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Abstract  24 

Microscopic interpretation of stained smears is one of the most operator-dependent and time 25 

intensive activities in the clinical microbiology laboratory. Here, we investigated application of 26 

an automated image acquisition and convolutional neural network (CNN)-based approach for 27 

automated Gram stain classification. Using an automated microscopy platform, uncoverslipped 28 

slides were scanned with a 40x dry objective, generating images of sufficient resolution for 29 

interpretation. We collected 25,488 images from positive blood culture Gram stains prepared 30 

during routine clinical workup. These images were used to generate 100,213 crops containing 31 

Gram-positive cocci in clusters, Gram-positive cocci in chains/pairs, Gram-negative rods, or 32 

background (no cells). These categories were targeted for proof-of-concept development as they 33 

are associated with the majority of bloodstream infections. Our CNN model achieved 34 

classification accuracy of 94.9% on a test set of image crops. Receiver operating characteristic 35 

curve (ROC) analysis indicated a robust ability to differentiate between categories with area 36 

under the curve >0.98 for each. After training and validation, we applied the classification 37 

algorithm to new images collected from 189 whole slides without human intervention. 38 

Sensitivity/specificity was 98.4/75.0% for Gram-positive cocci in chains/pairs; 93.2/97.2% for 39 

Gram-positive cocci in clusters; and 96.3/98.1% for Gram-negative rods. Taken together, our 40 

data support proof-of-concept for a fully automated classification methodology for blood-culture 41 

Gram-stains. Importantly, the algorithm was highly adept at identifying image crops with 42 

organisms and could be used to present prescreened, classified crops to technologists to 43 

accelerate smear review. This concept could potentially be extended to all Gram stain 44 

interpretive activities in the clinical laboratory.  45 

 46 
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Introduction 47 

Bloodstream infections (BSI) are rapidly progressive infections with mortality rates up to 48 

nearly 40% (1, 2). Each day delay in institution of active antimicrobial therapy is associated with 49 

up to a ~10% increase in mortality (3, 4). Due to relatively low bacterial burden (<10 CFU mL
-

50 

1
)(5), patient blood is pre-incubated in broth culture to detect presence of bacteria, typically by 51 

semi-continuous measurement of CO2 production or pH with an automated blood culture 52 

instrument. If organism growth is detected, an aliquot of broth (now containing >10
6
 CFU mL

-1
) 53 

is removed for Gram stain smear and subculture. The Gram stain provides the first critical piece 54 

of information that allows a clinician to tailor appropriate therapy and optimize outcome (6).  55 

Despite recent advances in automation in other stages of the BSI diagnosis process 56 

(automated blood culture incubators and Gram staining systems) (7), Gram stain interpretation 57 

remains labor and time intensive, and highly operator-dependent. With consolidation of hospital 58 

systems, increasing workloads, and potential unavailability of highly trained microbiologists on 59 

site (8), automated image collection paired with computational interpretation of Gram stains to 60 

augment and complement manual testing would provide benefit. However, there has been a 61 

dearth of scientific exploration in this area, and several technical difficulties need to be 62 

overcome. 63 

Practically, automated Gram stain interpretation requires both automated slide imaging 64 

and automated image analysis. Although automated slide scanners and microscopes are being 65 

used in anatomic pathology, for example, telepathology (9), their application in clinical 66 

microbiology has been limited based on several technical challenges. First, Gram stained slides 67 

are typically read using 100X objectives, greatly complicating image acquisition due to the need 68 

for addition of oil during scanning. Second, microbiology smear material can adequately be 69 
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imaged only in a very narrow field of focus, a challenge for existing slide scanners. Third, Gram 70 

stained slides exhibit ubiquitous and highly variable background staining. This background may 71 

cause autofocus algorithms to target areas that are either devoid of bacteria or miss the 72 

appropriate focal plane entirely. Image analysis to identify Gram stain characteristics presents 73 

separate hurdles.  Importantly, background and staining artifacts, both fairly ubiquitous, often 74 

mimics the shape and color of bacterial cells. Therefore, algorithms relying on color intensity 75 

thresholding and shape detection will provide suboptimal accuracy.  76 

 Here, we provide proof-of-concept for automated, deep learning-based Gram stain 77 

analysis. The major conceptual and technical innovations were twofold. First, we developed an 78 

imaging protocol using an automated slide imaging platform equipped with a 40X air objective 79 

to collect highly resolved data from Gram-stained blood culture slides. Second, image data were 80 

used to train a convolutional neural network (CNN)-based model to recognize morphologies 81 

representing the most common causative agents of BSI: Gram-negative rods, Gram-positive 82 

cocci in clusters, and Gram-positive cocci in pairs or chains (1). CNNs are modeled based on the 83 

organization of neurons within the mammalian visual cortex, and were applied here based on 84 

their ability to excel in image recognition tasks without requiring time-intensive selective feature 85 

extraction by humans (10). Our trained model was subsequently evaluated for accuracy in 86 

comparison to manual classification. 87 

 88 

Results 89 

 Slide collection and manual classification. Blood culture Gram stain slides prepared 90 

manually during the course of normal laboratory operation were used for analysis. Slides were 91 

selected based on the presence of any of the three most common morphotypes observed in 92 
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bloodstream infection: Gram-positive cocci in clusters, Gram-positive cocci in pairs and chains, 93 

and Gram-negative rods. Less common morphotypes (e.g. Gram-positive rods or yeast) and 94 

polymicrobial infections were excluded. To capture real-world variability, slides were not pre-95 

screened for suitability for automated microscopy or deep learning, and had characteristic slide-96 

to-slide variability in staining intensity, staining artifacts, and sample distribution. We 97 

anticipated that inherent variability would pose a real-world challenge to slide classification 98 

models.  99 

 Automated image collection. CNN-based deep learning models require large datasets 100 

for training, typically at least on the order of thousands of images (and ideally at least an order of 101 

magnitude more). Therefore, an automated microscopy image acquisition strategy was used. We 102 

performed image acquisition on the MetaFer Slide Scanning and Imaging Platform 103 

(MetaSystems Group, Inc., Newton, MA) based on a robust Gram stain-compatible autofocus 104 

system, ability to sample multiple distributed positions on a slide to account for variations in 105 

specimen distribution, and automated slide loading capability to enable high throughput slide 106 

scanning.  107 

Clinically, Gram stains are read under oil immersion. However, semi-continuous addition 108 

of oil during automated microscopy was undesirable. In preliminary experiments with 109 

uncoverslipped slides (data not shown), we determined that the 40x dry objective provided 110 

sufficient resolution for machine-learning applications based on our prior experience (11). 111 

Therefore, we selected use of the 40x air objective for image acquisition, thus avoiding the 112 

requirement for oil immersion and allowing us to capture a larger field of view in each image.  113 

Deep convolutional neural network training.  For CNN training, a total of 25,488 114 

images were automatically collected from distributed locations on 180 slides. A representative 115 
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image is shown in Fig. 1. This image demonstrates features typical of blood culture Gram stain 116 

smears including: (A) intense background staining; (B) stain crystallization artifact; (C) diffuse 117 

background staining; (D) individually resolvable, high-contrast Gram-negative cells; and (E) 118 

individually resolvable, low-contrast Gram-negative cells. Of note, ubiquitous background 119 

material was often similar in color, intensity, and/or shape to bacterial cells.  120 

Highly experienced medical technologists can readily differentiate bacteria from this 121 

background. However, it is prohibitively difficult to manually define computational rules for 122 

Gram-stain classification that would adequately distinguish signal from noise in highly variable 123 

Gram-stain preparations. Therefore, we chose instead to use a deep learning approach, more 124 

specifically, a CNN, for image analysis. CNNs do not interpret raw images directly. Rather, they 125 

consist of a number of layers, each of which convolutes regions of the image to detect specific 126 

features. During each step of the learning process, a subset of images is presented to the network, 127 

allowing function parameters to be changed such that the CNN identifies features important for 128 

classification based on optimization of output accuracy. The final model is defined by a set of 129 

weights and biases that control the flow of information through the network such that the most 130 

discriminatory features in the images are used for classification.  131 

Each CNN model has a unique architecture that differs in organization, function and 132 

number of convolutional layers (10). The model used in our analysis, Inception v3, has 133 

previously been shown to perform robustly on complex image classification tasks including 134 

accurate classification of 1,000 different objects (12). The Inception v3 model is composed of a 135 

series of small convolutional networks termed “inception modules” and was designed to be less 136 

computationally intensive than comparable networks (13). Nevertheless, it is still a highly 137 

complex model requiring weeks to train even with state-of-the-art computational infrastructure 138 
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(12). However, training the entire network is not always necessary. Many image classification 139 

tasks can be addressed using pre-computed parameters from a network trained to classify an 140 

unrelated image set, a method called transfer learning (14). To this end, we used an Inception v3 141 

model previously trained to recognize 1,000 different image classes from the 2012 ImageNet 142 

Large Scale Visual Recognition Competition  dataset (15), and re-trained the final layer to 143 

identify our Gram stain categories of interest. 144 

From an image analysis perspective, blood culture Gram stains are mostly background. 145 

This excessive background increases the chance that a CNN will learn features during training 146 

that are unrelated to bacterial Gram-stain classification. This is termed overfitting and results in a 147 

model with high accuracy in classifying images on which it was trained (the training set), but 148 

poor accuracy when presented with an independent validation set. Therefore, we enriched the 149 

training data through use of selected image crops rather than whole slide images. A training crop 150 

selection tool was created using the Python programming language which allowed the trainer to 151 

select areas of an image containing bacteria with a single mouse click. This allowed us to train 152 

our model on regions of images containing bacteria without inclusion of excessive background. 153 

For model training (Fig. 2), we used our training crop selection tool to generate a total of 154 

100,213 manually classified image crops from 180 slides. Training and validation accuracy were 155 

indistinguishable (Fig. 2A), implying robust ability of the model to evaluate data on which it had 156 

not previously been trained. It further confirmed success in minimizing overfitting. During 157 

training, predictions made by our model were compared to the observed data, and differences 158 

between these values were quantified using a metric called cross-entropy (16). In practice, low 159 

cross-entropy indicates that the model fits the observed data well. Cross entropy decreased 160 

during training and plateaued after 12,000 iterations (Fig. 2B). Additional training iterations 161 
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beyond what is shown in Fig. 2 did not reduce cross-entropy or therefore improve model 162 

accuracy.  163 

Evaluation of model performance on a per-crop basis. Our CNN outputs relative 164 

probabilities that an image crop belongs to each of four categories of training data: specifically, 165 

Gram-positive cocci in chains/pairs, Gram-positive cocci in clusters, Gram-negative rods, and 166 

background (i.e., no bacteria) (17). Per convention (10), the class with the highest probability is 167 

assigned as the predicted class. Using this method, we tested our model using a test set of image 168 

crops not used during model training, and achieved a classification accuracy of 94.9%, providing 169 

an initial estimate of model performance. However, this metric may be impacted by the fact that 170 

the test set was not wholly independent of the training set, as it may still contain crops from the 171 

same slide or images used in developing the training and validation sets.  172 

Therefore, to rigorously evaluate ability of our model to generalize to an entirely 173 

independent dataset, we evaluated performance on an evaluation set of 4,000 manually classified 174 

image crops (n = 1,000 crops per class) from 59 slides that were not a component of the training, 175 

validation, or test sets.  Here, we achieved a similar overall 93.1% image crop classification 176 

accuracy. Importantly, the evaluation set also allowed us to calculate sensitivity and specificity 177 

on a per-category basis. Sensitivity/specificity was 96.6/99.4% for Gram-positive clusters, 178 

97.7/99.0% for Gram-positive chains, 80.1/99.4% for Gram-negative rods, and 97.4/93.0% for 179 

background. Calculation of the area under the receiver operating characteristic (ROC) curve 180 

(AUC) for each category (Fig. 3) further indicated robust ability to differentiate between 181 

categories (AUC > 0.98 for all).  182 

Development of whole-slide classification algorithm. To this point, we performed 183 

classifications on manually selected cropped images based on category assignment using the 184 
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highest probability output from the classification. However, we hypothesized that it was not the 185 

optimal way to interpret our results for whole-slide classification. Specifically, a whole slide 186 

classification task differs from our evaluation experiments in that it would necessarily examine a 187 

much larger number of crops that were not preselected and only consist of background. Given 188 

that background may simulate bacterial cells (Fig. 1), we expected a greater likelihood of false 189 

positive calls.  190 

To test this possibility during whole-slide classification, we decided to set a very 191 

stringent probability cutoff (0.99) for category calls to minimize false positives at the image crop 192 

level and maximize specificity at the whole slide level. Using this stringent cutoff, 65.6% of 193 

evaluated crops had a prediction with confidence of ≥0.99, and 99.6% of these were correctly 194 

classified. Classification accuracy was 99.9% for Gram-positive clusters, 100% for Gram-195 

positive chains, and 97.4% for Gram-negative rods. 196 

 To investigate how this stringent cutoff would impact false-positive rate on a per slide 197 

basis when applied to images cropped automatically, we collected 350 whole images containing 198 

no visible cells and which were not part of the training, validation, and evaluation datasets. 199 

Images were cropped into 192 non-overlapping crops (n = 67,200) using a custom Python script 200 

and evaluated using our trained model with the classification threshold described above. For each 201 

category, false positive rates were ≤0.006% on a per image crop basis. Based on an assumed 202 

normal distribution of false positives calls, we set a minimal threshold for slide classification of 6 203 

positive crops per category in order to achieve a desired  0.1% false positive whole-slide 204 

classification rate. 205 

Our whole-slide classification algorithm was then tested on 189 slides previously 206 

classified manually by a microbiologist and not a component of the training, validation, test, or 207 
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evaluation sets. Each of 54 images scanned per slide was divided into 192 non-overlapping 146 x 208 

146 pixel crops and evaluated using the parameters described above for a total of 10,368 crops 209 

per slide. We first qualitatively evaluated performance on automated image crops. This was 210 

achieved by writing a Python program (called TA for technologist assist) that would output 211 

images corresponding to crop calls by the CNN allowing for specific review. Fig. 4 shows 212 

examples of correctly classified image crops corresponding to each of the four classification 213 

labels. 214 

We then quantitatively evaluated our whole slide classification accuracy in comparison to 215 

manual classification by constructing a table that shows each slide’s manual classification and 216 

corresponding automated prediction (Table 1). We found that bacteria were detected in 84.7% (n 217 

= 160) of slides by our automated algorithm. For those slides where bacteria were detected, we 218 

calculated classification accuracy, sensitivity, and specificity. Classification accuracy was 92.5% 219 

across all categories. Sensitivity was >97% for Gram-negative rods and Gram-positive clusters. 220 

Sensitivity was lower for Gram-positive chains, largely owing to misclassifications as Gram-221 

positive clusters across a relatively lower overall number of slides (n = 40). Further, manual 222 

inspection of Gram-positive chains misclassified as clusters revealed that these slides were 223 

somewhat ambiguous owing to substantial clumping of cells. Specificity for Gram-positive 224 

chains and Gram-negative rods was >96%. Specificity was slightly lower (93.2%) for Gram-225 

positive clusters, again owing to misclassification of Gram-positive chains as clusters. Despite 226 

qualitative difference in background staining, accuracy of slides from aerobic bottles (88.8%) or 227 

anaerobic bottles (92.9%) was not significantly different (Fisher’s exact test, P > 0.05).  228 

Overall, the most common error was misclassification of slides as background, 229 

representing 70.7% (n= 29) of all misclassifications. On manual review of images from these 230 

 on July 18, 2018 by guest
http://jcm

.asm
.org/

D
ow

nloaded from
 

http://jcm.asm.org/


slides, we found that 44.8% (n = 13) had insufficient crops with bacteria to make a positive call 231 

based on our pre-established thresholds. We found an additional 48.3% (n = 14) had organisms 232 

that were either out of focus or very low contrast, and of these, the majority (78.6%, n = 11) 233 

contained Gram-negative organisms, as expected based on superficial similarity to background 234 

material. The remaining 6.9% (n = 2) of slides contained highly elongated Gram-negative rods or 235 

minute Gram-negative coccobacilli. Neither morphology was a component of our training set. 236 

Gram stain category miscalls (n = 5) other than conflation of Gram-positive cocci in chains and 237 

Gram-positive cocci in clusters, were related to a combination of poor representation of the 238 

causal organism in crops and excessive background artifact. 239 

 240 

Discussion 241 

 The Gram stain smear provides the first microbiological data to guide treatment for BSI.  242 

Notably, earlier results are correlated with positive patient outcome (6). However, interpretation 243 

of Gram stains is time intensive and strongly operator dependent, requiring a skilled technologist 244 

for interpretation. Concerningly, the most recent survey from the American Society for Clinical 245 

Pathology indicates that, as of 2014, trained microbiology technologist jobs in the United States 246 

have a vacancy rate of ~9%, and nearly 20% of technologists plan to retire in the next 5 years 247 

(8). This finding highlights the need for development of solutions to make the current work force 248 

more efficient. However, there has been relatively little progress in automation of tests requiring 249 

subjective interpretation such as the Gram stain. 250 

Lack of progress in this area is related to technical issues with automated microscopy and 251 

need for imaging interpretation algorithms that are robust to identifying rare organisms in the 252 

presence of variable background. Here, we demonstrated that the MetaFer Slide Scanning and 253 
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Imaging Platform provides a robust automated image acquisition system, capable of providing 254 

sufficient resolution for Gram stain analysis using a 40X dry objective. For such analysis, we 255 

chose to use a CNN based on its ability to excel in image analysis tasks with minimal human 256 

intervention. A summary of workflow for implementation, testing, and validation of our platform 257 

is provided in Fig. 5.  258 

 This work adds to the examples of successful CNN use in several areas of image-based 259 

diagnostics. These include detection of skin cancer (18); interpretation of echocardiograms (19); 260 

and detection of metastatic cancer in lymph nodes (20) in which combined contributions of 261 

pathologists and CNN increased sensitivity for diagnosis (21). A CNN has also previously been 262 

used by our group for early prediction of antibiotic minimal inhibitory concentrations in 263 

microscopy-based microdilution assays (11).   264 

Importantly, CNNs improve in performance as more image data is added to the training 265 

set. Unlike other machine learning models, however, training on more data neither increases the 266 

size of a CNN model, nor the complexity of model implementation.  Nevertheless, training of an 267 

entire CNN model requires substantial computational infrastructure. Here, we took advantage of 268 

an existing trained CNN and re-trained its final layers, a method called transfer learning (14, 18). 269 

In this way, we were able to train and implement our model using a standard office computer 270 

containing an Intel Core i7 CPU, 32GB RAM with no GPU (graphics processing unit, the 271 

computational workhorse for image analysis).  272 

Not surprisingly, implementation of the trained CNN for whole slide analysis using this 273 

computer infrastructure was relatively slow. We therefore piloted whole slide classification using 274 

a system containing an Nvidia GTX 1070 GPU. Though still underpowered compared to other 275 

currently available GPUs, it improved whole-slide classification time by a factor of 6, resulting 276 
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in a classification time of ~9 minutes. The best available GPUs are markedly more powerful than 277 

the GTX 1070 and are expected to provide even better performance (<5 minutes per slide), not 278 

even considering the ability of CNN algorithms to distribute computations across multiple GPUs.  279 

 Overall, we found that our trained model performed well on whole-slide image 280 

classification. Where cells were detected, we achieved overall classification accuracy of 92.5% 281 

and specificity of >93% for all classification labels with no human intervention. The most 282 

common classification error from our model was misclassification of slides containing rare 283 

bacteria as background, representing the majority (70.7%) of all classification errors. In practice, 284 

these misclassifications would be flagged for direct technologist review, making these low-285 

consequence errors. We also note that our sensitivity/specificity in whole slide image 286 

classification accuracy was modestly lower than on a per-image-crop basis. This is likely due in 287 

part to inclusion of slides with very few bacteria and therefore higher propensity for false-288 

positives. Optimization of data collection or slide preparation would likely bring our whole-slide 289 

accuracy close to that of per-image-crop accuracy.  290 

 Our study had several limitations. As a proof-of-principle examination, we included only 291 

the most common BSI pathogens and omitted several important, but less common bacterial 292 

morphologies, largely due to limitation in availability of training data. However, given an 293 

appropriate amount of training data, these could easily be incorporated into the Inception v3 294 

model, which can distinguish 1000 different categories and will be a future goal. Similarly, 295 

discrimination of polymicrobial infections could be incorporated by inclusion of “mixed” 296 

categories into our algorithm.  297 

 We also recognize that there are several steps that could be taken to improve 298 

classification. Foremost, the number of slides (and therefore image crops) used for training is 299 
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relatively modest and could be increased to improve CNN accuracy. In addition, our whole slide 300 

scanning protocol was based on selecting pre-defined positions for imaging that were invariant 301 

between slides. This contributed to inadequate sampling in a significant subset of slides, which 302 

we believe was the greatest contributor to reduction in model accuracy. This hypothesis is 303 

supported by the observation that misclassified whole slide calls were typically from slides with 304 

very few bacteria or poor sample spread. Notably, to address this issue, it is possible with the 305 

existing microscope platform to perform an automated rapid scan for areas of appropriate 306 

staining intensity and thereby pre-select regions of the slide that are more likely to have 307 

sufficient Gram stained sample for image acquisition.  308 

Gram stain smear preparation is also expected to have a significant impact on automated 309 

slide imaging. Here, we used slides prepared by technologists during the course of normal 310 

laboratory operation. Slides exhibited a high degree of variability in smear area, thickness, 311 

location, and staining intensity. We anticipate that standardization of these variables will 312 

improve ability of an automated microscope to consistently sample microscopic fields with 313 

evaluable organisms. Further, use of an automated Gram stain device for staining would also 314 

increase reproducibility of staining characteristics and further enhance accuracy. We plan to 315 

investigate all of these areas in the future. 316 

We envision a potential role of our technology in augmenting technologist classification. 317 

Given that manual interpretation of blood culture Gram stains by trained technologists are very 318 

accurate (22-24), our model could be used to enhance productivity by selectively presenting 319 

crops containing bacteria to local or remote technologists. This would increase efficiency of 320 

classification by sparing the operator the need to manually locate fields of interest among a 321 

preponderance of background. This would also conceivably reduce technologist read time from 322 
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minutes to seconds. Upon further development and intensive algorithm training, the platform 323 

could potentially also be used as a fully automated classification platform with no human 324 

intervention.  325 

In the era of laboratory consolidation and limitations in the number of skilled 326 

technologists (8), we believe our system could provide enhanced opportunities for rapid Gram 327 

stain classification at the site of care or during understaffed shifts in conjunction with later 328 

analysis at a central laboratory or day shifts. We further envision extension of CNN analysis to 329 

other smear-based microbiological diagnostics in the parasitology, mycobacteriology, and 330 

mycology laboratories. We believe that this technology could form the basis of a future 331 

diagnostic platform that provides automated smear classification results and augments 332 

capabilities of clinical laboratories. 333 

 334 

Materials and Methods 335 

Slide collection and manual slide classification. A total of 468 de-identified Gram-336 

stained slides from positive blood cultures were collected from the clinical microbiology 337 

laboratory at Beth Israel Deaconess Medical center between April and July, 2017 under an IRB-338 

approved protocol. Slides were prepared during the course of normal clinical workup. No pre-339 

selection of organism identity, organism abundance, or staining quality was performed prior to 340 

collection. Positive blood culture broth Gram stains included those prepared from both non-lytic, 341 

BD BACTEC Standard Aerobic (n = 232) and lytic, BD BACTEC Lytic Anaerobic Medium (n = 342 

196) (BD, Sparks, MD).  343 

All slides were imaged without coverslips using a MetaFer Slide Scanning and Imaging 344 

platform (MetaSystems Group, Inc., Newton, MA) with a 140-slide capacity automated slide 345 
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loader equipped with a 40x magnification Plan-Neofluar objective (0.75 Numerical Aperture, 346 

Zeiss, Oberkochen, Germany). For each slide, 54 images were collected from defined positions 347 

spanning the entirety of the slide. The first 279 slides collected were used in training, validation, 348 

and evaluation of our deep-learning model. The remaining 189 slides were classified manually as 349 

Gram-negative rods, Gram-positive chains/pairs or Gram-positive clusters using a Nikon 350 

Labophot 2 (Nikon Inc., Tokyo, Japan) microscope equipped with a 100x oil objective. Results 351 

were recorded for later use in evaluation of our whole-slide classification algorithm. 352 

Training a Deep Convolutional Neural Network. A training dataset consisting of 146 x 353 

146 pixel image crops was generated manually with the assistance of a custom Python script.  354 

The script allowed crop selection, classification, and file archiving with a single mouse click 355 

allowing large numbers of annotated crops to be saved in a short period of time in a manner 356 

directly accessible to the deep learning training program. Each crop was assigned to one of four 357 

classifications: Gram-positive cocci in pairs or chains, Gram-positive cocci in clusters, Gram-358 

negative rods, or background (no cells). Prior to training, the dataset was randomly divided into 359 

three subsets: 70% of image crops were used to train the model, 10% were reserved for hold-out 360 

validation during model training, and 20% were reserved for testing to evaluate model 361 

performance after completion of training. We used a transfer learning technique based on the 362 

Inception v3 convolutional neural network (CNN) architecture pre-trained on the ImageNet 363 

Large Scale Visual Recognition Competition (ILSVRC) 2012 image database (12). We used the 364 

Python language (version 3.5) and the TensorFlow library (25)(version 1.0.1) to retrain the final 365 

layer of the model using a custom graphical user interface (GUI) controlling a modified script 366 

(“retrain.py”) found in the TensorFlow GitHub repository (25, 26). Training was performed 367 

using mini-batch gradient descent (batch size 200) with Nesterov momentum (momentum = 0.9) 368 

 on July 18, 2018 by guest
http://jcm

.asm
.org/

D
ow

nloaded from
 

http://jcm.asm.org/


(27) and cross-entropy as the loss function (16). The initial learning rate was 0.001 and decayed 369 

exponentially at a rate of 0.99 per epoch. The output layer was a 4-way softmax classification 370 

which assigned probabilities to each of the four categories described above.  371 

Analysis of model performance on a per-crop basis. Using our trained CNN, we 372 

evaluated model performance on a per-image-crop basis using an evaluation set of 1,000 373 

manually selected crops from each class (total crops = 4,000), all of which were independent of 374 

the training, validation, and testing datasets. For each category, true positives were defined as a 375 

crop correctly classified as the category of interest; false positives were defined as crops that 376 

were incorrectly classified as the category of interest; true negatives were defined as crops 377 

correctly classified as a category other than the category of interest; and false negatives were 378 

defined as crops incorrectly classified as a category other than the category of interest. 379 

Sensitivity and specificity were modeled as receiver operating characteristic (ROC) curves for 380 

each classification label by varying the softmax classification thresholds required for positivity. 381 

Sensitivity was defined as 
True Positive

True Positive+False Negative
. Specificity was defined as  382 

True Negative

True Negative+False Positive
. Area under the ROC curve (AUC) was calculated for each label using 383 

the trapezium rule as implemented in the scipy library (28). ROC curves were visualized using 384 

the matplotlib library (29). 385 

Development of whole-slide classification algorithm. False positive rates for 386 

automatically cropped images containing only background were determined by analysis of 350 387 

whole images from 40 different slides. Images contained no visible cells and were independent 388 

of the training, validation, testing, and evaluation datasets. Each image was automatically 389 

segmented into 192 non-overlapping crops of 146 x 146 pixels using a custom Python script 390 

(total crops = 67,200) and classified with our trained CNN using a stringent cutoff for positivity 391 
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(cutoff = 0.99). If no label achieved a probability greater than or equal to the cutoff, the 392 

associated crop was called background. False positive rates were recorded for each classification 393 

label.  394 

Whole-slide classification. Using the automated imaging protocol outlined in the 395 

“Automated Image Collection” section, we evaluated whole slide classification accuracy using 396 

images collected from 189 slides which were previously manually classified (outlined in the 397 

“slide collection and manual slide classification” section). For each slide, a custom Python script 398 

was employed to automatically divide each image of the 54 images collected from predefined 399 

locations into 192 crops of 146 x 146 pixels. Each crop was evaluated by our trained deep-400 

learning model and probabilities assigned to each category (Gram-negative rods, Gram-positive 401 

chains/pairs, Gram-positive clusters, or background) with a stringent cutoff for classification 402 

(cutoff = 0.99). If no label met the classification cutoff, the crop was classified as background. 403 

After classification of all crops from a slide, the category corresponding to the greatest 404 

number of predicted crops was selected; however, only if the number of crops in the selected 405 

category exceeded the number of expected false positives (calculated in the “Determination of 406 

False Positive Rate” section). If none of the three label categories representing organisms were 407 

selected based on these criteria, the slide was classified as background. All results were recorded 408 

and used to construct a confusion matrix tabulation per convention in the deep learning field 409 

(30). Whole-slide sensitivity and specificity were defined and calculated as in the “Analysis of 410 

model performance on a per-crop basis” section. Classification accuracy for slides from aerobic 411 

or anaerobic bottles was compared using Fisher’s exact test with significance defined as P < 0.05 412 

(JMP Pro version 13.0). 413 

 414 
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Figures Legends 515 

 516 

Figure 1. Representative image collected using our automated imaging protocol. This image 517 

shows several features characteristic of blood culture Gram stains including (A) area of intense 518 

background staining, (B) artifact from stain crystallization, (C) diffuse background staining, and 519 

individually resolved Gram-negative rods with (D) high and (E) low contrast compared to 520 

background.  521 

 522 

Figure 2. CNN Model Training Results. (A) Training and validation accuracy increased 523 

exponentially, plateauing at ~95%. There was no observable difference in training and validation 524 

accuracy, implying negligible overfitting during training. (B) Cross entropy is a metric used for 525 

comparing model predictions to observed data. Lower cross entropy values indicate a better fit of 526 

the model to the data. During training, we observed that cross entropy decreased to a final value 527 

of ~0.1. Cross entropy plateaued at approximately 12,000 training iterations indicating that 528 

additional learning was not possible without increasing the number of input images, a goal of 529 

future work. 530 

 531 

Figure 3. Receiver operating characteristic (ROC) curve. Curves were generated for each 532 

category by varying threshold for positivity. Area under the curve is indicated in parentheses. 533 

 534 

Figure 4. Automatically classified crops. Each image represents a correctly classified crop that 535 

was automatically extracted from an image during whole slide classification. Rows of images 536 

represent (A) background, (B) Gram-positive chains/pairs, (C) Gram-positive clusters, or (D) 537 
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Gram-negative rods. One practical application of the platform would be to present such organism 538 

enriched images to a technologist to expedite smear review.  539 

 540 

Figure 5.  Summary of CNN training and evaluation. Prior to CNN training, we collected 541 

images using an automated microscopy protocol (image example shown in Fig. 1). For CNN 542 

training and preliminary testing, 100,213 image crops were manually selected, classified, and 543 

randomly partitioned into training, validation, and test sets. Sizes of boxes correlate to relative 544 

size of each data set. During iterative model training, accuracy was monitored using the training 545 

and validation sets (Fig 2.). After completion of training, model accuracy was initially assessed 546 

by quantification of accuracy on the test set (as discussed in text). However, the test set image 547 

crops came from the same slides as the training set. We therefore further assessed performance 548 

using a completely independent evaluation set to obtain a more reliable, real-world readout of 549 

image crop classification accuracy and to generate receiver operating characteristics (ROC) 550 

shown in Fig 3. Finally, we used a second independent dataset of automatically generated image 551 

crops from 189 slides to evaluate whole slide classification accuracy. Each whole slide 552 

classification was based on aggregate CNN categorizations of all image crops from a given slide 553 

(examples of such crops are shown Fig. 4). Accuracy was determined in comparison to manual 554 

slide interpretation (Table 1). 555 

 556 

 on July 18, 2018 by guest
http://jcm

.asm
.org/

D
ow

nloaded from
 

http://jcm.asm.org/


Table 1. Confusion matrix of whole-slide classification results. 557 

  Predicted Classification (n)   

Human Classification 

 

Gram-negative 

Gram-positive 

pairs or chains 

Gram-positive 

clusters 

Background 

Sensitivity % 

% (CI)
a
 

Specificity 

% (CI)
a
 

Gram-negative  51 1 0 17 98.1 (94.3-100) 96.3 (93.7-98.9) 

Gram-positive pairs or chains  3 27 6 4 75.0 (60.9-89.0) 98.4 (90.8-100) 

Gram-positive clusters  1 1 70 8 97.2 (93.4-100) 93.2 (89.7-96.6) 

 558 

CI = 95% confidence interval 559 

a
Based on slides where bacteria were detected 560  on July 18, 2018 by guest
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