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1 Introduction

The question is not “if the market breaks”; the question is “when the market breaks”.

We all know the market is going to correct some day... The question is “when” and “by

how much”.

www.seekingalpha.com, September 20, 2012

The level of a market index in the future is random, and its distribution can be viewed

by each investor differently. Market prices of options reflect common assessment of the

probability distribution of the underlying asset on the expiration day, adjusted for the

investors’ tolerance for bearing risk. Researchers have long recognized the possibility of

inferring such forward-looking assessments from option prices to improve the prediction

of future probability distribution; however, so far we have not been very successful in

predicting market and stock crashes, in terms of both their magnitude and timing.

Instead of using moments of returns, which have often been used to forecast left-tail

events, we use option prices to compute a forward-looking tail loss measure that directly

quantifies the expected market or stock crash size, and that predicts the magnitude and

probability of a crash in the market index and in the cross-section of stocks, conditional

on tail event realization. When no crash occurs, a higher tail loss measure, i.e., the

expectation of a higher loss due to the sudden decline in asset value, is associated with

a higher premium to be earned for taking the risk.

Tail loss measure contains an incremental information about the future stock returns

beyond other option-implied variables, such as variance risk premium and implied cor-

relation, which have been shown to predict returns.1 It is extremely hard to predict

the timing and magnitude of a low-probability market crash, mostly because any crash

is rare, and even having an ex ante high probability it may not come to a realization

soon enough. In the out-of-sample portfolio optimization we mostly profit from a higher

risk premium associated with higher risks and predicted by tail loss measure and other

implied variables, and not from the ability of implied variables to time the crash.

1See Bollerslev, Tauchen, and Zhou (2009), and Driessen, Maenhout, and Vilkov (2012) for details.
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We proceed in several steps. First, using the results of the Extreme Value Theory, we

define and show how to estimate the tail loss measure from observed out-of-the-money

option prices. The theoretical advantage of the tail loss measure is that it is unique for

a given minimal size of a crash, while most other implied measures cannot be identified

uniquely due to the absence of continuum of options. Second, we perform the time-

series tests, using the robust regression approach and “crash” dummies to show that one

standard deviation increase in the tail loss measure causes a marginal positive change

in the weekly market return of 0.29% (or 15% p.a.), and that when the crash occurs,

one standard deviation difference in tail loss measure amounts to −1.35% per week for

a one-sigma event, and −1.84% for a two-sigma event. A similar direction of the results

holds for monthly and quarterly horizons. The binary probit model estimation indicates

that the weekly change in tail loss measure is positively related to the probability of a

crash (with a significant relation for 1-week and 1-month horizons), though the effect is

not economically important. Third, we carry out an out-of-sample portfolio optimization

exercise, using option-implied variables and their combinations to construct “managed

portfolios, in which one invests more or less in an asset according to some signal,” as

suggested in Cochrane (2005, page 9).2 By comparing the performance of the option-

implied variables to that of a non-informative portfolio we show that the tail loss measure

beats the non-informative portfolio in economic terms, but the outperformance is not

statistically significant.3 Finally, we study the cross-section of stock returns and stock-

specific tail loss measures, and we come to similar conclusions as in the time-series analysis

for the market: tail loss measure is positively related to the expected return and to the

magnitude of a crash in the case of its realization.

We conclude this introduction by discussing the relation of our work to the existing

literature. The idea that option prices contain information about future distribution

of asset returns has been understood ever since the work of Black and Scholes (1973)

and Merton (1973); Christoffersen, Jacobs, and Chang (2011) provide a splendid and

comprehensive survey of this literature. Using implied moments is helpful in predicting

2The approach is similar to the parametric portfolio policy of Brandt, Santa-Clara, and Valkanov
(2009), but applied to only one risky asset in the time-series settings.

3The only variable that significantly adds useful information for optimization (above a non-informative
case) is the implied correlation.
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future volatility, correlations, expected returns of the market, as well as in the cross-

section of stocks, and other attributes of return distribution, however, only a few studies

are somewhat successful in predicting the probability and magnitude of future crashes.

Most authors use a proxy of implied skewness as a major instrument for analysis. For

example, Carson, Doran, and Peterson (2006) and Doran, Peterson, and Tarrant (2007)

find that option-implied skew has significant forecast power for assessing the degree of

market crash risk, though the effect is not economically relevant; Bates (1991) finds no

strong crash fears as expressed by the skewness of the risk-neutral distribution during

two months immediately preceding the crash. We include model-free implied skewness

as the explanatory variable in all types of tests and do not find any overwhelming ability

of the currently observed implied skewness to predict future crashes.

We rely in our derivations on the results of the Extreme Value Theory, and espe-

cially on the suggestion of Hamidieh (2011) to use out-of-the money options to infer the

parameters of the excess loss distribution. Hamidieh uses only one parameter in his anal-

ysis, namely, the shape of the tail distribution, and documents a thickening of the left

tail of the S&P 500 index just prior to the market turmoil of September 2008. Instead,

we are using fully parametrized excess loss distribution to compute the expected value

of the asset value loss beyond a certain threshold and relate it to the magnitude and

probability of market-wide and stock-specific crashes. Another study that relies on the

Extreme Value Theory to derive a related tail measure is Kelly (2011). He suggests a

market-wide measure of tail risk that can be estimated from the cross-section of stock

returns, exploiting stock-specific crashes every month to identify common fluctuations in

tail risk across stocks. The results of his and our studies are consistent in direction and in

magnitude, however, our tail loss measure is forward-looking and can be estimated in real

time by simply processing current option prices; hence, we can react to new information

more rapidly.

A number of papers look at the relation among variance risk premium, fear of jumps,

and future returns. Bollerslev, Tauchen, and Zhou (2009) show that the variance risk

premium has a strong predictive power for future market returns, and from Bollerslev

and Todorov (2011) we know that “the compensation for rare events accounts for a large
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fraction of the average equity and variance risk premia.” Implied correlation is also re-

lated to the risk of negative jump through the notion of a loss of diversification, and

it also has been shown to both predict future returns and bear a systematic negative

risk premium (Driessen, Maenhout, and Vilkov (2009, 2012)). Our results indicate that

neither variance risk premium nor the implied correlation contain all the “fearful” infor-

mation about the future crashes, and tail loss measure proves to be useful in identifying

crash expectations and associated risk premium in asset returns.

Some studies derive option-based systematic factors related to the risk of market

crashes and then empirically verify the sign of the associated risk premiums. For example,

Chang, Christoffersen, and Jacobs (2012) propose a market skewness factor and show that

it commands a negative risk premium. Cremers, Halling, and Weinbaum (2012) derive an

option-based factor, which is sensitive to the jump (crash) risk only, and show that it also

bears very significant negative risk premiums. The significant negative risk premium for

both market skewness and jump factors is consistent with the positive relation between

the tail loss measure and future returns in the case that no crash occurs, however, we

remain agnostic about the systematic nature of the jump risk and its pricing, and rather

we suggest a variable, which is ex ante related to crash (negative jump) size and its

probability.

The last, but not least, strand of literature deals with the theoretical foundations

for risk premiums related to fears of crash. Bates (2008) derives an equilibrium with

options markets with heterogenous crash-averse investors and finds that “specification of

crash aversion is compatible with the static option pricing puzzles, while heterogeneity

partially explains the dynamic puzzles.” Gabaix (2012) develops a rare-disasters model

and successfully resolves several option-related puzzles on “high price of deep out-of-

the-money puts; and . . . high put prices being followed by high stock returns.” The

latter result is directly related to our findings; moreover, we provide additional empirical

support for it, using not just prices of puts but also the quantification of the expected

market losses conditional on a crash.

The rest of the paper is organized as follows. In Section 2, we discuss the construction

of the left tail loss measure and its economic interpretation, and we also specify the
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predictions to be tested later on. In Section 3, we describe the data on stocks and

options that we use. In Section 4, we proceed with an empirical analysis, first studying the

time-series predictability of market returns, then carrying out an out-of-sample portfolio

optimization exercise and a cross-sectional analysis of individual stocks. Our conclusion

is found in Section 5, and we collect the proofs and the details about the estimation of

the tail loss measure in Appendix A.

2 Tail Loss Measure

In this section, we first discuss the theoretical foundation for constructing the tail loss

measure; then we provide its economic interpretation and formulate three testable hy-

potheses for analysis.

2.1 Constructing the Tail Loss Measure

Instead of looking at the full distribution of asset price changes, we concentrate on its left

tail only, in the form of the forward-looking expectation of the drop in asset price below

a certain threshold conditional on a crash occurring within a short period of time. Such

a tail loss measure (TLM) characterizes not the probability, but the severity of a crash in

the case of its realization. To construct the tail loss measure we employ the results of the

Extreme Value Theory (EVT), which mainly deals with the distributional properties of

the extreme, or low probability, events. Without knowing the true underlying distribution

of the asset value, we can utilize (under some technical conditions) the second theorem of

EVT, also known as the Pickands-Balkema-de Haan theorem, to describe the distribution

of the asset value x below an extreme (low) enough threshold h by a generalized Pareto

distribution:

Gβ,ξ(h− x) =


1−

(
1 + ξ

h− x
β

)−1/ξ

if ξ 6= 0

1− exp(−h− x
β

) if ξ = 0,
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where β is the scale, and ξ is the tail shape parameter.4 The mean excess tail value of

the asset, provided ξ < 1, can be computed as

E(h− x|h > x) =
β

1− ξ
,

and we define the tail loss measure Ωh,t at time t conditional on the threshold h as the

expected excess tail value of an asset relative to the current value of the asset:

Ωh ≡
Et(h− x|h > x)

xt
.

Following Hamidieh (2011), we infer the parameters β and ξ of the tail value distribution

of an asset from the observed prices of options on this asset, and hence all the expecta-

tions, as well as the tail loss measure itself, are defined under the risk-neutral probability

measure. Refer to Appendix A for derivations and description of estimation procedures.

Economically, our tail loss measure is equivalent to the Conditional Value-at-Risk,

computed under the risk-neutral probability measure, and in terms of information con-

tent, our tail loss measure is somewhat comparable to risk-neutral skewness or other

option-implied tail measures quantifying the fatness of the left tail of the asset value

distribution. The advantage of tail loss measure over value-at-risk is that it is forward-

looking and inferred from the current prices of traded options without restrictive assump-

tions about the distribution of an asset. Compared to the other option-implied measures,

tail loss measure also has a significant advantage: it is unique, and even though we have

sparse strikes of options traded at any given time, we are able to identify the tail loss

measure uniquely. In other words, the tail loss measure resolves two problems common

to the most option-implied measures: a mathematical one that the inverse problem of

estimating the risk-neutral moments is ill-posed, and a economic one that, while in incom-

plete markets there exist multiple risk-neutral asset distributions and hence theoretically

there may be multiple valid estimations of non-traded implied moments, there is only one

tail loss measure for a given threshold. We prove in the appendix the following theorem

about uniqueness of the tail loss measure.

4Please see the proofs related to the EVT results and generalized Pareto distribution properties in
the original papers of Balkema and Haan (1974), and Pickand (1975), or the review material in Section
7 of McNeil, Frey, and Embrechts (2005).
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Theorem 1 Assuming that the risk-neutral distribution of asset value x belongs to the

maximum domain of attraction of an extreme value distribution, the tail loss measure

Ωh ≡ E(h−x|h>x)
x

, inferred from the prices of traded options on asset x, with threshold h

near the endpoint of x, is unique.

2.2 Economic Interpretation and Testable Hypotheses

Because economic agents dislike losses and negative skewness, they require additional

risk premium for holding unfavorable assets, e.g., the market index in unfavorable times

of high probability of a market decline (as follows from Barberis and Huang (2008),

Brunnermeier and Parker (2005), and Brunnermeier, Gollier, and Parker (2007), among

others). Hence most of the time we expect a high tail loss measure to correspond to the

high equity risk premium, or high market return. However, because tail loss measure also

reflects the expectations of the investors about the magnitude of future crashes, when

these expectations come true, we expect to document a positive relation between the

tail loss measure and the magnitude of (now negative) asset returns. Thus, when no

crash occurs, the relation between tail loss measure and the market return resembles the

dependence between the level of risk and the insurance premium that we want to receive

to hold the risk. When the crash occurs, i.e., the risk is being realized, we are expected

to pay out to reimburse the insured side of the transaction, and the payment is typically

higher, the higher the premium was received. This observation leads to our first testable

set of predictions.

Hypothesis 1 When no market crash occurs, the market tail loss measure ΩM
h,t is posi-

tively related to the future market return rMt,t+∆t, i.e., it is associated with a high expected

market risk premium. In the case that the low-probability crash is realized, the tail loss

measure is positively related to the magnitude of the negative realized market return.

Because the tail loss measure quantifies the severity of a crash as seen by investors, we

also expect the tail loss measure to be helpful in identifying the probability of a crash,

even though an expected crash with a high probability may still remain unrealized.

This particular feature of rare events complicates the estimation of any related expected

measure empirically, but based on theoretical grounds we can expect the following:

Hypothesis 2 The dynamics of the market tail loss measure are positively related to the

probability of a low-probability market crash in the future.
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Being aware of a steadily growing number of option-based measures quantifying the

forward-looking expectations of the market distribution,5 we should be careful not to

produce another redundant measure that is especially sensitive to extreme negative re-

turns, i.e., crashes. We will therefore include in all tests the previously derived robust

predictors of market returns, such as implied correlation, market variance risk premium,

and implied skewness measures. Before we continue, we should fill in a gap in the discus-

sion, namely, the proper definition of a low-probability market crash. In the empirical

section we define a low-probability market crash as a negative return larger in magnitude

than a predetermined multiple of the expected market volatility (sigma); specifically, we

consider 1- and 2-sigma events. To conform with reality we use the common “fear index”

VIX, smoothed over a short historical period as the expected market volatility.6

If we fail to reject the predictions regarding the relation of the tail loss measure

and the market return dynamics, we can expect to use the return- and crash-predicting

abilities of the TLM in portfolio optimization. We will study these questions in empirical

sections, though we do not stipulate any testable hypotheses with respect to this as of

now.

In addition to studying the market tail loss measure, we also compute the same

quantity for the individual stocks and test how the individual tail loss measures are

related to the cross-section of expected stock returns. We study what is the direction and

magnitude of the cross-sectional relation between stock returns and tail loss measures.

Motivated by the finding in Kelly (2011), who derived the backward-looking market

tail measure under the true probability and found that stocks with higher tail exposure

earn higher returns, we also expect our option-implied tail loss measure to be positively

related to stock returns. However, as in the case with the market tail loss measure

analysis above, we want to differentiate a situation when there is a high probability of a

negative return, and when this negative return is actually realized. Thus, our third set

of testable predictions is as follows:

Hypothesis 3 Individual stock tail loss measure is positively related to the cross-section

of expected stock returns, when there is no stock-specific low-probability crash realized.

5To name just a few, Driessen, Maenhout, and Vilkov (2012) study implied correlation; Bollerslev,
Tauchen, and Zhou (2009) look at the variance risk premium, and Han (2008) links implied skewness
and investor sentiment.

6It has been shown in several studies that the implied volatility can serve as a good predictor of the
future volatility. See Poon and Granger (2003) for a literature review.
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In case the stock-specific low-probability crash is realized, the stock tail loss measure is

positively related to the magnitude of the negative realized stock return.

We devote Section 4.1 to testing the first two hypotheses, and we proceed in Section 4.2

with a portfolio optimization exercise; then we study the cross-sectional predictions in

Section 4.3.

3 Data Description

In this section, we describe the data on stocks and stock options that we use in our

study. Our sample period is from January 1996 to October 2010. Our data on stocks are

from the Center for Research in Security Prices (CRSP) and NYSE’s Trades-and-Quotes

(TAQ) database. To construct some stock-specific characteristics we also use data from

Compustat; the data for the index and individual stock options are from OptionMetrics.

3.1 Stock and Market Returns and Characteristics

We study stocks that are in the S&P 500 index at any time during our sample period.

The monthly stock returns of the S&P 500 constituents and the index itself are from the

monthly CRSP Stock Prices file. We use the S&P 500 prices to construct the overlapping

returns for a number of periods (one week; one, two, and three months). We also use

high-frequency intraday transaction price data for an exchange traded index proxy (SPY)

to compute the market variance; these data are from the NYSE’s Trades-and-Quotes

database. We apply a number of commonly used filters to the high-frequency data and use

the second best variance estimator with the resampling and averaging of Zhang, Mykland,

and Ait-Sahalia (2005), with the resampling frequency of 15 minutes to compute on each

day t the realized variance (RV2
t ) over the last 21 trading days.7

We also compute a number of stock-related characteristics. The market value of

equity (SIZE) is defined by the natural logarithm of stock price per share multiplied

by shares outstanding; both variables are obtained from the CRSP database. Book-to-

market ratio (BTM) is computed as the book value divided by the market capitalization.

7See, for example, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) for an overview of the
high-frequency filters.
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At the beginning of July of each year, we compute a book-to-market ratio using the

market value of equity at the end of December of the preceding calendar year and the

book value for the firm’s latest fiscal year ending in the previous calendar year. Book

value is calculated as the sum of total common/ordinary equity and the balance-sheet

deferred taxes. The twelve-month momentum (MOM) is measured for the end of each

month t using monthly return data from CRSP as the cumulative return from month

t − 12 to month t − 1, and one-month reversal (REV) is also computed for the end of

each month as the past month return.

3.2 Option Returns and Option-Implied Characteristics

For stock and index options we use IvyDB (OptionMetrics), which contains data on all

U.S.-listed index and equity options.

To compute the option-implied measures we use the standardized volatilities for the

maturity of 30 days from the Volatility Surface File, which contains a smoothed implied-

volatility surface for a range of standard maturities and a set of option delta points. We

select out-of-the-money implied volatilities for calls and puts (we take calls with deltas

smaller or equal to 0.5, and puts with deltas bigger than −0.5) to estimate on each day

the model-free implied variance (MFIV), skewness (MFIS), and kurtosis (MFIK), using

the method of Bakshi, Kapadia, and Madan (2003).8 We use the MFIV for index and

individual options, as well as index weights, to compute for each day the forward-looking

implied correlation (IC), applying the method of Driessen, Maenhout, and Vilkov (2012).

We also use the MFIV as a proxy for VIX2 throughout the paper. Following Bollerslev,

Tauchen, and Zhou (2009), we compute the value of the variance risk premium (VRP) of

the index proxy, defined as the difference between the VIX2 and realized index variance

RV2, computed over the last 21 days from the high-frequency transactions data.

8To compute the integrals that give the required values of the variance, cubic, and quartic contracts
precisely, we need a continuum of option prices. We discretize the respective integrals and approximate
them using the available options. We normally have 13 out-of-the-money call and put implied volatilities
from the surface data for each maturity. Using cubic splines, we interpolate them inside the available
moneyness range, and extrapolate using the last known (boundary for each side) value to fill in a total
of 1001 grid points in the moneyness range from 1/3 to 3. Then we calculate the option prices from
the interpolated volatilities using the known interest rate for a given maturity and use these prices to
compute the model-free implied volatility, skewness, and kurtosis.
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For the tail loss measure we first estimate on each day t the tail shape ξt and scaling

βt parameters of the generalized Pareto distribution under the risk-neutral probability

measure by solving the optimization problem for all out-of-the-money puts with strikes

weakly smaller than K0,t:

{ξt, βt} = arg min
ξ,β∈(R×R+)

n−1∑
i=0

∣∣∣Pi,t − P ∗i,t
P ∗i,t

∣∣∣,
where Pi,t is the observed price of a put option with strike Ki,t on day t, and P ∗i,t is the

“theoretical” price of a put option with the corresponding strike and maturity, calculated

by the option pricing formula based on the Extreme Value Theory:

P ∗i,t = P ∗0,t

[ ξt
βt

(K0,t −Ki,t) + 1
]1−1/ξt

. (2)

The strike K0,t is the threshold strike, and we assume that for all put options below

this strike we can apply equation (2) to compute the put option prices, from the ob-

served option price P ∗0 with the threshold strike. We select the threshold strike as current

stock price St adjusted downwards by the two monthly volatilities, where volatility is

approximated as the average value of implied volatility (VIX) over the last quarter, i.e.,

K0,t = St× (1− 2× V̂ IXt/100√
12

) with V̂ IX t = 1
63

∑62
i=0 V IXt−i. For derivations of the TLM

and its estimation routine, refer to Appendix A.

4 Empirical Investigation

In this section, we provide the empirical tests of the hypotheses stipulated earlier. We

start, in Section 4.1, by studying the predictability of time-series market returns and

magnitude of crashes in the case of their realization, using as predictors the TLM and

a set of other option-implied variables; we also analyze the predictability of the crash

probability. In Section 4.2, we perform an out-of-sample portfolio optimization routine,

then provide the details of the cross-sectional analysis in Section 4.3.

11



4.1 Market TLM and Time-Series Return Predictability

4.1.1 Time-Series Explanatory Regressions

To test Hypothesis 1 we simply run a time-series explanatory regression of the market

return on a number of variables. However, taking into account the nature of the study,

namely our assumption about the existence of low-probability events with extremely

negative returns without the exactly offsetting events with extremely positive returns,

we should a priori reject a linear model, because simple OLS estimators can be heavily

influenced by a small fraction of anomalous observations in the data (see Huber (2005)

for a review). To be able to squeeze the data into the desired linear model design, we

need somehow to identify the outliers to treat them and “normal” data separately. To

stay scientific and avoid arbitrary outlier removal or winsorization procedures, we use

robust M-estimators, where, in effect, the data are down-weighted depending on their

distance from the median absolute value (the estimator with high resistance to outliers),

and extreme outliers are given zero weight. We apply the biweight (also called bisquare)

data transformation, which combines the properties of resistance with relatively high

efficiency in many applications (see Mosteller and Tukey (1977) for a general discussion

and details).9

Thus, we consider the linear explanatory model

yt+∆t = β0 + β1xt1 + . . .+ βkxtk + εt = x′tβ + εt, (3)

where yt+∆ is the market holding period return from day t to t + ∆t, xt is the set

of regressors observed at time t, and β are the respective estimated coefficients. As

predictors we use all option-based variables that have been shown elsewhere to predict

market returns.10

9Bisquare weighting function is one of the standard choices for robust regression preprogrammed in
the most popular statistical packages. We use the default settings for computing the bisquare weights
with the tuning constant value of 4.685, which produce 95% efficiency when the errors are normal, and
still offer protection against outliers.

10We also included in the set of predictors the market fundamentals—earnings growth rate and price-
dividend ratio, following the sum-of-the-parts (SOP) method of Ferreira and Santa-Clara (2011), but
the improvement over the option-based predictors for short-term returns is marginal. These results are
available upon request.
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We first study how the TLM is related to the future market returns in the states,

in which no “crash” occurs, and, following our discussion above, we expect to receive

a premium for holding the market risk. The results of the estimation are provided in

Table 1, and the sign of the TLM coefficient is positive across all models, as expected,

though it is significant only for a very short horizon return of one week. Thus, the higher

the market losses anticipated by investors are (and adjusted for the willingness to bear

the risks), the higher the market return is in the next period, but only for the periods

without crash realizations. We also compute in Table 2 the marginal effect of the one-

volatility change in each variable, keeping all other variables constant, on the respective

expected return. The volatility of the market TLM in our sample equals to 1.88%, and

hence, a marginal change in expected short-term market return from the change in TLM

by one volatility value will be 0.29% per week, which is 15% per year. Using TLM as

the only predictor gives us the R of 1.34% for weekly and 3.01% for quarterly returns,

while including the other option-based variables boosts it to about 2.5%, and to 17%,

respectively. It is important, however, that the TLM does not add any explanatory power

to the model for the long-term returns, and adding the TLM to the other option-based

variables even decreases the R slightly.

The other option-based variables perform very well in explaining the market returns in

a no-crash state. The most robust measure seems to be the implied correlation (IC), which

demonstrates a positive and significant coefficient for all three return horizons; moreover,

the coefficient scales almost linearly with the holding period. The one-volatility change

in IC adds 0.27% per week to the expected short-term market return, and it also adds

3.09% per quarter to the expected quarterly return. Variance risk premium (VRP) does

not work well for a short period of one week, though it also demonstrates a positive and

significant sign for longer holding periods of one and three months. The significance of

VRP increases with the time period, and it is consistent with the observation of Bollerslev,

Tauchen, and Zhou (2009, page 1) that “the magnitude of the [VRP] predictability is

particularly strong at the intermediate quarterly return horizon.” The marginal effects of

the VRP are two to three times weaker than those demonstrated by the IC. The higher

(third and fourth) moments of risk-neutral distribution, namely MFIS and MFIK, are not

significantly related to future market returns. Implied Volatility Index (VIX), however,
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typically named a “fear index” of the market, is negatively related to expected returns

in the future. While it is consistent with the leverage effect (e.g., Christie (1982), among

others), it might seem to be contradicting the economic theory. Fear should be associated

with demanding a higher risk premium for holding the market, and not vice versa.

To study what happens in case of a crash realization, we include in the model the

interaction “crash” dummies for the TLM and the low-probability negative market re-

turn. The dummy is equal to 1 when the market has a decline in the following holding

period larger than one (D1const for constant and D1slope for the slope) or two (D2const and

D2slope, respectively) sigmas, where sigma is defined as the average value of VIX over the

last quarter rescaled to match the duration of the holding period (one week, one month,

or three months). When we include either set of “crash” dummies into the regression (3),

we get a significantly negative adjustment to the constant, indicating that some of the

realized negative returns are left unexplained by our current right-hand-side variables.

More importantly, the TLM slope gets adjusted with a highly significant negative coef-

ficient for the regressions with 1-week and 1-month returns (and for D1slope for 3-month

returns). The adjustment is several times higher than the original TLM coefficient, and

with one-volatility difference in the TLM, keeping all other variables constant, it amounts

to −1.35% per week for one-sigma decline, and −1.84% per week for two-sigma decline.

For a monthly return regressions the one- and two-sigma slope dummies are equivalent

to the decline in future market return by 2.40% and 3.70% per month, respectively, for

a one-volatility increase in TLM.

Thus, we fail to reject the composite Hypothesis 1, and indeed a higher TLM in-

dicates a higher required return on the market (especially so for short-term holding

periods), when no low-probability crash occurs; however, when the crash occurs, a higher

TLM is related to larger losses for the market index. The implied correlation (for all

selected holding periods) and variance risk premium (for longer horizons) prove to be

very important and significant, both economically and statistically, in explaining future

market returns. Still, a part of the extreme negative returns remains unexplained by the

selected variables.
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4.1.2 Probit Regressions

Our main objective here is to understand, whether it is possible to link the probability

of a market crash under the objective (or true) probability measure and the observed

tail loss measure, which is computed under the risk-neutral probability, and whether the

relationship is positive. To study Hypothesis 2, we use the binary probit model estimated

over the whole sample period.11

The categorical variable yt on the left-hand side of our model is defined in terms

of future market movements beyond a certain negative threshold. We consider a case

with two possible values of yt depending on the expected market volatility V̂ IX t =

1
63

∑62
i=0 V IXt−i and a realized market return rt,t+∆t in the next holding period window.

More precisely, we define the categorical variable at time t as follows:

yt =

{
0 if rt,t+∆t ≥ −2σt,

1 if otherwise,

where σt = V̂ IX t/100 ×
√

∆t
251

is the expected market volatility rescaled to the holding

period.

As explanatory variables we use the same option-based variables as for the time-series

regressions in the previous section, with the only exception being the crash dummies. For

the TLM we separately use the level and the weekly changes combined with the other

variables in levels. In Table 3 Panel A you will find the coefficient estimates, and in

Panel B—the marginal effect estimates expressed as a change in the probability of a 2-

sigma market crash within the next holding period arising from increasing a given variable

by one unconditional volatility and keeping all other variables at their unconditional mean

values.

Analyzing the sign and statistical significance of variables in explaining the proba-

bility of a market crash, we should confess that it is indeed not easy to predict sudden

market declines. The tail loss measure has an expected positive sign, i.e., increasing TLM

11As in Glick, Moreno, and Spiegel (2011), when studying the link between the probability of a low-
probability event and a set of variables, we use the overlapping windows of returns. The rationale for
using the overlapping windows is that crashes are rare, and if they do not last long enough, we may even
oversee some of them by sampling infrequently.
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indicates a higher probability of crash, but it is not quite significant. The weekly change

TLM also demonstrates a positive sign, which is significant at the 5% level for 1-week

holding period, and at 10% for the 1-month holding period. Being statistically signifi-

cant, the ∆TLM is not really significant economically: its one-volatility increase boosts

the probability of a 2-sigma crash only by less than 0.5% across all holding periods. The

other variables are also not extremely helpful in predicting the low-probability crashes.

VIX has a positive coefficient for 1-week horizon, and it turns negative and insignificant

for longer horizons. Both MFIS and MFIK have negative coefficients, which become

significant for longer holding periods. The negative sign is well understood for skewness,

because less negative skewness is associated with lower probability of a crash, but that a

higher kurtosis is associated with a lower probability of a crash comes as a surprise. The

same negative (and surprising) signs have IC and VRP, though for both the effects are

not significant. An explanation may be that MFIK, IC, and VRP increase only after the

crash has occurred as an overreaction of investors.12 By any rate, significant or not, the

marginal influence of each variable on the probability of a crash is tiny, and, while we fail

to reject Hypothesis 2, we doubt that option-based variables will turn to be very useful

in pre-seeing the crashes in portfolio optimization and taking the respective preemptive

actions.

4.2 Using TLM in Portfolio Optimization

We should understand that the return (and probability of crash) predictability exercises

that we performed in the previous section 4.1 are in-sample ones, and hence the results

of the estimation cannot be used by an investor in portfolio optimization or applications

alike. To see how much information useful for predicting future market performance is

contained in various option-implied variables ex ante, we carry out a portfolio optimiza-

tion exercise.

We start by using two assets in a portfolio: a risk-free one, and the market. We specify

the portfolio weight (investment into the market index) as a function of selected variables,

which can be interpreted as instruments used to form managed portfolios described in

12This explanation goes along the lines of Bates (1991), who observed that after the 1987 crash the
various S&P 500 index options developed their smirk, while it was not pronounced before.
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Cochrane (2005). In particular, we use weight wt of the following form:

wt =
J∑
j=1

θj,t × xj,t,

where xj,t is the value of the instrument j, and θj,t is the loading on the respective

managed portfolio at time t.13 The net return of the portfolio in the period from t to

t + ∆t is equal to rpt,t+∆t = rft,t+∆t + wt × remt,t+∆t, where rft,t+∆t is the net riskfree rate,

and remt,t+∆t is the market return in excess of the riskfree rate. At each point in time t

we optimally select the vector of loadings θt on the managed portfolios by maximizing

average utility of final wealth from investing a unit of consumption on each day during

the estimation window of length T :

θt = arg max
{θt}

1

T −∆t

t−∆t∑
τ=t−T

u(1 + rfτ,τ+∆t + wτ × remτ,τ+∆t). (6)

For the empirical implementation we use the constant relative risk aversion (CRRA)

utility function with the relative risk aversion γ = 5, and the estimation window T = 251

trading days, or one calendar year. Moreover, we restrict the maker weights to be between

−0.5 and 1.5, thus limiting borrowing and shortsales at reasonable levels. After we

find the optimal portfolio weight for each day, we calculate the out-of-sample portfolio

return and a number of performance metrics, in particular, we compute mean return,

volatility, certainty equivalent for a respective utility used for optimization problem (6),

and portfolio turnover.

Empirically, we consider several combinations of option-based variables; however,

instead of creating a large number of the managed portfolios, we always create only one,

either from a single instrument (=single variable) or from the synthetic instrument, which

we extract from several variables as their first principal component for each estimation

window. The reason for such a procedure is twofold: (i) the first principal component is

very informative, and it typically explains more than 85% (and often more) of the total

variance for all the combinations of the variables we used, and (ii) having more than one

13Another interpretation of our approach is the parametric portfolio policies by Brandt, Santa-Clara,
and Valkanov (2009), though instead of reducing the dimensionality of the portfolio optimization with
many risky assets, we potentially increase the dimensionality of the problem with one risky asset only.
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managed portfolio constructed from our variables considerably decreases the stability of

the optimal weights and deteriorates the out-of-sample portfolio performance.

To test whether tail loss measure and other variables have incremental information

about the future market distribution beyond the history of the market returns, we specify

a “non-informative” instrument (NI) equal to 1 at any point in time, and we compare

the out-of-sample performance of each portfolio to that of the NI portfolio. Because we

evaluate the portfolio performance for overlapping holding periods, to calculate the p-

values we use the bootstrapping methodology described in Efron and Tibshirani (1993),

with additional adjustment, as in Politis and Romano (1994), to account for the autocor-

relation in overlapping returns. The results of the estimation are provided in Table 4. In

Panel A we show the return statistics,—mean, standard deviation (std), and the certainty

equivalent return (ce) for the CRRA investor with γ = 5, and in Panel B we provide the

statistics for the portfolio market weights (mean and standard deviation), and loadings

on the managed portfolios (mean).

The out-of-sample performance estimates indicate that a non-informative managed

portfolio performs relatively well, bringing 9.38% and 9.98% annualized return for monthly

and quarterly rebalancing, respectively. Note that the average monthly risk-free rate and

market return for the sample period are 3.67% and 5.70% p.a. Moreover, the certainty

equivalent return of the market investment with monthly rebalancing turns out negative

−2.51% p.a. Three of the five managed portfolios outperform the non-informative opti-

mal portfolio: TLM, IC, and composite one (TLM, VIX, IC, VRP); however, for only two

of them the outperformance is statistically significant (IC for quarterly rebalancing, and

borderline significant for monthly rebalancing, and composite for quarterly rebalancing).

By point estimates, the TLM earns 60 basis points per annum more than the NI, though

after taking into account the risks by comparing the certainty equivalent, the difference

decreases to 28 b.p. The IC-based managed portfolio earns almost 1% p.a. more than

the NI portfolio, with the risk-adjusted return (ce) difference of 79 b.p., for quarterly

rebalancing. The composite portfolio performs slightly worse than the IC-based one.

Looking at the characteristics of market weights in Panel B, we observe that on

average investors are long the market, with the weights from minimum 0.48 to maximum
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0.75 across all portfolios and holding periods. The NI portfolio has the lowest market

weight, and VIX portfolio has the highest one. The weights are very volatile during the

sample period, and their behavior can be well seen in Figure 1, where we depict the time

series of weights for two portfolios (NI and composite ones) with the quarterly holding

period, and the level of S&P 500 index for the same time interval. The weights for both

portfolios mostly stay in the boundary states, and hence neither strategy requires a lot of

day-to-day rebalancing. Visually, the NI portfolio weights are slightly more stable, and

they diminish faster and by more in the case of a deteriorating market index performance;

NI weights also have a tendency to stay low slightly longer than those of the portfolio

based on option-implied variables.

By analyzing the sign and significance of the loading on the managed portfolios, we can

also draw inferences about the average relation between the option-implied instrumental

variables and the return characteristics beneficial to the optimizing investor.14 For all

of our portfolios the loadings are positive and highly significant, which indicates that

investors are on average long the managed portfolios (note that for the non-informative

portfolio this average loading is equivalent to the mean market weight), and hence high

values of all characteristics are associated with the expected conditions beneficials to

the investor. It confirms the positive sign of TLM, IC, and VRP in the market return

explanatory regressions from section 4.1; however, the sign for the VIX is the opposite of

the one in the regressions. This can happen due to two reasons: (i) the conditioning of

information is important in a particular application, and the unconditional explanatory

regression (3) is somewhat misspecified; and (ii) the VIX is important for predicting

not only the first moment of returns but also other return distribution characteristics,

and there is a conditional positive relation between VIX and return characteristics that

the investor benefits from (e.g., skewness). The positive sign of the managed portfolio

loadings indicates that high values of the implied variables are associated with the high

conditional values of the equity premium; in other words, using these variables, we can

reap higher premiums by going long the market risk, but we still have no overwhelming

14Our loading on the managed portfolio is similar to the loading on the cross-sectional characteristic
in the parametric portfolio policies of Brandt, Santa-Clara, and Valkanov (2009) and can be interpreted
in a similar fashion.
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indication of future crash that would allow us to reduce the exposure before the crash

occurs.

Thus, the results of the out-of-sample portfolio analysis suggest that by using infor-

mation option-implied characteristics, we can improve the portfolio performance, and the

improvement is significant in economic terms (up to 1% p.a. of extra return). However,

it is still not clear how much the implied measures can be useful in identifying the future

crashes with high enough precision to be taken into account for investment decisions.

4.3 The Individual TLM and Cross-Section of Returns

To see how the stock-specific tail loss measure is related to the cross-section of stock

returns, we perform two standard exercises. First, we compute the performance of the

monthly rebalanced long-short portfolios, and, second, we estimate the two-stage Fama

and MacBeth (1973) regressions.

At the end of each month, we sort the stocks into terciles, quintiles, or deciles based

on individual stock TLMs, and create a long-short portfolio by taking a long (short)

position in stocks within the top (bottom) quantile. We hold this long-short portfolio

until the end of the subsequent month, and then proceed with next rebalancing. We apply

three weighting rules for the long and short portfolios, namely, value-weighting (VW),

equal-weighting (EW), and prior gross-return weighting (RW).15 The return analysis of

the long-short portfolio is provided in Table 5. We observe that there is a clear positive

relation between the TLM and future stock returns, which is also statistically significant

for EW and RW portfolios, and which is stronger for portfolios with more extreme values

of TLM.

The VW portfolios demonstrate positive, but insignificant, returns and alphas, which

may be due to the fact that some other size-related characteristics affect the returns. To

see how the TLM characteristic interacts with the other option-implied and traditional

15The RW is intended to reduce the possible bias arising due to the errors in recorded returns (e.g.,
due to bid-ask bounce), and it is suggested by Asparouhova, Bessembinder, and Kalcheva (2010, 2012)
as the first best-method for bias correction.
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stock characteristics, we refer to the Fama-MacBeth regression results in Table 6.16 Fol-

lowing our intuition from the time-series regressions, we expect a positive relation between

the TLM and expected stock returns, when there is no realization of the stock-specific

low-probability crash. When the crash occurs, however, we expect the magnitude of the

crash to be positively related to the TLM. To test these relations, we include two sets

of “crash” dummies in the first-stage cross-sectional regressions. The dummy is equal to

1 for a given stock when this stock return has a decline in the subsequent month larger

than one (D1const for constant and D1slope for the slope) or two (D2const and D2slope,

respectively) sigmas, where sigma is the expected volatility given by the average value of

stock-specific model-free implied volatility over the last quarter. If no stock experiences

a crash in the following month, we set the dummy values to missing. We proceed with

the second stage as usual, by computing average values for each coefficient and testing

their significance.

The results confirm that without additional explanatory variables the TLM is on

average positively related to expected returns (with a p-value of 0.06). For the 1-sigma

crash, a higher stock-specific TLM is associated with a larger magnitude of a crash,

and otherwise the TLM is positively related to future returns (both relations are very

significant). As we have seen in the time-series tests, a large part of the negative “crash”

return is still unexplained by the selected variables. When we separately treat only

the 2-sigma events, we still get a significant positive relation between the TLM and

the magnitude of the crash, but the TLM itself is no more (significantly) related to

the expected returns. We explain this by observing that average individual volatility is

about two times higher than the index volatility, and hence a 1-sigma event for individual

stocks is equivalent to quite a large negative return. Not treating this kind of event

separately distorts the estimation of the average relation, especially taking into account

that negative idiosyncratic jumps in individual stocks’ sample happen more often than

in one time-series of the market index.

Thus, we fail to reject composite Hypothesis 3, and the individual stock tail loss

measure is positively related to the cross-section of expected stock returns, when there

16Note that results for EW and RW (hence, bias-corrected) sorted portfolios are almost identical, and
hence we do not expect any bias in the Fama-MacBeth procedure, which is implicitly an equal-weighted
test, and hence would be biased in the presence of errors in the stock returns.
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is no stock-specific low-probability crash realized. In the case that the stock-specific

low-probability crash is realized, the stock tail loss measure is positively related to the

magnitude of the negative realized stock return.

5 Conclusion

Using results of the Extreme Value Theory we estimate from the observed option prices

a forward-looking tail loss measure (TLM). It quantifies the expectations of the investors

(adjusted for the investors’ tolerance for bearing risk) of the magnitude of low-probability

crashes in the near future. In addition to the TLM, we consider the most popular option-

implied predictors of the future moments of asset returns—model-free implied variance,

skewness, and kurtosis (MFIV, MFIS, and MFIK), implied correlation (IC), and variance

risk premium (VRP).

We test whether the TLM and the other option-implied, and hence forward-looking,

measures, are able to explain the magnitude and probability of future market and stock-

specific crashes, as well as the future asset returns, when no crash occurs. We find that

TLM is on average positively related to the future market returns, especially in the short

run, moreover, when a crash occurs, the TLM is positively related to the magnitude of the

realized negative return. An increasing TLM is associated with increasing probability of a

crash in the near future. In effect, high expectations of the tail loss make investors demand

a higher premium for taking market risk. The other variables that unambiguously and

significantly explain future market returns are the VRP (positive and significant for

longer periods), and the IC (positive and significant for all periods).

We also perform an out-of-sample portfolio optimization exercise. We show that using

the IC as an instrumental variable to construct a managed portfolio leads to significantly

better results than not using any information beyond the past market performance. TLM

also provides an investor with incremental useful information, though the performance

is not significantly better than in the non-informative optimization. Using all implied

variables together works well, though all variables can barely catch up with the IC-based

portfolio.
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Cross-sectional sorting and Fama-MacBeth procedures show that stock-specific TLM

is positively related to the stock returns in the cross-section, and, when a stock-specific

crash occurs, the magnitude of the negative stock return is greater, the higher the stock-

specific TLM is.
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Appendices

A Estimation of the Generalized Pareto Distribution

Parameters from Option Prices

Theorem 1 Assuming that the risk-neutral distribution of asset value x belongs to the

maximum domain of attraction of an extreme value distribution Hξ, the tail loss measure

Ωh ≡ E(h−x|h>x)
x

, inferred from the prices of traded options on asset x, with h near the

(left) endpoint of x, is unique.

Proof. If the market is complete, then there exists only one risk-neutral measure (up

to the difference in beliefs, if any). If the market is not complete, there exist multiple

risk-neutral measures. If all the existing risk-neutral distributions belong to the MDA

of the extreme value distribution Hξ, then by the Pickands Balkema De Haan theorem,

we can find for each distinct risk-neutral distribution a generalized Pareto distribution

(GPD) Gξ,β describing the excess value distribution, with the same tail shape parameter

ξ as of the extreme value distribution Hξ. The scaling parameter β depends on the

threshold only. Hence, for the threshold h, extreme enough to qualify as threshold for

all risk-neutral distributions, and, given the same tail shape parameter ξ, there will be

a unique GPD for the excess value under all existing risk-neutral distributions. Thus,

even though the option prices are discrete, we only need two put option prices for a given

maturity, with strikes below the threshold to identify the parameters of the respective

unique GPD and then compute the tail loss measure, unique for a given threshold.

We estimate the parameters of the generalized Pareto distribution from option prices

using the procedure similar to the one described in Hamidieh (2011). We use the following

two facts from the Extreme Value Theory (EVT) for the derivations:

1. For most continuous distributions of a random variable x, we can describe the excess

value over (or under) a high (low) threshold u conditional on being above (below)

the threshold by a generalized Pareto distribution Gβ,ξ, and hence the conditional

expectation of the excess value can be estimated as E[x− u|x > u] = β/(1− ξ) (or
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E[u − x|x < u] = β/(1 − ξ), if we are talking about the left tail), where β and ξ

are the scale and tail shape parameters of the distribution.17

2. Assuming that we can describe the conditional excess value of a random variable x

over an extreme threshold u by the GPD with parameters β and ξ, one can show

that the conditional excess value of x over any more extreme threshold v can also

be described by the GPD with the respective scale β + ξ × |v− u| and tail shape ξ

parameters.18

Observe that the price Pt(K) of an out-of-the-money put option with strike K can

be computed as the discounted risk-neutral expectation of the future payoff, i.e., Pt =

e−r(T−t)EQ
t [(K−ST )×1K>ST

]. Using the rules of conditional probabilities, we can rewrite

Pt(K) = e−r(T−t)EQ
t [(K − ST )|K > ST ]× EQ[1K>ST

]. (A1)

Assuming that the risk-neutral distribution Q belongs to the MDA of the GEV, and that

K is far enough to qualify as a “extreme enough threshold,” we use fact #1 from above

and rewrite equation (A1) in terms of the parameters of the GPD under the probability

measure Q:

Pt(K) = e−r(T−t)
β(K)

1− ξ
× EQ[1K>ST

]. (A2)

Now consider the put option with a strike K1 ≤ K, and use fact #2 to infer the distri-

bution and the expectation of the payoff of the option on maturity, given that it expires

in-the-money. The distribution of the excess conditional payoff of the option will be

described by the GPD with parameters β + ξ × (K −K1) and ξ, and hence

Pt(K1) = e−r(T−t)
β(K) + ξ × (K −K1)

1− ξ
× EQ[1K1>ST

]. (A3)

17It follows from the Pickands Balkema De Haan theorem (a.k.a. the second theorem of EVT),
which states that the distributions for which normalized maxima converge to a Generalized Extreme
Value (GEV) distribution, and which belong to the Maximum Domain of Attraction (MDA) of GEV
distribution, constitute a set of distributions for which the excess distribution converges to the GPD
as the threshold is raised. It is known (i.e., Resnick (1987)) that a vast majority of known continuous
distribution commonly used in the statistics and finance belongs to the Maximum Domain of Attraction
of GEV distribution, i.e., the theorem “proves to be a widely applicable result that essentially says that
the GPD is the canonical distribution for modeling excess losses over high thresholds.” (McNeil, Frey,
and Embrechts (2005, p. 278)).

18The second fact is proven as a Lemma 7.22 on page 279 in McNeil, Frey, and Embrechts (2005).
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Note that the expectation of the indicator function EQ[1K>ST
] in the equations above is

just the risk-neutral probability of the event K > ST , i.e., PQ(K > ST ). One can show

(e.g., McNeil, Frey, and Embrechts (2005, p. 283)) that by making the above assumption

about the Q-distribution being in the MDA of the GEV, we can express the probability

of a more extreme event K1 > ST as a probability of a less extreme event K > ST and

the parameters of the GPD as follows:

PQ(K1 > ST ) = PQ(K > ST )×
(

1 + ξ × K −K1

β(K)

)−1/ξ

. (A4)

Putting equations (A2), (A3), and (A4) together, we can rewrite the price of a farther

out-of-the money (OTM) put as a function of a less OTM one:

Pt(K1) = Pt(K)
(

1 + ξ × K −K1

β(K)

)1−1/ξ

. (A5)

We can use equation (A5) to derive the theoretical prices of far out-of-the-money put

options using the price of a put option with a “boundary” strike price K, which is low

enough to qualify as suitable threshold.19

The procedure for estimating the tail loss measure has three steps. First, we use

the pricing equation (A5) to price far out-of-the-money puts relative to a “boundary”

put with the strike K assumed to be a suitable threshold for EVT to work. Second,

we compare the theoretical prices to the observed market prices of the respective put

options, and infer the parameters β(K) and ξ of the generalized Pareto distribution

by minimizing the pricing errors. Third, using the estimated parameters of GPD, we

compute the tail loss measure (TLM) conditional on a given threshold. It is given by a

risk-neutral expectation of the excess value of the random variable, which is the market

loss beyond the given threshold K conditional on market falling lower than level K on

the maturity date of the options:

TLM =
β(K)

1− ξ
.

19Refer to Hamidieh (2011) for the proofs that the pricing formula in (A5) satisfies required bounds
and possesses necessary properties.
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Table 3: Explaining the Probability of a Market Crash: Probit Regression

In this table, we report the estimation of the binary probit regression, where the left-hand-side variable
takes the value of 1 in the case of a low-probability market crash during the holding period (which
is a week, or a month, or a quarter). Low-probability market crash is defined as a index decline in
the following holding period larger than two sigmas, where sigma is defined as the average value of
VIX over the last quarter rescaled to match the duration of the holding period. The right-hand side
is represented by a number of option-based predictors: tail-loss measure (TLM), weekly change in the
tail-loss measure (∆TLM), traded Implied Volatility Index (VIX), model-free implied skewness (MFIS),
model-free implied kurtosis (MFIK), implied correlation (IC), and variance risk premium (VRP). Panel A
provides the estimates of the coefficients, with t-statistics presented in the parenthesis, and McFadden R2

in the last row. Panel B presents the marginal changes in probability (in %) of the 2-sigma market crash
for a one-volatility increase in a given variable, keeping all other variables constant at their unconditional
mean values.

1-week 1-month 3-month
(1) (2) (3) (4) (5) (6)

Panel A: Probit estimation

Const -1.0841 -0.6086 9.3863 11.3340 16.3973 15.3110
(0.61) (0.78) (0.09) (0.06) (0.00) (0.00)

TLM 7.9447 17.0653 48.1962
(0.29) (0.46) (0.10)

∆ TLM 17.7884 35.0813 16.2824
(0.01) (0.07) (0.37)

VIX 1.9709 3.0162 -2.6910 -0.8325 -11.3750 -1.8251
(0.22) (0.00) (0.57) (0.73) (0.11) (0.44)

MFIS -0.4926 -0.5806 -1.7272 -1.9119 -2.2067 -2.6096
(0.52) (0.45) (0.32) (0.27) (0.14) (0.07)

MFIK -0.6088 -0.7249 -3.8735 -4.4006 -5.8693 -5.5500
(0.40) (0.32) (0.04) (0.03) (0.00) (0.00)

IC -1.1817 -1.1102 0.1358 0.3942 -0.1236 0.0910
(0.12) (0.14) (0.93) (0.81) (0.93) (0.95)

VRP -0.9988 -1.3029 -3.1493 -2.9797 -6.3335 -5.4262
(0.52) (0.38) (0.49) (0.47) (0.30) (0.26)

McFadden R2, % 7.95 9.81 11.85 15.96 19.29 17.49

Panel B: Marginal effects

TLM 0.3320 0.6257 3.1273

∆ TLM 0.3574 0.4751 0.2129

VIX 0.3936 0.6453 -0.2209 -0.0607 -0.3123 -0.1485

MFIS -0.1467 -0.1613 -0.2664 -0.2022 -0.2324 -0.2999

MFIK -0.1923 -0.2116 -0.3979 -0.2877 -0.3174 -0.3779

IC -0.2373 -0.2144 0.0232 0.0514 -0.0155 0.0140

VRP -0.0444 -0.0546 -0.0897 -0.0617 -0.1245 -0.1297
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Table 4: Optimal Managed Portfolios with Option-Implied Variables

In this table, we report the statistics for the portfolios created by rolling-window optimization of the
past average utility of a CRRA investor with relative risk aversion γ = 5. The portfolio consists of a
risk-free asset and a managed portfolio, which is equal to the product of the instrumental variable and
the market return. The investor chooses the optimal loading on the managed portfolio each day and
holds this portfolio for a specified holding period (a week, or a month, or a quarter). As instrumental
variables we use a “non-informative” variable (NI) equal to a vector of constants, and the variables that
significantly predict future market returns in-sample: tail-loss measure (TLM), Implied Volatility Index
(VIX), implied correlation (IC), and variance risk premium (VRP). The portfolio performance in Panel A
is calculated from the overlapping holding period returns and annualized accordingly. The p-values are
based on the empirical bootstrap distribution of a given performance metric. We resample the portfolio
returns blockwise to preserve the autorrelation in the overlapping returns. The market weight (w) and
managed portfolio loading (θ) statistics in Panel B are calculated from the sample weights and loadings,
respectively, and the p-values are based on the Newey and West (1987) autocorrelation-adjusted standard
errors with the lag equal to the number periods (250) in estimation.

Panel A: Portfolio Return Metrics

1-week 1-month 3-month
Instruments mean std ce mean std ce mean std ce

NI 6.32 12.88 2.04 9.38 14.47 4.01 9.98 15.19 4.30
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

TLM 6.48 13.58 1.68 9.67 14.81 4.10 10.58 15.80 4.58
(0.81) (0.00) (0.67) (0.66) (0.15) (0.87) (0.40) (0.25) (0.64)

VIX 5.83 13.16 1.31 9.04 14.61 3.69 10.19 16.01 4.04
(0.72) (0.40) (0.60) (0.80) (0.75) (0.79) (0.86) (0.26) (0.83)

IC 7.24 13.48 2.50 10.24 14.78 4.69 10.95 15.64 5.09
(0.16) (0.00) (0.54) (0.12) (0.13) (0.24) (0.00) (0.34) (0.01)

VRP 5.99 13.89 0.98 5.32 13.37 0.36 8.61 15.53 2.08
(0.90) (0.09) (0.66) (0.05) (0.08) (0.11) (0.38) (0.69) (0.32)

TLM, VIX, IC, VRP 6.84 13.21 2.29 9.85 14.64 4.40 10.93 15.64 5.08
(0.49) (0.19) (0.75) (0.48) (0.45) (0.55) (0.01) (0.41) (0.02)

Panel B: Market Weights and Managed Portfolio Loadings

1-week 1-month 3-month
Instruments wmean wstd θmean wmean wstd θmean wmean wstd θmean

NI 0.48 0.78 0.48 0.58 0.84 0.58 0.67 0.86 0.67
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

TLM 0.56 0.76 61.89 0.64 0.82 16.60 0.71 0.86 6.08
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

VIX 0.64 0.66 26.67 0.70 0.76 29.95 0.75 0.85 31.98
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

IC 0.55 0.77 1.66 0.62 0.83 1.87 0.69 0.86 2.13
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

VRP 0.58 0.68 47.33 0.60 0.71 48.03 0.73 0.79 59.32
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

TLM, VIX, IC, VRP 0.55 0.75 1.66 0.61 0.82 1.85 0.68 0.85 2.01
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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Table 5: Cross-Section of Individual Stocks and TLM: Portfolio Sorting

In this table, we report the average annualized returns on a monthly rebalanced portfolio sorted on
stock-specific tail loss measure (TLM) over our sample period from January 1996 to October 2010.
At the end of each month, we sort the stocks into terciles, quintiles, or deciles based on individual
stock TLM, and create a long-short portfolio by taking a long (short) position in stocks within the top
(bottom) quantile. This long-short portfolio is held until the end of the subsequent month and value-
weighted (VW), prior gross-return weighted (RW), and equal-weighted (EW) returns of this portfolio
are calculated. The table presents returns (Return) and alphas from the market model (CAPM alpha),
from the Fama-French three-factor model (3F alpha), and from the Fama-French-Carhart four-factor
model (4F alpha). The p-values for the significance are provided in parentheses.

Terciles Quintiles Deciles
VW RW EW VW RW EW VW RW EW

Return 5.36 14.69 14.74 8.67 16.90 16.75 10.08 21.70 21.47
(0.42) (0.01) (0.02) (0.29) (0.03) (0.04) (0.29) (0.02) (0.02)

CAPM alpha 0.86 10.37 10.29 2.92 11.22 10.93 3.47 14.93 14.54
(0.86) (0.01) (0.02) (0.62) (0.04) (0.05) (0.61) (0.02) (0.02)

3F alpha 2.44 9.01 8.93 4.90 10.06 9.74 5.34 14.27 13.78
(0.52) (0.01) (0.01) (0.29) (0.02) (0.03) (0.34) (0.01) (0.01)

4F alpha 4.29 12.05 12.42 6.94 14.07 14.21 7.16 18.61 18.64
(0.25) (0.00) (0.00) (0.13) (0.00) (0.00) (0.20) (0.00) (0.00)
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Table 6: Cross-Section of Individual Stocks and TLM: Fama-MacBeth Approach

In this table, we report the estimates from the two-stage Fama and MacBeth (1973) regressions of the
next month stock returns on stock-specific tail-loss measure (TLM) and other stock characteristics: book-
to-market ratio (BTM), size (SIZE), momentum (MOM), short-term reversal (REV), model-free implied
volatility (MFIVol), model-free implied skewness (MFIS), and model-free implied kurtosis (MFIK). To
reduce estimation errors, we use the average of the last five observations in each month as the monthly
measures. To treat the returns of the stocks experiencing a low-probability crash distinctly, we include
crash dummies (slope and interaction) in the regressions. The dummy is equal to 1 for a given stock
when this stock return has a decline in the subsequent month larger than one (D1const for constant and
D1slope for the slope) or two (D2const and D2slope, respectively) sigmas, where sigma is defined as the
average value of stock-specific MFIVol over the last quarter. We report the p-values for the significance
in parentheses.

(1) (2) (3) (4) (5)

D1const -0.0360 -0.0342
(0.00) (0.00)

D2const -0.0522 -0.0504
(0.42) (0.44)

TLM × D1slope -1.7057 -1.7238
(0.00) (0.00)

TLM × D2slope -2.7814 -2.7925
(0.00) (0.00)

TLM 0.0943 0.1471 0.0757 0.0384 -0.0112
(0.06) (0.00) (0.01) (0.29) (0.65)

BTM -0.0031 -0.0026 -0.0028 -0.0026
(0.05) (0.07) (0.14) (0.12)

SIZE -0.0038 -0.0027 -0.0040 -0.0031
(0.00) (0.00) (0.00) (0.00)

MOM 0.0000 0.0015 0.0007 0.0022
(0.99) (0.63) (0.87) (0.51)

REV -0.0082 -0.0065 -0.0035 -0.0028
(0.36) (0.41) (0.74) (0.76)

MFIVol 0.1078 0.0719
(0.01) (0.13)

MFIS 0.0107 0.0106
(0.01) (0.01)

MFIK 0.0027 0.0037
(0.09) (0.04)
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Figure 1: Portfolio Weights vs. Market Prices

The figure shows the dynamics of the market prices (S&P 500) and of the portfolio market index weights
for two particular instrumental variables—a non-informative constant variable, and a combination of
four option-implied variables (TLM, VIX, IC, and VRP) in a form of their first principal component. In
portfolio optimization we restrict the market weight to be in the range from −0.5 to 1.5, so that short
selling and borrowing are restricted.
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