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a b s t r a c t 

Touch and multi-touch gestures are becoming the most common way to interact with technology such 

as smart phones, tablets and other mobile devices. The latest touch-screen input capacities have tremen- 

dously increased the quantity and quality of available gesture data, which has led to the exploration of 

its use in multiple disciplines from psychology to biometrics. Following research studies undertaken in 

similar modalities such as keystroke and mouse usage biometrics, the present work proposes the use 

of swipe gesture data for the prediction of soft-biometrics, specifically the user’s sex. This paper details 

the software and protocol used for the data collection, the feature set extracted and subsequent ma- 

chine learning analysis. Within this analysis, the BestFirst feature selection technique and classification 

algorithms (naïve Bayes, logistic regression, support vector machine and decision tree) have been tested. 

The results of this exploratory analysis have confirmed the possibility of sex prediction from the swipe 

gesture data, obtaining an encouraging 78% accuracy rate using swipe gesture data from two different 

directions. These results will hopefully encourage further research in this area, where the prediction of 

soft-biometrics traits from swipe gesture data can play an important role in enhancing the authentication 

processes based on touch-screen devices. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

Soft-biometrics traits are defined as “anatomical or behavioural 

characteristics that provides some information about the iden- 

tity of a person, but does not provide sufficient evidence to pre- 

cisely determine the identity” [1] . They include characteristics such 

as age, ethnicity, sex 1 , height, weight, scars and tattoos. These 

traits have been used within biometrics deployment in combi- 

nation with hard-biometrics modalities such as fingerprint [2] , 

iris [3] and face [4] . Studies have shown that the use of a soft- 

biometrics can enhance biometrics system performance and can 

greatly decrease search time in large databases [1] . Whilst soft- 

biometrics are high level cues and as such are largely incapable of 

✩ This paper has been recommended for acceptance by Maria De Marsico. 
∗ Corresponding author. Tel.: + 44 1227 7640 0 0; fax: + 44 1227 7640 0 0. 

E-mail addresses: O.Miguel-Hurtado-98@kent.ac.uk , omiguelh@gmail.com (O. 

Miguel-Hurtado), S.V.Stevenage@soton.ac.uk (S.V. Stevenage), c.r.bevan@bath.ac.uk 

(C. Bevan), R.M.Guest@kent.ac.uk (R. Guest). 
1 Sex prediction is commonly named “gender prediction” within the biometrics 

community. Sex refers to the biological characteristic of a person, while gender 

refers to the sociocultural roles. Due to this, the authors prefer the use of “sex 

prediction”. 

differentiating one individual from another, their use has been pro- 

posed for deployment within continuous authentication scenarios 

[5] . In these cases, hard-biometrics techniques are used for initial 

authentication, while a combination of soft-biometrics traits are 

used to continuously authenticate the subject. 

In parallel, there is also a growing interest in using soft- 

biometrics in non-biometrics scenarios. The Human-Computer In- 

teraction (HCI) community are looking to the prediction of traits 

(e.g. sex, age, handedness, emotional states) as a way to enhance 

the interaction between computer-based systems and users [6] . For 

example, the use of dynamic keystroke and mouse movement in- 

formation has been suggested as a way to predict the level of 

stress of computer users [7] . There has also been attempts to pre- 

dict emotional states such as happiness from dynamic keystroke 

data [8] . These kind of predictions may able to provide enhanced 

interfaces tailored to specific demographic groups and/or different 

emotional states. 

Human-computer interaction based on touch-screen technol- 

ogy can be dated back to 1965 when Johnson published his 

work [9] using wires on a CRT device. Recently, the growth 

of mobile technologies such as smartphone has resulted in the 

ubiquity of touch as an interface methodology. Moreover, the 

http://dx.doi.org/10.1016/j.patrec.2016.04.024 
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latest generation of touch-screen devices have enhanced input 

capabilities tremendously, which raises the possibility of using 

touch input data in order to predict information about the user (so 

called ‘soft-biometrics’). These capture capabilities have been used 

to develop more secured means of authentication through swipe 

gestures [10–13] . However, as far as the authors’ knowledge, there 

has not been any previous related work in soft-biometrics predic- 

tion based on touch gestures data. 

In an analogous way to how keystroke and mouse data has have 

been proposed to enhance the human computer interaction [7,8] , 

we believe that it is possible to extract soft-biometrics traits from 

swipe gesture information. The predicted soft-biometrics traits 

can allow touchscreen computers-based systems to tailor their 

interaction to better suit the user’s characteristics. In addition, this 

information could also improve the performance of continuous au- 

thentication biometrics systems deployed in touchscreen devices. 

Taking into account the aforementioned potential uses of 

soft-biometrics predictions from touch gesture data within both 

biometrics and HCI fields, the work presented in this paper analy- 

ses the possibility of predicting user’s sex from swipe gesture data 

captured via a smart phone. In particular we assess how differ- 

ences in swipe direction affect prediction performance, indicting 

relevant swipe gesture features for user’s sex prediction and 

which classification algorithm best suits this data. Moreover, sex 

prediction fusion schemes based on individual swipe direction are 

analysed. 

2. Literature review 

Swipe gesture-related techniques have been proposed in sev- 

eral studies as an authentication method in order to enhance the 

access of touch-screen devices. In one of the first studies in this 

field, Jermyn et al [10] proposed the use of the graphical password 

to replace the text-based password. This work was motivated by 

the graphical input capabilities of the first personal digital assis- 

tant devices (PDAs). 

More recently, in [11] the authors combine the idea of a use of 

Android lock pattern authentication with the dynamics of drawing 

such a pattern. The Android lock pattern authentication allows 

users to unlock their devices by drawing with the finger a pattern 

on a 3 ×3 grid of 9 circles displayed on the device touch-screen. 

The authors proved that security can be significantly enhanced 

by using the dynamic information of the finger movement while 

drawing this pattern. The use of touch graphical passwords for 

tablets with multi-touch-screens has been also analysed in [12] , 

where the dynamic information of multi-touch input sequence 

were analysed for user authentication. In this work, the authors 

report an equal error rate of 10% using a single multi-touch 

gesture. This work has also been used to obtain a US Patent [14] . 

In [13] the authors explore the possibilities of swipe gesture 

data (combined with accelerometer data) to perform continuous 

user identification for mobile devices. In this work, the interaction 

with the mobile device was analysed according to three gestures: 

Tap, Scroll and Fling. The touch-based features include touch co- 

ordinates on the screen, touch pressure and duration across three 

different apps (Message, Album and Twitter) with 100 users in- 

teracting with the smartphones. The results show 80% accuracy 

with 10 interaction for identifying a non-owner using the smart- 

phone, and nearly 100% identification accuracy for the owner of 

the smartphone within six interactions. 

Another example of continuous authentication using swipe ges- 

ture can be found at [15] , where the authors presented the FAST 

(Finger-gestures Authentication System using Touchscreen) frame- 

work. In this work the six most frequently used swipe gestures 

were assessed: down-to-up swipe, up-to-down swipe, left-to-right 

swipe, right-to-left swipe, zoom in, and zoom out. Across multiple 

interactions, the proposed system achieved a False Acceptance rate 

(FAR) of 4.6% and a False Reject rate (FRR) of 0.13% in a dataset 

composed of 40 users In addition, using just a single interaction, 

this work showed different FAR and FRR performances for the six 

different swipe gestures analysed: down-to-up, up-to-down, left- 

to-right, right-to-left, zoom in and zoom out. 

In 1997, Wayman [16] proposed the use of soft-biometrics in 

order to optimise search in large surveillance databases. Since 

then, soft-biometrics have continuously received the attention of 

the biometrics research community [1] . Studies have shown the 

benefits of soft-biometrics traits in combination with biometrics 

modalities to improve both identification/verification algorithm 

performances and computational search times. Soft-biometrics 

data can help improve biometrics systems [17] and also can be 

used to tailored applications and the information displayed based 

on user’s characteristics. Thus, the prediction of soft-biometrics, 

specifically a subject’s sex, have been thoroughly analysed in 

several biometrics. 

Face images have been comprehensively analysed for sex pre- 

diction [18] , reaching accuracy rates of 99% using frontal face im- 

ages and a support vector machine (SVM) classifier [19] . In [20] , 

the authors analysed sex prediction from unconstrained face im- 

ages in which there was a high level of variation in viewpoint, 

pose, articulation and occlusion from the images, simulating a per- 

sonal photo album. The proposed method achieved 82% accuracy 

for sex prediction using Poselet-level features and SVM classifiers. 

Gait-based sex prediction has also obtained a high accuracy rate: 

98%, based on video sequences of a person walking from 11 differ- 

ent camera views in the same scene [21] . 

In a study by Amayeh et al. [22] the authors examined hand 

features to obtain sex prediction as a soft-biometric. Hands were 

analysed using image processing techniques and three different 

machine learning classifiers: minimum distance, k-nearest neigh- 

bours and linear discriminant analysis. 98% accuracy rate was ob- 

tained by score-level fusion using MPEG-7 Fourier descriptors as 

the hand features and linear discriminant analysis as the classifier 

Biometric modalities such as iris or fingerprint, not naturally 

linked with everyday sex classification, have obtained reliable ac- 

curacy rates. From iris images, it has been possible to obtain an 

accuracy rate of 91% analysing iris texture using a local binary pat- 

tern and SVM classifier [23] . In [24] a method used on fingerprint 

images based on discrete wavelets transform and singular value 

decomposition is proposed. Using a K-nearest neighbour as a clas- 

sifier, 88% accuracy is reported. 

More aligned to the present work are studies undertaken on 

mouse and keystroke interaction. These are used as the main in- 

teraction with many computer-based systems. Idrus et al. [25] con- 

ducted a thorough analysis for profiling users from keystroke data. 

In this work, the authors analysed the possibility of predicting 

whether the user: (a) used one or two hands to type; (b) be- 

longs to a particular age category; (c) is male or female; and (d) is 

right- or left-handed. Using four features based on digraphs (two 

consecutive keystrokes) and SVM classifiers, the authors achieved 

recognition rates for free text of > 90% for whether the user typed 

with one or two hands, between 79% and 84% for user’s sex, 72–

75% for age categories and 83–88% for handedness. Furthermore, 

recent studies have focused on predicting emotional states such as 

stress [7,8] and happiness [8] obtaining promising results. 

To the best of our knowledge, there has not been previous work 

analysing the possibilities of soft-biometrics prediction from swipe 

gesture data. 

3. Methodology 

This section describes the steps undertaken within our ex- 

perimental methodology from swipe data acquisition to subject 
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Fig. 1. Software for swipe gesture data acquisition. 

sex prediction. It will detail how the data were collected, which 

features were extracted from the raw data. It will also detail how 

those features were used in combination with feature selection 

techniques and machine learning algorithms in order to perform 

the sex prediction of the mobile users. 

3.1. Swipe gesture data collection 

The swipe gesture data used in this study were taken from the 

SSD [26] dataset. The SSD is a comprehensive multi-modal biomet- 

rics dataset (face, iris, swipe, keystroke, signature, gait, hand, voice 

and fingerprint) along with demographics (such as sex, height, 

weight, handedness) created for the SuperIdentity project [27] . The 

SSD contains 116 participants, with an even sex distribution (57 

males and 59 females) and ages ranging from 18 to 35 years. 

The swipe gestures data were captured using a Samsung GT- 

I9100 ‘Galaxy S2’ smartphone. The GT-I9100 has a 4.3 ′′ capaci- 

tive touchscreen display (W480 x H800 pixels, 219dpi). Participants 

were instructed to operate the smartphone one-handed (according 

to their preference) in portrait orientation, using the thumb of the 

same hand to interact with the screen ( Fig. 1 ). 

The swipe gestures data were captured using a Samsung GT- 

I9100 ‘Galaxy S2’ smartphone. The GT-I9100 has a 4.3 ′′ capacitive 

touchscreen display (W480 x H800 pixels, 219dpi). No screen pro- 

tectors or external cases were used. Participants were instructed 

to operate the smartphone one-handed (according to their pref- 

erence) in portrait orientation, using only the thumb of the same 

hand to interact with the screen ( Fig. 1 ). The swipe gestures were 

captured using an Android OS application that was custom built for 

this purpose. The application detected and automatically recorded 

all swipe gestures made in four directions (left-to-right, right-to- 

left, up-to-down and down-to-up). To elicit swipe gestures, the 

capture application used a simple reading task. Participants were 

presented with a series of short jokes (in random order) presented 

as slides. To complete the task (to read each joke and its punch- 

line), participants were required to perform a swipe gesture in the 

direction indicated on the screen. Each participant submitted 120 

swipe gestures in total, divided evenly across the four directions. 

Raw data were recorded about each swipe and were stored lo- 

cally in a text file. This included x and y positional information, 

pressure and thickness time series. 

3.2. Feature extraction 

After the collection of the dataset, a pre-processing step was 

performed in order to remove swipes which weren’t properly ac- 

quired (due to software or user input errors) or were too short 

Fig. 2. Swipe feature details. 

Table 1 

Swipe feature set. 

# Description # Description 

1 Total length (px) 8 Maxima speed (px/ms) 

2 Total time (ms) 9 Average speed (px/ms) 

3 Width (px) 10 Maxima acceleration (px/ms 2 ) 

4 Height (px) 11 Average acceleration (px/ms 2 ) 

5 Area (px 2 ) 12 Average arc distance (px) 

6 Average thickness (px) 13 Max arc distance (px) 

7 Average pressure 14 Angle start to end (degrees) 

for features extraction (fewer than 4 sample points). From the raw 

data, instantaneous swipe speed and acceleration were derived as 

first and second time derivatives. The arc distance between the 

swipe gesture and an imaginary line joining the start and end 

point was also calculated. Fig. 2 depicts these and other extracted 

geometry features such as swipe height, width and area. 

From the time series ( x and y position, speed, acceleration, 

pressure, thickness and arc distance) 14 features were extracted, 

which are detailed in Table 1 along with their units. Screen pix- 

els (px) is used as screen movements unit and milliseconds (ps) 

for time differences. Android system provides the thickness, as the 

approximate size of the touch contact area, also in pixels, whilst 

pressured is provided without any unit scale: 

These 14 features were extracted from each swipe, and each 

feature averaged across all samples from each subject for each 

swipe direction (left-to-right, right-to-left, up-to-down and down- 

to-up), resulting in 4 ×14 features for each subject. 

3.3. Feature differences between male and female groups 

A Wilcoxon rank-sum test analysis was performed in order to 

determine whether mean feature values from male and female 

groups were significantly different. The Wilcoxon rank-sum test 

was used as it was not possible to assume that feature values are 

normally distributed. This assumption was made after performing 

a Lilliefors tests to the distributions. 

The Wilcoxon rank-sum test revealed differences between male 

and female populations in several swipe features, specifically in the 

down-to-up direction: Width, Area and Angle Start to End; and in 

the left-to-right: Total Time, Average speed, Average Arc Distance 

and Max arc Distance. For the two remaining directions, the up-to- 

down direction only showed significance differences in the Width 

feature, whereas the right-to-left direction failed to show any sig- 

nificance difference. 

These results are comparable to those found in [28] using a 

similar swipe gesture dataset. In [28] , the authors concluded that 

swipe features are linked to specific physical characteristics of the 

hand. Users with longer thumbs performed swipe gestures with 

higher speed and acceleration and, therefore, shorter completion 

times. This work also highlighted that, on average, male subjects 

have longer thumbs than females. Based on these differences be- 

tween male and female populations, this work analyses the use 

of prediction tools such as feature selection techniques combined 

with machine learning classifiers in order to find the best combi- 

nation of features for the sex prediction based on swipe gestures. 
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3.4. Machine learning approach for sex prediction 

The 14 averaged swipe gesture features for a particular swipe 

direction were used as inputs to machine learning classifiers in or- 

der to predict the subject’s sex. The WEKA v3.7 suite was used as 

the machine learning tool [29] . The WEKA machine learning suite 

has been successfully used in a broad range of scientific fields from 

speech segmentation [30] to medical domains [31] . 

Our method employed an initial feature selection step to 

identify and select the most promising features for sex prediction. 

After this selection, the predictive power of these feature sets 

was analysed through 10-fold cross validation using, separately 

four machine learning classifiers. These steps are explained in the 

following subsection, indicating the algorithm setting values used 

to ensure reproducibility. 

3.4.1. Feature selection 

Feature selection has been carried out in WEKA v 3.7 using the 

Classifier subset evaluator (“ClassifierSubsetEval v1.0.4 ′′ ) in combi- 

nation with the BestFirst [32] attribute selection implementation. 

Both, the classifier subset evaluator and the BestFirst feature selec- 

tion algorithm (included within WEKA), have been used with their 

default setting values. 

The BestFirst feature selection algorithm searches the attribute 

space greedily in one of three possible directions: forward, back- 

ward or bidirectional. Our experimentation used all three direc- 

tions independently in order to identify an optimal selection. 

As an exploratory analysis, and due to the WEKA implementa- 

tion of the feature selection algorithms, all the samples from the 

dataset were used at the feature selection step. 

The feature selection step will identify the most promising fea- 

ture subsets for each classifier and for each feature selection search 

direction. These feature subsets will be used to create the sex pre- 

diction models to evaluate their success ratios using 10 folds cross- 

validation. 

3.4.2. Machine learning classifiers 

The classifiers used in this study have been used successfully in 

different fields as Machine Learning engines [30,31,33] . Four differ- 

ent machine learning classifiers have been tested as possible candi- 

dates to predict the sex of the subject. The chosen classifiers cover 

a range of popular modes of classification: decision trees (J48), 

probabilistic (naïve Bayes), support vector machines (SVM) and lo- 

gistic regression, and have been selected for complementarity in 

assessment. 

Decision tree (J48): Decision tree learning is one of the most 

commonly used algorithms for automatic learning. The decision 

trees are composed of nodes (which test the value of an attribute), 

branches (path to follow based on the attribute value) and leaves 

(which provide the classification of the instance). The decision tree 

employed in this work is the C4.5 implementation developed by 

Quinlan [34] implemented in WEKA as the J48 algorithm. 

The settings values used for the decision tree classifier (J48) are 

detailed in Table 2: 

Table 2 

Decision tree setting values. 

Option Value Option Value 

BinarySplits False SaveInstanceData False 

CollapseTree True Seed 1 

ConfidenceFactor 0.25 SubtreeRaising True 

MinNumObj 2 Unpruned False 

NumFolds 3 UseLaplace False 

ReduceErrorPruning False UseMDLcorrection True 

Table 3 

Support vector machine setting values. 

Option Value Option Value 

SVMType C-SVC KernelType linear u’ ∗v 

Cachesize 40.0 Loss 0.1 

Coef0 0.0 Normalize True 

Cost 1.0 Nu 0.5 

Degree 3 ProbabilityEstimates False 

Eps 0.001 Seed 1 

Gamma 0.0 Shrinking True 

Table 4 

Multilinear logistic regression setting 

values. 

Option Value Option Value 

MaxIts -1 Ridge 1.0E-8 

Table 5 

Naïve Bayes setting values. 

Option Value Option Value 

UseKernelEstimator False useSupervisedDiscretization False 

Support vector machine (SVM): Support vector machines were 

introduced by Cortes and Vapnik [35] in 1995 and have been suc- 

cessfully used in a wide range of different areas. SVM algorithms 

are based on finding the optimal separating hyperplane that max- 

imizes the margin, in other words, the hyperplane that gives the 

largest minimum distance to the training examples. The imple- 

mentation used in this investigation is the LibSVM v1.0.6 [36] as 

an add-on to the WEKA system. The options selected for SVM clas- 

sifier were, ( Table 3 ): 

Multilinear logistic regression: Multilinear logistic regression 

[37] is one of the most commonly used tools for discrete data anal- 

ysis. Multinomial logistic regression is used to predict the probabil- 

ities of the different classes analysed given a set of independent 

variables. It represents a particular solution to the classification 

problem that assumes that a linear combination of the observed 

features can be used to determine the probability of each particu- 

lar outcome of the dependent variable. 

Table 4 details the setting values used for the multilinear logis- 

tic regression classifier: 

Naïve Bayes: The naïve Bayes classifier [38] is based on the 

probabilistic Bayes’ rule and is particularly suited when the dimen- 

sionality of the inputs is high. In order to reduce the complexity 

of the high dimensionality, the naïve Bayes classifier assumes that 

the effect of the value of a particular feature on a given class is 

independent of the values of the other predictors. Despite its over- 

simplified and generally unrealistic assumptions, the naive Bayes 

classifier has been shown to perform remarkably well in a wide 

range of applications such as text classification [38] and internet 

traffic identification [39] . 

This classifier can be found implemented in WEKA and was 

analysed with the following settings, Table 5: 

3.4.3. Sex prediction evaluation 

The machine learning models (following the feature selection 

step) were created for the four different classifiers and the four 

swipe directions. The evaluation of the models was undertaken by 

means of 10-fold cross validation. This method is a model valida- 

tion technique to estimate the performance of a statistical predic- 

tion model. The technique randomly partitions the original sample 

data into 10 equal sized subsamples. Nine of the subsamples are 

used for training the model and the remaining subsamples is used 
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Fig. 3. Down-to-up sex prediction score distribution. 

Fig. 4. Left-to-right sex prediction score distribution. 

Fig. 5. Right-to-left sex prediction score distribution. 

as the validation data for testing the model. To reduce variability, 

this process is repeated 10 times using different subsam ples data 

for validation. 

The 10-fold cross validation was carried out 25 times using dif- 

ferent random seed numbers (values from 1 to 25, which ensure 

that fold observations are different on each evaluation) in order 

to obtain a statistically significant average of the model perfor- 

mance, with confidence intervals ( α=0.05) for the average accu- 

racy around 1%. 

4. Results 

The results obtained from the evaluation of the machine learn- 

ing models created are presented in this section. In the first sub- 

section the sex prediction performance for each classifier and each 

swipe direction is disclosed. Following this, the score distributions 

for the best classifier of each direction are presented as an in- 

troduction to the last subsection, which attempts to enhance sex 

prediction performance by means of score and decision fusion 

techniques. 

4.1. Individual directions sex prediction performance 

Figs. 3–6 , one figure for each swipe direction, show the per- 

formance of the four classifiers analysed using the feature set 

Fig. 6. Up-to-down sex prediction score distribution. 

selected by the BestFirst algorithm for the three different search 

directions. 

As it can be seen in this figures, there are clear differences in 

performance between the four swipe gesture directions. Down-to- 

up and left-to-right direction both show the highest accuracy rates 

of around 71%, being significantly higher than the accuracies from 

right-to-left and up-to-down, which average around 65%. Down-to- 

up and left-to-right swipe gestures involve the extension of the 

thumb whilst up-to-down and right-to-left involve flexion. Sub- 

jects might be more stable in extension movements and, there- 

fore, the classification of this movements obtain a higher classifi- 

cation performance. These results are consistent with the Wilcoxon 

rank-sum test results. More significant differences were found for 

these two directions (down-to-up and left-to-right), which could 

be explained by a greater difference in swipe gesture performance 

between males and females groups for these two directions. 

Regarding the most suitable classifier algorithms for sex pre- 

diction based on swipe gesture data, the multilinear logistic re- 

gression classifier shows good accuracy rates across all four swipe 

directions. Only the naïve Bayes algorithm slightly bettered the 

logistic classifier for left-to-right swipe direction. Table 6 sum- 

marise the best accuracy rates (and their average accuracy confi- 

dence interval, CI) for each swipe gesture direction, giving further 

details such the feature set used and the feature selection search 

direction. 

The best classifier (71.8% accuracy), for the left-to-right swipe 

gesture features, is based on average thickness (feature ID 6), max- 

ima speed (feature ID 8) and the average arc distance (feature ID 

12). For this swipe direction, women presented a higher average 

arc distance (6.57px for females compared with 5.21px for males), 

slightly lower thickness (40.6px for females compared with 41.6px 

for males) and maxima speed (2.54px/ms for females compared 

with 2.77px/ms for males). Average thickness swipe gesture fea- 

ture was also selected within the feature set for the four swipe 

directions. It is also worth highlighting that the average pressure 

(feature ID 7) was selected within three of the directions). These 

two features, thickness and pressure, are closely related. Thickness 

is the approximate size of the touch contact area. The pressure 

is not directly measured from the Android smartphone used in 

our experimentation as it is estimated from the size of the touch 

point on the assumption that more pressure means your finger 

flattens out. Height (feature ID 4), area (feature ID 5) and max- 

ima acceleration (feature ID 10) were included in both down-to-up 

and up-to-down swipe gesture directions models whilst Total time 

(feature ID 2), Maxima speed (feature ID 8) and average acceleration 

(feature ID 11) were included in two swipe direction models. 

In order to analyse the influence of each feature on the pre- 

diction models, Table 7 details the coefficient values for the multi- 

linear logistic regression models (naïve Bayes model has not been 

included due to lack of detailed model information at WEKA ma- 

chine learning suite): 
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Table 6 

Best accuracy rates for each swipe gesture direction. 

Swipe direction Classifier Feature selection direction Feature IDs Accuracy and CI 

Down-to-up Logistic Bi-dir. 2,4,5,6,7,9,10,11,14 71.3 ± 0.8 % 

Left-to-right Naïve Bayes Forward/Bi-dir 6,8,12 71.8 ± 0.7 % 

Right-to-left Logistic Forward/Bi-dir 2,6,7,11 66.0 ± 0.8 % 

Up-to-down Logistic Bi-dir. 1,4,5,6,7,8,10,13 64.3 ± 1.1 % 

Table 7 

Multilinear logistic regression coefficients for the sex 

prediction models. 

Feature ID DU RL UD 

1 Total length – – 46.13 

2 Total time 10.8 -1.29 –

3 Width – – –

4 Height -11.55 – -48.39 

5 Area 2.64 – -0.18 

6 Average thickness 15.09 20.27 12.13 

7 Average pressure -14.39 -20.15 -13.20 

8 Maxima speed – – 3.03 

9 Average speed 11.09 – –

10 Maxima acceleration 4.04 – -3.55 

11 Average acceleration -9.10 -1.68 0.90 

12 Average arc distance – – –

13 Max arc distance – – –

14 Angle start to end -1.0 – –

Fig. 7. Down-to-up sex prediction score distribution. 

To calculate this coefficients, all the features have been nor- 

malised (mean 0 and standard deviation 0) to be able to 

compare the coefficients between each other. At Table 7 , the higher 

the value of the coefficients, the higher the “log odds” increment 

of being female. It is worth to highlight the high weight values of 

“Total length” and “Height” for the up-to-down swipe sex predic- 

tion model, being remarkable higher than the rest of coefficients. 

It is also interesting the positive and negative sign of the “Average 

Thickness” and “Average Pressure” weights for these three swipe 

directions. As mentioned before, the pressure values are estimated 

by the android operating system from the thickness values. The 

different signs and the similar weight values will mitigate the over- 

all importance of these two features. An increase of the “Average 

Thickness” values will imply an increase of the “log odds” of be- 

ing female, however, it will also imply an increase of the “Aver- 

age Pressure” which will lead to a decrease of the “log odds” to 

be female due to the negative sign of its weight. Due to the con- 

tradictory sign of these two values, the overall importance of the 

thickness and pressure can be consider low. 

4.2. Direction score distributions 

In Figs. 7–10 , the sex prediction score distributions on each 

swipe gesture direction using the best classifier identified in 

Table 6 are depicted. The sample scores obtained from each swipe 

direction classifier represent the probability of the input sample to 

belong to a female user, in a scale from 0 to 1. If the score is close 

to 0, it means that the probability of the input sample to belong 

Fig. 8. Left-to-right sex prediction score distribution. 

Fig. 9. Right-to-left sex prediction score distribution. 

Fig. 10. Up-to-down sex prediction score distribution. 

to a male user is very high. On the other hand, if the score is close 

to 1, it will likely belong to a female user. These figures show male 

score distribution in light grey, female score distribution in dark 

grey, and how they overlap in mid-grey. It can be seen how the 

distribution from each direction follows different patterns. Specifi- 

cally, it can be observed how down-to-up score graph has a lower 

overlap between men and women distribution. This overlap was 

the reason that this direction obtained the highest accuracy per- 

formance (see Table 6 ). These differences will be used to analyse 

several fusion techniques in order to improve the accuracy rates 

obtained from individual swipe gesture direction. 

4.3. Fusion scheme sex predictions results 

Fusion techniques are commonly used in multi-biometrics sys- 

tems [40] . These systems have been proven to obtain enhanced 

performance over individual modality biometrics system. Fusion 

can be performed at different levels: 

(i) Feature level : where the features from different biometrics 

modalities are combined. The combined feature set will be 

used as an input to the matching algorithm. 

(ii) Matching score level : where the matching score levels from 

each biometrics modality are combined to obtain a single 

score level. 
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Fig. 11. Up-to-down sex prediction score distribution. 

(iii) Decision level : where the binary decision of the classifica- 

tion algorithms are combined to reach a single decision. 

In this work, matching score level and decision level techniques 

will be analysed. These fusion techniques have been selected due 

to their popularity and success in previous studies [40] , along with 

their simplicity in implementation. 

For matching score level fusion, the following matching score 

level rules have been analysed and applied to the prediction of sex 

based on swipe gesture scores: 

(i) Weighted sum of scores: S f usion = 
∑ 

i w i · s i 
(ii) Product of scores: S f usion = 

∏ 

i s i 
(iii) Maximum score: S f usion = max { s i } 

(iv) Minimum score: S f usion = min { s i } 

(v) Median score: S f usion = median { s i } 

where w i is the weight of the i th swipe direction with 
∑ 

i w i = 1 and s i is the score obtained from the i th swipe 

direction classifier. 

The decision level approach was implemented by using the in- 

dividual classifier swipe gesture direction decisions. Three differ- 

ent voting thresholds have been analysed: (i) at least one classifier 

across the four swipe directions classified the subject as female, 

(ii) at least two and (iii) at least three. Otherwise, if the number 

of classifiers labelling the subject as a female is lower than the 

threshold, the sample is considered from a male subject. 

Fig. 11 shows the accuracy obtained when the score level fusion 

techniques were applied to the swipe gesture prediction scores. 

From all the possible weights combinations, the higher accu- 

racy was obtained by the weighted sum of scores fusion technique, 

which achieves 77.1% of accuracy rate. The best combination of 

weights found was: 

S f usion = 0 . 3 · S UD + 0 . 7 · S LR 

It can be seen how the two best swipe directions in terms of 

accuracy: left-to-right (71.8% accuracy) and up-to-down (70%) ac- 

count for the most of the score fusion, with a higher weight for 

the best swipe direction. 

This combination of swipe direction scores means an improve- 

ment of 5% compared with the best individual swipe gesture di- 

rection sex prediction rate, 71.8%. 

The accuracy rates obtained when using the decision level fu- 

sion techniques is presented in Fig. 12. 

This approach obtain a 78.2% of accuracy when two or more 

swipe gesture direction agree on the sex of the users. This rate 

means an improvement of 6% from the best individual accuracy 

rate. 

5. Conclusion and future work 

The increasing adoption of touch-screen devices and their con- 

tinuous data capture enrichment will bring the possibility of col- 

lecting high quality swipe gesture data from users interactions and 

the opportunity of using these data to predict soft-biometrics such 

Fig. 12. Up-to-down sex prediction score distribution. 

sex, age category, single or-two handed usage, handedness or even 

emotion prediction. 

This soft-biometric information can be used to improve au- 

thentication systems (i.e. continuous authentication based on mo- 

bile devices use), to tailor applications interfaces to specific user 

groups, or to enhance the interaction between computer-based 

systems and users. 

Following these ideas, this paper has analysed the possibility of 

sex prediction using swipe gesture data collected from the user in- 

teraction with a touch-screen device. This interaction involves the 

placement of a finger on the screen following with a fast move- 

ment in one specific directions. These gestures are frequently used 

with touch-screen devices while navigating websites, list menus or 

picture galleries. 

The results of this exploratory analysis have confirmed the 

possibility of sex prediction from the swipe gesture data, obtaining 

an encouraging 71% accuracy from an individual swipe gesture 

direction. Furthermore, the results have shown a significant dif- 

ference in the sex prediction power based on swipe directions. 

The swipe directions involving finger extensions (down-to-up 

and left-to-right) obtained around 71% accuracy, while the swipe 

directions involving finger flexion (up-to-down and right-to-left) 

obtained around 65% accuracy. 

Regarding the most suitable machine learning classifier for this 

task, the multilinear logistic regression has shown a good perfor- 

mance across all swipe gesture direction, only slightly bettered by 

the naïve Bayes classifier for left-to-right swipe direction. 

We have also analysed sex prediction accuracy when combining 

the data from the four directions. Several score level and decision 

level fusion techniques have been implemented. The results of this 

analysis showed that the combination of direction swipe data en- 

hanced the sex prediction accuracy by 6%, achieving a 78% accu- 

racy rate using a decision voting scheme. 

It is important to acknowledge the limitation of this research 

to drawn general conclusions from small sample populations. Yet, 

it is valuable to acknowledge this kind of information can be ex- 

tracted from swipe gesture data pointing to further research in this 

area. This will help the research community to find ways to use 

this information to enhance the user interaction with technology 

and also to improve continuous authentication on mobile devices. 

Moreover, the acknowledgement of the potential prediction of this 

kind of information can be essential to prevent this leak of infor- 

mation when it could imply a privacy risk. 

These results will hopefully encourage further research on this 

area. Predicting soft-biometrics information from swipe gesture is 

a new field in biometrics and Human-Computer interaction field 

and, therefore, there is scope for improvements in all data analysis 

steps. Specifically for the work presented in this paper, the analysis 

of sex prediction based on swipe gesture data, the following areas 

should be investigated: 

- Feature extraction: the swipe gesture is a multi-dimensional se- 

quence of numerical data points. This characteristic allows the 

creation of new swipe features that can be analysed to im- 
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prove sex prediction accuracy rates. New swipe features could 

be found through a deeper analysis of the biological mechanism 

between swipe gestures, swipe direction and user’s sex. 

- Feature selection: more advanced techniques could be inves- 

tigated for the selection of the best combination of swipe 

features. 

- Classifiers: specific parameterisation of classifiers could also 

bring improved accuracies. Furthermore, the use of ensembles 

of classifiers could be another option for the improvement of 

the performance. 

- Swipe gesture directions: thorough analysis of the difference 

between swipe features from different swipe gesture directions 

and how they impact on the sex prediction performance can 

enable better fusion strategies of swipe features from different 

directions. 

Moreover, the prediction of other soft-biometrics traits such as 

age categories, handedness, stress detection and emotion recogni- 

tion are other areas where swipe gesture data could lead to results 

with a practical applications. 
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