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Abstract

Heterogeneous parallel and distributed computing systems frequently must oper-
ate in environments where there is uncertainty in system parameters. Robustness
can be defined as the degree to which a system can function correctly in the pres-
ence of parameter values different from those assumed. In such an environment,
the execution time of any given task may fluctuate substantially due to factors such
as the content of data to be processed. Determining a resource allocation that is
robust against this uncertainty is an important area of research. In this study, we
define a stochastic robustness measure to facilitate resource allocation decisions
in a dynamic environment where tasks are subject to individual hard deadlines
and each task requires some input data to start execution. In this environment,
the tasks that cannot meet their deadlines are dropped (i.e., discarded). We define
methods to determine the stochastic completion times of tasks in the presence of
the task dropping. The stochastic task completion time is used in the definition
of the stochastic robustness measure. Based on this stochastic robustness mea-
sure, we design novel resource allocation techniques that work in immediate and
batch modes, with the goal of maximizing the number of tasks that meet their in-
dividual deadlines. We compare the performance of our technique against several
well-known approaches taken from the literature and adapted to our environment.
Simulation results of this study demonstrate the suitability of our new technique
in a dynamic heterogeneous computing system.

Keywords: Dynamic resource allocation, heterogeneous computing, robustness,
scheduling, stochastic models.

1. Introduction

Heterogeneous parallel and distributed computing systems frequently oper-
ate in environments where uncertainty in task execution time is common. For
instance, the execution time of a task can depend on the data to be processed.
We represent each task’s execution time on each machine as a probability mass
function (pmf). Robustness can be defined as the degree to which a system can
maintain a given level of performance even with this uncertainty [1, 2, 3].

One challenge to make a robust system is how to measure and quantify robust-
ness in the system. To address this challenge, one contribution of this research is
to design a dynamic stochastic robustness measure for heterogeneous computing
(HC) systems. In particular, we investigate a robustness measure for an HC system
that evaluates a dynamic (on-line) resource allocation.
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A mapping event is defined as the time when the resource allocation proce-
dure is executed to map (i.e., assign and schedule) tasks to machines. After a
task is mapped to a machine, its required input data is staged (i.e., loaded) to the
corresponding machine and then the task can start execution.

A dynamic resource manager can operate either in immediate or batch mode [4].
The difference between these resource management approaches is in the way they
map arriving tasks to machines. In the immediate mode, shown in Figure 1(a),
each task is mapped to one of M machines immediately upon its arrival. In con-
trast, in one variation of the batch mode, shown in Figure 1(b), a limited number
of tasks are mapped to each machine and the rest of them are saved at the resource
manager for assignment during the next mapping event, along with newly arriving
tasks. These tasks saved at the resource manager and the newly arrived tasks form
the set of unmapped tasks. We investigate the performance of both immediate and
batch operation modes on HC systems.

In this study, each task has an individual hard deadline. We consider an HC
suite of machines that is oversubscribed. By oversubscribed we mean that the
arrival rate of tasks, in general, is such that the system is not able to complete all
tasks by their individual deadlines. Therefore, the research problem we investi-
gate in this work is: How to maximize the number of tasks that are completed
by their individual deadlines in an oversubscribed HC system? Accordingly, the
performance measure that we consider is the number of tasks that are completed
by their individual deadlines.

In this system, because there is no value in executing a task after its deadline,
the task is dropped (i.e., discarded) if it misses its deadline. Dropping can also
take place as a result of task failure [5]. Dropping a task affects the completion
time of the tasks queued behind the dropped task. Hence, we provide a method to
determine the stochastic completion time of the tasks in the presence of the drop-
ping. Then, we use the stochastic task completion time to provide a mathematical
model to measure the robustness of a resource allocation.

Dropping the tasks in batch mode, where the number of tasks that are mapped
to each machine is limited, can potentially lead to the state where there is no task
in a machine queue, thus wasting the computational capacity of the machine. To
avoid this state, we schedule mapping events to occur before a machine becomes
idle. Additionally, the limit on the number of tasks that are mapped to each ma-
chine (i.e., machine queue-size limit) is influential on the performance of the batch
mode resource allocation. Therefore, another contribution of this study is to verify
the proper queue-size limit for a batch mode resource allocation.

In general, the problem of resource allocation in the field of heterogeneous
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Figure 1: Dynamic resource allocation that (a) maps arriving tasks to machines immediately upon
arrival, and (b) maps a limited number of tasks to each machine and queues the rest of arriving
tasks at the resource manager.

parallel and distributed computing is NP-complete (e.g., [6, 7]); hence, the devel-
opment of heuristic techniques to find near-optimal solutions represents a large
body of research (e.g., [8, 9, 10, 11, 12, 13, 14, 15]). Therefore, based on the anal-
ysis of the stochastic robustness measure, we design resource allocation heuristics
that are capable of allocating a dynamically arriving set of tasks to a dedicated HC
system. We compare our robustness-based resource allocation approach against
several resource allocation techniques taken from the literature and adapted to this
environment. We compare the performance of the mapping heuristics via simula-
tion which allows to evaluate a variety of working conditions. The results of our
simulation study demonstrate the efficacy of our robustness-based approach.

We are interested in resource allocation techniques that can tolerate higher
levels of over-subscription. Thus, as a contribution of this study, we analyze how
different resource allocation techniques perform when the over-subscription level
increases in the HC system. Additionally, an ideal resource allocation technique
should perform well when tasks have data requirements to start their execution.
Hence, another contribution of this study is to analyze the behavior of different
resource allocation techniques when tasks require input data.

In summary, this study makes the following contributions:

• Determining the stochastic task completion time in a system where tasks
are dropped if they miss their deadlines.

• Using stochastic task completion time to provide a mathematical model for
quantifying the robustness of a resource allocation.

• Designing and analyzing novel resource allocation techniques that operate
based on our proposed robustness measure.
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• Planning mapping events in the batch mode in a way that the computational
capacity of machines is not wasted.

• Investigating the performance impact of various queue-size limits for dif-
ferent batch mode resource allocation techniques.

• Analyzing the impact of the over-subscription levels on the performance of
different resource allocation techniques.

• Analyzing the behavior of various resource allocation techniques when tasks
have data dependencies.

In the next section, we present the system model. A review of the related work
is given in Section 3. Section 4 describes our mathematical model of robustness in
a dynamic environment. Section 5 examines how machine idling can be avoided
in the batch mode resource allocation approach. The heuristic techniques for this
environment are given in Section 6. The details of the simulation setup used to
evaluate our heuristics are discussed in Section 7. Section 8 provides the results
of our simulation study and Section 9 concludes the paper.

2. System Model and Problem Statement

This research was motivated by an inconsistent heterogeneous distributed com-
puting system used for image processing [3], similar to those deployed at Digital-
Globe [16]. An inconsistent HC system includes a mixture of different machines
to execute tasks with various computational needs. In particular, in such a system,
each task may have different execution times on different machines of the system.
For instance, machine A may be faster than machine B for task 1 but slower than
other machines for task 2. This is because each tasks execution time depends on
how the tasks computational needs interact with the machine’s capabilities. It is
worth noting that this is a general model and includes HC systems with different
types of machines, such as those that consist of CPUs and GPUs [17]. Although
the methods discussed in this research are designed for inconsistent HC systems,
they also work in distributed computing systems where only a portion of machines
are heterogeneous.

In this system, user tasks for processing are sent to a resource manager for as-
signment to any one of a collection of dedicated machines. Each task is compute-
intensive and consists of an operation to be executed (e.g., compression, decom-
pression, rotation) plus an input file to be processed. The list of available image
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processing operations, from which the user can select, is referred to here as task
types. It is limited to a set of frequently requested algorithms, such as those found
in a research lab or military environments (e.g., [18, 3, 17]). A problem arises
in trying to complete each task by its individual deadline because the HC suite is
oversubscribed and there are uncertainties in the tasks’ execution times.

In our system model, tasks arrive dynamically, and the exact sequence of the
arrivals is not known in advance. Each arriving task request ri requires some input
data that has to be loaded from a shared storage for execution. Additionally, each
task ri is assigned an individual hard deadline for completion, denoted δi. By
hard deadline, we mean that if a task cannot be completed before its deadline, it
is dropped.

Dropping tasks is a common practice in oversubscribed systems that have a
real time or near real time nature (e.g., [19, 20, 21]). In these systems, typically,
there is no value in executing a task that has missed its deadline. For instance,
in live video streaming [22] systems, each frame should be transformed (i.e.,
transcoded) based on the client’s machine characteristics. The transcoding op-
eration of each frame must be completed within a tight deadline. However, there
is no value in transcoding frames that have missed their deadlines. Dropping these
frames help other frames queued in the system to be transcoded before their dead-
lines. Another instance of task dropping is in systems that process periodically
received data sets (e.g., security surveillance [23] and medical images process-
ing [24]). Usually, in these systems, sensors periodically produce data sets. The
processing of each data set must be completed before arrival of the next data set.
That is, there is no value in processing a data set after arrival of the next data set.
In an oversubscribed system, dropping tasks that miss their deadlines reduces the
waiting times and increases the likelihood of meeting deadline for other queued
tasks. In addition to these motivations, dropping is usually unavoidable when a
task failure occurs in a system [5].

Task dropping can occur either at mapping time or before starting execution on
a machine. Also, a currently executing task can be dropped as soon as it misses
its deadline. However, dropping tasks while they are executing is not possible
in some systems. For instance, in [3], a stream of images has to be processed
for rasterization and displaying within a tight deadline. In this system, once the
processing of an image is started, it has to be completed. Dropping of the execut-
ing tasks is also not possible for database transactional tasks (where transactions
have to complete their executions, once started, to maintain the consistency of the
data [25]) and in real time systems [26]. Therefore, in this study, we consider
two scenarios: in the first scenario the currently executing task is dropped as soon
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as it misses its deadline and in the second scenario the executing task cannot be
dropped and must complete its execution.

The exact execution time of any given task on a given machine is assumed
to be dependent on the characteristics of the data that is to be processed (includ-
ing the size and actual content of the data). Therefore, the execution time for a
given task can be highly variable and, as such, is treated as a random variable.
We assume that a discrete probability distribution, known as a probability mass
function (pmf ), is available for each task type’s execution time on each machine.
That is, each task type is associated with a set of pmfs, one pmf for each machine
in the HC suite, describing the probability of possible execution times for that task
type. A typical method for creating such distributions relies on a histogram esti-
mator [27] that produces pmfs based on historical and analytical techniques [28].
We assume that the collection of task execution time pmfs has been provided in
advance.

The uncertainties in the tasks’ execution times cause resource allocation de-
cisions to be more difficult. A robust resource allocation technique takes into ac-
count the uncertainties in the tasks’ execution times [13]. Any claim of robustness
for a given system must answer three fundamental questions [2]:

(a) What behavior makes the system robust? A robust resource allocation in this
environment is one that is capable of completing tasks by their assigned indi-
vidual deadlines.

(b) What are the uncertainties that the system is robust against? The execution
time for each task on each machine is a known source of uncertainty and is
represented by a random variable (pmf).

(c) How is system robustness quantified? The robustness of a resource allocation
can be quantified as the expected number of tasks that will complete before
their individual deadlines, as predicted at a given point in time.

From this set of requirements, we formulate a robustness measure for a resource
allocation in the system.

Uncertainty in task execution time can impact the completion times of all tasks
that share the same machine for execution [29]. For example, given multiple tasks
allocated to the same machine, a longer than expected execution time for a task
early in the queue may cause tasks later in the queue to miss their deadlines. This
effect is compounded when multiple tasks take longer than expected. To mitigate
the impacts of task execution time uncertainty in batch mode, we chose to limit
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the number of tasks that can be queued, denoted L, at any single machine (i.e.,
machine queue-size limit). Due to the influence of the queue-size limit on the
performance of batch mode heuristics, in this research, we determine the proper
machine queue-size for the batch mode heuristics.

Another aspect of limiting machine queue-size is the state where no task re-
mains in the machine queue and the machine becomes idle. This is particularly
important in our system due to task dropping. The idle machine should wait until
the resource allocation heuristic is executed and the input data for a mapped task
is staged to the selected machine. We refer to these waiting times as the mapping
overhead. To avoid machine idling, in this research, we perform mapping events
before the machines become idle.

In batch mode resource allocation, the remaining tasks that are not already in
a machine queue as well as tasks that have arrived since the last mapping event
form a batch of tasks at the resource manager (see Figure 1(b)). Hence, at each
time-step1 t(k), we effectively define a batch of tasks at the resource manager, de-
noted B(k). Based on this definition, a mapping event in the batch mode resource
allocation occurs due to one of two conditions:

(a) There is at least one task in B(k) and at least one free space is created in the
machine queues (e.g., due to completion of the currently executing tasks).

(b) There is a free space in the machine queues and a new task arrives to the batch
queue (B(k)).

In contrast, in the immediate mode resource allocation a mapping event occurs
upon arrival of a new task. There is no limit on machines’ queue-sizes in this case.

For both immediate and batch modes, after a task is mapped, it is placed in the
input queue of its allocated machine (see Figure 1) and input data for the task is
staged to the machine. Due to the heterogeneous nature of our system, we consider
a different data staging rate to each machine in the HC system. For this study, due
to the overhead of data transfer, once a task has been queued for execution on a
machine, it cannot be re-allocated to any other machine.

We assume that the HC suite operates in a non-multi-tasking mode; i.e., each
machine only executes one task at a time, as is the case with the cores in the ISTeC
Cray XT6m system currently in use at Colorado State University [30]. Addition-

1In this research, the time of the system is modeled in the form of discrete steps, each one
called a time-step.
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ally, each task’s execution time (not completion time) is assumed to be indepen-
dent, i.e., there is no inter-task communication. This assumption of independence
is valid for non-multitasking execution mode, which is commonly considered in
the literature (e.g., [31, 32, 33]).

3. Related Work

The problem of workload distribution considered in our research falls into the
category of dynamic resource allocation. The general problem of dynamically
allocating independent tasks to HC systems was studied in [4]. The primary ob-
jective in [4] was to minimize system makespan, i.e., the total time required to
complete a set of tasks. This objective is different from the primary objective in
our current work: to complete each task before its deadline. Furthermore, in [4]
the task execution times are assumed to be deterministic not stochastic.

Paragon [34] is a scalable immediate mode resource allocation method for
large-scale heterogeneous Cloud datacenters. It uses historic information of the
tasks’ execution times to classify an unknown arriving task with respect to the ma-
chine heterogeneity and interference with other co-located tasks. The Paragon’s
classification engine discovers similarities in the tasks’ resource requirements. It
uses singular value decomposition to identify similarities between incoming and
previously scheduled tasks. Once an incoming task is classified, a greedy map-
ping heuristic assigns it to a machine with the goals of minimizing the task’s
completion time and maximizing the machine utilization. The heuristic searches
for machines whose current load can tolerate the interference caused by the new
task. Then, from the set of candidate machines, it selects the machine that pro-
vides the minimum execution time for the arriving task. This work is different
from our research in that it focuses on the scalability of the resource allocation for
large-scale datacenters and utilizes a scalar execution time to estimate the fitness
of a machine for a given task. Furthermore, the tasks do not have deadlines, and
the performance goal is different.

Mapping heuristics are proposed in [35] for the immediate mode resource al-
location in an HC system. The proposed mapping heuristics utilize the arrival
rate information of different task types to decrease waiting times of the tasks and
guarantee the stability of the HC system. However, stochasticity in the tasks’ exe-
cution times is not considered in [35] and further studies are required to examine
the stability of the HC system when such uncertainties exist in the system. In
addition, the proposed heuristics in [35] have the knowledge of each task type ar-
rival rate distribution whereas our proposed heuristics do not have any assumption
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about the arrival rates distributions.
In [36], a stochastic task mapping technique is provided for HC systems where

uncertainty exists in the tasks’ execution times. The stochastic task mapping is
formulated as a linear programming problem with the goal of creating a balance
between the makespan of each Bag of Tasks (BoT) application with a collective
deadline and the energy consumption of the application. The proposed mapping
technique can improve the weighted probability that both the deadline and the
energy consumption budget constraints can be met. In contrast, our research goal
is to increase the probability of meeting the individual deadlines of dynamically
arriving tasks. Also, we consider the impact of dropping tasks on the stochastic
completion time of other tasks in the system.

Xu et al. [37] propose a resource allocation method for HC systems with the
goal of minimizing the makespan of a workflow. Their idea is to incorporate a
Genetic Algorithm based technique to assign priority to each task of the workflow
while using the earliest completion time heuristic to map the tasks to machines.
The Genetic Algorithm based technique prioritizes the tasks in a way that the
makespan of the workflow is minimized. Then, the mapping heuristic selects the
tasks based on their assigned priorities and maps each of them to the machine that
offers the minimum completion time for that task. The authors assume that the
exact execution time of the tasks are known apriori whereas we consider stochastic
task execution times on each machine. Also, the goal of the resource allocation is
different.

Canon et al. [1] investigate static scheduling techniques to maximize the ro-
bustness and minimize the makespan for workflow applications in an HC environ-
ment. They define the robustness as the stability of the makespan for any real-
ization of the same schedule for a given workflow. The stability of the makespan
is modeled by the inverse standard deviation of the makespan distribution. Be-
cause the robustness and the makespan are not equivalent objectives, they apply
a bi-criteria approach to find all the Pareto-optimal solutions and investigate the
trade-off between the two metrics. In contrast, we consider the problem of dy-
namic resource allocation for independent tasks with the goal of maximizing the
number of tasks that meet their deadlines.

In [13], a stochastic robustness measure is developed for static resource allo-
cation in a heterogeneous distributed system, where all the task arrivals are known
before the heuristics begin. In this method, the mapping heuristic tries to keep the
robustness measure between predefined boundaries. The authors of the paper have
studied an iterative mapping heuristic that starts with a complete allocation and
progressively modifies the order and evaluates it until a desired performance is
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reached. Our work is different from [13] from several aspects. First and the fore-
most is the fact that we investigate dynamic (on-line) resource allocation whereas
in [13] a static resource allocation technique is studied. The allocation heuristic
proposed in [13] is an off-line method and cannot be utilized for dynamic (on-line)
systems. The second difference is that the stochastic robustness measure in [13] is
different from what we consider here. The third difference is that we investigate
and provide a model for stochastic completion time of tasks in the presence of
task dropping.

4. Mathematical Model

4.1. Stochastic Task Completion Time
We define new methods for determining the completion time of a given task

ri at time-step t(k). This builds on our previous method in [38]. More specifically,
we introduce methods to determine the task completion time for three different
cases. The first case (explained in Subsection 4.1.1), is when there is no task
dropping. This method was initially introduced in [38]. However, we describe it
here because it serves as a basis for other two unexplored cases where task drop-
ping is allowed. The second case (explained in Subsection 4.1.2), determines the
task completion time for the scenario where a pending task (i.e., a task waiting for
execution in a machine queue) is dropped if the current time exceeds its deadline.
However, in this case, a currently executing task cannot be dropped and has to
complete its execution even if it misses its deadline. The third case (explained
in Subsection 4.1.3), provides a method for the task completion time when any
task (either pending or executing task) is dropped if the current time exceeds its
deadline.

Let µ(k) denote the set of all tasks that are either queued for execution or
currently executing on any of the M machines in the HC suite at time-step t(k).
Let the ordered list of tasks that were assigned to machine j in advance of task ri
but that have not yet completed execution as of t(k) be denoted µ(k)

ij .

4.1.1. No Task Dropping
Because the execution time of each task in the system is a random variable, the

distribution of the completion time of task ri is found as the convolution [39] of
the execution time probability distributions for all tasks either currently executing
or pending execution in advance of task ri on the same machine.

To find the completion time pmf for a currently executing task z on a given
machine j, we must account for impulses (also known as atoms) in the execution
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Figure 2: Execution and completion time distributions for a given task that is being executed in a
machine. (a) Execution time distribution of the task. (b) Given that the task started execution at
time 3, the completion time distribution for the task after shifting the task execution time distri-
bution. (c) Completion time distribution after renormalizing based on the current time of 6.5 by
removing impulses that occur before the current time.

time pmf of task z that would have occurred prior to the current time-step t(k). For
example, if task z began execution at time-step t(h) (h < k), then we know that
all impulses in the completion time distribution for task z with values less than
t(k) did not occur. Thus, accurately describing the completion time of task z at
time-step t(k) requires that these past impulses be removed from the pmf and the
remaining distribution be renormalized to 1.

Figure 2 describes how renormalization of a completion time pmf is performed
for a given task that is currently being executed in a machine. Figure 2(a) shows
the execution time pmf for the task. Figure 2(b) shows the completion time pmf
for the task that is constructed by shifting the execution time pmf based on the
task’s start time (which is 3 in this example). Figure 2(c) shows that for renormal-
ization, past impulses (i.e., impulses before the current time) are removed and the
remaining impulses are renormalized and form the completion time pmf for the
task at time 6.5.

We can find the completion time distribution of task ri at time-step t(k) by
convolving the completion time distribution of the currently executing task on
machine j with the execution time distributions of all pending tasks in µ(k)

ij . Fi-
nally, the resulting completion time pmf is convolved with the execution time
distribution for task ri on machine j.
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4.1.2. Dropping Pending Tasks
Dropping a pending task in µ(k)

ij influences the completion time of the tasks
queued behind the dropped task on machine j. However, the method provided in
the previous subsection does not consider the influence of dropping a pending task
on the completion time of the tasks queued behind that.
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Figure 3: Completion time distribution for a given task ri in a system where pending tasks are
dropped if they miss their deadlines. (a) Execution time distribution of task ri with δi = 7. (b)
Completion time distribution of task ri−1 with δi−1 = 9. (c) Distribution resulted from convolving
impulses of task ri with impulses less than time 7 of task ri−1. (d) Completion time distribution
for task ri; obtained from adding impulses greater than or equal to 7 in completion time pmf of task
ri−1 in Figure 3(b), for which task ri is dropped and has execution time zero, with the distribution
in Figure 3(c).

Intuitively, pending task ri is dropped if task ri−1 is completed at or after the
deadline of task ri. That is, the probability of dropping for task ri is the sum of
probabilities of impulses in the completion time pmf of task ri−1 that are greater
than or equal to δi. Therefore, in the first step to obtain the completion time pmf
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for task ri, just the impulses in the completion time pmf of task ri−1 that are less
than δi are considered for convolution with the execution time pmf of task ri.

Dropping a pending task is equivalent to considering zero execution time for
that task. More specifically, because of dropping, for all impulses greater than
or equal to δi in completion time pmf of ri−1 (i.e., impulses that were excluded
from convolution in the first step), the execution time pmf of ri is an impulse at
time zero with probability 1. Convolving the excluded impulses with this execu-
tion time pmf determines the completion time pmf of task ri when the excluded
impulses in completion time distribution of task ri−1 occur and complements the
distribution obtained in step 1. It is worth noting that convolving a given im-
pulse ψ in the completion time pmf of task ri−1, that occurs at time tψ ≥ δi with
probability pψ, with the impulse at time zero and probability 1, will result into an
impulse in the completion time of ri at time tψ + 0 with probability 1× pψ. This
is equivalent to adding excluded impulses in the completion time pmf of task ri−1
to the completion time pmf of task ri. Therefore, in the second step, the impulses
in the completion time pmf of task ri−1 that were excluded from the convolution
in step 1, are added to the obtained distribution and form the completion time pmf
of task ri.

Figure 3 depicts the details of determining completion time pmf of ri when
pending tasks in µ(k)

ij are dropped if they miss their deadlines. Figure 3(a) shows
the execution time pmf of a given task ri with δi = 7. Figure 3(b) shows the
completion time pmf of task ri−1 with δi−1 = 9. Figure 3(c) shows the result of
convolution between the impulses that are less than δi = 7 in completion time pmf
of task ri−1 (i.e., impulses at times 5 and 6 in Figure 3(b)) with the execution time
pmf of task ri. Next, we consider the impact of impulses that are excluded from
convolution in Figure 3(b) on the completion time pmf of task ri. As mentioned
earlier (see the above paragraph), for these excluded impulses in the completion
time distribution of task ri−1, the execution time of task ri is zero. Therefore, the
excluded impulses have to be added to the completion time distribution of task
ri. Thus, in Figure 3(d) the completion time distribution of task ri is formed by
adding impulses that are greater than or equal to δi = 7 in the completion time
pmf of task ri−1 (impulses at times 7, 8, and 9 in Figure 3(b)) to the distribution
shown in Figure 3(c).

4.1.3. Dropping Pending and Executing Tasks
The method of determining completion time distribution for task ri, described

in the previous subsection, does not consider dropping for a currently executing
task. That is, if a task starts executing, it has to be completed even if it misses its
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deadline during the execution. In this part, we extend the method provided in the
previous subsection to determine the completion time distribution of pending task
ri for the scenario where a currently executing task is dropped as soon as it misses
its deadline. In addition, similar to Subsection 4.1.2, a pending task that misses
its deadline is also dropped and cannot start execution.

7 

0.56 

0.04 

6 
time 

1 

0 

pr
ob

ab
ilit

y 

(a) impulses greater
than or equal to δi = 7
in Figure 3(c) are
summed and form an
impulse at δi = 7
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Figure 4: Completion time distribution of task ri in a system where the currently executing task
is dropped as soon as it misses its deadline. (a) After convolving the distribution of task ri with
impulses less than time 7 in the distribution of task ri−1 in Figure 3(c), impulses greater than or
equal to the deadline of task ri in the resulting distribution are summed and form an impulse at
δi = 7. (b) Completion time distribution for task ri; obtained from adding the distribution in
Figure 4(a) with the excluded impulses of task ri−1 in Figure 3(b), for which task ri is dropped
and has execution time zero.

To determine the completion time distribution of task ri that is pending in
a machine queue, similar to the previous subsection, in the first step, impulses
in the completion time pmf of task ri−1 that are less than δi are convolved with
the execution time pmf of task ri. Because task ri will not be executed after
its deadline, in the resulting distribution, all the impulses that are greater than δi
would not occur. Therefore, in the second step, the impulses that are greater than
or equal to δi in the resulting distribution are summed and form an impulse at δi.

Recall from Subsection 4.1.2 that for all the impulses greater than δi in the
completion time pmf of task ri−1, task ri is dropped and will have zero execution
time. Therefore, in the third step, to consider zero execution time in the com-
pletion time distribution of task ri, similar to Subsection 4.1.2, the impulses in
the completion time pmf of task ri−1 that were excluded from the convolution are
added to the obtained distribution in the second step and form the completion time
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pmf of task ri.
Figure 4 extends the example in Figure 3 to show the details of determining

task completion time for the scenario where the executing task is dropped as soon
as it misses its deadline. Remember that Figure 3(c) shows the result of convo-
lution between the execution time pmf of task ri (in Figure 3(a)) with impulses
lower than δi = 7 in the completion time distribution of task ri−1 (in Figure 3(b)).
Then, according to the second step, in Figure 4(a), the impulses greater than or
equal to δi = 7 in Figure 3(c) are summed and form an impulse at the deadline
of task ri. Finally, according to the third step, in Figure 4(b), the completion time
distribution of task ri, is obtained from adding the excluded impulses in the com-
pletion time distribution of task ri−1 in Figure 3(b) (for which the execution time
of task ri is zero) to the distribution in Figure 4(a).

It is worth noting that the completion time distribution of the currently execut-
ing task is obtained by removing past impulses and renormalizing the remaining
impulses to 1 (see Subsection 4.1.1). Then, all impulses that are greater than or
equal to the task’s deadline in the renormalized distribution are summed and form
an impulse at the deadline of the task.

4.2. Calculating Stochastic Robustness
The robustness of a resource allocation at time-step t(k) is defined based on

the expected number of tasks that meet their individual deadlines, predicted at
this time-step. We calculate the total expected number of tasks that meet their
individual deadlines by summing over all machines the expected number of tasks
on each machine that meet their individual deadlines.

The probability that task ri completes before its deadline (δi) on machine j,
denoted p(rij), is calculated by summing the probabilities of impulses that are less
than δi in the task’s completion time pmf. Let nj the number of tasks assigned
to machine j. Then, the stochastic robustness of this machine at time-step t(k),
denoted ρ(k)j , is calculated as follows:

ρ
(k)
j =

nj∑
i=1

p(rij) (1)

We define the stochastic robustness of a resource allocation at a given time-
step t(k), denoted ρ(k), as the sum of the robustness values associated with each
machine. This can be stated formally as follows:

ρ(k) =
∑
∀j

ρ
(k)
j (2)
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5. Avoiding Machine Idling

Uncertainty in task execution times can affect the completion times of all tasks
that share the same machine for execution. For instance, given multiple tasks
assigned to the same machine, a longer than expected execution time for a task
early in the queue may cause tasks later in the queue to miss their deadlines. This
effect is compounded when multiple tasks take longer than expected.

To mitigate the impact of task execution time uncertainty, in batch mode, we
chose to limit the number of tasks that can be queued at any single machine. Lim-
iting machine queue-size in an oversubscribed system where tasks are dropped
as soon as they miss their deadlines can potentially lead to a circumstance where
there is no task in a machine and, therefore, the machine is idle. For instance,
machine idling can happen when a currently executing task is completed and the
pending tasks are dropped because their deadlines were missed. The idle machine
should wait for the mapping overhead. That is, the idle machine should wait until
the resource allocation heuristic is executed and the input data for a mapped task
is staged to the selected machine. In practice, when the required tasks’ input data
are substantial, the mapping overhead is not negligible and has to be considered
(e.g., [17]). One consequence of ignoring mapping overhead is to delay task exe-
cution and to wait for its input data to be staged. Another consequence is to waste
the computational capacity of the machine.

One technique often used to avoid machine idling is to pre-stage several tasks
into the machine queues in advance of execution (i.e., machine queue-size limit
is large). This helps to ensure that there are tasks in the machine queues that are
ready for execution and machine idling is avoided. However, a large queue can
degrade the performance of a resource allocation heuristic due to the compounded
uncertainty in the execution time of tasks that share the same queue. Nonetheless,
a short queue-size can potentially lead to machine idling (e.g., when an executing
task is completed and pending tasks are dropped from machine queue j).

As demonstrated later (in Section 8.1), to obtain the best performance of a
batch mode resource allocation heuristic, we choose to keep the queue-size short.
In this case, each machine includes one executing task and one pending task (i.e.,
the machine queue-size limit is two). However, to avoid machine idling, we pro-
pose to perform mapping events before the machines become idle. The time for
these mapping events is determined based on the time required for executing the
resource allocation heuristic, denoted th, and the time associated with staging the
tasks’ input data to machine j, denoted tlj . The value of th for a particular resource
allocation heuristic can be determined by analyzing historic data of its execution
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time. The value of tlj depends on the size of input data and the data transfer rate
from a shared storage to machine j. To ensure that machine idling does not occur,
we let s be the maximum input data size within the set of unmapped tasks and let
Λj be the transfer rate from a shared storage to the memory of machine j. Then,
the worst case time to stage input data for any unmapped task to machine j is
calculated as follows:

tlj =
s

Λj

(3)

We know that a free slot appears on machine queue j if a currently executing
task is completed (or dropped) or a pending task is dropped because of missing its
deadline. We define earliest free slot at time step k, denoted e(k)j , as the expected
time that an empty slot appears on machine queue j. Let E[C(r1j)] the expected
completion time of the currently executing task, and δij the deadline of ith task in
machine queue j, then, e(k)j is formally defined as follows:

e
(k)
j = min{E[C(r1j)], δ1j, δ2j, ..., δnjj} (4)

In the scenario that the currently executing task on machine j cannot be dropped
and has to complete its execution, the deadline of the currently executing task (i.e.,
δ1j) is excluded from the definition of e(k)j in Equation 4. Based on the minimum
value of the earliest free slot across all machines (i.e., min

j
(e

(k)
j )), we can deter-

mine the time for the next mapping event, denoted tmap, using Equation 5.

tmap = min
j

(e
(k)
j )− (th + tlj) (5)

If the time for the next mapping event is less than the current time, a new
mapping event is scheduled immediately after the current mapping event ends.

6. Heuristics

6.1. Immediate Mode Heuristics
6.1.1. Minimum Expected Completion Time (MECT)

The Minimum Expected Completion Time (MECT) heuristic (based on the
Minimum Completion Time heuristic, presented in, e.g., [4, 9, 10]) ignores the
robustness of each allocation. Instead, it allocates tasks such that its expected
completion time is minimized.

Using the expected execution time for each task, the expected completion time
for any task ri on machine j can be found by summing the expected execution
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time of each task in µ(k)
ij plus the time the currently executing task started. If the

input queue of machine j is empty at the time of evaluation, then the expected
execution time of task ri is summed with the current time to produce a completion
time. Using the expected value of the completion time for task ri on each machine
1 ≤ j ≤ M , MECT assigns task ri to the machine that provides the earliest
expected completion time.

6.1.2. Minimum Expected Execution Time (MEET)
The Minimum Expected Execution time (MEET) heuristic (based on the Min-

imum Execution Time heuristic, presented in, e.g., [4, 9]) also ignores the ro-
bustness of each allocation. Instead, MEET allocates each task to its minimum
expected execution time machine.

In this heuristic, for each task ri that has the expected execution time of E[rij]
on a given machine j, we select the machine k that provides the minimum ex-
pected execution time. The MEET heuristic can be formally expressed as follows:

k = min
1≤j≤M

(E[rij]) (6)

6.1.3. k-Percent Best (KPB)
The k-percent best (KPB) heuristic [4] limits the number of machines that

are considered at each task assignment to the k-percent of the machines with the
shortest expected execution times. Using the expected value of the execution time
of task ri on each machine, identify the k-percent of the machines that provide the
shortest expected task execution times. Next, calculate the expected completion
time for task ri on each machine in the set of k-percent machines found previously
and assign i to the machine that provides the earliest expected completion time.

The performance of KPB depends on the value of k. When the value of k
approaches 0%, KPB performance tends to MEET. In contrast, when the value of
k approaches 100%, KPB performs similar to MECT. For our simulations with
eight machines, we noticed that for the scenario where a currently executing task
cannot be dropped, the value of k = 50% (four of the eight machines) provides
the best performance. However, for the scenario where a currently executing task
is dropped as soon as misses its deadline, the value of k = 62% (five of the eight
machines) provides the best performance. The reason for the lower value of k in
the former scenario is that tasks are assigned to machines with shorter expected
completion times. Thus, if an executing task misses its deadline, it will complete
its execution quickly and a pending task can start execution.
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6.1.4. MaxRobust (MR)
The MaxRobust heuristic tries to maximize the stochastic robustness of the

resource allocation. In this heuristic, upon the arrival of a new task ri at time-step
t(k), similar to KPB, k-percent of machines with the shortest expected execution
times are found. From these machines, the machine that maximizes ρ(k) at time-
step t(k) is selected. That is, MaxRobust calculates the value of ρ(k) as if task
ri was assigned to the end of the input queue of each machine m found in the
previous phase and then finds the machine that maximizes ρ(k). In the next step, all
machines that result in ρ(k) within ε distance from the maximum ρ(k) are selected.
From this set of machines, the one with the minimum variance [1] in completion
time pmf is selected to assign task ri.

In the simulations, for the scenario where a currently executing task cannot be
dropped, we consider the value of k equal to 50% (i.e., four of the eight machines)
and for the scenario where a currently executing task is dropped as soon as it
misses its deadline, we consider the value of k equal to 62% (i.e., five of the eight
machines). Also, the value of ε equal to 0.05 leads to the best performance for the
MR heuristic. A higher value for ε leads to mapping tasks to the machines that
offer lower probabilities of meeting deadlines, thus, reduces the number of tasks
that can meet their deadlines.

6.2. Batch Mode Heuristics
6.2.1. Overview

In this part, we describe four batch mode resource allocation heuristics. The
first three heuristics, which serve as baseline heuristics, operate in two basic
phases.

In phase 1, the heuristic identifies the machine that maximizes the performance
objective for each task. In phase 2, the heuristic identifies the task-machine pairing
that maximizes the performance objective over all task machine pairs identified in
phase 1. Details of each heuristic is described in the following subsections.

6.2.2. MinCompletion-MinCompletion (MM)
This heuristic is based on the concept from Algorithm E in [7]. In the MM

heuristic, the performance objective of each phase is to minimize the expected
completion time. At each mapping event t(k), MM first copies the batch to a
separate queue Q and finds the machine j that provides the minimum expected
completion time for each task in Q (phase 1). From this set of task-machine pairs,
MM selects the pair that provides the overall minimum expected completion time
and provisionally assigns the task to its selected machine (phase 2).
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The process is repeated until all of the tasks in Q have been provisionally as-
signed. To complete the mapping event, MM iterates through all machine queues
and for each queue where the current size is less than L (i.e., queue-size limit),
tasks are moved from the provisional assignment to the available machine queue
until the number of tasks in the machine queue is equal to the limit. The stopping
criteria for the procedure occurs when there are no tasks left in Q, there are no
remaining machines with free slots, or there are no tasks that get assigned to a
machine with a free slot.

6.2.3. MinCompletion-MaxUrgency (MMU)
The MinCompletion-MaxUrgency (MMU) heuristic is also a two phase greedy

heuristic that operates using expected execution times and limits the number of
tasks pending completion on each machine to L. We define task urgency as the
inverse of the difference between the expected completion time for the task and its
deadline. Effectively, MMU emphasizes allocating tasks with the minimum slack.
That is, given E[C(rij)] the expected completion time for the task ri on machine
j, the urgency of task ri is defined as

1

δi − E[C(rij)]
(7)

In the first phase of MMU, the heuristic identifies the minimum expected com-
pletion time machine for each task in the batch B(k). In the second phase, based
on the task completion times found in phase 1, MMU selects the assignment
whose task urgency is the greatest, i.e., has the smallest slack. The process is
repeated as with MM.

6.2.4. MinCompletion-SoonestDeadline (MSD)
This heuristic is a variation of the two phase greedy heuristic where we favor

tasks with the soonest deadline. In the first phase, the heuristic selects the machine
that provides the minimum expected completion time for each task.

In the second phase, from the list of potential task-machine pairs found in the
first phase, the heuristic makes the provisional assignment for the task that has the
soonest deadline. In the event that two tasks have the same deadline and require
the same machine, ties are broken by assigning the task that has the minimum
expected completion time. The process is repeated as with MM.

6.2.5. Maximum On-time Completions (MOC)
This heuristic works based on the robustness measure proposed in this study.

The procedure of MOC is shown in Figure 5. In the first step of this heuristic,

21



pending tasks in the machine queues whose probability of meeting their individual
deadlines are less than a threshold α are dropped. In the second step, unmapped
tasks that will miss their deadlines by the minimum time needed to stage their
input data to any of the machines are dropped.

(1) For each machine queue j:

(A) For each pending task rij :
(i) If the probability of meeting deadline for task rij is less than α

then
(a) drop task rij from machine queue j.

(2) For each unmapped task u:

(A) If sum of the current time and the minimum data staging time is greater
than δu then

(i) drop task u from the unmapped tasks.

(3) While stopping criteria not met do:

(A) for each unmapped task u:

(i) Find machine j that provides the maximum robustness for task u.
(ii) Add task u to the list of candidate tasks for machine j.

(B) For each machine queue j that queue-size is less than the limit:

(i) From the list of candidate tasks for machine j, create a set of tasks
that their robustnesses are within ε distance from the maximum
robustness on machine j.

(ii) From the set of tasks, select the task with the lowest completion
time on machine j.

(iii) Assign the selected task to machine j.
(iv) Remove the selected task from the unmapped tasks.

Figure 5: Procedure for the MOC heuristic.

In the third step, for each unmapped task, the machine that maximizes robust-
ness (ρ(k)) is identified. Then, for each machine j where the number of mapped
tasks is less than L, MOC identifies all the tasks within the ε distance from the
maximum robustness for that machine. From the shortlisted tasks for each ma-
chine, the task with the minimum completion time is assigned to the machine and
the remaining tasks are returned to B(k). The third step continues until either
there are no tasks left in B(k) or there are no remaining machines with free slots.
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To find the proper choice for α, we evaluated the performance of MOC with
various values. We noticed that when the value of α equals to 0.2, MOC has its
best performance. Lower values of α do not perform well specifically when the
machine queue-size is long. Also, higher values of α leads to dropping tasks that
can be completed before their deadlines. The value of ε equals to 0.05 results in
the best performance of the MOC heuristic. Higher values of ε lead to mapping
tasks with low probabilities of meeting deadline.

7. Simulation Setup

7.1. Overview
We perform our simulations on a limited set of machines to constrain the sim-

ulation execution times. However, our proposed methods are applicable on any
larger set of machines. Our simulation environment consisted of eight machines
(i.e., M = 8) that collectively exhibited “inconsistent” heterogeneous perfor-
mance [9]; e.g., machine A may be better than machine B for task 1 but not
for task 2.

In our simulation study, the task execution time distributions are assumed to
be unimodal. The distributions were generated based on the Gamma distribution
where the mean of the Gamma distribution was set based on execution time results
for the 12 SPECint benchmark applications for a sample set of eight machines2.
Using these distributions, we generated 500 random sample execution times for
each application on each machine [40] where the scale parameter of each Gamma
distribution was selected uniformly at random from the range [1,20]. After gener-
ating the sample execution times, we applied a histogram [27] to the result to pro-
duce probability mass functions that approximate the original probability density
functions—one for each application on each machine. Each benchmark applica-
tion served as a model for each task type to be executed by the system, creating an
eight machine by twelve task type matrix of execution time pmfs. To simulate an
HC system in a realistic manner, we considered a heterogeneous rate for staging
the tasks’ input data from a shared storage to each machine. Similar to [41], we
simulated the data staging rate to each machine based on a Gamma distribution
with mean = 0.68 Gbps and Coefficient of Variation (CV ) equal to 0.1.

2The eight machines chosen to compose the HC suite in our simulation trials were as follows:
Dell Precision 380 3Ghz Pentium Extreme Edition, Apple iMac 2Ghz Intel Core Duo, Apple
XServe 2Ghz Intel Core Duo, IBM System X 3455 AMD Opteron 2347, Shuttle SN25P AMD
Athlon 64 FX-60, IBM System P 570 4.7Ghz, SunFire 3800, and IBM BladeCenter HS21XM.
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7.2. Generating Workload
The workload arrival rates for the trials are generated based on the systems

investigated by the Extreme Scale Systems Center (ESSC) at Oak Ridge National
Laboratory (ORNL) [19, 20]. Each trial includes a workload of tasks during a
10,000 time-unit period. We model an oversubscribed system that receives ap-
proximately 1,200 tasks during the period.

For performance evaluation, we need to analyze the statistical data based on
an oversubscribed system. However, at the beginning and at the end of the sim-
ulation, the queues are not full and the results do not represent the condition of
an oversubscribed system. Therefore, for the statistical analysis of the results, we
ignore 100 tasks from the beginning and the end of the workload trials, and the
remaining 1,000 tasks are utilized for statistical analysis and plotting graphs.

For generating task arrivals, we start by finding the mean arrival rate of tasks
for every task type by sampling from a Gaussian distribution. The mean for this
distribution is determined by dividing the desired number of tasks by the number
of task types and the variance is 10% of the mean. Then, the mean arrival rate
for each task type is determined by dividing the estimated number of tasks of that
type into the number of time-units. The actual number and arrival times of tasks
in each task type is generated by sampling from the arrival rate of that task type.

To capture the bursty behavior of user demand, we consider an arrival pattern
that includes two types of intervals, namely, baseline and burst intervals. Compar-
ing to the burst intervals, the baseline intervals have a lower arrival rate and last
for a longer duration, while burst intervals are shorter but have higher arrival rate.
The mean arrival rate for each task type is modified in each interval to generate
the actual arrival rate during that interval. For each baseline interval, the arrival
rate is determined by multiplying the mean arrival rate with a number uniformly
sampled from the range [0.5,0.75]. To obtain the arrival rate during a burst period,
the mean arrival rate is multiplied with a uniformly sampled number from the
range [1.25,1.5]. The duration of each baseline interval is obtained by uniformly
sampling from the range [180,300] time-units, whereas for each burst interval the
range is [30,90] time-units. Figure 6 demonstrates an instance of arrival rate pat-
terns for four task types with their baseline and burst intervals during the first
1,400 time units.

Based on the arrival rate pattern generated for every task type, the arrival time
of the tasks of that type can be generated. More specifically, arrival times for tasks
of a particular type are generated by sampling from an exponential distribution
with the rate parameter equivalent to the arrival rate during different intervals.
This means that during intervals with higher arrival rate (i.e., burst intervals) the
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Figure 6: Arrival rate patterns with baseline and burst intervals for four task types.

sampled time from the exponential distribution is lower, hence, the arrival time of
the next task is closer to the current task’s arrival time.

The deadline for a given task i is generated by summing the arrival time of
the task, denoted arri, with the average execution time of the task type on all
machines, denoted avgi, and the average execution time of all task types on all
machines, denoted avgall. We also consider a coefficient β for avgall that enables
us to loosen or tighten the generated deadlines in the workload trials. Therefore,
the deadline of a given task i is calculated based on Equation 8.

δi = arri + avgi + (β· avgall) (8)

The reason that we generate the tasks deadlines in this way is to provide a fair
amount of time for each task to meet its deadline. For that purpose, in addition
to the task average execution time, we provide an extra (slack) time to cover the
waiting times in the queues, which can be significant in an oversubscribed system.
To provide the same slack time to all tasks, the average execution time of all task
types on all machines are included in generating the deadlines. In the experiments,
the default value of β is 1. In addition, in Section 8.3, we investigate the impact
of deadline tightness on different mapping heuristics with varying the value of β.

We expect that the size of input data for each task (e.g., size of images in an
image processing system) follows a Gaussian distribution. Therefore, in workload
trials, size of input data for each task is generated by sampling from a Gaussian
distribution. For simulation, we have modified tasks’ mean input data size to in-
vestigate the impact of this factor on the performance of different resource alloca-
tion heuristics. In each trial, the variance of the normal distribution for generating
tasks’ input data size is 10% of the mean.
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To study the behavior of different resource allocation heuristics comprehen-
sively, we investigate the impact of different parameters on the performance of
resource allocation heuristics. More specifically, we investigate the impact of
varying queue-size limits, tasks input data size, and the over-subscription level in
this environment.

For all experiments we use the same task type to machine execution time pmf,
the same arrival rate pattern, and the same deadline for each type (relative to the
task’s arrival time). Each experiment in this simulation study is carried out on 100
independent workload trials and the average and 95% Confidence Interval of the
results are reported. Each simulation trial includes a new workload of tasks with
different task arrivals, task types, task required input data size, and task deadlines.

8. Results and Analysis

8.1. Identifying Optimal Machine Queue-Size Limit
In this experiment, we investigate the proper machine queue-size limit (L) for

the batch mode resource allocation. For this purpose, we examine how different
batch mode heuristics perform when the size of machine queues varies. We define
queue-size as the pending tasks in a machine and the currently executing task in
that machine. For instance, when the machine queue-size in a system is limited
to 2, it means that in each machine queue there can be an executing task and a
pending task waiting for execution on that machine.

We compare the performance of different heuristics when the machines’ queue-
sizes are short (queue-size limits are 2 and 4) against when the queue-sizes are
large (queue-size limit is 50). It is worth noting that we have evaluated other
queue-sizes between these extremes to confirm our observations. However, for
the sake of better presentation, we plot simulation results for the three mentioned
queue-size limits. Moreover, we compare performance of the immediate mode re-
source allocation heuristics, that have unlimited machine queue-size, against the
batch mode heuristics with various machine queue-size limits.

In this experiment, the average size of a task’s input data is 64 MB and 1,000
tasks are considered for the evaluation. Our evaluation metric in this experiment
is the percentage of tasks that are completed before their deadlines. Results of this
experiment for the scenario where the currently executing task cannot be dropped
is demonstrated in Figure 7(a) and for the scenario where the currently executing
task is dropped as soon as it misses its deadline is demonstrated in Figure 7(b).

In Figure 7(a), we notice that, regardless of the queue-size limit, both the im-
mediate and batch modes heuristics based on the defined stochastic robust mea-
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(a) executing task must be completed and cannot be dropped
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Figure 7: Percentage of tasks completed on time when immediate and batch mode resource alloca-
tion heuristics with different machine queue-size limits are considered. The horizontal axis shows
the different machine queue-size limits evaluated. In this experiment, the average task’s input data
size is 64 MB and 1,000 tasks are considered for the evaluation. Results are averaged over 100
runs and 95% confidence interval of the results are reported.
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sure (i.e., MR and MOC) outperform the other heuristics. We also observe that,
in general, the performance of batch mode heuristics MOC and MM is better
than immediate mode heuristics. For instance, the performance of MOC when for
machine queue-size 2 is on average 78% whereas the performance of MR is on
average 49%. This is because batch mode resource allocation heuristics work on
a group of tasks and select the best allocations. Furthermore, unallocated tasks
of the batch can be re-mapped during the next mapping event along with the new
arriving tasks. This provides an opportunity for the new arriving tasks to be allo-
cated earlier than the previously arriving tasks. Whereas, in the immediate mode,
the new arriving tasks always have to wait in the machine queues for tasks that
have arrived earlier to exit the system.

Both Figures 7(a) and 7(b) demonstrate that shorter machine queue-sizes in
MOC and MM lead to more tasks completed on time. The reason is that, when
machine queue-size is short, there is less compound uncertainty in tasks com-
pletion time and, therefore, heuristics can make better allocation decisions. In
contrast, we notice a slight reduction in the performance of MMU and MSD when
machine queue-size is larger (e.g., when queue-size limit is 4 or 50). This is be-
cause these heuristics tend to map tasks with fast-approaching deadlines that are
likely to miss their deadlines and be dropped. Therefore, when the queue-size is
larger, these heuristics have the opportunity to map more tasks in a machine queue
and if some of them are dropped (due to missing their deadlines) there are other
ready-to-run tasks in the machine queue that can start execution.

In Figures 7(a) and 7(b), we notice that when queue-size limit is 50, there
is no statistically significant difference between the percentage of tasks that are
completed on time using the MM, MSD, and MMU batch mode heuristics (also
called baseline heuristics). The performance of the baseline heuristics for queue-
size limit 50 is on average approximately 40% and 65% in Figures 7(a) and 7(b),
respectively. The reason is that when the queue-size is large, the compound un-
certainty in tasks execution times increases and neutralizes the impact of resource
allocation heuristics.

In Figure 7(b), we notice that the performance of immediate and most of batch
mode resource allocation heuristics have remarkably increased comparing to the
corresponding case in Figure 7(a). However, performance of MOC in Figure 7(b)
does not vary significantly in comparison with Figure 7(a). The reason is that
MOC initially drops tasks that cannot meet their deadlines and tasks that are allo-
cated to machines are able to complete their executions before their deadlines. We
can conclude that dropping of the executing tasks that have missed their deadlines,
in general, favors the baseline heuristics that do not consider stochasticity in tasks
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execution times in their decisions. In fact, dropping of an executing task that has
missed its deadline alleviates the impact of improper allocation decisions in the
baseline resource allocation heuristics.

For further analysis of the experiment results, in addition to the percentage of
tasks that meet their deadlines, we are interested to see how close to their deadlines
the tasks are completed in different mapping heuristics. We observed that, in com-
parison with other heuristics, MOC and MM complete tasks far earlier than their
deadlines, on average approximately 80 and 75 time units, respectively. In the
case of MOC, the reason is that it maps tasks that have the highest probabilities of
meeting their deadlines and therefore it is expected that they complete earlier than
their deadlines. Similarly, the MM heuristic prioritizes tasks with minimum com-
pletion time, which leads to completing tasks before their deadlines. There is no
statistically significant difference between other heuristics from this perspective.
Also, in the scenario where executing tasks cannot be dropped, for those tasks that
miss their deadlines, we analyze how much after their deadlines the tasks are com-
pleted. We observed that heuristics that function based on the robustness measure
complete the tasks the earliest.

We analyzed the ratio of tasks that meet their deadlines for each task type. The
results show that there is no statistically significant difference in the percentage of
tasks that meet their deadlines in each task type. For instance, in the MOC heuris-
tic, shown in Figure 7(b), when queue size is 2, between 70% and 82% of each
task type meets the deadline. The same patterns occur in the other heuristics. The
reason is that, the mapping heuristics we provide in this work do not discriminate
tasks based on their types.

8.2. Impact of Varying Input Data Size and Connection Speed
In this experiment, we demonstrate the impact of tasks input data size on the

performance of various resource allocation heuristics. To this end, we generated
workload trials where the average tasks input data sizes vary from 8 MB to 1,024
MB. In this experiment, the machine queue-size is 2, and 1,000 tasks are consid-
ered for the evaluation.

Results of this experiment for the scenario where the currently executing task
cannot be dropped is demonstrated in Figure 8(a) and for the scenario where the
currently executing task is dropped as soon as it misses its deadline is demon-
strated in Figure 8(b). According to Figures 8(a) and 8(b), as the average size of
tasks’ input data increases, in general, the performance of all heuristics in the im-
mediate and batch mode decreases. For instance, performance of the MM heuris-
tic in Figure 8(a) when the average task data size is 8 MB is on average 65% which
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Figure 8: Percentage of tasks completed on time when immediate and batch mode resource alloca-
tion heuristics are applied and average size of tasks’ required input data vary. The horizontal axis
shows the different input data sizes evaluated. In this experiment, the machine queue-size limit is
2 and 1,000 tasks are considered for the evaluation. Results are averaged over 100 runs.

drops to on average 17.6% when the average data size is 1,024 MB. The reason
for the performance drop is that, when the average tasks’ input data size increases,
a machine becomes idle while data staging for a task mapped to that machine has
not been completed. To avoid such performance drop, we repeated the experi-
ment with larger machine queue-sizes of 4 and 5 to pre-stage input data for more
tasks. However, we did not observe any improvement in the performance of the
heuristics. The reason is that the impact of performance degradation resulting
from larger queue-sizes is more influential than the improvement resulting from
pre-staging input data for more tasks.

We observe that the performance of MMU and MSD has remarkably dropped
in both Figures 8(a) and 8(b), when the average tasks’ input data size is 512 or
1024 MB. The reason is that these heuristics naturally tend to map tasks with fast-
approaching deadlines that have a high probability of being dropped. Therefore,
machines remain idle and new mapped tasks have to wait for their input data to
be staged. This delay in execution leads to missing tasks deadlines, specifically
when tasks’ input data sizes are large.

In Figures 8(a) and 8(b), we also can notice that MOC outperforms other
heuristics. Even when the average task’s input data size is 1,024 MB, the MOC
heuristic can complete on average 22.3% of the tasks on time, which is moderately
better than MM, and significantly better than the other heuristics.

To analyze the impact of connection speed in the HC system on the perfor-
mance of the mapping heuristics, in another experiment, we vary the average con-
nection speed of the HC system from 0.68 Gbps to 10 Gbps. Results of the exper-
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Figure 9: Percentage of tasks completed on time when immediate and batch mode resource al-
location heuristics are applied and the average connection speed in the HC system varies. The
horizontal axis shows the different connection speeds evaluated and the vertical axis shows the
percentage of tasks that complete on time. In this experiment, the machine queue-size limit is 2,
the tasks’ average input data size is 1,024 MB, and 1,000 tasks are considered for the evaluation.
Results are averaged over 100 runs.

iment are averaged over 100 runs and are depicted in Figure 9. In this figure, the
horizontal axis shows different connection speeds and the vertical axis shows the
performance of each heuristic (i.e., the percentage of tasks that meet their dead-
lines). In this experiment, 1,000 tasks are evaluated, the average input data for
each task is 1024 MB, and the machine queue size is 2.

In both Figures 9(a) and 9(b), we observe that as the average connection speed
increases, the performance of the heuristics improves. For instance, in Figure 9(a),
the performance of MOC increases from 20% when the connection speed is 0.68
Gbps to approximately 75% when the connection speed is 10 Gbps. The reason
is that when there is a higher connection speed it takes less time for tasks to stage
their required data into the allocated machines. Therefore, the execution of the
tasks is not delayed. The results indicate the impact of data dependency on the
performance of HC systems, specifically when the connection speed is low. In
particular, we can see that the MOC and MM heuristics perform significantly
better than other heuristics, even in the presence of low connection speed. The
reason is that these heuristics allocate tasks that have sufficient time to meet their
deadlines. Thus, even in an HC system with a low connection speed, some tasks
can complete before their deadlines.

8.3. Impact of the Over-subscription Level
In this experiment, we evaluate the impact of varying the over-subscription

level on the performance of different resource allocation heuristics. To vary the
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Figure 10: Percentage of tasks completed on time using immediate and batch mode resource
allocation heuristics when the over-subscription level varies in the system. The horizontal axis
shows the different number of tasks evaluated. In this experiment, the average task’s input data
size is 64 MB and the machine queue-size limit is 2. Results are averaged over 100 runs and 95%
confidence interval of the results are reported.

over-subscription level of the system, we modified the number of tasks that arrive
during the same simulation period in the workload trials—from 500 to 2,500 tasks
as shown in Figure 10. In this experiment, the average task input data size is 64
MB and the machine queue-size limit is 2.

Results of this experiment for the scenario where the currently executing task
cannot be dropped are demonstrated in Figure 10(a) and for the scenario where the
currently executing task is dropped as soon as it misses its deadline are demon-
strated in Figure 10(b). According to Figure 10(a), MOC generally outperforms
other batch and immediate mode heuristics. The only exception is when the HC
system receives 500 tasks (i.e., when the over-subscription level is very low). In
this case, the immediate mode heuristics (except MEET) perform as efficient as
the batch mode heuristics. Specifically, when the system receives 500 tasks, both
MOC and MECT lead to on average 95.7% performance. However, as the system
becomes more oversubscribed (when there are 1,000 tasks and more) the perfor-
mance of the immediate mode heuristics drops significantly in comparison to the
MOC and MM heuristics. For instance, in Figure 10(a), when the system receives
2500 tasks, MOC performance is on average 40.7% whereas the performance of
MECT drops to on average 1%.

The reason for the performance drop in the immediate mode heuristics is that,
as the over-subscription level increases, more tasks are queued in each machine,
thus, the execution of arriving tasks is delayed and ultimately they miss their dead-
lines. This drop in the performance shows that the immediate mode heuristics
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cannot cope with the increase in the over-subscription level. We can conclude
that when the system is not oversubscribed, an efficient immediate mode heuris-
tic (e.g., MR or MECT) can provide an acceptable level of performance without
having the complexity of batch mode resource allocation heuristics.

In Figure 10(a), we notice that when there are more than 1,000 tasks in the
system, MOC provides a better performance in comparison to the other batch or
immediate mode heuristics. For instance, when there are 1,500 tasks in the system,
the MOC performance is on average 60% whereas the performance of MM is
48%. This can be attributed to the fact that it tries to maximize the stochastic
robustness measure. However, the reason MM performs well is that it prioritizes
shorter tasks that complete more quickly.

In Figure 10(a), we observe that when the over-subscription level increases
to 1,500 tasks, performance of the MMU and MSD heuristics decreases sharply.
The reason for this decrease is that when the over-subscription level of the HC
system is high, allocating urgent tasks (i.e., tasks with tight deadlines) that cannot
complete on time leads to long waiting times and missing deadlines for other tasks
that are in machine queues or in the batch. However, in Figure 10(b), we observe
that the performance decrease of the MMU and MSD heuristics is not as sharp as
Figure 10(a). This can be attributed to the fact that the currently executing tasks
that miss their deadlines are dropped and, therefore, the tasks that are waiting
either in the unmapped list or in the machine queues have shorter waiting times
and are able to complete on time. We can conclude that the urgency of tasks is not
an appropriate measure for resource allocation, particularly in circumstances that
the over- subscription level of the HC system is high.

To analyze the performance of the mapping heuristics in an oversubscribed
HC system further, we conduct an experiment with various deadlines for tasks.
To generate different deadlines for tasks in the workload trials, we vary the value
of the β parameter in Equation 8 (see Section 7.2 for more details). As shown in
the horizontal axis of Figure 11, the value of β varies from 0.1 to 2. The vertical
axis shows the percentage of tasks that complete before their deadlines. In this
experiment, 1,000 tasks are evaluated, the average task input data size is 64 MB,
and the machine queue-size limit is 2.

As we can see in Figure 11, when the tasks deadlines increase (i.e., the value
of β increases), the performance of the mapping heuristics rises, in general. We
also observe in both Figures 11(a) and 11(b) that the performance difference be-
tween the two best heuristics (MOC and MM) and the other heuristics becomes
more significant when the deadline is loose. The reason is that when tasks have
tight deadlines, regardless of the mapping heuristic utilized, they cannot complete
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Figure 11: Percentage of tasks completed on time when immediate and batch mode resource allo-
cation heuristics are applied and the deadline of tasks varies. Higher values of β, in the horizontal
axis, shows looser deadlines for tasks. In this experiment, the machine queue-size limit is 2, the
tasks’ average input data size is 64 MB, and 1,000 tasks are considered for the evaluation. Results
are averaged over 100 runs.

before their deadlines. However, when the deadlines are loose, the tasks have
more time to complete before their deadlines, and the impact on the performance
by making efficient allocation decisions in mapping heuristics such as MOC is
more visible on the performance.

9. Conclusion and Future Work

In this paper, we considered the problem of dynamic resource allocation in
an oversubscribed heterogeneous computing system with the goal of completing
tasks before their individual deadlines and being robust against stochasticity in
task execution times. The tasks are subject to individual hard deadlines and they
are dropped if they cannot meet their deadlines. For a currently executing task that
misses its deadline, we studied two scenarios: (a) it cannot be dropped (i.e., has to
complete its execution) and (b) the currently executing task is dropped as soon as
it misses its deadline. We assumed that a distribution function is available for the
execution time of each task on each machine from historical data or experimenta-
tion. We investigated immediate and batch mode resource allocation schemes to
map arriving tasks to machines. We proposed methods to determine the stochastic
completion times in the presence of task dropping. Then, the stochastic comple-
tion time was used to define a robustness measure to quantify the performance
of immediate and batch mode resource allocations. The robustness measure was
utilized by the resource allocation heuristics that were proposed for the system.
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We observed that MOC, which is a batch mode heuristic that operates based
on the proposed robustness measure, statistically outperforms other heuristics,
specifically in circumstances where the currently executing task cannot be dropped
and has to be completed. This heuristic can tolerate increases in the tasks’ input
data size and increase in the over-subscription level better than other evaluated
heuristics. In addition, we noticed that the immediate mode heuristics have ac-
ceptable performance when the over-subscription level is low. Therefore, in such
circumstances, batch mode resource allocation is not recommended. However, the
immediate mode heuristics could not tolerate an increase in the over-subscription
level compared to the MOC and MM heuristics. We also concluded that the per-
formance of the MOC and MM heuristics have an inverse relation with the ma-
chine queue-size in batch mode. Therefore, we chose to limit the machine queue-
size to the minimum (one pending task and one task executing) in each machine.

In the future, we plan to work on resource allocation heuristics that consider
the possibility of delaying the allocation of tasks to find better allocations later.
Also, we are interested in implementing the stochastic robust resource allocation
schemes in a real system. However, we do not have such infrastructure available
at the time of this study.
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