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SOME GAMMA FUNCTION INEQUALITIES

HORST ALZER

Abstract. A class of completely monotonie functions are presented involving

the gamma function as well as the derivative of the psi function. As a con-

sequence, new upper and lower bounds for the ratio r(x + 1 )/r(x + s) are

obtained and compared with related bounds given in part by J. D. Keckic and

P. M. Vasic. Our results are further applied to obtain functions which are

Laplace transforms of infinitely divisible probability measures.

1. Introduction

In 1959 W. Gautschi [8] presented the following remarkable inequalities for

the ratio T(n + l)/T(/i + s) :

(1.1) «i-* < EgLtlj < exp[(l - s)yin + l)],       0<s<l, «=1,2,...,

where ip = F/T denotes the logarithmic derivative of the gamma function.

The inequalities (1.1) have found great interest, and several intriguing papers

were subsequently published, for instance, by T. Erber [5], J. D. Keckic and

P. M. Vasic [10], A. Laforgia [12], and S. Zimering [17], providing new bounds

for Yin + l)/Tin + s).
The following sharpening of (1.1) was proved by D. Kershaw [11] in 1983:

(*+l)
i\i-s   r(x + i)

< exp  il-s)y/[x-\-r— 0<5< 1, x>0,

and three years later, J. Bustoz and M. E. H. Ismail [3] established a remarkable

more general result. They proved that the two functions

., .     Tix + s)       \..      ,    /      s+l\
0<5<  1,

and
-, ,    r(x + l) /      sy-1 „

/2W = rW(I+2)    '     0<i<1'
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are strictly completely monotonie on (0, oo). A function / is said to be strictly

completely monotonie on an interval / c R if (-l)"ß"\x) > 0 for all x £ I

and « = 0, 1,2,.... If (-l)nßn)(x)>P for all x£l and« = 0, 1,2,...,

then / is called completely monotonie on /. Since

lim f(x) = lim f2(x) = 1,
X—»oo X—»oo

inequalities (1.2) are immediate consequences of the fact that fx and /2 are

strictly decreasing on (0, oo).
Completely monotonie functions play a dominant role in areas such as nu-

merical analysis [16], probability theory [6], and physics [4]. An interesting

exposition of the main results can be found in [15, Chapter IV]. Because of

"the importance of completely monotonie functions... it may be of interest to

add to the available list of such functions" [9, p. 1]. Hence, in the next section

we introduce a new class of strictly completely monotonie functions and derive

new upper and lower bounds for T(x + 1)/T(x + s). This is the main purpose

of this paper.
Closely related bounds for F(x + 1)/T(x + s) were discovered by Keckic

and Vasic. In §3 we refine one of their inequalities and compare these bounds

for T(x + 1)/T(x + s) with the ones deduced in §2. Finally, as an application,

we present functions in §4 which are Laplace transforms of infinitely divisible

probability measures.

2. The main results

The proof of Theorem 1 is based on the following easily established

Lemma. If h' is strictly completely monotonie on (0, oo), then exp(-h) is also

strictly completely monotonie on (0, oo).

An extended version of the lemma can be found in [1, p. 83; 6, p. 441].

Theorem 1. The function

T(x + s)   (x+l)*+'/2
x ~ Mx, s) - r{x + 1} (jf + s)x+s_x/2

x exp l s - 1 + -pr[ ip'(x + 1 + a) - y/'(x + s + a)]\     (a > 0)

is for every s £ (0, 1) strictly completely monotonie on (0, oo) if and only if

a> 1/2. Furthermore, the function

x~l/fßix,s)       (ß>P)

is for every s s (0, 1) strictly completely monotonie on (0, oo) if and only if

ß = P.
Proof. First we show that the functions

hx(x) = logfa(x,s)   (a>l/2)       and       h2(x) = logf0(x, s)

satisfy
(-l)"(-/zi(x))(n)>0   and   (-l)n(h2(x)){n) > P

for x > 0 and « = 0,1,2,_.   By the above lemma it follows that x >->

faix, s)   (a > 1/2) and ih l/f0(x, s) are strictly completely monotonie on

(0,oo).
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A simple calculation reveals

x + i     i
-h[(x) = y/(x+l)-y/(x + s)- log —- + ^

339

X + 1      X + s

l_

T2
[y/"ix + 1 + a) - y/"ix + s + a)].

Because of the integral representations

r°°
/    e-atdt=-,       a>P,

Jo a

rie-a'-e-b')—=log(^\,        a>P, b > 0 (see [7, p. 643]),

f°° e~t _ e-al
ipia) = -y+       —-— ¿/,        a >0 (see [13, p. 16]),

Jo      i — e

and

we obtain

with

This implies

(2.1)

f°° t e~at
V"ia) = -       -—— dt,       a>P,

Jo     i — e

/■OO

-h[ix)= /   [e-'{x+s)-e-t{x+x)]pa(t)dt

Jo

Pa(t) =
l2-tle ln-at 1    1

12(1 -<?"')     2     t'

/•OO

(-l)"(-«;(x))<")= /    [e
Jo

-t(x+s) _ p-t(x+lUtn]t"Pa(t)dt.

We now prove:   pa(t) > 0 for t > 0 and a > 1/2.   Since a t-» pa(t)  is

increasing, and since 2k > (k + l)(k + 2)/3 for k = 3, 4, ... , we obtain

Pait) > Plßit)

1

2(<?<-l)
-)Z

' k=3

.k     (k + l)(k + 2)
kT

tk+\

(k + 2)\
>0,

and we conclude that the integrand in (2.1) is positive for / > 0. This leads to

(-1 )"(-«',(x))(n) >0   forx>0andn = 0, 1,2, ... .

Now we prove the second part of the theorem. We have

1 1x + s
h'2(x)= - ip(x+ l) + y/(x + s) -log—— + 2

+ -^W"(x+l)-ip"(x + s)],

X + S       X + 1

and using the integral representations listed above, we obtain

/•OO

h'2(x) = /    [é>-/U+í) - e-'{x+x)]q(t) dt
Jo
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12-t2

«W = 5 + 7 ~ Ï2f
Hence,

/•OO

(2.2) (-l)»(h'2(x))W = /    [e-'
Jo

s)-e-t(x+i)]t"q(t)dt.

It remains to show that q(t) > 0 for t > 0, or

ß(i) = e'(t3 -6t+ 12) - 6(r + 2) > 0   for t > P.

Since ß(0) = Q'(P) = 0 and Q"(t) = e't2(t + 6) > 0 for r > 0, we get from

(2.2)
(-l)n(h2(x)){n) > 0   for x > 0 and n = P, 1, 2,

Let /? > 0 ; we suppose that 1/ f$ is strictly completely monotonie on (0, oo).

Because of

i E£íA**- = i, a>0, ¿>>0 (see [13, p. 12])
x—oo Y(x + b)'

and Hindoo y/'ix) = 0, we obtain

lim l/fßix,s) = 1.
x—»oo

By assumption, 1/yjj is strictly decreasing; hence we have fßix, s) < 1, or

(x + l)x+x'2 exp is - 1 + ^dVt'ix + l+ß)- y/'ix + s + ß)]\

(2.3)
T(X+1) ]X+s-X/2

<T(x + s)[X + S)

for all s £ (0, 1) and x > 0. If we let 5 tend to 0 and then let x tend to

0, inequality (2.3) reduces to exp(-l - 75/?-2) < 0. We assume that fa (with

a > 0) is strictly completely monotonie on (0, 00). This implies

(2.4) Fx(s)>Fx(l)   for0<5< 1 andx>0,

with

Fx(s) = logr(x + 5)- ix + 5- - jlog(x + 5) + 5- j= w'(x + s + a).

From (2.4) we conclude

dFxis)

(2.5) ds

1
^ = „(x+l)-log(x + l) + 2(jc+1)     12

< 0   for x > 0.

\p"ix+ 1 -fa)

Setting
/.OO

g(a) = I    e'
Jo

we obtain (see [7, p. 824])

■at 1 1 1

l+7 + 2
dt, a>P,

g(a) = y,(a)-log(a) + ±-a>-^2
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and

b2 + b3
■¥"(b) = i, + i-i-g"ib), b>P.

Thus, we get from (2.5)

P > (a + af[l2g(a) - y/" (a + a)]

(a + a)3
> - + a + a+l-(a + ayg"(a + a)

(I-2c
a

(a + ayg"(a + a).

Since lim^-.oo x3g"(x) = 0 (see [7, p. 824]), the last inequality implies a >

1 /2. This completes the proof of Theorem 1.   D

The functions fa  (a > 1/2) and l/fo are strictly decreasing and both tend

to 1 as x tends to oo . This leads to the following bounds for T(x+ l)/r(x+s).

Corollary 2. The inequalities

(x+l)*+l/2

ix + s)x+s-V2

(2.6)

exp i s - 1 + -^[y'ix +l + ß)- xp'ix + s + ß)\ 1

r(x + i)     (x + i)*+1/2      r    ,    i r ,,
<î\x-Jj<(x + s)^-i/2^{s-^V2[^X+l+a)

ip'(x + s + a)] I

(0 < ß < a) are valid for all s g (0, 1) and x > 0 if and only if ß = 0 and

a> 1/2.

Remark. Since a >-> y/'ix+l + a)-ip'ix +s+ a) (sg(0, 1), x > 0) is strictly

increasing on (0, oo), the upper bound for T(x + 1)/T(x + s) is best possible

if a= 1/2.
In the Introduction we mentioned that several authors have studied inequal-

ities for the ratio T(x + 1)/T(x + s). This is in particular true for the special

case j = 1/2. We refer to the paper of D. V. Slavic [14], which contains a

summary of interesting inequalities for T(x + 1)/T(x + 1/2). An application

of (2.6) with 5=1/2 yields:

Corollary 3. //

a„

then

(2.7) a„<i-l) n+l

1 + log   2
,r2((«+l)/2)    n"

T2(n/2)     (n+ l)n)

2 n 1

I?       ¿^    l>        1-2

k=l

<an+x « = 1,2,

Proof. A direct computation reveals that the left-hand inequality of (2.7) holds

for « = 1. The other cases follow from (2.6) (with s = 1/2, a = 1/2, ß = 0)
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and the formula

1 • ß + l)-*' (n-±l)    =Y(-Dk(n + k)
k=l

= (-1) n+l
2 "

TÏ-B-U
k+lK-2

k=l

D

We note that lim„_>00(2/«)1/2r((«-i- l)/2)/T(«/2) = 1 implies lim^ooo,, =
0.

3. The inequalities of Keckic and Vasic

In 1971, J. D. Keckic and P. M. Vasic [10] published the double inequality

(3.,) i^-»<M<»^>,       *>„>,.
7Û-1 Ha)   fl«->/2'

If we denote by

/(a, 6)
1 /&*

l/(b-a)

a>P, b>P, a^b,

the so-called identric mean, then inequalities (3.1) yield the following bounds
for the (b - a)th power of I(a, b) :

(3.2) Í)
1/2 T(b)

<I(a,b) b-a m)< *rw b > a > 1.
r(fl) --*-"-'     - w v^y  " aria)'

The identric mean has been investigated intensively in recent years and many

remarkable inequalities for /(a, b) have been published by many authors (see

[2, Chapter VI] and the references therein). However, we could not locate any
other inequalities providing a relationship between the identric mean and the

gamma function.

It is tempting to look for a refinement of (3.2). A natural question to ask is:

What are the greatest number r and the smallest number 5 such that

œ'l<'<-^<ari
holds for all real numbers b > a > 1? We prove that r = 1/2 and 5 =

y = 0.5772... are the best possible constants. In particular, we provide a

sharpening of the left-hand side of (3.1).

Theorem 4. The inequalities

(3.3) - - ■  r<6>

(I)' <Iia,b)"-a <
bVTib)

Via) -""->"' \a)  Via)

are valid for all real numbers b > a > 1 if and only if r < 1/2 and s >y.

Proof. We assume that (3.3) holds for all b > a > 1. Setting a = 1, we obtain

(3.4) r < uib) < s

for b > 1, with

uib) = il-b + blogib) - logTib))/log(è).
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Since lim^oo u(b) = 1/2 and lim^! u(b) = y, we conclude from (3.4) that

r < 1/2 and s > y . It remains to show that the right-hand inequality of (3.3)
with s = y is valid for all b > a > 1. We define for b > 1

v(b) = y log(b) + logT(b) - blog(b) + b.

Differentiation yields

bv'(b) = y + b[y/(b)-log(b)].

Putting w(b) = bv'(b), we obtain

w'ib) = vib) + by/'(b) - log(b) - 1.

Using the formula

1        f°°
¥(b) = log(b)-j5-J    ô(t)e-btdt

with ô(t) = l/(e' - 1) - j + i (see [7, p. 824]), we have

/»OO

w'(b)= /    ô(t)(bt- l)e-btdt.
Jo

Because of

(i smh(t/2))2ô'(t) = (sinh(í/2))2 - (t/2)2 > 0   for t > 0,

we conclude that ô is strictly increasing on (0, oo). Setting A(t) = (bt-l)e~bi,
we get

/■l/O /-oo

w'(b)= ô(t)A(t)dt+       ô(t)A(t)dt
Jo Jl/b

>s(i)fmd'+iil)£mä'

■'ö)jf
I/o

ibt-l)e~btdt = P.

This implies w(b) > iü(1) = 0 for b > 1. Thus, v is strictly increasing

on [1, oo), and we obtain v(b) > v(a), which is equivalent to the second

inequality of (3.3) with s = y .   D

If we set b = x+l and a = x + s, then (3.3) with r = 1/2 and s = y yields
the following inequalities, closely related to (2.6),

(x + i)x+x-?    x   Tjx + i)     jx + iy^2     ,

y     ' ix + s)*+'-r Tix + s)     (x + 5)^-1/2 *     '

which are valid for all real numbers x and s satisfying s < 1 and x + s > 1.

We note that (2.6) and (3.5) hold in different domains, so that both double
inequalities might be of interest.

In what follows we compare the bounds for T(x + 1)/T(x + s) given in (2.6)

and (3.5). Since y/' is strictly decreasing on (0, oo), we obtain

\p' (x + |) - y/' (x + 5 + j) < 0   for x > 0 and P <s < 1,

which implies that the upper bound in (2.6) is an improvement over the upper

bound in (3.5) for all x > 0 and J G (0, 1). In particular, we have shown that
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the right-hand inequality of (3.5) is valid in a larger domain than the sharper

right-hand inequality of (2.6).
The situation with regard to the lower bound is different. An investigation

reveals that in M = {(s, x) £ R2\P < s < 1, x + s > 1} (the set where the left-

hand inequalities of (2.6) and (3.5) hold) neither lower bound is best overall.

First we prove that for every s G (0, 1) there exists a number xo(s) such that

for all x > Xo(s) the lower bound in (2.6) is better than the one in (3.5). This

is equivalent to

(3.6) i2Q-^log^±|<i/'(x+l)-^(x + S).

Because of

x + 2X2 < W'{X) < x + Jx1 + ox3 '        *>°(see[7, P-823]),

and
,      X+1 1-5 _      _ .log->-,        x > 0, 0 < s < 1,

x+s      l+x
we obtain

y/'ix + 1) - ip'ix + s) - 12 (I - y) log X
x + s

^ (l-5)[12(7-i)(x + 5)-l] | 1 1 1

(x+l)(x + 5) 2(x+l)2     2(x + 5)2     6(x + s)3'

This implies

lim x2
X—»oo

v,'ix+l)-v'ix + s)-12(j-y)
,    x+ 1
log

X + s
= oo,

and hence

ip'(x + 1) - ip'(x + s) > 12 I — — y j log-    for x > Xo(s).

Next we show that there exist (s, x) £ M such that the opposite inequality of

(3.6) holds. Since

lim^+l)-^(l) 24Q4
x^O log(x + l)-log(l)

< -0.926-••= 12^-

we conclude that there exists a number n g (0, 1) such that

12 (è ~y)log 7+1> ¥'{x+l)~ ¥'{x+s)

is valid for all x and s with x + s = 1 and 0 < x < n .

4. Infinitely divisible probability measures

In this section we present an application of Theorem 1 to probability theory.

We recall that a probability measure dp is infinitely divisible if for every natural

number « there exists a probability measure dp„ such that

dp = dp„ * dpn * • • • * dpn       (« times),

where * denotes convolution.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SOME GAMMA FUNCTION INEQUALITIES 345

An interesting connection between infinitely divisible probability measures

and completely monotonie functions is given by the following proposition:

A probability measure dp supported on a subset of [0, oo) is infinitely divis-

ible if and only if
/■OO

/    e-xtdp(t) = e~h{x),       x>P,
Jo

where h has a completely monotonie derivative on (0, oo) and h(P) = P. (See

[6, p. 450].)
This theorem, and the results from §2, lead to

Theorem 5. Let e > 0 and s £ (0, 1). Then the functions

x^ fa(x + e,s)/fa(e,s)       (a > 1/2)

and

x i-> foie, s)/Mx + e,s)

are Laplace transforms of infinitely divisible probability measures.

Related results can be found in [3, 9].
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