensation will stop and we set the �nal IWopt accordingly

(see in Algorithm 1).

Algorithm 1 Algorithm for Throughput compensation

if tcomputation >= tprinciple then

IWmax = S/smss

else

IWmax = f (S, tcomputation,RTT)

end if

IWtest = IWdefault, i=0;

while IWtest < IWmax do

IWtest =min(IWtest ∗ γ , IWmax);

if ∆QoE/∆Cost < α then

break;

end if

i++;

end while

IWopt =min(IWdefault ∗ γ
i
, IWmax)

4 IMPLEMENTATION AND PERFORMANCE
IN REAL LTE/LTE-A NETWORK

4.1 Proof-of-concept implementation

In order to realistically evaluate the proposed MEC framework and

the optimization algorithm, we implemented and tested the solution

in a real LTE-A based test-bed infrastructure, as shown in Figure 3.

At the client side, following the same access setup manner in [5],

we use a laptop (Ubuntu 14.04) tethering a nexus 6p phone attached

to the locally deployed LTE-A network. We fork the QUIC client

code from Chromium 52 and embed our IW optimization algorithm

as well as the extended DNS query interface to the client code. A

MEC server with local DNS cache is deployed just between the base

station and the mobile core network. The content is located at a

remote HTTP 2.0/QUIC server. The webpage content under testing

contains controllable computation latency (from 5% to 95% of the

total expected content completion time) embedded in the sequences

of content objects requests. In order to provide the knowledge on

content attributes to the MEC server, a TaaS server is deployed

behind the core network and it periodically loads the content at

the remote server and outputs the HTTP 2.0 headers and the com-

putation latency with an embedded script. At the MEC server, the

control parameter α is set to 1/3 and we leave the adaptation of

control parameter as our future work. With respect to the network

Optimization of Webpage Downloading with Mobile Edge Computing MECOMM’17, August 21, 2017, Los Angeles, CA, USA

0% 20% 40% 60% 80% 100%

Propotion of Computation Latency

0

20

40

60

80

100

120
O

p
ti
m

a
l
IW

 (
p

a
c
k
e

t)
Optimal IW (median RTT: 100ms 1/3)

400KB

1000KB

2400KB

Figure 4: Optimal IW in real LTE-A network (varying RTT)

conditions, the average RTT at the LTE-A radio interface is 25.2ms

and the average bandwidth is 60.2Mbps. We also set the content

size to 400KB, 1000KB, 2400KB and vary the latency from the base

station to the content server as 25ms, 75ms and 125ms in order

to emulate di�erent latency in a real public Internet environment.

All the experiments are executed back-by-back for 30 times and

the median value of throughput as well as the completion time are

printed by an embedded print script in QUIC client code.

To evaluate the impact of computation latency on the optimal IW

size according to our proposed algorithm, in the following �gures in

this section, we set x-axis to the proportion of computation latency

which is obtained by a combination of estimated data transfer time

(from Eq. (1)) and the computation latency received from MEC

server. Figure 4 shows the relationship between the proportion of

computation latency and optimal IW size in a real LTE-A network

with �xed RTT of 100ms. It can be observed that the optimal IW size

reaches its highest values when the computation accounts for 30%-

40% of overall latency. For the content size of 400KB, the optimal IW

size reaches its peak value 114 when the proportion of computation

latency is 35%. When the proportion of computation latency rises

to 85%, the optimal IW reduces to 10 which is the default value. For

a medium (1000KB) and larger (2400KB) content size, their peak

congestion window reduce to 108 and 76, respectively. Figure 5

shows the relationship between the proportion of computation

latency and optimal IW size with di�erent RTTs. It can be seen that

all the three curves behave in similar patterns. Since the control

parameter α targets to align the cost of the starting bandwidth

consumption, a larger RTT (150ms) will allow the client to select a

larger peak (171) congestion window and vice versa.

4.2 Throughput compensation and
improvement on downloading time

Figure 6 and 7 show the median throughput compensation by ap-

plying our algorithm with di�erent RTT values and content sizes,

respectively. It can be observed in both �gures that when the com-

putation latency is less than 20%, the throughput gap can be ap-

proximately fully compensated and we call this period as “full

compensation scenario”. When the proportion of computation la-

tency increases from 20% to 50%, the compensated throughput

increases from 22.4% to 33.5% and then continuously decreases to

18.2%. We call this interval as “partial compensation scenario”. Then

the compensated throughput drops below 15% when the propor-

tion of computation latency increases above 50% and this interval

0% 20% 40% 60% 80% 100%

Propotion of Computation Latency

0

50

100

150

200

O
p

ti
m

a
l
IW

 (
p

a
c
k
e

t)

Optimal IW (Content Size:1000KB 1/3)

50ms

100ms

150ms

Figure 5: Optimal IW in real LTE-A network (varying content size)

0% 10% 20% 30% 40% 50% 60%

Propotion of Computation Latency

0%

25%

50%

75%

100%

125%

150%

T
h
ro

u
g
h
p
u
t
C

o
m

p
e
n
s
a
ti
o
n
 (

%
)

Throughput Compensation (%)

 Content Size:1000KB : 1/3

50ms

100ms

150ms

Gap to principle throughput

Figure 6: Throughput compensation in LTE-A network (varying

RTT)

0% 10% 20% 30% 40% 50% 60%

Propotion of Computation Latency

0%

25%

50%

75%

100%

125%

150%

T
h
ro

u
g
h
p
u
t
C

o
m

p
e
n
s
a
ti
o
n
 (

%
)

Throughput Compensation (%)

median RTT:100ms LTE-A : 1/3

400KB

1000KB

2400KB

 Gap to Principle Throughput

Figure 7: Throughput compensation in LTE-A network (varying

content size)

can be called “minor compensation scenario”. Speci�cally, �gure 6

shows that a larger RTT has a larger maximum throughput com-

pensation (33.2%) which is closer to the throughput of the principle

TCP. Figure 7 shows that, compared to the larger content sizes, a

smaller content (e.g. 400KB) can reach a higher peak throughput

compensation (34.5%) and in contrast, larger content (2400KB) has a

comparatively smaller maximum throughput compensation (19.6%).

With regard to the throughput compensation algorithm, we apply

the analytical model [14] to benchmark the data transfer time and

corresponding proportion of computation latency. Figure 8 and 9

show that, in general, the di�erence between the estimated and

MECOMM’17, August 21, 2017, Los Angeles, CA, USA P. Qian et al.

0% 20% 40% 60% 80% 100%

Estimated Propotion of Computation latency (%)

-2%

-1%

0%

1%

2%

D
if
fe

re
n
c
e
 o

f
C

o
m

p
u
ta

ti
o
n
 L

a
te

n
c
y

 Propotion of Computation latency (%) (Estimated - Real)

Content Size: 1000 KB : 1/3

50ms

100ms

150ms

Figure 8: Di�erence between real and estimated proportion of com-

putation latency (varing RTT)

0% 20% 40% 60% 80% 100%

Estimated Propotion of Computation latency (%)

-2%

-1%

0%

1%

2%

3%

4%

5%

D
if
fe

re
n

c
e

 o
f

C
o

m
p

u
ta

ti
o

n
 L

a
te

n
c
y

 Propotion of Computation latency (%) (Estimated - Real)

median RTT: 100ms : 1/3

400KB

1000KB

2400KB

Figure 9: Di�erence between real and estimated proportion of com-

putation latency (varing content size)

real proportion of computation latency ranges between -0.84% and

5.30%. When the estimated proportion of computation latency is

around 50%, the di�erence between estimated and real proportion

of computation latency reaches its maximum point. We attribute

this minor gap to the nature of the �uctuated network condition [1].

Consequently, an under-estimated/over-estimated proportion of

computation latency will lead to smaller/larger IW size selection,

thus the real throughput compensation is slightly less/larger than

the expected value accordingly. Based on our analysis on dataset,

the di�erence between the estimated throughput compensation

and the real throughput compensation �uctuates between -6.3% to

2.8%.

4.3 User-perceived application completion
time

From the perspective of the application layer, the ultimate tar-

get by improving the principle throughput at transport layer is

to improve the actual webpage downloading time. According to

our testing results, for the “fully compensation scenario”, the web-

based application can experience an equal completion time as with

no computation latency involved. For the “partial compensation

scenario” scenario, the completion time can be improved by up

to 25.1% and for the “minor compensation scenario” scenario, this

completion time reduction becomes less signi�cant. If combining

the improvement from application layer approaches like network

edge pushing and caching, note that the upper bound throughput of

these approaches is same as the principle throughput at transport

layer, but in practice, these approaches will be limited by the con-

tent structure and security concern. Additionally, in this case, there

will be an overlapping between network activity and computation

activity which is out of scope, thus we leave the investigation of

this topic to our future work.

5 CONCLUSION

In this paper we proposed a MEC framework for guiding mobile

clients to optimize web content downloading performance with

the consideration of computation latency. In this framework, a

MEC server collects and distributes necessary content attributes

together with a necessary threshold parameter in order to direct

the client to execute a novel algorithm for determining an optimal

IW size. To the best of our knowledge, this is the �rst piece of work

that addresses how a content-aware MEC-based approach can be

applied for optimizing web content downloading performances.

The experimental results from a real LTE-A testbed reveals that if

the computation latency accounts for a small proportion (< 20%),

the throughput gap can be fully compensated, and if the proportion

of computation latency stays between 20% to 50%, the throughput

gap can be partially compensated by up to 34.5%.

ACKNOWLEDGMENTS

This work is partially funded by the EPSRC CONCERT Project

(EP/L018683/1). The authors would also like to acknowledge the

support of the University of Surrey’s 5G Innovation Centre (5GIC)

(http://www.surrey.ac.uk/5gic) members for this work.

REFERENCES
[1] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen,

and Oliver Spatscheck. A Close Examination of Performance and Power Charac-
teristics of 4G LTE Networks. In 10th international conference on Mobile systems,
applications, and services, pages 225–238. ACM, 2012.

[2] QUIC, https://www.chromium.org/quic.
[3] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David

Wetherall. How Speedy is SPDY? In USENIX Conference on NSDI, 2014.
[4] Jamshed Vesuna, Colin Scott, Michael Buettner, Michael Piatek, Arvind Krishna-

murthy, and Scott Shenker. Caching Doesnt́ Improve Mobile Web Performance
(Much). In USENIX ATC. USENIX Association, 2016.

[5] Javad Nejati and Aruna Balasubramanian. An in-depth study of Mobile Browser
Performance. In 25th International Conference on World Wide Web, 2016.

[6] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.
Mobile edge computing – A key technology towards 5G. ETSI White Paper, 11,
2015.

[7] Ashiwan Sivakumar, Shankaranarayanan Puzhavakath Narayanan, Vijay
Gopalakrishnan, Seungjoon Lee, Sanjay Rao, and Subhabrata Sen. PARCEL:
Proxy assisted browsing in cellular networks for energy and latency reduction.
In ACM on emerging Networking Experiments and Technologies, 2014.

[8] P Qian, N Wang, G Foster, and R Tafazolli. Enabling context-aware http with
mobile edge hint. In IEEE CCNC, 2017.

[9] Ali Sehati and Majid Ghaderi. WebPro: A proxy-based approach for low latency
web browsing on mobile devices. In IEEE 23rd IWQoS, pages 319–328. IEEE, 2015.

[10] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben Green-
stein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian Yin.
Flywheel: Google’s Data Compression Proxy for the Mobile Web. volume 15,
pages 367–380, 2015.

[11] Google Firebase, https://�rebase.google.com/.
[12] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. Polaris:

Faster Page Loads Using Fine-grained Dependency Tracking. In 13th USENIX
Symposium on NSDI. USENIX Association, 2016.

[13] Sebastian Egger, Peter Reichl, Tobias Hoßfeld, and Raimund Schatz. “Time is
bandwidth?” Narrowing the gap between subjective time perception and Quality
of Experience. In IEEE ICC, pages 1325–1330. IEEE, 2012.

[14] Neal Cardwell, Stefan Savage, and Thomas Anderson. Modeling tcp latency. In
IEEE INFOCOM, volume 3, pages 1742–1751. IEEE, 2000.

[15] IETF 6928:Increasing TCP’s Initial Window.

	Abstract
	1 Introduction
	2 MEC framework overview for webpage downloading acceleration
	3 Tackling Performance Deterioration caused by computation latency
	3.1 Context-aware throughput compensation algorithm

	4 Implementation and Performance in real LTE/LTE-A network
	4.1 Proof-of-concept implementation
	4.2 Throughput compensation and improvement on downloading time
	4.3 User-perceived application completion time

	5 Conclusion
	Acknowledgments
	References

