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Deep Neural Architectures for Prediction in Healthcare 

 

 

Abstract 

This paper presents a novel class of systems assisting diagnosis and personalised assessment of diseases in 

healthcare. The targeted systems are end-to-end deep neural architectures that are designed (trained and 

tested) and subsequently used as whole systems, accepting raw input data and producing the desired outputs. 

Such architectures are state-of-the-art in image analysis and computer vision, speech recognition and 

language processing. Their application in healthcare for prediction and diagnosis purposes can produce high 

accuracy results and can be combined with medical knowledge to improve effectiveness, adaptation and 

transparency of decision making. The paper focuses on neurodegenerative diseases, particularly 

Parkinson’s, as the development model, by creating a new database and using it for training, evaluating and 

validating the proposed systems. Experimental results are presented which illustrate the ability of the 

systems to detect and predict Parkinson’s based on medical imaging information.   

Key Words:  Deep Learning, Convolutional Recurrent Neural Networks, Prediction, Adaptation, 

Clustering, Parkinson’s, Healthcare  

 

 

1. Introduction 

Current biomedical signal analysis, including medical imaging, is based on signal processing for feature 

extraction, segmentation, quantitative and qualitative analysis. Recent advances in Machine Learning and 

Deep Neural Networks (DNNs) have boosted state-of-the-art performance in all related signal processing 

tasks. DNNs are the state-of-the-art in machine learning and big data analytics, being used in a large number 

of applications, ranging from defence and surveillance to human computer interaction and question 

answering systems [12, 21-22]. DNNs can also be applied as end-to-end-architectures which are composed 

of different network types and are trained to analyse signals, images, text and other inputs [19, 12]. However, 

they lack on-line adaptation capability and transparency in decision making. This makes their use difficult 

in fields such as healthcare, where personalisation and trust are key issues.     

The current paper aims at advancing the state-of-the-art, by developing and using DNNs able to perform 

effective analysis of complex data for healthcare, with focus on neurodegenerative diseases, in particular 

Parkinson’s [3,11]. For Parkinson’s disease (PD), we have the required medical support and expertise and 

a new public dataset, which enables us to design an end-to-end neural architecture and platform that can be 

adaptable to patient-specific data. We describe a novel DNN system evaluated on a rich public Parkinson’s 

dataset, which can serve as a model for many other related fields.  
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Whilst Parkinson’s will provide the test-bed for the proposed end-to-end deep neural system, this system 

will provide an extensible handle for other neurodegenerative diseases. This aligns directly with the Pathway 

Analysis across Neurodegenerative Diseases described in [16], as ‘there is clinical, genetic and biochemical 

evidence that similar molecular pathways are met in different neurodegenerative diseases: Alzheimer’s and 

dementias, Parkinson’s and related disorders, Huntington’s, motor neuron, prion, spinocerebellar ataxia and 

spinal muscular atrophy’.  

The target of this paper is to design and implement end-to-end deep neural architectures that can assist 

doctors and clinicians in providing improved and more accurate predictions and assessments, while 

overcoming existing limitations. Focusing on a specific healthcare problem, we design DNN systems 

integrating imaging, demographic/epidemiological and clinical data, to support doctors in patient-specific 

prediction and assessment. To achieve this goal, we present a novel approach, developing a combined 

supervised and unsupervised learning methodology. First, data-driven supervised training of deep neural 

networks is performed and, then, clustering of the derived network structures is applied to improve the 

derived results and allow adaptation and handling of new subject cases.  

Section 2 presents the new Parkinson’s database, that we have been developing, providing the necessary 

datasets for training and testing the developed deep neural network systems. Section 3 describes the design 

of DNN architectures for prediction and diagnosis in healthcare applications. The proposed deep neural 

systems are based on deep Convolutional (CNN) and Recurrent Neural Networks (RNN), which prove to 

be able to process all types of available data. A novel methodology for network adaptation when facing new 

subjects, for personalised assessment, as well as for providing transparency to the network’s performance, 

is presented in Section 4. An experimental study, illustrating the performance of the generated deep neural 

architectures, is provided in Section 5. Conclusions and further planned work are given in Section 6 of the 

paper.  

 

2. Generation of the Parkinson’s Database  

We have been creating a novel public dataset composed of 100 patients with Parkinson’s and 40 subjects 

with Parkinson-related syndromes, including subjects’ MRI, DaT Scans and clinical data. In this paper, we 

are developing the proposed system based on one third of this dataset, which is the part that has been 

generated until now. The database is becoming publicly available as Parkinson Dataset – v1. 

MRI data: The rapid evolution of non-invasive medical imaging techniques, over the past decades, has 

opened new possibilities for the analysis of the brain. The basic imaging technique is Magnetic Resonance 

Imaging (MRI) which can yield from hundreds to even thousands of images per scan. The assessment of 

this extremely large set of images per patient can be complicated and time-consuming for doctors. In 

Parkinson's Disease, the MRI can show the extent to which the different structures of the brain have been 

degenerated. Figure 1 shows an example of an MRI. Our main concern regarding Parkinson’s is the 

Lentiform Nucleus (green line in Figure 2) and the capita of the Caudate Nucleus (red line in Fig. 2). Since 
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we focus on volume estimation, we process the image sequences in batches, each composed of 3-4 

consecutive frames. 

 

 

Figure 1. A frame of an axial T1 sequence from a brain MRI (right). Location of the previous  

slice is placed with regard to a sagittal view of the brain (left).  

 

Figure 2. An image from an axial T1 sequence. The Lentiform Nucleus is depicted with a green 

 line, while the capita of the Caudate Nucleus with a red line. 

 

DaT Scan: The second brain imaging technique included in the database is Dopamine Transporters (DaT) 

Scan. This examination is a form of Single-Photon Emission Computer Tomography (SPECT) with 

Ioflupane Iodide-123 as it's contrast agent. In this examination, we can detect the extent of dopaminergic 

innervations to the Striatum from the Substantia Nigra. A series of images is produced in this way, as shown 

in Figure 3.           
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Figure 3. A sequence of frames from a DaT scan. 

 

The doctor selects the most representative ones (the 8th in the sequence of Figure 3), and marks the areas 

corresponding to the head of the caudate nucleus. An automated system then compares these areas with a 

neutral one (e.g., the cerebellum) and produces the ratios shown at the bottom of Figure 4. Diagnosis is 

based on comparison of these ratios with normal ones. 

 

Figure 4. DaT scan with expert selection (left). Same image without the markings (right). Ratios, 

representing the dopamine deficiency, that are used for the diagnosis (bottom). 
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Clinical Data: These define the patient’s clinical status. We focused on the following scales: UPDRS, the 

patient’s stage, UDysRS, PDQ-39, FOG, MMSE and two, timed tests [4]. 

The Unified Parkinson’s Disease Rating Scale (UPDRS) [9] is a metric that examines the patient’s whole 

clinical performance in 4 parts: motor/non-motor experiences of daily living, motor examination and 

complications. These contain 13, 13, 18 and 6 elements respectively, with each ranging from 0-4 for a max 

score of 234. 

The patient’s stage [14] represents the evolution of the disease and ranges from asymptomatic (0) to 

bedridden (5). 

The Unified Dyskinesia Rating Scale (UDysRS) [10] was created for evaluating the involuntary movements 

associated with PD; it has two parts measuring the dyskinesia and dystonia appearing “on” and “off” phases 

respectively. The first part has 11 while the second 15 elements, all ranging from 0 (asymptomatic) to 4 

(severe symptoms), for a total of 150. 

The Parkinson’s Disease Questionnaire consists of 39 questions assessing patient’s functionality and quality 

of life (PDQ-39) [17]. It can be separated into 8 different categories, while each question represents the 

frequency of a specific incident, ranging from 0 (never occurring) to 5 (always occurring), for a total of 156. 

The “Freezing of Gait” (FOG) [8] is one of the most characteristic PD symptoms. The quantification of this 

symptom is achieved through the homonymous questionnaire which contains 16 elements for a max rating 

of 24. 

The Mini Mental State Examination (MMSE) [24] is an 11-question questionnaire meant to measure the 

cognitive impairment associated with PD, with a max rating of 30. 

Each of MRI and DaT Scan sets includes sequences/multiple scans. For training, we combine annotated 

data from both types to create thousands of input data, sufficient to train the proposed systems.  

 

3. Design of Deep Neural Architectures for Healthcare 

Our main goal is to design deep neural architectures and to evaluate their ability to extract correlations in 

the available datasets, providing a novel platform for assisting doctors in detecting and assessing disease 

states. Validation is done using the above-described Parkinson’s dataset. We also target at endowing our 

system with adaptation capabilities and to test and validate it when handling new patient cases. 

The technologies which we use and extend, in order to develop the novel end-to-end deep neural architecture 

for diagnosis and prediction are: 

Deep Convolutional Neural Networks: Deep CNNs are architectures that try to exploit the spatial structure 

of input information [12]. They have been used with great success in various applications, including image 

analysis, vision, object and emotion recognition. The most successful CNN was used for classifying millions 

of images in 1000 classes [21].   
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Transfer Learning: Transfer learning [22] is the main approach to avoid learning failure due to overfitting, 

when training complex CNNs with small amounts of (image) data. In transfer learning, we use networks 

previously trained with large image datasets (even of generic objects) and fine-tune the whole, or parts of 

them, using the small training datasets.  

Recurrent Neural Networks: RNNs are very powerful for processing sequential data [18]. A very 

successful model, the Long Short-Term Memory (LSTM) [25], uses hidden units with gates that explicitly 

control data flow in terms of both hidden states and inputs. Bidirectional (B-LSTM) models are obtained 

by combining forward and backward processing of input data. It is also possible to use Gated Recurrent 

Units (GRUs) [2, 12] in place of the BLSTM ones. This is explored in the experiments of Section 5.  

 

Figure 5. The CNN part of the CNN-RNN architecture feeds the RNN part                                           

which yields the final outputs 

 

We propose an end-to-end deep neural architecture including both CNN and RNN components. CNNs 

derive rich internal representations from input data; B-LSTM/GRU RNNs correlate/analyse time evolution 

of the inputs, providing the final predictions. CNNs can have a basic structure of the so called VGG-16 

network. This CNN model [23] has achieved high accuracy in large image classification problems. It 

processes images through 13 convolutional layers (core building blocks), 5 pooling layers (performing a 

form of non-linear down-sampling) and 3 FC (fully connected) layers. In the CNN model, we implemented 

neurons as Rectified Linear Units (ReLU), a commonly used kind of units employing specific types of non-

linear activation functions (rectifiers). Another such structure for consideration is the Deep Residual Net 

(ResNet) with 152 layers [13]. MRI and DaT Scans are provided at the input of these networks. In fact, it is 

ResNet that has been mainly used in the experiments reported in this paper. When epidemiological and 

clinical data values are to be considered, they will be provided directly to the FC1 layer.  

Figure 5 shows the CNN-RNN architecture. The CNN part of the neural architecture, using a linear FC3 

layer provides continuous clinical data estimation. The CNN feeds the RNN part with the neuron outputs of 

its second FC layer (F). The RNN accepts F1, F2, F3…, FN and delivers predicted values O(1),…,O(N) 

ResNet 

Conv/Pool 

Layers 

FC1 

ReLU 
FC3 

Linear 

FC2 
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GRU GRU GRU 
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through time, at its output. A total of 4 images are given to the architecture as a single input. These include 

3 grayscale consecutive frames from an axial T1 MRI and a colour DaT scan. 

To implement this architecture, we first perform transfer learning of the weights of the convolutional and 

pooling parts of, e.g., the ResNet network to it. These parts are then fixed during the training phase, where 

we only train the fully connected layers of the system. The pre-trained convolutional networks have already 

learnt to generate rich image representations that have proven adequate for image classification and 

segmentation. These representations are abstract enough to help with specialized tasks, such as the analysis 

of MRIs and DaT Scans. 

This leaves the fully connected part of the network, which is the only part of the network that we actually 

train in the CNN case. Many variants of this approach have been designed and tested. We selected to freeze 

the weights of some of the fully connected layers, particularly those belonging to the first FC layer. We have 

also considered some additional weights of the network as free parameters, by applying fine tuning (a 

smaller learning rate value) to the weights of (some of) the convolutional layers of the ResNet network, 

while using a normal learning rate value for the FC part of it. 

We use the TensorFlow Platform as the main tool for generating the software implementation of the 

presented architecture. TensorFlow is a toolkit which got published by Google, under Apache License 2.0. 

It is mainly implemented using C++, with a significant bit of Python. Its architecture provides the ability to 

deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. 

 

4. A Novel Method for Deep Neural Network Adaptation and Transparency  

We aim at providing the deep neural architecture with the ability to adapt to new subject cases, assisting 

doctors with efficient patient-specific analysis and treatment selection, without forgetting its former 

knowledge. Our methodology is based on a new network retraining approach which extends the work in 

[5,19]. This approach uses clustering [26] of trained system internal representations, in particular, of the 

neurons’ outputs at the last fully connected CNN layer (denoted, in vector form, as F in Figure 5), or at the 

last hidden RNN layer (let us denote them, in vector form, as u, and consider them feeding the output units 

o). We use the centers of these clusters as knowledge extracted from the data-driven supervised training of 

the DNN architecture.   

Whenever a new subject’s data are applied to the input of the DNN end-to-end architecture, the latter 

computes the respective internal representations and provides a prediction at its output.  Our approach is 

next to compute the distances of these representations from the above described cluster centers and use them 

to validate, or not, the DNN prediction on these new data. If one of these distances is small, compared to 

some appropriate threshold, then classification of the new data is made in the same category (patient/non-

patient) with that of the specific cluster, generally coinciding with the DNN prediction. If all distances are 

large, then a drift in the DNN modelling procedure is detected. In the case of drift, we need to train again 
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the DNN including the new data. However, we do not perform the usual fine-tuning procedure. We choose 

to retrain the fully connected CNN layers and/or the RNN hidden and output layers, using, on the one hand, 

the input (image) data corresponding to the cluster centers (Existing Knowledge) and, on the other hand, the 

new data.  

Following this retraining procedure, we avoid the catastrophic forgetting problem in DNN systems, which 

occurs when we apply repeated fine-tuning to new data cases. This is so, because we keep both the old 

knowledge (through the cluster centers’ information) and the new information provided by specific subject 

cases. Following retraining, we update the cluster centers as well, after medical validation of the new data, 

so as to create personalised system knowledge instances. 

In particular, the retraining procedure can be implemented as follows: 

Let us first consider that, based on the training of the deep neural architecture for Parkinson’s, a specific set, 

say 𝑆𝑏, including the training input data corresponding to the previously computed cluster centers and the 

respective annotations (patient/non-patient), has been created. Let 𝑦(𝑖) denote the network output when 

applied to a new data sample, 𝑖 = 1,2, … , not included in the previous network training data set.  

Let bw  include all already computed weights of the fully connected and output layers in a CNN network - 

and of hidden layers in a CNN-RNN network - before retraining and aw the new (updated) weight vector 

which will be obtained through retraining.  In particular, let 𝑤𝑏
𝑙  and 𝑤𝑎

𝑙  respectively denote the weights 

connecting the outputs of the last hidden layer, say 𝑢, to the network outputs, 𝑦.  

A training set 𝑆𝑡 is assumed to include the new input (image) data; this will normally include a rather small 

number of data.   

In the proposed retraining procedure, the new network weights, aw , are computed by minimizing the 

following error criterion: 

𝐸𝑎 =  𝐸𝑡,𝑎 + 𝜂 ∙ 𝐸𝑓,𝑎                                                    (1) 

where atE , denotes the error performed over training set 𝑆𝑡, i.e., over current input information and 𝐸𝑓,𝑎 is 

the corresponding error performed over training set 𝑆𝑏, i.e. over previous deep neural network knowledge.  

Parameter 𝜂 is a weighting factor accounting for the significance of the current training set compared to the 

former one. In our approach, we minimize (1) by assuming that a small perturbation of the weights of the 

fully connected (and/or hidden) layers in the CNN (or CNN-RNN) network is enough to achieve good 

classification performance in the current conditions. Consequently, we get:  

𝑤𝑎 = 𝑤𝑏 + 𝛥𝑤                          (2) 

and, similarly,  

      𝑤𝑎
𝑙 = 𝑤𝑏

𝑙 + 𝛥𝑤𝑙           (3) 
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with 𝛥𝑤 and 𝛥𝑤𝑙 being small weight increments. This assumption permits linearization of the nonlinear 

activation neuron function, using a first-order Taylor series expansion.  

It is possible to use the Mean Square Error (MSE) criterion for both quantities in the right-hand side of (1). 

In this case, we use normal deep learning for CNN and/or RNN networks [12], implemented in the 

TensorFlow environment. It can be also possible to stress the importance of current data in the minimization 

of (1). In this case, we replace the first term in the right-hand side of it by the constraint that the actual network 

outputs 𝑧𝑎(𝑖), after retraining, are equal to the desired ones, i.e.,  

 𝑧𝑎(𝑖) = 𝑑(𝑖),for all data i in tS                                                  (4) 

Let us denote the difference of the actual network outputs, after and before retraining, in the case of a CNN 

network, as follows: 

𝛥𝑧(𝑖) =  𝑧𝑎(𝑖) −  𝑧𝑏(𝑖)                       (5) 

Through linearization and using the fact that the outputs 𝑧 are weighted averages of the last hidden layer’s 

outputs 𝑢, with the 𝑤𝑙 weights, it can be shown that 

𝑧𝑎(𝑖) =  𝑧𝑏(𝑖) + 𝑓𝑏
′ ∙  𝑤𝑏

𝑙 ∙ 𝛥𝑢𝑙(𝑖) + 𝛥𝑤𝑙 ∙ 𝑢𝑏
𝑙 (𝑖)        (6) 

where 𝑓′ accounts for the derivative of the activation function of the network output neuron(s). 

Using Eq. (4) in (6) we get 

𝑑(𝑖) −  𝑧𝑏(𝑖) =  𝑓𝑏
′ ∙  𝑤𝑏

𝑙 ∙ 𝛥𝑢𝑙(𝑖) + 𝛥𝑤𝑙 ∙ 𝑢𝑏
𝑙 (𝑖)                          (7) 

All quantities in Eq. (7) are based on former network values, apart from the updates of the weights 𝛥𝑤𝑙 and 

of the outputs 𝛥𝑢𝑙. Thus Eq. (7) relates the targeted weights updates in the network output with the outputs 

of the last hidden layer.  

By continuing linearization of the difference of the u values, towards the previous fully connected layers, we 

replace the 𝛥𝑢𝑙(𝑖) term with its equivalent in terms of the weights of the former layers. This continues until 

we reach the last convolutional layer, which we use with no retraining, and therefore 𝛥𝑢 is zero.   

In this way, similarly to [5] we compute the weight increments 𝛥𝑤 by solving a set of linear equations, over 

all data in 𝑆𝑡 : 

 𝑐 = 𝐴 ∙ 𝛥𝑤                                              (8) 

with matrix A being computed in terms of previously trained weights, as was above described,  while 

the elements of vector 𝑐 are defined as follows: 

  𝑐(𝑖) = 𝑑(𝑖) − 𝑧𝑏(𝑖),  for all data i in  𝑆𝑡          (9) 

and 𝑧𝑏(𝑖) denotes the outputs of the originally trained network, when this is applied to the data in  𝑆𝑡. 
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The size of vector c is smaller than the number of unknown weights 𝛥𝑤, thus many solutions exist for (8). 

Uniqueness, however, is imposed by an additional requirement which is to select the solution that causes a 

minimal degradation of the previous network knowledge. This is of great significance in our approach, since 

this knowledge (and the respective cluster centers) has been, normally, already validated by medical experts 

and, therefore, should be changed the least possible.  

Thus, the retraining problem results in minimization of (1) subject to constraints (3) and the constraint for 

small weight increments. A variety of methods can be used for this minimization. One of them is the gradient 

projection method, which, starting from a feasible point, moves in a direction which decreases the error 

criterion and satisfies the above constraints. This is used for CNN network retraining in the TensorFlow 

environment. Extension in the CNN-RNN case is more complex, also taking into account the time evolution 

and derivatives of the u values. 

In addition to personalized diagnosis and prediction, the proposed approach allows the deep neural 

architecture to exhibit transparency in its decision making. In particular, for each cluster center, the 

respective medical input and desired output data are stored in the database, as representative of all data 

belonging to this cluster. Whenever, upon presentation of new input data to the DNN, the obtained output 

vector matches that of a specific cluster center, then the respective input image and medical data are 

presented to the clinician/user to illustrate that this similarity has been taken into account by the network in 

computing its prediction. 

 

5. Experimental Study 

The current size of the generated fully annotated database is 45 subjects (about one third of the size to be 

finally generated), with a ratio of 2:1 between Parkinson’s patients and non-Parkinson’s patients. At this 

stage, it consists of MRI and DaT scans, annotated as belonging to subjects with Parkinson’s or not. 

 

5.1  Dataset generation 

We generated a dataset of about 150.000 combinations of color DaT scans with triplets of consecutive MRI 

gray scale images, for the patient category, and 80.000 such combinations for the non-patient category. Each 

input (combination) consists of three MRI images and one RBG DaT scan image. To obtain a balanced 

dataset, we applied various augmentation techniques, such as over-sampling the latter category, or under-

sampling the former [1]. The above were then used as training data for designing the end-to-end deep neural 

architectures. 

Moreover, we kept the data of about 15% of the subjects for validation/testing. It should be emphasized that 

our target has been to test the ability of the networks to learn from a number of patients and generalize their 

performance to other subjects, who have not been included in the training set. For this reason, the test data 

consisted of six new subjects, four with Parkinson’s (PD patients) and two without (Non-PD patients, 
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denoted NPD), to provide about 1.200 test input samples. The networks had two linear outputs, with targeted 

values (1,0) and (0,1), respectively, for the two categories. 

As a reference, 10 consecutive frames from an axial T1 brain MRI are presented in Figure 6 for a patient 

without Parkinson’s, and 10 more in Figure 7 for a patient with the disease. 

 

 

Figure 6. MRI scan of a patient without Parkinson’s Disease.                                                                     

Axial orientation - T1 sequence. 

 

 

Figure 7. MRI scan of a patient with Parkinson’s Disease.                                                                      

Axial orientation - T1 sequence. 

 

 

Figure 8. DaT scan from a patient without Parkinson’s Disease (left).                                                        

Respective image from a patient with Parkinson’s (right) 

 

Figure 8 shows two DaT scans of patients without and with Parkinson’s Disease, respectively. The dopamine 

deficiency can be seen in these images.  

 

5.2  Network training 

As a first approach, we selected to train the CNN and CNN-RNN deep neural networks from scratch; starting 

from random initial weights in the convolutional and fully connected (FC) parts of the CNNs, or the 

convolutional and hidden layers of the CNN-RNNs. As a second approach, we adopted transfer learning, 
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i.e. transfer of the weights of the convolutional and pooling layers of a pretrained CNN, to the generated 

networks. Then, the ‘upper’ FC part of the targeted CNN network, as well as the RNN hidden layers of the 

CNN-RNN, were designed and trained with the above dataset. For the initialization of these weights, we 

used the ResNet-50 CNN, which has been pre-trained with millions of general type RGB images for this 

purpose. A separate system was used for each of the image types in our inputs, i.e., one focusing on the MRI 

triplets and another focusing on the DaT scan. We concatenated the outputs of these two ResNet 

substructures at the input of the first FC layer of the CNN network. It is at this layer, that epidemiological 

data will be concatenated as well, when the whole database will have been generated. 

Based on this procedure, we separately trained both a deep CNN network and a deep CNN-RNN network 

for Parkinson’s disease diagnosis. 

 

5.3  Experimental evaluation 

Table 1 summarizes the results obtained through different configurations of the CNN network, i.e. ones with 

different numbers of hidden layers and hidden units per layer. An accuracy of 96% on training and 94% on 

testing datasets was obtained in this experiment, which is very satisfactory. 

 

Table 1. Performance of the End-to-end CNN Architecture for Parkinson’s 

CNN architectures: 

2 output units 

(PD/NPD) 

Number of Fully 

Connected (FC) 

Layers 

Number of Units in 

each FC Layer 

Accuracy 

1 1 1000 0.57 

2 1 2622 0.60 

3 2 2622-500 0.90 

4 2 2622-1000 0.91 

5 2 2622-1500 0.94 

6 2 2622-2000 0.93 

 

 

Table 2 summarizes the accuracy obtained by the CNN-RNN (with GRU neuron model) architecture, for 

different respective structures. The addition of the RNN part allows the deep neural architecture to better 

follow time varying correlations in the MRI sequence of triplets of frames, thus increasing the accuracy of 

Parkinson’s prediction to 98% on the testing data set. 
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Table 2. Performance of the End-to-end CNN-RNN Architecture for Parkinson’s 

 CNN-RNN architectures: 

    1 Fully Connected Layer  

    2 Hidden Layers (128 Units each)                                                                                                                                                                                    

    2 (linear) output units  

Number of Units in the FC 

Layer 

Accuracy 

1 500 0.91 

2 1000 0.96 

3 1500 0.98 

4 2000 0.97 

 

 

There are some additional metrics obtained in terms of the above results. In the best reported case (line 3 of 

Table 2), the MSE value was very low, equal to 0.02. Considering the binary problem examined in this 

paper (PD/NPD), precision attained 1.00 and recall 0.96 (F1 value 0.98). 

Figures 9 and 10 show the accuracy obtained by the end-to-end deep CNN and CNN-RNN architectures, 

respectively, on the validation/test data set, during training. It can be shown that the best accuracy of the 

CNN architecture is obtained early in the learning phase, afterwards reaching overfitting conditions. It can 

also be observed that the Deep CNN-RNN architecture takes longer to derive the best performance than the 

CNN one.  

 

                           Figure 9. CNN Performance on validation data, during training epochs 

 



 
 

14 
 

 

 

    Figure 10. CNN-RNN Performance on validation data, during training epochs 

 

It should be mentioned that the best performance of the CNN-RNN architecture was 99,97% on the training 

data and 98% on the test data; the latter consisted of about 1200 input data from six subjects, none of their 

data having been included in the training data set. About 600 data concerned each one of the PD and NPD 

categories. The performance on test data was 96% for PD and perfect, i.e., 100%, for NPD patients. In 

particular, Table 3 shows the percentage of correct classifications for each test subject’s data (combinations 

of MRIs and DaT scans). 

 

Table 3. Testing performance of trained CNN-RNN Architecture on each subject 

Subject number in the database Category Correct Classifications 

(normalized [0,1]) 

26 PD 0,90 

4 PD 1,00 

6 PD 0,985 

9 PD 0,956 

17 NPD 1,00 

21 NPD 1,00 

 

It can be seen that this is an excellent result, which shows the potential of the deep CNN-RNN architecture 

to provide very accurate predictions of Parkinson’s disease. 
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We then applied the proposed clustering procedure on the representations (vector of neuron outputs) 

generated at the last hidden layer of the trained CNN and CNN-RNN. This produced various cluster sizes 

on the training data set. We chose to discuss here the clustering of the representations obtained when the 

deep neural architectures are applied to the above test data, since we can visually illustrate the obtained 

results, also relating them to the performances presented in Table 3. 

 

5.4  Clustering visualization 

In order to visually illustrate the distribution of data in categories, Principal Component Analysis (PCA) 

was performed on the representations obtained through processing of the test data. Focus was put on the 

derived two main principal components, as shown in Figures 11a and 12a, for the CNN and CNN-RNN 

architectures, respectively. 

 

Figure 11a. The two main principal components of the CNN representation. 

  

Figure 11b. Visualization of (three) cluster boundaries                                                                                         

for the NPD category provided by an OCSVM approach. 
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Figure 11c. Histogram of the derived OCSVM outputs. 

 

Figure 11a shows the distribution of the representations obtained for PD and NPD subjects, as derived from 

the CNN architecture. It should be mentioned that the last CNN fully connected layer consisted of 1500 

neurons. However, due to the ReLU activation function, only about 30 neurons yielded non-zero values in 

this representation. Figure 11b verifies the ability of a one-class support vector machine (OCSVM) [26], to 

determine clusters corresponding to the NPD class. Three classes are shown in Figure 11b. We were able to 

get six classes per category, to reach the performance of the DNN in this case.  

It is interesting to mention the variability of the PD cases compared to the NPD ones. This is in accordance 

with the lower accuracy obtained by the DNN architecture in the PD class, when compared to the NPD case. 

Figure 11c shows a histogram of the OCSVM values also illustrating this observation.       

 

 

Figure 12a. The two main principal components of the CNN-RNN representation.                                        
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Figure 12b. Visualization of (one) cluster boundary                                                                                         

for the NPD category provided by an OCSVM approach. 

 

  

Figure 12c. Histogram of the derived OCSVM outputs. 

 

The respective results obtained for the representations provided by the CNN-RNN architecture are shown 

in Figures 12a-c. It should be mentioned that, in this case, the obtained representations consisted of 128 

neuron output values, computed through the tanh activation function. However, only about 20 of the neurons 

provided significant non-zero values; the rest yielded very small, practically negligible, values.  

By comparing these results with the respective ones in Figures 11a-c, it is concluded that the CNN-RNN 

architecture - which has achieved a better performance than CNN- has been able to produce much more 

compact representations for each category, with well separated clusters.  
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An indication of the purity (through precision) of the clusters in the augmented training set can be viewed 

in Table 4. 

Table 4. Cluster precision on the training set 

          Cluster 

Category 

1 2 3 4 5 

PD 0 5 18277 1516 18163 

NPD 2822 25393 0 0 0 

 

We computed the cluster centers, as the mean values of all 128-dimensional vector representations included 

in each cluster. Their projection in 3-D is shown in Figure 13, showing the significant distances between 

them. Moreover, Table 5 shows the corresponding maximum mean square distance of the representations 

in each cluster from the corresponding cluster center.   

 

Table 5. Maximum intra-cluster distance (from the center) 

Cluster 1 2 3 4 5 

Distance 

(MSE) 

0,01 0,02 1,565 0,158 0,14 

  

Figures 15a-e illustrate the input images corresponding to the 5 cluster centers that were derived from the 

CNN-RNN architecture. The clusters have been sorted by the level of degeneration of the basal ganglia 

(Lentiform Nucleus, Caudate Nucleus). These five clusters roughly represent the 3 stages of DaT loss in 

PD, as confirmed by medical experts. 

 

Figure 15a. The first cluster center corresponds to a typical frame from a DaT scan of an individual not 

suffering from PD. 
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Figure 15b. The second cluster center represents an interesting case of an image that seems to be 

pathological but belongs to a healthy individual. Though the Lentiform Nucleus appears to be completely 

gone, there is no diffusion of the contrast agent in the brain. The latter could be viewed as an indication 

that the main structures are, in fact, intact. 

 

Figure 15c. The third cluster represents the early stages (1-2) of the degeneration associated with PD, as 

both Lentiform Nuclei appear to be diminishing.  

 

Figure 15d. The fourth cluster is a typical stage 2 DaT loss. Both Lentiform Nuclei are completely gone; 

the only signal is from the caudate, which appear as two almost symmetrical circular areas. 
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Figure 15e. The fifth cluster is the most advanced stage of DaT loss – stage 3. Here the basal ganglia 

appear further degenerated, while there is significant activity in the rest of the brain. This is an indication 

that these structures have lost their ability to contain the contrast agent and it has diffused throughout the 

brain. 

 

It is with this end-to-end deep neural architecture and the derived representations, that we further investigate 

the obtained results in Table 3. In particular, we consider these cases as new subjects’ data, presented to the 

trained CNN-RNN for prediction and diagnosis. Since these cases span different possible scenarios, we will 

evaluate them in two different steps. 

Let us first consider, the 4, 17 and 21 subjects of Table 3 (one from the PD category and two of the NPD 

category), all data of whom were correctly predicted (100% accuracy) by the CNN-RNN architecture. The 

internal representations (128-dimensional vectors) generated at the output of the second hidden layer of the 

RNN were also correctly classified, based on their distances from the centers of the clusters derived from 

the trained CNN-RNN respective internal representations. All classifications provided by the trained DNN 

architecture for the data of these three subjects have been, therefore, accepted by our derived end-to-end 

contextualization approach and formed the finally obtained predictions.  

Since the training database has now been increased with three new subject datasets, we perform an updating 

of the centers of the clusters to which the new data have been included. Let us assume that a single vector 

m[j], j=1, 128, is used to update the center ci of the i-th cluster composed of Ni members. Then, the new 

class center ci, new will be slightly modified, as follows: 

ci, new[j] = Ni . ci, old[j] / (N+1)          (10) 

Consequently, an updated, very slightly different, system memory is produced, incorporating the new 

knowledge about the new subjects’ data.        

Let us now focus on the three remaining cases of Table 3, all referring to PD patients.  For complete DNN 

updating, we re-trained the CNN-RNN network, through the procedure described in Eqs. (1)-(6) of the 

previous section. 

10 input combinations, out of 120, 3 out of 204 and 8 out of 184 input combinations, respectively, have 

been erroneously classified, as NPD cases, both by the CNN-RNN architecture and the cluster-based 
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representation. We should mention that, since these cases constitute only a 9%, 1,5% and 4,5% of the data 

obtained by each of these patients, respectively, it will not be difficult for the clinician to examine them in 

the context generated by all the other images, which have been correctly classified, and provide his/her own 

diagnosis.  

Following this validation, two new clusters have been added to the existing ones, so as to model these new 

cases. Finally, we used the adaptation methodology described in Section 4 to successfully retrain the DNN 

architecture so as to accurately classify the new data as well.  

In all the above experiments, for DNN training, we used the Adam optimizer algorithm, in mini batches, 

considering the Mean Squared Error (MSE) as cost function. 

 

5.5  Hyper-parameter value selection 

For the CNN architecture, the hyper-parameter values were selected as follows: a batch size of 30 (15 

examples from each category), a constant learning rate of 0.001; 2622 and 1500 hidden units respectively 

in each fully connected layer and dropout after each fully connected layer with a value of 0.5. We also used 

biases in the fully connected layers. 

For the CNN-RNN architectures the hyper-parameters were selected to match the previous ones, apart from 

the batch size which was 40 (20 examples from each category) and the number of hidden units in the GRU 

layers, both of which were 128. 

The weights of the fully connected layers were initialized from a Truncated Normal distribution with a zero 

mean and a variance equal to 0.1 and the biases were initialized to 1. 

Training was performed on a single GeForce GTX TITAN X GPU and the training time was about 2-3 days. 

 

6. Conclusions and Further Work 

We have designed novel end-to-end deep neural architectures, composed of CNN and RNN components, 

appropriately trained with medical imaging data, and have obtained very good performances in diagnosis 

and prediction of Parkinson’s disease. We have been developing and publicizing a new database, which we 

have used for training and evaluating the performance of the new deep neural architectures.   

Moreover, we have proposed a novel unsupervised approach, based on clustering of the trained DNN 

internal representations, which provides the deep neural architecture with the ability to adapt to new data 

cases, without suffering the catastrophic forgetting problem, usually met in DNN fine-tuning adaptation 

methodologies. This procedure also provides a type of transparency in the decision making process 

implemented by the deep neural architecture. 
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In our current research, with the aid of medical experts, we correlate the generated clusters with the medical 

and clinical data and try to create descriptions relating the DNN decisions with the developed cluster 

characteristics. This will be the basis for providing explanations of the network’s performance, thus, 

rendering its use transparent and trustful.  

A lot of research has been made on neuro-symbolic learning and reasoning, i.e., merging neural networks 

with knowledge representation, also involving deep neural networks [20, 7] and on extracting rules from 

trained networks [15]. We will also investigate the use of these methods to provide formal representations 

of the generated Parkinson’s knowledge and/or extract additional rules that may further justify the 

predictions and assessments of the designed deep neural architectures. 

Our future research aims at extending the developments obtained for the Parkinson’s case to other 

degenerative diseases, which are based on similar input medical imaging information. We first target 

dementias and Alzheimer’s, using a recently presented database in [6]. Following the approach proposed in 

the paper, we will use transfer learning to retrain the DNNs designed for Parkinson’s on datasets describing 

other diseases. 
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