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 The Annals of Probability
 1993, Vol. 21, No. 1, 248-289

 THE CONTINUUM RANDOM TREE III

 BY DAVID ALDOUS1

 University of California, Berkeley

 Let (W(k), k 2 1) be random trees with k leaves, satisfying a consis-
 tency condition: Removing a random leaf from R(k) gives R(k - 1). Then
 under an extra condition, this family determines a random continuum tree
 ?/, which it is convenient to represent as a random subset of 11. This leads

 to an abstract notion of convergence in distribution, as n -A o, of (rescaled)
 random trees En- on n vertices to a limit continuum random tree I/. The
 notion is based upon the assumption that, for fixed k, the subtrees of En
 determined by k randomly chosen vertices converge to R(k).

 As our main example, under mild conditions on the offspring distribu-

 tion, the family tree of a Galton-Watson branching process, conditioned on
 total population size equal to n, can be rescaled to converge to a limit
 continuum random tree which can be constructed from Brownian excur-
 sion.

 1. Introduction. Asymptotics for a particular model of random trees (the
 uniform random unordered labelled tree on n vertices) were discussed in
 Aldous (199la) using an explicit algorithm for generating that random tree.
 After resealing, those trees converge to a certain limit continuum random tree,
 which it is convenient to represent as a random subset, or more informatively
 as a random measure, in 11. The first purpose of this paper is to discuss
 ''convergence to a continuous limit" for general models of random finite trees.
 The notion of convergence of trees we develop is analogous to the classical
 treatment of weak convergence of processes. (Suppose finite-dimensional dis-
 tributions converge, then the limit finite-dimensional distributions must be
 consistent, and under mild conditions define a "nice" process; then to show
 the original processes converge to this limit process, we need some extra
 "tightness" condition.) For convergence of rescaled random trees, we propose
 to use "subtree spanned by k randomly-chosen vertices" as the analog of
 "finite-dimensional distribution." If these subtrees converge (in the natural
 sense, for each fixed k), then the limit random trees (R(k)) must satisfy a
 certain consistency condition (Definition 1). In Section 2 we study in detail the
 consequences of this consistency condition. Under a natural extra condition
 (Condition 2), the family (R(k)) specifies a random continuum tree, formal-
 ized in general as a subset of 11 (Section 2.3). Under further conditions, one
 can specify continuum trees via codings from continuous real functions (Sec-
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 THE CONTINUUM RANDOM TREE III 249

 tion 2.7). The desired general notions of convergence of rescaled discrete trees
 to limit continuum trees follow easily (Section 3).

 Examples of consistent families are given in Section 4. In particular, in
 Section 4.3 we discuss from the present viewpoint the particular continuum
 random tree of Aldous (1991a), which we rename the Brownian CRT. The
 special model of that paper can be viewed as the Galton-Watson branching
 process with Poisson(l) offspring distribution, conditioned on total population
 size equal to n. The second purpose of this paper is to show (Theorem 23 in
 Section 5) that the conditioned Galton-Watson branching process with more
 general (finite variance) offspring distribution converges to the same limit
 Brownian CRT, up to a scale constant.

 This work provides the new mathematics needed for the "big picture" set
 out in detail in a companion survey paper Aldous (1991b). Here is a one-para-
 graph summary. Various combinatorial models of random trees correspond to
 conditioned critical Galton-Watson processes with specific offspring distribu-
 tions. In particular, the uniform random ordered tree on n vertices corre-
 sponds to the shifted geometric (1/2) offspring distribution. It has long been
 known that this particular model can be constructed from simple symmetric
 random walk on the integers, conditioned on first return to 0 being at time 2n.
 This construction makes it simple to show, in this particular model, that
 asymptotics of functionals of the random tree can be expressed in terms of
 functionals of Brownian excursion. [Though obvious in retrospect, this connec-
 tion was overlooked for many years: Louchard (1986) was perhaps the first to
 note the connection.] It seems intuitively clear that, in some sense, the random
 tree itself should converge to a limit tree constructible from Brownian excur-
 sion, and our results formalize this convergence. The "big picture" of Aldous
 (199ib) is that there are four distinct ways to look at the Brownian CRT:

 1. Via the global construction of Aldous (199la);
 2. Via the general coding from continuous functions (Section 2.7), applied to

 Brownian excursion;
 3. As the particular continuum random tree whose "finite-dimensional distri-

 butions" are specified by (33);
 4. As the limit of conditioned Galton-Watson trees.

 As previously mentioned, several different models of random labelled trees
 studied in the combinatorial literature are different special cases of condi-
 tioned Galton-Watson trees. A consequence of our Theorem 23 is that many
 functionals of these random trees have limiting distributions expressible in
 terms of Brownian excursion. This is discussed in detail in Aldous (199ib),
 Section 3.

 2. Theory for general random tree models.

 2.1. Graph-theoretic trees. To start with, let "tree" have its graph-theo-
 retic meaning, involving a finite set of vertices and edges. Regard trees as
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 250 D. ALDOUS

 rooted, that is, one vertex is distinguished and called the root. Picturing a
 "family tree," we can use the language of families. A vertex is an individual,
 the root being the progenitor. Each individual has some number of offspring
 (maybe 0), and each individual (except the root) has one parent. Initially we
 regard trees as unordered (= nonplanar), which means that we do not distin-
 guish birth orders (first, second.... ) of offspring of an individual. (The .ordered
 case is discussed in Section 2.6.) With these conventions, there is a finite set Tn
 of different (nonisomorphic, to be pedantic) trees with n vertices.

 In this paper we shall use the word "tree" or "graph-theoretic tree" to
 mean a tree with one further piece of structure: Each edge e has a strictly
 positive "weight" or "length" w(e). The distance d(v, x) between two vertices
 v, x is the sum of the edge lengths along the path from v to x. If edge lengths
 are not specified, we use the natural default convention: Set each edge length
 equal to 1. Rescaling a tree by c (for constant c > 0) means multiplying each
 edge length by c.

 Formally, a tree with n vertices (and hence n - 1 edges) could be repre-
 sented as a point

 (1) t = (F; x1,. ., xn-1) E Tn x Rn-l

 where ti is the corresponding tree without edge lengths, and the xi are the
 edge lengths. Representation (1) enables us to formalize the notion of conver-
 gence of trees to a limit tree, when the numbers of vertices remain bounded,
 and to talk about "distributions" and convergence in distribution of random
 trees to a limit random finite tree.

 Let t be a graph-theoretic tree, and let B be a subset of the vertices
 of t. Then we can define the reduced subtree r(t, B) associated with t and
 B as follows. For vertices v, v* E B the paths (root, V1, v2, ..., v) and
 (root, v*, v*, .. .,v*) share some maximal subpath (root, V1, v2 ...Xb) where
 b = b(v, v*) is the branchpoint or last common ancestor of v and v*. Let the
 vertices of r(t, B) be the root of t, the elements of B and all the branchpoints.
 And let the length w(u1, u2) of an edge (u1, u2) of r(t, B) be just the distance
 d(u1, u2) in t. In other words, an edge (ul, u2) of r(t, B) corresponds to some
 path (u1 = V1, v2, ..., VI = u2) in t, for which none of the intervening vertices
 are branchpoints or elements of B, and its length is the sum Ei w(vi, vi+ ).
 Define a proper k-tree to be a graph-theoretic tree with exactly k leaves
 labelled 1, . . ., k and such that all internal nodes (branchpoints) have exactly
 two children. The root may have either one or two children. Such a tree has
 exactly k - 1 branchpoints, and has either 2k - 1 or 2k - 2 edges (depending
 on the degree of the root). A reduced subtree r(t, B) with lBI = k will be a
 proper k tree if the branchpoints are distinct and if B contains no ancestor-
 descendant pair. Figure 1 illustrates a reduced subtree which is a proper
 5-tree.

 Consider the following setup. For each n we have a random tree $n on n
 vertices. (Imagine the edge lengths getting smaller as n increases.) Let
 (Vn 1 '>... X En n) be a uniform random ordering of the vertices of Yn. For k < n
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 consider the reduced subtree

 in which the vertex Vn,i is labelled i. Suppose that (for each k) as n -* co, the
 random trees r(Yn/, {Vn 1' ... V, k}) converge in distribution to a limit R(k)
 which is a random proper k-tree. [Here convergence in distribution has its
 natural meaning, formalized using (1).] Then the limit family (R(k); k 2 1)
 must satisfy the following consistency conditions. First, for each k the labels
 1, .. ., k of the leaves are exchangeable. Second, if we pick a leaf of R(k) at
 random, and remove the edge and branchpoint connecting that leaf to the
 remaining tree, then the remaining tree is distributed as R(k - 1). These
 conditions are combined in the definition below.

 DEFINITION 1. Let (R(k); k ? 1) be a family of random proper k-trees. For
 j < k let (L*,..., L*) be uniform random choice of j distinct leaves of R(k).
 The family is consistent if, for each 1 < j < k < co,

 r R(k), (L * LJ) =d _q(j)d

 It is convenient to state here another condition.

 DEFINITION 2. With the preceding notation, call the family (R(k), k 2 1)
 leaf tight if

 min d(Lk, LJ) -P O as k oo.

 In words, "leaf tight" means the distance from a random leaf to the nearest of
 k random-chosen leaves tends to 0 as k -> oo.

 For the remainder of Section 2 we forget about the family (En) and just
 consider a consistent family (R(k)) of random proper k-trees. We want to say
 that the family determines some "continuum random tree." One could talk
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 252 D. ALDOUS

 abstractly about a projective limit R(oo), but our goal is to give a concrete
 representation of a limit.

 2.2. Trees as subsets of 11. To discuss convergence of rescaled trees as the
 number of vertices -*> o, we use the idea of 11 representations introduced in
 Aldous (1991a). Consider a tree t with vertices (vi). It is easy to see (an explicit
 construction is given below) that there exist points (vi) in 11 such that
 root* = 0 and

 (2) 11i4 - vj*l = d(vi, vj) for all i, j,

 where II * is 11 distance. For each edge (vi, vj) of t we can create a path in 11
 from vi to vj* of length 11vj* - 0II (in general there are many such possible
 paths). Let S(t) be the closed subset of 11 consisting of the vertices (vi) and

 the connecting paths. Call S(t) a set representation of t. Let jL(t) be the
 empirical probability distribution on (v). Call 1t(t) a measure representation
 of t. We can now talk about convergence of set representations by using the
 Hausdorff topology on closed sets, and about convergence of measure represen-
 tations by using weak convergence of probability measures.

 REMARKS. In Aldous (199la) we defined the set representation to include
 only the vertex set, not the edges. The present definition seems more conve-
 nient in general, and the arguments of Aldous (199la) are unaffected by the
 change. One difficulty is that there seems no clean way to make representa-
 tions include the order structure of the trees, in the finite case. But we shall
 see that in asymptotic results, the order structure can be included in the
 representations.

 The sequential construction. This is the construction used in Aldous
 (1991a) for the special model considered there. Loosely, the construction is
 "add successive branches orthogonally." Let t be a graph-theoretic tree, and

 let (wl, . . ., Wk) be an enumeration of all the leaves of t. We embed the vertices
 (vi) of t as points (vi) of 11 as follows. Let (zi) be the unit vector basis of 11.
 For the vertices v1 in the path (root, V 1, V1, V . ... X , m = w1) from the root to
 w1, let v* i = d(root, vli)zl. Inductively on j, regard r(t, {wl,..., w;}) as
 constructed from r(t, {w1,..., wj_ }) by adding a branch (vj, 0, ... , vjm =
 wj) for which only vj 0 is in r(t, {w1,..., wj-}). Now vj*o has already been
 defined, so we may define V>i = V + d(vj 0, v, i)zj. Eventually each vertex
 has been embedded. It is easy to check the "isometry" property (2). By
 including the straight-line edges (vj*i, vj*i+ ) we get a set representation S(t)
 and a measure representation li(t).

 Given S(t), write [[x, y]] for the path in S(t) from vertex x to vertex y.
 Note that we can define the notion of reduced subtree in terms of set
 representations S(t): If B is a subset of vertices of S(t), then

 (3) T(S(t), B) = U [[0 x]].
 xE-B
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 THE CONTINUUM RANDOM TREE III 253

 This construction has some special properties, which are useful in later
 proofs (but not relevant to applications of our results). For x e 11, define the

 special path [[O, x]]sp from 0 to x to be the piecewise linear path through

 0

 (x1, 0, 0, 0, . ..

 (X1, X2 X O .0...)

 (X1,X2, X3, 0, ...)

 In the sequential construction, the path [[O, x]] in S(t) from 0 to a vertex x is

 always the special path [[O, x]],P. So we can write

 (4) S(t) = U [[?, w]IqSP
 1<i<k

 where (wy) are the leaves of the embedded tree. Another special property is
 that the branchpoint b = b(x, y) of vertices x, y of S(t) is given by the
 coordinatewise minimum

 (5) bbi=xiAYi.

 2.3. Continuum trees. The purpose of embedding into 11 is to be able to
 formalize the notion of trees with infinitesimally short edges.

 DEFINITION. Let S c 11 be a closed subset containing 0 and such that, for
 x, y E S, there exists a unique path [[x, y]] in S connecting x to y, and that
 path has length lix - yII. (Here a path is non-self-intersecting.) Such a set can
 be regarded as a topological tree with root 0. Note that the definition (3) of a
 reduced subtree T(S, B) still makes sense for a continuum tree, as does the
 notion of the branchpoint b = b(x, y) of two points x, y E S. We want the tree
 to be binary, and one way to state this is as follows.

 (a) If X1, X2, X3 E S are such that b(xj, x2) = b(xj, X3) = b(X2, X3) = b, say,
 then at least one of {X1, X2, X3} equals b.

 Say x E S is in the skeleton of S if

 x E [ 0, y [ [ for some y E S,

 where [[O, y[[ denotes the path from 0 to y, excluding the endpoint y. If not, we
 mix metaphors and say x is a leaf of S.

 Now let jL0 be a nonatomic probability measure ori 11, related to S by the
 following:

 (b),qo{x: x is a leaf of S} = 1.
 (c) A O{y: x E [[O, y]]} > 0 for each x in the skeleton of S.

 Then we say that the pair (S, /o) is a continuum tree.
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 254 D. ALDOUS

 Technical Remarks.
 1. Such a tree must have uncountably many leaves, by (b) and nonatomicity.
 2. If we just have a set S satisfying the conditions in the first part of the

 definition, up to and including (a), say S is a continuum tree set.
 3. If the requirements except (c) are met, then we can make (c) true by

 pruning away sets {y: x E [[O, y[[} of zero measure.
 4. As stated in Section 2.2, it is often convenient to work with special

 continuum trees, that is, those with the property:

 (d) For each x E S, the path [[O, x]] in S from 0 to x is the special path
 [[0, x]]sp.

 So far, S and /uO have been deterministic. By a continuum random tree (a
 phrase more euphonic than the logical "random continuum tree") we mean a
 random pair (,/, ) such that each realization ( i/(), p(l)) is a continuum
 tree.

 If ,u is a random probability measure on 11 and (Zi; i 2 1) are 11 valued
 r.v.'s, the phrase "(Zi) is an exchangeable sequence directed by ,u" means
 that, conditional on /L = AO, the sequence (Zi) is i.i.d. with distribution AuO.

 We now state the main result of Section 2.

 THEOREM 3. (i) Let (R(k); k 2 1) be a consistent family of proper k-trees.
 Suppose the leaf-tight property (Definition 2) holds. Then there exists a special

 continuum random tree ( A, ,u) with the following property. Let (Zi) be an
 exchangeable sequence in 11, directed by the random measure ,u. Then for
 each k,

 (6) 7( ,{Zl, * ,Zk}) is a set representation of &W(k).

 (ii) Conversely, let (a/, ,u) be a continuum random tree. Then (6) defines a
 family of graph-theoretic random trees (R(k)), and this family is consistent
 and leaf-tight.

 REMARKS. When (6) holds, say (,Y', ,) is a continuum random tree repre-
 senting (R(k)). Part (ii) is immediate from the definition of continuum tree:
 Conditions (a) and (b) and nonatomicity imply that each W(k) is a.s. proper,
 and the leaf-tight property follows from the result that an i.i.d. sequence is a.s.
 dense in its support. We included part (ii) merely for reassurance that the
 technical definition of "continuum tree" is exactly the right definition. The
 content of the theorem is part (i), and this will be proved in the next section.
 The proofs rest upon the exchangeability structure implicit in the consistency
 assumption. The simple exchangeability results we use are collected in Section
 2.5. Cautionary remarks on the extent of applicability of Theorem 3 are given

 ip Section 3.3.

 From Theorem 3, it is easy to see relations between properties of (O(k))
 and properties of (YI, pj). We state some of these now.
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 THE CONTINUUM RANDOM TREE III 255

 In general, the conditions of Theorem 3 do not imply that / is a.s. a
 bounded or locally compact set. (See the technical example at the end of this
 section.) In fact it is clear that, in the terminology of Definition 1, the
 condition

 max d(root, L ) is tight as k -o

 is necessary and sufficient for support(/i), and hence /, to be a.s. a bounded
 set. Similarly, define

 D(n, k) = max min d(L>, Lz ).
 1?j~n 1?i~k .

 Then D(n, k) is stochastically increasing in n, so D(n, k) *>d D(oo, k), say.
 The condition

 (7) D(oo, k) -d O as k -oo

 is necessary and sufficient for support(/i), and hence for A, to be a.s. compact.
 To see why, consider an i.i.d. sequence (Xi) with distribution /1O. Since an i.i.d.
 sequence is a.s. dense in its support, it is easy to see that the property "/Lo has
 compact support" is equivalent to

 (8) sup(E: /io(x: min d(x, Xj) > E} > O }-d O as k -oo.

 By Theorem 3, D(oo, k) is distributed as

 sup E: /ix: min d(x, Zi > ?} > 0)

 So from (8) and de Finetti's theorem, D(oo, k) ad 0 if and only if support(/) is
 a.s. compact.

 Return to the setup of a deterministic continuum tree (S, pu) at the
 beginning of the section. An obvious but fundamental fact about continuum
 tree-sets S is the following. Fix x, y E S. The paths [[O, x]] and [[O, y]] coincide
 on [[O, b]], where b = b(x, y) is the branchpoint. The path [[x, y]] is the union
 of the paths [[O, x]] \ [[O, b]] and [[O, y]] \ [[O b]], and so has length

 lix - yll = lix - b(x, y) 11 + IIy - b(x, y) 1.

 So if x and y are close, then the paths from the root to x and to y coincide,
 except where near to x, and

 (9) ix - b(x, y) 11 < lix - yIl.

 More generally, it is easy to see:

 LEMMA 4. Let S be a continuum tree set. For all x, x', y, y' E S,

 I1b(x, y) - b(x', y')II < max(Ilx - YII, IlX' - Y'I)X

 Here are two typical technical uses of these facts.
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 256 D. ALDOUS

 LEMMA 5. Let S be a continuum tree set. Let (zi) in S be such that S is the
 closure of T(S, {zi}). Then the skeleton of S is U 1ci <j[O, zi[.

 PROOF. Fix y E S. There is a subsequence z . and yj E [[O, zj ]] such that
 y- y. The branchpoints b(y, yji) lie in [[O, y]] and (9) implies b(y, Yji) y. So

 [[OY[[ C U [[OYig[ C U [[O,zi]] ?
 i i

 LEMMA 6. Let S be a compact continuum tree set. Then condition (c) of the
 definition of continuum tree is equivalent to

 {x: x is a leaf of S) c supportf (lo).

 PROOF. Suppose (c) holds. Let z be a leaf of S. For small 8 > 0 let z(8) be
 the point of [[O, z]] with Ilz(8) - zil = 8. By (c) there exists y(E) E support(/io)
 such that z(?) E [[O, y(E)]]. By compactness there is a subsequence y(En) -y,
 say. Now

 liz - b(z,y(En))II < 8,

 b(z, y(E )) - b(z, y) by Lemma 4

 and so z = b(z,y). That is, z e [[O,y]]. But z is a leaf, so y = z and so

 z = lim y(8n) e support(i0).
 Conversely, suppose (c) fails at some point x in the skeleton of S. By

 compactness, we can choose y which attains the maximum of IIYII subject to
 x E [[O, y]]. Then y is a leaf of S, but y is not in the support of /Oo. O

 REMARK. Lemma 6 and condition (b) imply that for a continuum tree with

 S compact,

 support(,tu0) = {leaves of S).

 In general, condition (b) implies support(pto) c S. Botanical trees rarely have
 their trunks completely covered by leaves: Mathematically, this is the property

 (10) S = support(Ao).

 Call this property "leaf-dense." It plays a role in Section 2.7.

 Technical example. Informally, let (Sn, A,), n ? 1 be copies of some con-
 tinuum tree, with An reweighted to have total mass 2-n. Then make a
 continuum tree rooted at 0 containing an infinite path [0, oo) with Sn attached
 at point n on the infinite path. This gives an unbounded tree. If instead of the

 infinite path we take a path [0, 1] and attach Sn at 1 - 1/n, then the resulting
 tree is not locally compact because of orthogonality of branches.

 2.4. Proof of Theorem 3. Fix a consistent family (W(k)). Let (Lk,.. ., Lk)
 be a uniform random ordering of the k leaves of M(k). Apply the sequential
 construction of Section 2.2 to build a set-representation S(k) of M(k). By
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 THE CONTINUUM RANDOM TREE III 257

 consistency (and the Kolmogorov extension theorem) we can do this simultane-
 ously for all k. Precisely, there exist random elements (Li) of 11 such that for
 each k,

 (11) S(k) = U [[0, Li]]sp
 1<i<k

 is a set representation of a random graph-theoretic tree distributed as MM.
 Here we are using the special property (4) of the sequential construction.

 LEMMA 7. Suppose the family (R(k)) is leaf tight. Let vk(W,.) be the
 empirical distribution of (L1, .. ., Lk). Then

 (12) vk((w, *) -* jt(w, *) a.s. as k -*> o, for some random measure /u.

 Here vk is a random probability measure on 11, so convergence is weak
 convergence of probability measures.

 PROOF. Let wrj: 11 - 11 be the projection map x -> (xl,.. .,x;) onto the
 first j coordinates. We first quote a standard weak convergence fact [c.f.

 Billingsley (1968), Theorem 4.2]. Let (ldk) be probability measures on 11.
 Suppose we know limk 7Tjf8k exists, for each j. In order that limk lsk exists, it is
 necessary and sufficient that

 (13) Jim limsup,8k{x: lix - Trjx l > E} > 0 for each ? > 0.
 Jet k

 For j < k, wjLk is the point at which the path in Wk) from 0 to Lk
 branches away from the subtree Mj). Now fix j. Then using consistency we

 see that (,wjLk; k >j) is exchangeable, and so by de Finetti's theorem (see
 Section 2.5) has a directing random measure Oj(, * ), say, for which

 rv k(W, .) -> Oj(, ) a.s. as k -, co.
 So by (13), to prove (12) it suffices to prove

 l k

 (14) lim lim sup - E 1(IIL,-mLill >e) = 0 a.s.
 i~ -->0 k k j l

 By exchangeability and de Finetti's theorem, the limsup equals P(IL3+1 -
 irjLj+lll > E10j). The limsup in (14) is decreasing in j, so to prove a.s.
 convergence to 0 as j -> o it suffices to prove the expectation converges to 0,
 that is, it suffices to prove

 P(1lLj+l - 7rjLj+lll > 8) -> 0 as j > oo.
 But

 IlLj+l - nrjLj+lll < min IlLj+l - Lill
 1?i~j

 d min d(Lj+, Li+')

 2min+1 d(Lj+, Li+)
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 258 D. ALDOUS

 using exchangeability. Thus the leaf-tight property (Definition 2) implies
 Lemma 7. 0

 The sequence (Li) in (11), obtained from the sequential construction, is

 certainly not exchangeable in 11 (e.g., because L1, but no other Li, is a
 multiple of z1). But we can improve matters with a rerandomization argu-
 ment.

 LEMMA 8. In the setting of Lemma 7, let (Zi) be an exchangeable sequence
 in 11, directed by the random measure A. Then for each k,

 So(k) = U [[olZi]]sp
 1<i<k

 is a set representation of M(k).

 PROOF. Let S(m) be the special set representation of M(m) given by (11).
 For k < m let

 S(k, m) = T(S(m), {Ln7rm(l) * * L,7(J

 where (irmrj)) is a uniform random permutation of (1, ..., m). By consistency,
 S(k, m) is a set representation of M(k). Letting m -> oo, Lemma 7 and
 Lemma 9 (stated in the next section) imply that the position of the k leaves of

 S(k, m) converges in distribution to the position of the k leaves of So(k). But
 by (5) the positions of leaves determine the positions of branchpoints, and so
 the positions of all the vertices of S(k, m) converge to the positions of all the
 vertices of So(k). Hence So(k) is indeed a set representation of M(k). E

 PROOF OF THEOREM 3. Now define / to be the closure of U k So(k), that
 is, the closure of U 1<i <[O, Zi]]SP. The issue is to show that ( A), is a
 random continuum tree, and then the required property (6) is immediate from
 Lemma 8.

 First go back to the construction (11) and fix a realization of (Li). In what
 follows we omit "a.s.," where no subtleties are involved. Write S(O) =

 U <ji,[[OLi1]]SP and let 79* be the closure of S(Oc). In the sequential
 construction, the jth branch (i.e., the edge connecting Li to the preexisting
 tree) attaches to some point in the kth branch, for some k < j. Write k = b(j)
 to describe this relationship. It is intuitively clear that each point in Y can
 be associated with the sequence of branches used (partially) by the path from
 the root to that point. It is not hard to verify the following precise formulation.
 Each x e y \ S(O) corresponds to a sequence (1 =il ,i2 ji3 j...) with
 0(ji) =ji-1 and with I1b(Lji, L3._)II bounded. The' "correspondence" is that
 the special path [[O, x ]]p is the piecewise linear path through the branchpoints
 0(Lji L -1). From this correspondence, it is easy to see that * has the
 required "unique paths" property of a continuum tree. And the "binary"
 property (a) follows from the fact that each M(k), and hence S(oo), is a binary
 tree.
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 By Lemma 7, our realization of (Li) has limit empirical distribution ,LLO, say,

 a realization of Au. In Lemma 8 the (Z.) are i.i.d. with distribution A.. Because
 each point of support(A.) is a limit point of the (Li), we see that each Zi is in
 - *. In other words, the / defined above is a reduced subtree of A*, and so
 inherits the properties we established above for A* (In fact A= A* but we
 can avoid having to prove that fact.) It remains to prove properties (b) and (c)

 of continuum tree. By the definition of "proper k-tree," Au must be nonatomic
 and

 P(Z1 E [[0, Zj[[) = 0.
 Then by Lemma 5,

 P(Z1 is in the skeleton of TV) = 0.

 This implies (b). To prove (c), the fact that Zi is a.s. in support(A) and that Au
 is nonatomic implies that for E > 0,

 Af{x: lix - ZilI < e) > 0 a.s.

 Write a(Zi, 8) for the point a E [[0, Zi]] such that Ia - Zill = min(e, IIZill).
 Then by (9), for each x with lIx - Zill < E we have a(Zi, 8) E [[0, x]]. Thus

 AfLx: a(Zi, e) E [[O x]]) > 0 a.s.
 Letting E -> 0 and applying Lemma 5 gives (c). E

 2.5. Exchangeability lemmas. Let Au be a random probability measure. Let
 (Zi) be random variables whose joint distribution, conditioned on Au = Au is
 i.i.d. (AO0). In the terminology of Aldous (1985), (Zi) is an exchangeable
 sequence directed by Au. One statement of de Finetti's theorem [e.g., Aldous
 (1985), Section 3] asserts that every infinite exchangeable sequence is of this
 form, for some directing random measure.

 Here is a standard weak convergence result for exchangeable processes [see,
 e.g., Kallenberg (1973) or Aldous (1985), Proposition 7.20].

 LEMMA 9. Let (Zi i ? 1) be an exchangeable sequence directed by a
 random measure A. For each n let ((l,... , n) be exchangeable with empirical
 distribution An ,. Then the following are equivalent:

 (i) ((l X XWk ) >d (Zl1 X.Zk) as n -> oo, for each k.

 (ii) o~~~~~~n a>d Ad

 The next result is well known in various guises.

 LEMMA 10. Let -< be a random linear ordering of {1,2,3, ... } such that,
 for each k, the k! orderings of (1,..., k} are equally likely. Then there exist
 independent random variables (Ui) distributed uniformly on (0, 1) such that

 i -< j if and only if Ui < Uj.
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 OUTLINE OF PROOF. Let Un, i be the increasing rank of i in the ordering <
 on {1, 2, ... , n}. Then Ui = uMrn n'1Un i exists a.s. and has the asserted prop-
 erties.

 2.6. Ordered trees. Often it is natural to regard graph-theoretic trees as
 ordered (= planar). That is, we do distinguish birth orders (first, second, ... )
 of offspring of an individual. Of course, in such a case we could ignore the
 order structure and apply the previous theory of unordered continuum trees

 (AY2, sw). But it would be preferable to include the order structure in ( - , ,u).
 In a graph-theoretic tree, the order defines a linear order -< on the vertices

 of t, as follows. Say v1 -< v2 if either: (i) v1 is on the path from the root to v2;
 or (ii) at the branchpoint b(v1, v2), the edge leading toward v1 is earlier in the
 ordering than the edge leading toward v2.

 Conversely, one could specify an order on the tree by specifying a linear
 order on the vertices, though the linear order must satisfy certain compatibil-
 ity conditions (which we leave to the reader to formulate).

 Now reconsider Lemma 8, regarding the (G(k)) as ordered trees. The linear
 ordering -< on the vertices of W(k) induces a linear ordering (which we also
 call -<) on (Z1, ... , Zk), and hence on (Zi, 1 < i < oo). It is easy to show this
 extends to a linear order on

 Thus we can define a (deterministic) ordered continuum tree to be a triple

 ( - ,,u0 -<), where -< is a linear order on Y which satisfies certain compati-
 bility conditions. But there is an alternative way, well-known in the combina-
 torial literature, of looking at ordered trees, which we now discuss.

 Coding ordered trees as walks. Let t be an ordered graph-theoretic tree on
 n vertices. Then we can define f: {1, 2, ... , 2n - 1} - {vertices of t}, which we
 regard as a walk ("depth-first search") around t, as follows.

 f(1) = root.

 Given f(i) = v, choose, if possible, the first (in the ordering) child w of v
 which has not already been visited, and let f(i + 1) = w. If not possible, let
 Ai + 1) be the parent of v.

 This walk traverses each edge once in each direction. The walk gives the

 order structure on the vertices: v1 -< v2 if and only if f '(v1) < f-'(v2), where
 f- (v) = min{t: f(t) = v}.

 Next we define the search-depth function f: {1, 2, .. ., 2n - 1} -> [0, cc) by:

 (15) f(i) = d(root, f(i)), 1 < i < 2n - 1.

 It is easy to check that the function f determines the ordered tree t. This
 construction suggests two possibilities for continuum trees.

 .,(a) That an ordered continuum tree (--/, I -<) might more simply be
 described via a function f: [0, 1] -* 11, where / is the range of f, AtO is the
 measure induced by f from Lebesgue measure and -< is the induced ordering.
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 (b) In terms of the search-depth function f, the distance between leaves of
 t is given by

 d(f(t1) f(t2)) = (f(tj) - min f (t)) + (f(mt2) - mm (t)) A At2)) = tl <t~t2 tO tl <t~t2

 So instead of using 11 to describe the idea of a continuum tree, one could
 perhaps define such a tree via a real-valued function f, thinking of the vertices
 being labelled by t E (0, 1) and the distances between vertices being given by
 the formula above.

 The next section gives the mathematics connecting this approach to our
 previous theory; further discussion is in Section 3.3. The idea of constructing
 continuous trees from continuous functions was treated more briefly in
 Le Gall (1991).

 For later use, we record two simple lemmas for ordered graph-theoretic
 trees. The first is straightforward.

 LEMMA 11. For vertices v1 -< V2 -< V3 in an ordered graph-theoretic tree,

 d(vj, b(vj, V2)) < d(vj, b(vj, V3)).

 The same holds in an ordered continuum tree, with d(*, * ) replaced by II II

 Next, we need a little care in talking about "random vertices" and "random

 times on the walk." If Un is uniform on {1, 2,..., 2n - 1} and f is the walk
 around t, then f(Un) is a random vertex of t, but is not a uniform random
 vertex. Fortunately it can be almost matched with a uniform random vertex,
 as follows.

 LEMMA 12. Let f be the walk around an ordered graph-theoretic tree t on n
 vertices. Then we can construct (U, V) such that the following hold:

 (i) U is uniform on {1, 2,..., 2n- 1}.
 (ii) V is uniform on the vertices of t.

 (iii) P(d f(U),V) > d*) < 1/(2n - 1), where d* is the maximum edge
 length in t.

 PROOF. Define 0(0) = 0(2n - 1) = root, and for 1 < i < 2n - 2 define

 0(i) = f(i + 1) if f(i + 1) is child of f(i),

 = f(i) if f(i + 1) is parent of f(i).

 Then each vertex v occurs as 0(i) for exactly two i's. So if U* is uniform on
 {0, 1, 2, .. .,2n - 1}, then 0(U*) is uniform on the vertices of t. And

 d(0(U*), f(U*)) < d* provided U* * 0.

 Specifying U so that U = U* on {U* ? 1}, the result follows. C1
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 2.7. Trees and excursions. Let f: [0, 1] -> [0, oo) satisfy:

 CONDITION 1. (i) f(O) = f(1) = 0, and f(t) = 0 for at most one value
 O <t < 1.

 (ii) f is continuous.
 (iii) The set of times of strict local minima is dense.
 (iv) If t1 < t2 are strict local minima with f(t2) = f(t1), then

 inf f(t) < f(t1).
 tl <t<t2

 (v) The set of times of one-sided local minima has Lebesgue measure 0.

 Saying t is a one-sided local minimum means there exists E > 0 such that
 f(t) = inf{f(s): t < s < t + 4) or f(t) = inf{f(s): t - e < s < t}.

 For future reference note that if t2 E (0, 1) is the time of a strict local
 minimum then there exists an increasing triple (t1, t2, t3) satisfying:

 (vi) f(t1) = f(t2) = f(t3), f(t) > f(t1) on (t1, t2) U (t2, t3).
 Note also that for any t2 and any 0 < h < f(t2), the increasing pair (t1, t3)
 defined by

 ti = max{t < t2: f(t) =h

 t3= min{t > t2: f(t) = h)
 satisfies:

 (vii) f(t1) = f(t3), f(t) > f(t1) on (t1, t3).

 THEOREM 13. Let f satisfy Condition 1. Then there exists a continuous

 function f: [0, 1] - * 11 such that

 Yf= {f(t):0 t < 1);/f(.) = Lebft: f(t) E

 defines a special continuum tree Af satisfying

 ( (t2) - f (t2)I = (f(lt) - mm f (t)) + f (t2) - m<t (t)
 tl < t2.

 REMARKS. Regard points of ?4 as labelled by t e [0, 1]. Note that for a
 pair (t1, t3) satisfying (vii) we have f(t3) = f(t1) by (16). In other words, t1 and
 t3 will label the same point of the continuum tree. We may regard , as
 ordered by setting S1 -< s2 if and only if f 1(s1) < f1(s2), where f-1(s) =
 min{t: f(t) = s}.

 PROOF. For each t = (tl, ...,tk) with 0 < t1 < ... < tk < 1, we shall de-
 fine an ordered graph-theoretic tree Wf(t) containing vertices labelled as
 (t1, .;. . , tk): A vertex may be multiply labelled, and there may be unlabelled

 branchpoints. Set bi = mint, <?t ? , f(t). Draw an edge of length f(t1) and
 label one end "root" and the other end " t1. " Inductively, from t- move back a
 distance f(ti) - bi toward the root, draw a new edge of length f(ti +) - b-,
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 0 tI t2 t3 t4 t5

 FIG. 2.

 label the new endpoint " ti+' and at the new branchpoint regard the new edge
 as "after" the preexisting edge in the ordering. This procedure is illustrated in
 Figures 2 and 3. It is not hard to verify that as t varies these trees are
 consistent (under taking reduced subtrees). One can also check by induction
 that the distances between vertices ti, tj of Mf(t) are given by (16).

 LEMMA 14. Let f satisfy Condition 1. Then there exists a continuous map
 f: [0, 1] -> 1, such that 11 f(t0ll = f(t) and such that, for each t =(tl, ... ., td
 defining If t) to be U J [[? A0t)]SpI

 vf ()is a set representation of Mf (t) .

 I t2

 t3

 root

 t5

 I t4

 FIG. 3.
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 PROOF OF LEMMA 14. Take a dense sequence of points (ti) in (0, 1) which
 are not one-sided local minima of f. Let tk be the increasing reordering of
 (t1, ... , tb). Construct 'f(tk) as before. Then copy the sequential construction
 in Section 2.2, using the trees 'f(tk) in place of W(k). This construction gives
 a sequence of points (vi) in 11 such that a set representation of Wf(tk) is given
 by U 1< i < k[[,0 Vi]]Sp. Consider the set of points {(ti, vi): 1 < i < oo} in [0, 1] x 11.
 Define f(ti) = vi. Then f extends to a continuous function on [0, 1], because
 11 f(ti) - f(t2)II is given by (16) and because f is continuous. By construction,
 the assertion of the Lemma holds for k-tuples t with entries from (ti), and by
 taking limits it holds for all k-tuples. El

 Given Lemma 14, we can define ?4 to be U E [, 1][[?0 0t)]]sp and define aft
 to be the probability measure on 11 induced by f from Lebesgue measure on
 [O 1]. We must show that the pair ( ut f ) is a continuum tree, in the sense of
 Section 2.3. One path in v from the root to f(to) is the path

 b f(s_(b)): 0 < b < f(to),
 where

 s_(b) = max{t ? to: f(t) = b).

 This is the same as the path

 b -> f(s+(b)): 0 < b ? f(to),
 where

 s+(b) = min{t ? to: f(t) = by

 because fs +(b)) = Asi(b)), as remarked after the statement of the theorem.
 This path has length f(to). The "unique paths" property of continuum tree
 now follows easily from the construction: The branchpoint of f(to) and f(tl) is
 f(t), where t is the time at which the minimum of f over (to, t1) is attained.
 Moreover the fact that b -> f(s b)) is the path [[0, f(to)]]SP shows that the
 definition above of v is equivalent to the definition in the statement of the

 theorem. Next, note that for a triple (t1, t2, t3) as in (vi), the point f(to) =
 Atl) = t2) is a branchpoint of 1 , and each branchpoint arises this way. But
 the analog of (vi) cannot happen with 4-tuples, by (iv), and this establishes the
 binary property of . Finally, the skeleton of a is the set of points
 x = f(t1) = f(t2), for pairs (t1, t2) as in (vii): That is to say, the set labelled by
 the times of one-sided local minima of f. So condition (b) of continuum tree
 follows from (v), and condition (c) is satisfied because the measure in question
 is at least t2 - t1. E

 REMARK. Let us briefly discuss uniqueness in Theorem 13. By analogy with
 isomorphism of graph-theoretic trees, call continuum trees ( 1,uj), i = 1,2
 equivalent if there is a (nonlinear) isometry from MY onto ,-2 which maps
 Al to A2 (and preserves order, in the ordered case). Given a deterministic
 ordered continuum tree which is equivalent to both (Yf, ,- f ) and to (4g, ,ug),

This content downloaded from 108.226.241.26 on Sat, 24 Feb 2018 23:06:05 UTC
All use subject to http://about.jstor.org/terms



 THE CONTINUUM RANDOM TREE III 265

 there is an induced isometry between Of and Fig. By the measure- and
 order-preserving property of the isometry, it must be the map At) - g(t), and
 it follows that f = g. This is the uniqueness property for deterministic trees.
 In the setting of Theorem 15, it follows that the distribution of (M(k), k ? 1)
 determines the distribution of the random function f.

 It is easy to see that (,,f, AL f) has the "leaf-dense" property (10). We
 actually need a "one-sided" version of this property for ordered trees. Let

 A' ( ) f = {YE- :y E- , x -< y}

 and similarly for A -. Say (AO,,u) is order-leaf-dense if for each leaf x of ED

 ( 17) [0[O x ] ] c support(A y+) n support(AO

 The next result connects this construction via functions with the general
 theory. The "intrinsic" condition (iii) corresponding to the existence of repre-
 senting functions is complicated (see Section 3.3 for further discussion).

 THEOREM 15. Let (G(k), k ? 1) be a consistent family of random ordered
 proper k trees. The following are equivalent:

 (i) There exists a random function f satisfying Condition 1, and such that
 the continuum random tree (A/f) represents (M(k)) in the sense (6).

 (ii) The family (M(k), k ? 1) has some representing ordered continuum
 random tree (AJ, -t, -<) which is "order-leaf-dense" (17) and for which J is
 compact.

 (iii) The family (M(k), k ? 1) satisfies the compactness condition (7) and
 also the following conditions:

 (a) For each 0 < a < 1 and each 3 > 0, the probability of the following
 event tends to 1 as k -> o:

 3 1 <j < k: Id(root, BJ) - ad(root, L')l < i5,

 d(Lkl Bk) < a,

 the branch at B toward L' is before that toward L .

 Here Bj is the branchpoint in JW(k) of Lk and Lk, and before refers to the
 order structure of W(k).

 (b) The same as (a), with before replaced by after.

 PROOF. (i) implies (iii). It is enough to consider the case where f is
 nonrandom. Clearly f is compact, so the issue is to check (iii)(a), because (b)
 is similar. Fix 0 < a < 1 and 5 > .0. Define

 v(to) = sup(t < to: f(t) = af(to)).

 By uniform continuity, there exists E > 0 such that: for each 0 < to < 1 and
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 each t E (v(to) - E, VU0A

 If(t) - af(t)I < ?8

 f(t)- min f(u) < ?.
 t<u<v(to)

 Let (Uj) be i.i.d. uniform on (0, 1). Saying that (aIf, Af) represents (M(k)) is
 saying that M(k) is distributed as f . Utk), where (Utk,..., Ukk) is the
 increasing reordering of (U1,..., Uk). The event in (a) holds provided Uj E
 (v(U1) - e, v(Ul)) for some 1 < j < k, and this plainly has chance -* 1 as
 k -> oo.

 (iii) implies (ii). The compactness condition (7) is stronger than the leaf-
 tight condition (2). So by Theorem 3 the family (M(k)) has some representing
 continuum random tree (/, ,A), and by (7) Y is a.s. compact. As stated in
 Section 2.6, J inherits an ordering -< from the ordering on (M(k)). So the

 issue is to verify (17). If (zi) and x are leaves of t, if zi -* x and if (17) holds
 for each zi, then it is easy to check that (17) holds for x. Appealing to Lemma
 6, it suffices to verify (17) for a sequence (zi) of leaves dense in support(/L).
 Now the exchangeable sequence (Zi) appearing in Theorem 3 has these
 properties a.s., so it suffices to verify that (17) holds a.s. for x = Z1. But
 this is what condition (iii) is set up to do. Indeed, by considering points
 Z2(Go) ... * Zk(o), which are a.s. in support(LGo, * )), we see that the probabil-
 ity of the following event is at least the probability of the event in (iii)(a):

 ( 18) support( p;) contains a point y such that

 -8 < llb(y, x)lI - aIxII < 8, llb(y, x) - yl < 8.

 So by assumption (iii), this event has probability 1. So a.s. (18) holds for all a

 and 8, implying [[0, x]] c support(A -).
 (ii) implies (i). By (ii), we have a continuum random tree (ct, A) such that

 (6) holds:

 T(t ,{Z1, ... , Zk}) is a set representation of M(k).

 The order structure on M(k) determines an ordering -< on (Z1, ... , Zk), and
 hence on (1, . ..., k). By consistency (Definition 1) all such orderings on
 (1, .. ., k) are equally likely. Appealing to Lemma 10, there exist i.i.d. uniform
 (0, 1) r.v.'s (U) such that

 Zi -< Zj if and only if Uj < Uj.

 Fix a realization of Y, , and (Zi). Define f(Ui) = Zi. Our main goal is to
 show that f can be extended to a continuous 11-valued function.
 fiSuppose that for some to0

 lim Zi does not exist.
 Ui I to
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 Then by compactness we can choose i(m), j(m) such that

 i(m) <j(m) < i(m + 1) < ...

 Li(m) HI to uj(m) I to, Zi(m) YZl, z j(m) Z2 Z
 Applying Lemma 11 to Zj(m+l) -< Zj(m) -< Zi(m),

 llZi(m+l) - b(Zi(m+1) Zj(m))ll < llZi(m+l) - b(Zi(m+l) Zi(m))ll

 < llZi(m+ 1) Zi(m)ll
 -> 0.

 So b(Zi(m+l), Zj(m)) -* z1 and thus by Lemma 4, b(z1, Z2) = zj. But the same
 argument applied to ZJ(m+l) -< Zi(m+l) t Zj(m) gives b(Z2, Z1) = Z2.

 This argument, and its symmetric version, show that we may assume that f
 has right-hand and left-hand limits everywhere.

 Now fix to and consider

 Z = limf(t), Z2 = limf(t)
 t Tto t Ito

 Now llb(z1, Z2)II < min(1IzjII, IIz211), and if llb(z1, Z2)II = lIZ111 = IIZ211 then b(z1, Z2) =
 Z1 = Z2, and so f is continuous at to. To argue by contradiction, suppose
 Ilb(z1,z2)11 < 1Iz211, say. Choose a < 1 such that

 (19) Ilb(z1, Z2) 11 < a1Iz211.

 By (17) and the density of (Zj) in support(,), for each Zi with Uj > to there
 exists some Zj(W) with Uj(j) < Uj and with

 IIZ,(j) - b(Zj(j), ZJ)1 ' 2-i,

 Ijb(Zj(j), Zj)II E (alIZill - 2-i, aIIZjII + 2-i)

 Now consider a sequence Uj i to. The inequalities above imply IIZj(j)II-
 alIz211. We cannot have Uj() to, else IIZj(i)II -*> IZ211; and we cannot have
 UJ(i) T to0 else (using Lemma 4) IIZj(jiII -* Ilb(zl, Z2)I1. The only other possibility
 is limsup U1(i) < to. But then we can find k(i) with Uj(j) < Uk(j) I to ulti-
 mately. Then by Lemma 11,

 lIZ, - b(Zj, Zk(,))II < IIZ, - b(Zi, Zj(j))Ij,
 in other words,

 Ilb(Zj , Zk(i))II 2 Ilb(Zj , Zj(j))II.

 But the left side converges to Ilb(z1, Z2)II and the right side to aIIz211, contradict-
 ing (19).

 Thus f is continuous. Now define f(t) = 11 f(t)II. We want to show that f
 gives distances correctly; that is,

 (20)~~ lf (tJ) - f(t2) 11 1 lf (t 1)- i ntf 1 lf (t2) 11)

 + (IIf(t1)II - inf II f(t2)II)
 tl <t<t2
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 Now for U, < Uk < UJ we have IIZkII ? 11b(Zi, Z,)1j and so

 11Zi Zill 2 (IlZill - 1Zk11) + (l1Zj11 IlZkll)-

 Then by the density of (Uj) and the continuity of f, we get a 2 in (20). To get
 equality, we shall show that there exists t E [t1, t2] such that At) =
 b( f(t1), (t2)). But by continuity, as t increases from t1 to t2, the path f(t)
 moves continuously in J from f(t1) to t2), and hence must cover the
 unique non-self-intersecting path from f(t1) to f(t2), which passes through
 the branchpoint.

 We need to check that f represents the continuum random tree (aJ, ,u) that
 we started with. Note that for any j we could have started by setting

 f(Ui) = Zi, i > j, and we would have gotten the same f by continuous
 extension. Thus f is o(,/, ,u, Zi, i > j) measurable for each j, and hence f is
 o(,Q/, A) measurable. So given a realization of (Q/,1,) we can define the
 realization of f. Now define (,If, Af) in terms of f as in Theorem 13. Then
 Af = A because A is the limit empirical distribution of (Zi) and Af is the limit
 empirical distribution of (f(Uj)). And If = J? follows from order-leaf-tight-
 ness.

 Finally, the remaining requirements on f in Condition 1 correspond to
 parts of the definition of continuum tree, as in the proof of Theorem 13.

 2.8. Perfectly balanced trees and ultrametrics. Theorem 15 dealt with one

 specialization of the notion of continuum random tree, to the case where the
 tree could be represented by a continuous random function. A much simpler
 specialization involves trees in which all leaves are at the same distance from
 the root. Here the limit continuum random tree can be represented by a point
 process. The results are stated below: The proofs are straightforward.

 In Section 2.1 we defined the reduced subtree r(M(k), {L1,..., Lj}) as the
 subtree spanned by L1, ..., Li and the root. In this section it is convenient to
 redefine it as the subtree spanned by L1,..., Li only, and rooted at the last
 common ancestor of (Li) in M(k). This redefinition implies a redefinition of
 consistency at Definition 1.

 Call a random proper k-tree perfectly balanced if there is a random variable
 Dk such that each leaf is at distance Dk from the root. Regard trees as ordered
 (by introducing a random order, if necessary). Theorem 3 has the following
 corollary.

 COROLLARY 16. Let (M(k), k 2 1) be perfectly balanced proper k-trees,
 consistent in the sense above. Suppose the leaf-tight property (Definition 2)
 holds, and suppose (Dk, k ? 1) is tight. Then there exists a continuum
 random tree (,/, A) representing (M(k)) in the sense of (6), and a r.v. D.
 such that

 ,ux c -/: ljxii = D.) = 1 a.s.,

 Dk >d D~.
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 x
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 FIG. 4.

 Define a (deterministic) nice point process on [0, 1] x (0, oo) to be a countably

 infinite set , of points e = (el, ) such that:

 (i) I{f: e2 > a}l <0 ofor each 8> 0;
 (ii) The closure of E contains [0, 1] X {0};

 (iii) If I, I' have el < e' and 2 = 2, then there exists e* such that
 el< e* < e' and e* > 2.

 Given a nice point process, define a metric d on P* = [0, 1] \ Ufe1: f e - by

 (21) d(u, u') = 2 max~e2: = (ell 2) E S for some u < el < UT
 This d is an ultrametric. That is, for each triple U1, U2, U3 there exists a
 reordering (in our case, the increasing ordering) such that d(u(l), u(3))=
 max(d(u(1), U(2)), d(u(2), U(3))).

 Given a nice point process and u1,..., Uk e I* we can define a perfectly
 balanced proper k-tree with leaves (uj) for which distances are given by (21)
 and branchpoints correspond to the e appearing in (21). See Figure 4. Assump-
 tions (ii) and (iii) imply that such a e is unique and that e2 is strictly positive.

 COROLLARY 17. Given a random nice point process, let M(k) be the tree
 constructed as above from i.i.d. uniform U1,..., Uk. Then (M(k), k ? 1) is a
 consistent leaf-tight family of perfectly balanced proper random k-trees. Con-
 versely, each such family arises in this way from some random nice point
 process.

 3. Convergence of rescaled trees. The payoff from our detailed study
 of continuum random trees in Section 2 is that we can easily formulate
 abstract conditions for weak convergence of rescaled finite trees to a contin-
 uum limit tree. Throughout Section 3, "convergence" is as n -* oo.

 3.1. Unordered trees. We now return to the set-up of Section 2.1. For each

 n we have a random tree 3n on n vertices. Let (n, 1... , Vn n) be a uniform
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 random ordering of the vertices of 3n, and for k < n consider the reduced
 subtree rGEn_, {Vn, 1... * Vn, kD)

 THEOREM 18. Suppose that, for each k, r(?n/, {Vn1, .. . , Vn, k}) ->d Mk)
 where Wk) is a random proper k-tree. The family (M(k); k 2 1) is automati-
 cally consistent: Suppose it is also leaf-tight. Let (E/, Au) be the continuum
 random tree representing (M(k)), given by Theorem 3. Then there exist

 measure-representations AUn of (Sn) such that AUn id /L.

 PROOF. For each n, embed (Vn i) into 11 as in the sequential construction
 of Section 2.2. By hypothesis,

 (22) (Vn, * * * XVnsk) Ed(L, ... ., Lk) for all k,

 where (Li) are as in Lemma 7, with limit empirical distribution Au. Now fix j.
 We have

 ("TjVn, i+ 1 **.. 0jVn,j+k) >d (i7jLj+jl,... , rrj Lj +) forall k.

 These random k-tuples are exchangeable, and the infinite exchangeable se-

 quence (irjLj+1, i 2 1) has directing random measure rrj A. So by Lemma 9,

 (23) vj A n, i >d ITj/A

 where

 A n j = empirical distribution (Vn, + 1 X n, )

 Also, (22) implies Vn j + 1 - '7jVn j + 1 Ad Lj + 1 - rrj Lj + 1 and hence

 ElIVenj? - 7rjVnj+lll A 1 d EIILj+j - 7rjLj+lll A 1.

 Now the families (1Vrn j+V - i j n jiII;1 < i < n -j) and (IlLj+i - rrjLj+ill;
 i 2 1) are exchangeable, so by computing the expectations above in terms of
 empirical distributions,

 (24) EflIx - rjxIl A 1lAn j(dx) -> Eflix - 7Tjxll A I1 (dx).

 Now (23) and (24) remain true after replacing Anj by /Ln, o Appealing to the
 random measure version of (13), we see these imply A O Ad A, as required.

 The next corollary states the natural extra condition needed to go from
 weak convergence of measures to Hausdorff convergence of their supports.

 COROLLARY 19. In the setting of Theorem 18, let /zn(o) = support(un(&, * ))
 and suppose i is a.s. compact. Write

 A(n, k) = max min d(v, w).
 VE Sn wer(3r{V l' *. *7 Vn,kd)
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 If

 (25) lim limsupP( A(n, k) > e) = 0, each e > 0,
 k n

 then n >d a-">d

 3.2. Ordered trees. The next result is the analog of Corollary 19 where
 trees are ordered and where we represent the limit continuum random tree via
 a random function.

 THEOREM 20. Let (M(k); k 2 1) be ordered proper k-trees satisfying the
 conditions of Theorem 15, and let f: [0, 1] -> [0, oo) be a random function
 satisfying part (i) of that theorem. Let (kn; n 2 1) be random ordered graph-
 theoretic trees on n vertices, and let fn: {1, 2,..., 2n - 1} -- [0, oo) be the
 search-depth process for gn defined at (15). Define fn: [0, 1] [0, oo) by

 fn(i/2n) = fn(i), 1 < i < 2n - 1; fn(0) = fn(l) = 0,
 with linear interpolation between these values. Then the following are equiva-
 lent:

 (i) fn ad f, in the sense of weak convergence on C[0, 1].
 (ii) The family (3n) satisfies (25), and for each k,

 (26) r (n- ( IVn,l * * .. X n,k)) ->d M(k)
 where we regard these graph-theoretic trees as ordered.

 PROOF. It is easy to see that each of (i) and (ii) implies that the maxi-
 mal edge length tends to 0. Using Lemma 12, we can replace the random

 vertices {Vn 1, . .. ., d in (26) and in the definition of A(n, k) by
 { fn(Un, 1)* *.* fn(Un, k)}I where fn is the walk around $n described in Section
 2.6, and (Un i) are independent uniform on {1, 2,.. ., 2n - 1}. With this re-
 placement, (26) becomes, for each k,

 fn( 2n )Ul/2 t n(2n fn(t) Xnt 2 n)'

 (26a) Un, (2)/2n <it< Unf ()/2n

 ( )U(1) < t< (2) ( )U(2) < t<U(.3)(())

 where Un, () are the order statistics of Un, 1, ... , Un, k and U(j) are the order
 statistics of k i.i.d. uniform (0 1) r.v.'s. And with this replacement, (25)
 becomes

 (25a) lim lim supP (A* (n, k) > e) = 0, each e > 0,
 k n
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 where

 A* (, k) max min d( --L(Uj
 O~a<2n 1<i<k \2n1 f 2nJ/

 In what follows we shall write Un(O)=1, Un,(k1l)=2n -1, U(O)= O,
 U(k+1) 1.

 If (i) holds, then (26a) follows immediately. To check that (25a) is also a
 consequence of (i), consider the distance from v E En to the next (in the order
 on vertices) vertex of the form fn(Un i): We see that

 *(n O k) < max +t( Uf a)) 2 min

 where Un, i(a) is the smallest element of Un,.. Unf k, 2n) greater than a. As
 n -> oo this bound converges in distribution to

 (27) sup (f(t) +f(Ui(t)) - 2t<S< i(t) )

 where Ui(t) is the smallest element of {U1, . . ., Uk, 1} greater than t. By
 continuity of f and the elementary fact

 (28) max<k (Ui+l) - U(i)) d 0 as k -> oo,

 the bound (27) converges to 0 in distribution as k -* oo, establishing (25a).
 To prove (ii) implies (i), the issue is to show that (25a) and (26a) imply

 tightness of (fn; 1 < n < oo): It is then easy to use (26a) to show that any
 subsequential weak limit is distributed as f. We first want to use /* (n, k) to
 upper bound certain types of oscillations of fn. Consider the walk (fn(j):
 1 < j < 2n - 1). The construction of the walk leads to the first equality below.
 For j1 < j2 < J3

 min d(f0(j2),fn(j))
 j Q1, J3)

 = min(A(J2)- min fn(j) 2 fn(j2)- min fn(j))
 J1 <J <J2 J2 <J <J3

 2 min(( fn( j2) - fnu j)) +' ( fn(hj) - n(hj)) )

 Applying this to j, = Un,(j) and j3 = Un,(i +) gives

 /\*(n,k) 2 max sup min fn(t) - (fn(l n'),
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 Next, it is simple to check that, for any t1 < t < t2 and any function g,

 1g(t) - g(t1)I < Ig(t2) - g(t1)I + (g(t1) - g(t))

 + min((g(t) - (tl)) , (g(t) -g(t2)) )

 Applying this to g = fn and t1 = Un, ()/2n and t2 = U (i+1)/2n,

 max sup |n(t) - 2n U,(i)) ( Wk ( fn) say)
 n i< (l )/2n < t < Un, (+ l)/2n

 O~iik k 2 nj)
 < max | An2 l1) (I 2n ) Wk- ( fn say)

 +max(t(;(i)) -finf fn(t)) ( (Wk([n) say)
 O<i<k 2n Un,(j)/2n<t<Un,(j+j)/2n

 + max sup min fn(t)-An-,)
 O i< n,(,)/2n <t <Un,(i+ 1)/2n 2 O~i~k U flJ

 fn(t) f ne n ) Wk n)> Say).
 We now claim that for a = 1,2, 3,

 (30) lim limsupP(w n(f) > )= 0X > 0.
 k --oo n-

 For a = 3 this holds by (29) and (25a). For a = 1, 2 it follows easily from (26a),
 continuity of f and (28). Thus (30) holds for a = 0. In terms of the usual
 modulus of continuity w( fn, 8), the condition for tightness is

 (31) lim limsupP(w(fn,8) > 3e) = 0, E > 0.
 5 -.0 n --.oo

 Now an easy "triangle inequality" argument shows

 W(in, 8) < 3w0(n) on (min n - Un (i))

 It follows that the double limit in (31) is bounded by the lim sup O in (30) for
 fixed k. Thus assertion (30) for a = 0 implies the tightness condition (31).

 3.3. Remarks.

 REMARK 1. Heuristically, our results apply to trees in which the number of
 vertices within distance d of a typical vertex grows'as da for some 1 < a < 00.
 They do not apply to most "Markovian growth" models of random trees,
 whose behavior is fundamentally different from that described in this paper.
 Consider for instance a supercritical branching process conditioned on non-
 extinction. Let 9n be its family tree, at the first time that the total number of
 births reaches n. Then the rescaled limit M(k) in Theorem 18 would be the
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 tree consisting of k leaves, each attached to the root by a unit edge. This limit
 is not "proper" and, much worse, completely fails the leaf-tight property
 (Definition 2). The same limit can be expected in most trees for which the
 number of vertices within distance d of a typical vertex grows exponentially
 with d.

 REMARK 2. We set up the theory around binary limit trees, because that is
 what occurs in the natural examples. One could handle nonbinary limit trees
 with various minor changes in the definitions and statements of results.

 REMARK 3. The avoidance of any tightness (as n -> oo) requirement in
 Theorem 18 is perhaps analogous to the following result of Kallenberg (1973).
 For k = 1, 2, ... , oo let (Xk(t): 0 < t < 1) be a process with paths in D[O, 1] and
 with exchangeable increments. Then to prove weak convergence in D[O, 1], it is
 sufficient to prove convergence of finite-dimensional distributions.

 REMARK 4. In Theorem 18, the fact that we are picking a uniform random
 subset of k vertices is unimportant. More generally, suppose that with each
 realization t of 3n(Go) is associated a probability distribution pn(t, * ) on the
 vertices of t. Then for each k we could choose Vn, 1' ... I ,n k via i.i.d. choices
 from Pn, conditioned on distinctness:

 k

 P(Vn, i= vi, 1 < i < k15Kn = t) = Ck,fn(t) Hpn(t,vi) if(vl,...,vk) distinct.
 i=1

 Additionally, we redefine the measure-representation A n to have probability
 distribution pn(t, * ) (instead of the uniform distribution) on the vertices of t.
 Under the natural condition

 sup Pn(nv) ->p 0 as n -oo,

 the theorem goes through unchanged.
 In most applications, all vertices have the same standing-some happen to

 be leaves, and others happen not to be leaves. In some applications, there is a
 qualitative difference between leaves and internal vertices. For instance, one
 might seek to describe some abstract notion of "strength of relationship"
 between m objects by setting up a tree in which each object is a leaf of the
 tree, and where the tree is used to define "distance" between objects. Here the
 internal vertices have a different meaning from the leaves. In such a case, it
 would be natural to consider limit theorems based upon picking k leaves at
 random, and this is a setting where the modification of Theorem 18 described
 above would be appropriate.

 REMARK 5. Since our main example is the continuum random tree of
 Section 4.3 which can be constructed from Brownian excursion, the reader
 may ask "why not set up the entire theory in terms of codings of continuous
 functions, and forget about the 11 story?" One answer is provided by compar-
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 ing Theorems 15 and 3: The intrinsic conditions on the tree which permit
 representation by a continuous function are rather messy. Another answer
 comes from Section 2.8: Perfectly balanced trees are natural objects which
 cannot be represented by continuous functions. It is presumably true that
 general ordered continuum trees can be represented by some subset of upper
 semicontinuous functions, in which case one could discuss weak convergence
 of random trees in terms of weak convergence of upper semicontinuous
 random processes. The latter has recently been studied in the context of

 extremal theory [see O'Brien, Torfs and Vervaat (1990) for references].

 4. Examples of consistent families.

 4.1. Kingman's coalescent. This process, introduced by Kingman (1982),
 has become a basic tool in mathematical population genetics. Fix k. At time
 t = 0 there are k individuals (1, ..., k). At each time t > 0 there is a partition
 of the individuals into j "clusters," 1 < j < k. The process evolves according

 to the rule: In time [t, t + dt], each of the (2) pairs of clusters has chance dt

 to coalesce into a single cluster. This family of processes (as k varies) is called
 the coalescent. Let us see how the coalescent can be regarded as a continuum
 random tree (without claiming that it is useful to do so). There is no natural
 ordering, so regard trees as unordered.

 For fixed k the process specifies a random proper k-tree M*(k) in the
 obvious way: The k leaves are the individuals, the branchpoints indicate
 coalescent events, the edge lengths are the times that a particular cluster
 remains unchanged and the depth Dk of the root is the time taken for all the
 individuals to coalesce into a single cluster. The family (M*(k); k 2 2) is
 perfectly balanced and consistent in the sense of Section 2.8. To apply Corol-
 lary 16, we need to check the leaf-tight property (Definition 2). Since the pairs
 involved in successive coalescences are chosen randomly, we can calculate

 Nk (t) (Nk~)-1
 P({1} isaclusterattime tiNk(s), s < t) = Ok(k - )

 where Nk(t) is the number of clusters at time t. So in the notation of
 Definition 2,

 P2 min d(L, L) > 2t) = k(k 1) P mmk k(k - 1)
 Now Nk(t) is a certain continuous-time pure death process started at k but
 with transition rates independent of k. It is easy to show that as k -> o,
 ENk(t)(Nk(t) - 1)1 ENJO(t))(NO(t) - 1) < co, and so the leaf-tight property
 holds. Similarly, EDk -- ED., < oo. Corollary 16 says there exists a represent-
 ing continuum random tree ( pt).

 4.2. Coalescing Brownian motions. Here is a simple way to combine spa-
 tial motion with the coalescing mechanism in the previous example. Take k
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 points in the unit interval, let a particle start at each point and perform
 independent Brownian motions, coalescing when they meet. The k -> 0o limit
 process, "coalescing Brownian motions started from every point" is well
 known [but apparently written down only in the Ph.D. thesis of Arratia (1979)]
 as a process defined for times t > 0. Our notion of continuum trees permits
 rigorous extension to t = 0. More generally, in studying systems of diffusing
 particles in R d in which two particles annihilate each other when they
 (nearly) collide, it is useful [e.g., Sznitman (1989)] to first forget the annihila-
 tions and consider a "collision tree" as follows. Fix a particle i at time t, then
 consider the particles j which, at some time tj during [0, t] have (nearly)
 collided with particle i, then for each j consider the particles k which, at some
 time tk during [0, tj] have (nearly) collided with particle j, and so on. As the
 number of particles -> o and "nearly" is varied to keep the mean free path
 constant, one gets a limit finite tree. Presumably, if instead the mean free path
 tends to 0, then we will get a continuum limit tree qualitatively similar to that
 of the coalescent.

 Here is a further modification of these ideas, motivated by a particular
 lattice model discussed later. Let (Xt+, X7: 0 < t < 1) satisfy

 (32) X0+=X-=0; Xt+>X, 0<t <1; X+=X-.

 Fix k. Choose k points (ti, xi) uniformly from product Lebesgue measure on
 {(t, x): 0 < t < 1, Xt < x < Xt+ . We now specify a "birth and coalescence"
 process involving k particles 1,..., k and two extra particles e, e . The
 particles e and e are born at time 0 and predestined to follow the paths X+
 and X-. Particle i is born at time ti and position xi. Particle i evolves as a
 standard Brownian motion, independent of other particles, until it meets and
 coalesces with some other particle. If it coalesces with some particle j # i, the
 combined particle continues to evolve as a Brownian motion; whereas if it
 coalesces with e or e, the combined particle follows the predestined path.

 We now define a tree, illustrated in Figure 5. There are k leaves, corre-
 sponding to the births of the k particles. Branchpoints correspond to coales-

 3

 2 vV/

 4.F

 FIG. 5.
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 cences, and an edge corresponds to the period of time between a birth or
 coalescence and the subsequent coalescence, and the edge length is the dura-
 tion of that period of time. This specifies a random graph-theoretic tree R(k).
 We clearly have the consistency of Definition 1, and (from elementary proper-
 ties of Brownian motion) the leaf-tight property holds. So Theorem 3 estab-
 lishes the existence of a representing continuum random tree. One can also
 give R(k) the order induced from the order on the one-dimensional state
 space, and then verify the conditions of Theorem 15 to show that this
 continuum random tree can be coded from some continuous random function.

 We briefly mention the underlying discrete model [see Nguyen (1990) for
 more details]. On the vertex set ((m, n): m > 0, m + n even} C Z2 draw an
 edge from vertex (m, n) to either (m - 1, n - 1) or (m + 1, n - 1), choosing
 uniformly and independently for each vertex. The component of this random
 graph containing (0, 0) can be regarded as a random tree $ rooted at (0, 0),

 with height H = max{m: (mi, n) E Sc . Write gh for $ conditioned on
 H = h.

 It is intuitively clear that, resealing the edges of $h by 1/h, these random
 trees converge to the continuum random tree defined above, in which X+ and
 X- are independent Brownian motions conditioned on event (32). This could
 be proved using the ideas of Nguyen (1990) and Section 3.

 4.3. The Brownian CRT. A proper k-tree in which the root has degree 1
 has exactly 2k - 1 edges. As at (1), such an (unordered) graph-theoretic tree
 can be specified as

 t = (; xl*, x2 -1) E T2*k X R2k,
 where t describes the shape of the tree and (x1,..., X2k-) describes the
 lengths of the edges. Here the set T* of "shapes of trees" refers to binary
 trees with exactly k leaves, the leaves being distinguished. In constructing
 such a tree by adding the leaves sequentially, the edge to leaf k could be
 attached to any of the (2k - 3) preexisting edges, so the number of possible
 shapes is

 k-1

 IT2* = H (2i - 1).

 LEMMA 21. There exists a consistent family (R(k); k ? 1) of random
 proper k-trees such that R(k) has density

 2k-1

 (33) f('; X1, ... 9,x2k -1) = s exp(-s2/2), s = E xi.
 i= i

 This is one of the main components of the big picture discussed in Aldous
 (1991b), and could be proved in several ways. We give a "constructive"
 argument below. Note that (33) implies that the 2k - 1 edge lengths have
 exchangeable joint distribution, and this joint distribution is independent of
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 the "shape" t' of the tree. (This is much stronger than the property of
 "exchangeability of the k leaf labels" which holds in any consistent family.)
 Note also that the assertion that (33) defines a density is the calculus
 assertion

 k-i 1

 f > o * * * l , s exp(-s 2/2)dx1 * ... dX2-1= H1-1
 1 > __2k >0 i=1 2i - 1

 PROOF. The following construction [Aldous (1991a), Process 3] gives ran-
 dom proper k-trees Mk). We shall show by induction on k that these have
 density (33).

 Let (C1, C2, ... ) be the times of a nonhomogeneous Poisson process on (0, co)
 with rate r(t) = t. Let R() consist of an edge of length C1 from a root to leaf
 1. Inductively, obtain M(k + 1) from M(k) by attaching an edge of length
 Ck + 1 - Ck to a uniform random point of M(k) (i.e., a point chosen from
 normalized Lebesgue measure on the edges), labelling the new leaf k + 1.

 To analyze the densities, let (t*; x*, x2*... , X2k+l) be a tree with leaves
 1, . k. . k, k + 1, and let (t; X1, X2, ... ., X2k1) be the reduced subtree associated
 with t* and leaves 1, .. ., k. Then t* is obtained from it by creating a new

 internal vertex (splitting an edge of length x; into two edges of lengths xi*, and
 XJ2', say, with x; = xjl 2, and joining leaf k + 1 to that new internal
 vertex by an edge of length X*, say. From the construction,

 /* 1
 f (t*; x,.., x* 2k+1) = -Sexp - (s*2 -s)) f(i, xl, * *, x2k1),

 s*= = I

 where the term 1/s reflects the chance that the k + 1 segment is attached at a
 particular place on the existing tree, and the term s* exp(-(1/2)(s*2 - S2))
 reflects the chance that the k + 1 segment has length x * = s s. Plainly
 (33) follows by induction.

 Finally, if we deterministically specify k - 1 distinct leaves (11, ..., Yk-1) of
 M(k) and consider the reduced subtree r(M(k), (I,,. . ., 1k- }), then the distri-
 bution of the reduced subtree does not depend on the choice of (11, ..., I k1),
 by exchangeability of edge lengths in (33). So M(k - 1), which by the con-
 struction above is the reduced subtree on leaves (1, ... . k - 1), has the same
 distribution as the reduced subtree on k - 1 randomly-picked distinct leaves.
 This verifies consistency, and establishes the lemma. C1

 It is easy to use the construction above to show that (M(k); k 2 1) is leaf
 tight. Briefly, consider the initial edge in M(1). The lengths of added edges
 tend to zero, and an infinite number of edges are attached to this initial edge
 at uniform positions; it follows that leaf 1 is indeed a limit of some sequence of
 other leaves. Theorem 3 now allows us to make the following definition:
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 DEFINITION. The Brownian CRT is the continuum random tree which
 represents the family (M(k); k ? 1) in Lemma 21.

 So far we have regarded these trees as unordered. A proper k-tree where the
 root has degree 1 has 2k 1 possible orders. So if we choose an order uniformly
 at random, (33) becomes

 2k-1

 (34) f(t;xl,..., x2k) = 2(k- )s exp(-s2/2), s = Xi,
 i=1

 where the order is included in t. If in the proof of Lemma 21 we flip fair coins
 to decide on the order at the branchpoint each time we add a new branch, then
 we get a consistent family of ordered k-trees (M(k)) with density (34).

 In Aldous (199la), Theorem 3, a complicated direct proof of compactness
 was given, and [from our Theorem 15(iii)] this is essentially enough to show
 that CRT under discussion, regarded as ordered, can be represented by some
 random continuous function. But the remarkable fact (motivating the name)
 is:

 COROLLARY 22. The Brownian CRT is the continuum random tree repre-
 sented in the sense of Theorem 13 by the random function f(t) = 2Bt, 0 < t < 1
 where B is standard Brownian excursion of duration 1.

 In other words, the k-tree constructed from 2Bt and i.i.d. U(O, 1) r.v.'s
 (U1,..., Uk) as in the proof of Theorem 13 has density (33). I do not know a
 direct proof of this from known properties of Brownian excursion, though such
 a proof must be possible. But the result can be obtained as a corollary of our
 Theorem 23, and that proof is given after the statement of Theorem 23. Neveu
 and Pitman (1989) construct trees from Brownian excursion conditioned on
 height exceeding h, and Le Gall (1991) from the o-finite measure on Brownian
 excursions of varying duration.

 Finally, in Aldous (199la) the measure-representation ,u of the Brownian

 CRT was obtained as AL = lim ICk a.s., where ,uCk is Lebesgue measure on the
 k edges of Wk) in the previous construction, renormalized to have total mass
 1. In the preceding definition, Lemma 7 gives ,/ as the limit ,w = lim vk a.s.,
 where vk is the empirical distribution of the k leaves of Mk). It is not hard to
 verify that the two limits ,A are identical, and hence that the supporting
 random sets y are identical.

 4.4. Subtrees of Zd. It is tempting to believe that several models of
 random subtrees of the integer lattice Zd, for example, the "uniform random
 spanning trees" studied by Pemantle (1991), can be rescaled to converge to
 some continuum random tree. Proving such results seems beyond current
 technology, but we will report elsewhere on simulation studies in progress.
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 5. Convergence of conditioned Galton-Watson trees. Let S denote
 the critical Galton-Watson branching process started with a single progenitor
 and considered as an ordered rooted tree, where the offspring distribution has

 finite variance a2. Let En be $ conditioned on 1 S1I, the total population size
 until extinction, being exactly n. Our main result, Theorem 23, is an invari-
 ance principle for such families: After resealing, there is a limit random tree,
 which is the Brownian CRT of Section 4.3, and the offspring distribution only
 affects the limit via a scale factor 1/o-.

 There is of course a vast literature on branching process asymptotics. This
 particular conditioning has been studied most extensively by the Soviet school,
 and their results (through the early 1980's) are set forth in the monograph of
 Kolchin (1986). They use analytic methods to prove asymptotic convergence of
 various statistics of the trees: We shall combine some of their analytic esti-
 mates (stated in Section 5.1) with the "general abstract nonsense" of Section 3
 to prove Theorem 23. This particular conditioning occurs only occasionally in
 the Western literature on branching processes [e.g., Kennedy (1975)] although
 Western combinatorialists, starting with Moon and Meir (1978), have devel-
 oped independently many results similar to the Soviets in different (mathe-
 matical) language. Much of the motivation for studying this model is that, for
 various special cases of offspring distribution, the random tree Yn becomes
 the uniform random tree in some class of n-vertex trees of specified combina-
 torial type [see Aldous (1991b), Section 2.1 for a translation guide]. The
 consequences of Theorem 23 for combinatorial models of random trees-that
 limit distributions and interesting "global" functions can be expressed as
 functionals of Brownian excursion-are detailed in Aldous (199ib) Section 3.

 THEOREM 23. Let Sn be a conditioned Galton-Watson tree whose offspring
 distribution f satisfies

 Ed = 1,

 0 < var(f) = 0,2 < oo0

 g.c.d.{j: P(6 =j) > 0} = 1.

 Rescale the edges of Yn to have length an`1/2. Let fn: {1, 2,... ,2n - 1}
 [O,oo) be the search-depth process for rescaled Yn- defined at (15). Define
 fn: [0,1] -* [0, oo) by

 fn(i/2n) = fn(i), 1 < i < 2n - 1; fn(O) = fn(l) = 0,

 with linear interpolation between these values.
 Then ( f(t), 0 < t < 1) >*d (2B(t), 0 < t < 1) on C[0, 1], where B is stan-

 dard Brownian excursion.

 Here is the structure of the proof. In Section 5.2 we verify conditions (ii) in
 Theorem 20, for (W(k)) defined in Lemma 21. The proof is then completed by
 the following argument [said more leisurely in Aldous (199ib), Section 2]. A
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 special case of the Galton-Watson tree 3n is where the offspring distribution
 is P(f = i) = 2-i, i > 0. In this case the search-depth process (before any
 rescaling) is exactly simple symmetric random walk conditioned on first return
 to 0 being at time 2n. But it is well known that this conditioned random walk
 rescales to Brownian excursion, and a brief computation with our precise
 resealing conventions here reveals that fn Ed 2B in this special case. Now
 Theorem 20 applied to this special case gives Corollary 22, that is, shows that
 (R(k)) is represented by 2B(t), and then we can apply Theorem 20 to the
 general case to establish Theorem 23.

 In general the search-depth process of a random finite tree is not a tractable
 random process, even for Galton-Watson trees. So it is not profitable to seek
 to prove directly the convergence of search-depth processes, and this is the
 point of our abstract theory in Section 2. An obvious exception is the preceding
 special case. As another exception, in a different special case of binary
 Galton-Watson trees, the convergence of the search-depth process (precisely,
 the search-depth process restricted to leaves) to Brownian excursion has
 recently been proved directly by Gutjahr and Pflug (1992). They use exact
 combinatorial formulas for the finite-dimensional distributions of the search-
 depth process.

 Technical remarks.
 1. Whenever Theorem 20 holds, we can ignore the order structure and

 instead obtain the conclusions of Theorem 18 and Corollary 19. Thus in
 Theorem 23 we could ignore order structure on gn and say: There exist
 measure- and set-representations Ana, On of rescaled Sn such that

 n

 where ,A and ED are measure and set representations of the Brownian CRT.
 2. The "sublattice" case where the support of f has g.c.d. = d 2 2 involves

 only minor modifications.
 3. Analogously to random walks and Brownian motion, the case of infinite

 second moments is qualitatively different, and one does not get the Brownian
 CRT as a limit.

 4. Because we condition on total population size, the distribution of 5n is
 unchanged by replacing f with another distribution X in the same exponential
 family

 P( = i) =cOiP(x = i), i 2 0 for some c, 0.

 Thus there is no essential loss of generality in considering only critical
 branching processes.

 5.1. Analysis estimates. Here are the analysis facts we need. Let ht(S) be
 the height of A, that is the number of generations until extinction.
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 PROPOSITION 24. For the Gaton-Watson tree $ with offspring distribution
 f satisfying the assumptions of Theorem 23,

 2
 (35) P(ht(r) > h) -2h ash o,

 (36) P(L~ i = n) (27)- l/2a-l1n -3/2 as n -*o ,

 3) n 1/2p (ht( 5S') > bnl/2, 1 1< An ) *- 15- 1/2 G( b5- 1/20..)
 as n -*o ,

 where G(*) satisfies

 G(x) < K1 exp( -x/K2), 0 < x < 0o

 for certain constants Ki < ?.
 Let (Xi) be i.i.d. and distributed as ISoI. Then

 (38) max m 2P 2 Xi=j g ) - 0| as m -x c, j?O XI=,9 n
 where

 (39) g(x) = (2) 1/2X-3/2exP(-2)

 is the positive stable (1/2) density.

 Result (35) is classical [see Kolchin (1986), Theorem 2.1.2]. Fact (36) is
 Kolchin [(1986), Lemma 2.1.4], and is a simple consequence of the local central
 limit theorem and a ballot-type identity due to Dwass [an elegant proof of the
 latter is in Waymire (1991)]. Next, the limit result [Kolchin (1986), Theorem
 2.4.3] on height conditioned on size can be rewritten in terms of the maximum
 W* of standard Brownian excursion [c.f. Aldous (199ib)] as

 P(ht(7S) > xn1/21 5i1 = n) -* P(2r-iW* > x).
 Then by scaling, (37) holds with

 G(x) = (27) -1/2 f1P(2Ul/2W* > X)U-3"2 du,

 from which it is easy to obtain the asserted exponential tail bound. Finally, in
 view of (36), assertion (38) is just the local limit theorem for convergence of
 i.i.d. sums to the positive stable (1/2) limit [see Gnedenko and Kolmogorov
 (1954), Section 50].

 For later use, associate with 6 the distributions 6 and 6* defined by

 (40) P(= i)=(i+ )P(=i + 1), i > 0

 (41) P(6* = i) = o-2(i + 1)(i + 2)P(6 = i + 2), i ? 0,
 and note that

 ^ O..2

This content downloaded from 108.226.241.26 on Sat, 24 Feb 2018 23:06:05 UTC
All use subject to http://about.jstor.org/terms



 THE CONTINUUM RANDOM TREE III 283

 5.2. Proof of Theorem 23. The aim is to verify condition (ii) of Theorem
 20. Although that involves resealed and reduced subtrees, for most of the
 argument we do neither, working with "ordinary" trees and subtrees whose
 edges have length 1. Regard trees as ordered. A subtree u of a tree r is a
 connected subset of vertices of r containing the root. Subtrees u1, u2 are
 different if they are different as subsets of r; they are isomorphic if they are

 isomorphic as rooted ordered trees in themselves. Recall that Jul denotes the
 number of vertices of u.

 Fix k ? 2. Let a k-tree be a tree with exactly k leaves labelled (1, . . ., k) and
 such that the reduced subtree r(t, {leaves}) is a proper k-tree. For k-trees t1, t2
 to be isomorphic, the isomorphism must preserve the leaf labelling. Consider
 distinct vertices (v1, . . ., Vk) of a tree r. Call the subtree t spanned by the (vi)
 and the root, and with vi labelled as i, a k-subtree of r. So there are
 l-Il!/(IrI - k)! different k-subtrees of r. Here is the fundamental identity.

 LEMMA 25. Let $7 be the unconditioned Galton-Watson random tree. Let t
 be a k-tree. Then

 E( number of different k-subtrees of S isomorphic (as k trees) to t) 1(I I=n)

 = ( 2)klP(SL(t)+k = n - Itl -L(t)),

 where

 1tj-2k+1 k-1 m

 L(t) = A i+ i* Sm=E i
 i=1 i=1 i=1

 the r.v.'s (i, (i, Xi) are independent, with the distributions of (i and (i as
 specified at (40) and (41), and with Xi =d I I1

 PROOF. Call a subtree u* of 3r full if, whenever u* contains an individ-
 ual, it also contains all the siblings of that individual. I assert that for any
 tree u,

 E(number of full subtrees of 5T isomorphic to u) 1(I$?I=n)

 (42) = P(Sn(u;O) = n - Iul) H P(' = d(u; v))
 v: d(u;v)?1

 = f(u), say,

 where n(u; i) is the number of vertices of u with exactly i children, and
 d(u; v) is the number of children of individual v in u. For $ can have at most
 one full subtree isomorphic to u, and this happens if and only if the individu-
 als corresponding to internal vertices of u have exactly the right numbers of
 children; then the descendants of the leaves of u may be arbitrary, but the
 total number of such descendants must be n - I u I if the total population size
 of $ is to be n.
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 Now fix a k-tree t. Let t* be a subtree of S with k labelled leaves which is
 isomorphic to t, and let u be the subtree consisting of the individuals in t*

 together with all their siblings. Consider the pair (t*, u) without reference to
 the rest of S. This pair has the following properties:

 (i) t* is isomorphic to t.
 (ii) t* is a subtree of u.
 (iii) Each individual of u is either in t* or is a sibling of an individual in t*.

 So the expectation in Lemma 25 equals

 (43) E f (),
 (t*, U)

 where the sum is over all pairs (t*, u) satisfying (i)-(iii).
 Figure 6 illustrates three pairs (t*, u) which contribute to the sum (43) for a

 particular t. Note that the left and center pairs are counted as distinct, even
 though the u's are isomorphic.

 Given a pair (t*, u) satisfying (i)-(iii), for each internal node v of t* let s(v)
 be the number of extra children added at v in making u, that is to say,

 s(v) = d(u;v) - d(t*;v) forvertices v with d(t*;v) ? 1.

 Let s denote the vector (s(v)). Note that u has k + Isl leaves and Itl + Isl
 vertices, where Isl = E?s(v). So we can write f(u) in terms of t* and s as

 P(Sk+Isl = n - It*I - ISi) H P(6 = d(t*; v) + s(v)).
 v: d(t*, v)> 1

 Given t* and s, the number of nonisomorphic pairs (t*, u) satisfying (i)-(iii)
 and with d(u; v) - d(t; v) s(v) equals

 ( Hl (s(v+1)( H (s(v) + 1)(s(v) + 2
 v: d(t; v)= 1 v: d(t; v)=2 2

 because for an individual with one child in t and s other children in u, we
 have s + 1 positions in which the child in t might be placed. Similarly, for an
 individual with two children in t in specified relative order and with s other

 children in u, there are (s + 1)(s + 2)/2 choices for the positions of the two
 children of t.
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 So (43) becomes

 EP(Sk+lsl = n - ItI - Isi) x H (s(v) + 1)P(6 = s(v) + 1)
 s v: d(t; v)= 1

 > H (s(v) + 1)(s(v) + 2)P(6 = s(v) + 2)
 v: d(t; v)=2 2

 Using (40, 41), this becomes (o72/2)k-1 times

 EP(Sk+lsl = n - ItI - Is) 1 P( = s(v)))( P( (V)).
 s v: d(t; v) = 1 v: d(t, v)= 2

 But the sum can be rewritten as the probability term in Lemma 25. For
 because of the "proper" in the definition of k-tree, there are no individuals in
 t with more than two children, exactly k - 1 individuals with two children,

 exactly k with no children, and hence the remaining ItI - 2k + 1 individuals
 have one child.

 Now consider the conditioned Galton-Watson tree 7n. Let R(n, k) be the
 k-subtree spanned by the root and k randomly chosen distinct vertices. The
 equality in the next lemma is immediate from Lemma 25.

 LEMMA 26. Let t be a k-tree. Then

 P(R(n, k) is isomorphic to t)

 (n - k)! 2(k-l)P(SL(t)+k = n - ItI - L(t))
 n!2k-1 nk P(I =n)

 ( 2) 1(n;/2 )2Itlexp( - 2) as n h, ItI = 0(nl/2)

 (ItI = 0(nl/2) means the ratio ItI/n1/2 is bounded away from 0 and oo.)

 To prove the asymptotics, in view of (36), what we have to prove is

 (44) P(SL(t)+k = n - ItI - L(t)) (27) 1/2jtIn3/2 exp(- 2)

 as n -4 oo, ItI = 0(nl/2). Note that the right side is 0(n-1).
 Since E6 = O2, the weak law of large numbers implies there exist En Io

 such that

 (45) - 1 > | |

 Now (38) implies sups P(Sm = s) = O(m-2), and so by conditioning on L(t)
 and-using (45),

 (46) P(SL(t)+k= n - ItI - L(t), L t) > 1 + En) =o(lt ) = o(n1). P SL~~~t) + k 9 U~c2 It I n

This content downloaded from 108.226.241.26 on Sat, 24 Feb 2018 23:06:05 UTC
All use subject to http://about.jstor.org/terms



 286 D. ALDOUS

 Similarly, (38) implies

 sup SUpP(SSm = s) = O(ItlK2) = O(n-1)
 (1/2)f2ltl < m <,o2ltl +k s

 and again by conditioning on L(t) and using (45),

 (47) P(SL(t)+k = n - Itl - L(t), 1 < L21t < 1 - =o(n1)

 And also

 (48) P(2) < 2 o(n-1),

 because, by truncating f at some point making its mean greater than 1/2, the
 large deviation theorem implies the probability in (48) decreases geometrically

 fast in Iti. Now by (46)-(48), in proving (44) we may replace L(t) by determin-

 istic 1(t) -21tl Now from (38) and a little rearrangement, if m = O(n1/2)
 and q = 0(n1/2), then

 P(Sm =n -q ) (2)/2mn 3/2o- 1exp( -Om )

 Applying this with m = 1(t) + k -21tl and q = Itl + 1(t) establishes (44).
 We are now halfway to our goal. Rescale the edges of Sn as in the

 statement of Theorem 23. Let R*(n, k) be the reduced subtree associated
 with k random vertices of rescaled Sn. Then Lemma 26 implies

 (49) R*(n,k) >d R(k) as n - oo,

 where R(k) has the density (34). This verifies (26), and so it remains to verify
 the "tightness" condition (25).

 Let F(n, k) denote the full subtree of gn associated with R(n, k). The
 argument for (42) gives the following distributional relationship. Conditional

 on F(n, k) = u, the tree 3n can be regarded as built from u and subtrees
 (g3*) appended at the leaves of v of u, and this family (37v*; v a leaf of u)
 consists of i.i.d. copies of S', conditioned on the total number of vertices

 vI S'v*J being exactly n - Jul. Let (Xi, YL) be independent (in i) copies of the
 joint distribution (I I1, ht(Y')) and set

 m

 Sm EXi, YM= max Yi.
 i=1 1<i<m

 Let D(n, k) be the maximum, over vertices v of Yn- of the distance from v to
 F(n, k). Let L(n, k) be the number of leaves of F(n, k). The previous
 distributional relationship implies

 the conditional distribution of D(n, k) given F(n, k) is the
 (*) conditional distribution of Yr*,k given SLk) = n -
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 Now (49) implies

 (50) n-1/2 I(n,k)l d dI(k)I,

 where II(k)I denotes the total length (i.e., the sum of edge lengths) of M(k).
 The argument for (45) shows L(n, k)/IR(n, k)I p 2and hence, by (50),

 (51) n-/2L(n,k) d ok(k)I.

 Now fix b > 0 and 0 < cl < c2 < oo. Then

 P( Dfn, k) > bn1/2) < p (n- 1/2 Lfn, k) e [C19 C21)

 + P(IF(n, k)l - L(n, k) > n2/3)

 + P(D(n, k) > bn1/2, n-1/2L(n, k) e [C19 C2],

 1,F(n , k)l - L(n , k) < n 2/3)

 The first term in the bound tends to P(o-IjR(k)I e [c1, c2]) by (51). The second
 term tends to 0 by (50), because I3F(n, k) - L(n, k) < JR(n, k)I. And by
 conditioning on F(n, k) and using the representation (*), the final term is
 bounded by the conditional probability appearing in Lemma 27 below. So by
 the conclusion of Lemma 27,

 lim sup P( n -1/2D(n, k) > b)
 (52) noo

 < a(b, c1) + P(olW(k)l < c1) + P(olW(k)l ? C2).

 First let c2 -o c, so the final term vanishes. Note IM(k)I d ?? as k -> oo. So
 letting k -- oo, then cl -- oo,

 lim lim sup P (n - 1/2 D(n, k) > b) = 0.
 k - oo n-oo

 Now the distance from a vertex to W(n, k) is at most 1 more than the distance
 to F(n, k). So after rescaling edge lengths, the A(n, k) in (25) satisfies

 A(n, k) < on-1/2(D(n , k) + 1).

 This and the previous equation verify condition (25) and complete the proof of
 Theorem 23. o

 LEMMA 27. For O < c1 < c2 < oo,

 limsup sup sup P(Ym* 2 bn1/21Sm - n*) < a(b,c1),
 n -?? clnl/ < m<C2nl/ n-n2/ <n* < n

 where the constants a(b, c1) satisfy

 a(b, cl) O- as cl -> oo, all b > O.

 PRQOF. By taking subsequences, it is enough to prove: If m = m(n) cn1/2
 and n* = n*(n) n, then

 (53) lim supP(Ym* ? bn1/21Sm =,n*) < a(b, c).
 nf -oo
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 To prove (53), note

 P(Y* ? bnl/2lSm = n*) < mP(Yi ? bnl/2lSm = n*)

 MEP(Yi ? bn1/2, X P(S n* x) X ~~~~)P(Sm= n*)
 and by (38) this is asymptotically bounded by

 (54) Cn1/2 12P(Y1 ? bn"2 X1 = x) g(( g /c2)( (on - x)In))

 We may suppose that c is sufficiently large that the density g at (39) is
 increasing on (0, a2/C2). Then the fraction in (54) is at most 1. For 1/2 > 8 >
 0, it is easy to verify

 g(o-2(1 _ 8)2/C2)/g(ff2/c2) < 23/2 exp( -c28/(2 2))

 So for x ? 8 n the right side is an upper bound for the fraction in (54). By
 splitting the sum (54) at x = 8n we see that (54) is bounded by

 cn1/2P(Y1 > bn1/2 X1 ? An) + cnI/2P(Y1 ? bn1/2)23/2exp(-c28/(2o-2))

 Appealing to (35) and (37), the inequality in (53) holds when we define

 a(b, c) = ca- /2Kl exp( - -) + c23/2 exP( -

 Choosing 8 = 1/c completes the proof. o

 5.3. Final remarks. Other models of random trees where one might ex-
 pect the Brownian CRT (or some other continuum random tree) limit are
 mentioned in Aldous [(199ib), Section 4]. Here let me discuss, from the
 viewpoint of this paper, the recent work of Durrett, Kesten and Waymire

 (1991). They consider the conditioned Galton-Watson trees 7n- but instead of
 having unit edge lengths they allow the edge lengths to be random, i.i.d. copies
 of W, say, where W ? 0 and EW = 1. Their main result implies that, provided

 (55) EW2 < oo,

 the height of 3n behaves asymptotically as if W 1. Here (55) is the natural
 condition, because if

 (56) P(W > w) cw-a, where 1 < a < 2,

 then the height is at least order nl/a by considering the longest edge. The first
 half of our proof in Theorem 23 (ignoring order structure) gave convergence of
 measure representations when W 1, and by the weak law of large numbers
 this extends unchanged to the "random W" model, assuming only first
 moments. Thus the case (56) is a natural example where measure representa-
 tiops converge but set representations do not. By assuming existence of
 sufficiently high moments of W it is not hard to check the hypotheses of
 Corollary 19 to show that the set representations converge, but I do not know
 if second moments suffice.
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 NOTE ADDED IN PROOF. A direct proof of Corollary 22 in terms of Brownian
 excursion only has been given by Le Gall (1992).

 Acknowledgment. I thank the referees for pointing out obscurities in
 the original draft, and for encouraging me to remove moment conditions from
 Theorem 23.
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