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Many of the traditional data visualization techniques, which proved to be supportive for exploratory analysis of datasets of

moderate sizes, fail to fulfil their function when applied to large datasets. There are two approaches to coping with large

amounts of data: data selection, when only a portion of data is displayed, and data aggregation, i.e. grouping data items

and considering the groups instead of the original data. None of these approaches alone suits the needs of exploratory data

analysis, which requires consideration of data on all levels: overall (considering a dataset as a whole), intermediate

(viewing and comparing collective characteristics of arbitrary data subsets, or classes), and elementary (accessing

individual data items). Therefore, it is necessary to combine these approaches, i.e. build a tool showing the whole set and

arbitrarily defined subsets (object classes) in an aggregated way and superimposing this with a representation of

arbitrarily selected individual data items.

We have achieved such a combination of approaches by modifying the technique of parallel coordinate plot. These

modifications are described and analysed in the paper.

1. INTRODUCTION

Large datasets pose a serious challenge to researchers in
visualization. Techniques that proved to be effective in
supporting the exploration of moderate amounts of data
rapidly decline in their efficacy and, eventually, completely
fail with increasing the number of data items to be analysed.
Attempts to visualize large datasets in the same ways as
small ones typically encounter at least one of the following
obstacles:

1. Overplotting: visual elements representing different
data items fit into the same position in the display,
and, hence, some of them are occluded. This problem
occurs to such visualization techniques as scatterplot,
scatterplot matrix and parallel coordinate plot. To fight
overplotting, transparent output is used in some
implementations (see, for example, [T02]). While this
approach may be useful for detecting clear-cut group-
ings of objects with close characteristics, it does not
work so well when the distribution of characteristics is
more dispersed. Besides, the user cannot properly
estimate the number of data items fitting in this or
that position within the plot area.

2. Decline in legibility: in order to represent all data items in
one display, the corresponding visual elements are made
so small that they become hardly visible and distinguish-
able. This problem often occurs on map displays.

3. Impossibility to represent the full dataset: visual elements
representing all data items cannot be fitted into one
display due to size limitations and, hence, only a part of
the data can be seen. This problem arises, for example, in
the display techniques representing data in a tabular
form, including table lens and permutation matrix.

Two major approaches to solving these problems exist: data
selection (zooming, focusing, filtering) and data aggrega-
tion. Data selection means that a display does not represent
a dataset as a whole but only a portion of it, which is
selected in a certain way. The display is supplied with
interactive controls for changing the current selection,
which results in showing another portion of the data. Thus,
selection on a map is done through zooming and viewport
shifting while rows and columns in a table display are
selected for viewing using scrollbars. A data portion may
also be selected by means of querying: only data items with
certain properties, which are specified in a query, are shown.
This technique, in particular, helps to reduce overplotting.

Data aggregation reduces the amount of data under
analysis by grouping individual items into subsets, often
called ‘aggregates’, and computing some collective char-
acteristics of the aggregates. The aggregates and their
characteristics (jointly called ‘aggregated data’) are then
explored instead of the original data.

We argue that none of these approaches alone fully
satisfies the needs of exploratory data analysis and that it is
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necessary to combine them. In order to substantiate our
opinion, we need to refer to the theory of ‘reading levels’
formulated by Jacques Bertin [B83]. Let us briefly recite
this theory.

The function of graphical representation of data is to
provide answers to various questions concerning the data.
The questions can be distinguished according to their
‘levels of reading’. The level of reading indicates whether a
question concerns a single data element, a group of
elements taken as a whole, or all elements of a dataset.
Accordingly, there are three levels of reading, elementary,
intermediate and overall.

Bertin claims that a visualization is effective if it permits
immediate extraction of the necessary information, i.e.
finding the answer to the observer’s question at a single
glance, with no need to move the eyes or attention and to
involve the memory. Bertin uses the term ‘image’ to refer to
‘the meaningful visual form, perceptible in the minimum
instant of vision’. An optimal visualization contains a single
image providing the answer to the observer’s question.
However, exploratory data analysis (in Bertin’s terms,
‘information processing’) typically does not deal with a
single question, for which a data representation could be
optimized. ‘With this function (i.e. supporting information
processing), the graphic is an experimental instrument
leading to the construction of collections of comparable
images with which the researcher ‘plays’. We class and order
these images in different ways, grouping similar ones,
constructing ordered images to discover the synthetic
schema which is at once the simplest and most meaningful’.
That is, the ultimate goal of information processing is to
discover a simple and meaningful synthetic schema standing
behind the data, i.e. to understand the phenomenon
characterized by the data in its whole. This, evidently,
requires the overall level of reading. However, on the way
to this understanding, an explorer needs to classify and
order, detect similarities and differences, with the inter-
mediate and elementary reading levels being necessarily
involved in these activities.

Hence, in order to be suitable for exploratory data
analysis, a visualization needs to support all reading levels.
For this purpose it is required that the visualization, on the
one hand, is comprehensive, on the other hand, contains
the smallest possible number of memorizable images.
Comprehensiveness means avoiding any prior reduction
of the information (e.g. by classification), using the
‘complete information, which alone provides all the givens
for pertinent correlations and choices […] But also it
matters that all types of comparisons and classings are
possible and easy. The most useful questions will obviously
involve the overall level of reading, where their answer will
be found in a limited number of comparable images’ [B83,
p. 164].

Let us evaluate from this perspective the two approaches
to the visualization of large data volumes, that is, selection
and aggregation.

Selection significantly reduces the information that can
be perceived at once, since only a portion of data is visible at
any moment. However, interactive controls allow the user
to alter the current selection, so that any individual data
item can be eventually accessed. Therefore, it is possible to

find answers to questions requiring the elementary level of
reading, i.e. questions about individual items. The user can
also explore groups of simultaneously visible data items,
which means that the intermediate reading level is also
partly supported. We say ‘partly’ because it is difficult to
compare a currently visible group to another group or to
the whole dataset. The overall reading level is not
supported because there is no way to see all data items
simultaneously.

Aggregation groups the original multitude of data items
into a significantly smaller number of aggregates, which can
be visualized all together in a single view thus enabling the
overall reading level. Characteristics of the aggregates can be
easily explored and compared; hence, the intermediate
reading level is also supported. However, the grouping of
data items into aggregates is done prior to the visualization,
and each aggregate is typically represented by one graphical
element, such as a bar in a histogram or a sector of a piechart.
As a result, the user cannot consider arbitrary subsets of data
items that do not coincide with the aggregates displayed.
Since dealing with rigid, once and forever defined classes or
groups is incompatible with the philosophy of exploratory
data analysis, contemporary data aggregation tools are
characterized by high user interactivity, which allows an
analyst to choose and dynamically change the level of
aggregation (i.e. how large the aggregates are), the method
of aggregation (i.e. how individual items are grouped into
aggregates), and the functions for deriving characteristics of
the aggregates from those of their members (i.e. sums,
ranges, or various statistics). A good example of such a tool is
Treemap developed by the research team of Ben
Shneiderman [Sh92].

While substitution of original data by aggregated
facilitates the processes of simplification and abstraction
and, hence, gaining an overall understanding of a phe-
nomenon, this is achieved at the cost of substantial
information loss, specifically, discarding individual data
items. In Bertin’s terms, an aggregated data display is not
comprehensive, and the elementary reading level is
completely disabled.

Hence, neither data selection nor data aggregation
provides a fully satisfactory solution to the problem of
visualizing large datasets. A suitable compromise could be
achieved by means of combining the approaches. Thus, a
display could represent summary information concerning
the entire dataset and its subsets (aggregation) and, at the
same time, individual characteristics of selected data items
(selection). This allows the user, in particular, to compare
these individual characteristics with those of the whole set
and the subsets. The display must be supplied with
interactive facilities allowing the user both to re-aggregate
the data in different ways and to change the current
selection of individual data items.

For a practical realization of this idea, two ways are
possible:

1. Take some display technique representing individual
data items as a basis and modify it so that it could also
show aggregated information.

2. Take some aggregated representation technique and
extend it with a possibility to display individual
characteristics.
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In this paper, we investigate the possibilities for extend-
ing some popular data visualization techniques (scatterplot
and matrix of scatterplots, table lens, frequency histogram,
box plot, and parallel coordinate plot) to combined
representation of aggregated and individual information.
Then, we describe in more detail our own extensions of the
parallel coordinate plot technique.

We do not introduce any restrictions or assumptions
concerning how aggregates are defined except that each
data item must belong to at most one aggregate. This
means that there should be a general mechanism for
reflecting arbitrary aggregations, or classifications, and
dynamic reaction to changes of the aggregates (classes),
for example, like the mechanism for class propagation in the
system CommonGIS [AA03].

As an example, Figure 1 shows two different classifica-
tions of the counties of USA. On the upper map, the
counties are divided into three classes according to the
population density in 1999. The variation of colour is used
to distinguish the classes on the map: light corresponds to
low density and dark to high density. The breaks between
the intervals of low, medium, and high population density
have been selected so that the resulting classes consist of
approximately equal numbers of counties.

The lower map represents the results of grouping the
counties into three clusters on the basis of six attributes
representing proportions of different age groups in the
population: below five years old, 5–17, 18–29, 30–49, 50–
64, 65 or more years. The clustering was done using the
method SimpleKMeans as it is implemented in the data
mining system Weka [WF99].

The set of counties with their demographic character-
istics and these two example classifications will be used
throughout the paper for testing various display techniques.
The set is rather large: it consists of 3140 objects. While this
is sufficient for our study, we take into account that much
larger sets exist and, hence, any technique should be
evaluated in terms of the possibility to scale it to larger sets.

The model analysis task is to compare the classes of
countries with respect to the age structure of the population.
For the first classification, this would allow one to see
whether the age structure is somehow related to population
density. For the second classification, this could help an
analyst to understand the results of clustering, i.e. what the
groups defined by the data mining algorithm mean.

Let us now evaluate the most popular techniques for data
visualization in terms of their suitability for large datasets
and the possibility to modify them so that questions of all
three reading levels could be answered. Our particular focus
is the possibility of comparison of arbitrary classes of objects
(data items), an activity involving the intermediate reading
level, although we also pay attention to the other two levels.
We assume that classes are defined independently of the
displays used to represent them, and only information
about the classification results (specifically, what objects
each class consists of and what colour is assigned to it) is
transferred to each display.

2. CLASS COMPARISON WITH DIFFERENT DATA

DISPLAYS

We include the following types of data displays in our
evaluation:

N Scatterplot (suitable for two attributes) and scatterplot
matrix (suitable for more than two attributes);

N Table lens [RC94];

N Parallel coordinate plot ([I85], [I98]);

N Frequency histogram (suitable for a single attribute) and
a group of coordinated histograms representing different
attributes ([TS98]);

N Box-and-whiskers plot, or, shorter, box plot [T77].

A common feature for the first three display types is that
they represent individual characteristics of objects whereas
the remaining two techniques provide only general
(aggregate) information about the distribution of attribute
values throughout the set of objects.

There may be two basic approaches to representing
arbitrary data subsets (classes) on different types of graphical
displays: either represent all classes within a common display
area or clone a display as many times as there are classes and
show each class on a separate display copy. Both approaches
have their pluses and minuses. Display multiplication
eliminates overlapping of information pertinent to different
classes and is therefore more beneficial for an individual
consideration of each class. One can also easily compare
general patterns of distribution of characteristics in the
classes. However, comparison of attribute values is more
complicated than in the case when all classes are represented
on one and the same display. Another disadvantage of display
multiplication is that it uses much more screen space. This
problem becomes especially serious whenmany attributes are
involved in analysis. Such display techniques as scatterplot
matrix, coordinated histograms and box plots already
include multiple plots or charts, and further multiplication
may cause significant difficulties for analysis. Thus, if there
are N attributes and M classes, the user will have to analyse
and compare N6M displays.

Figure 1. Two example classifications of the counties of the USA
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From now on, we shall mostly focus on the approach
with showing classes on the same display. Typically, display
elements representing different classes are differently
coloured, which allows one to distinguish between the
classes. This approach is applicable to all the techniques
under consideration except for the box plot.

Figures 2 to 6 demonstrate how object classes can be
reflected on the different types of displays by the example of
the classifications of counties of the USA shown in
Figure 1.

As we have mentioned, a box plot display can represent
classes only by means of display multiplication (Figure 2).
The visualization supports analysis on the overall (entire set
of objects) and intermediate (object classes) levels, but
cannot represent individual characteristics of selected

objects. Other disadvantages are too coarse aggregation
and the necessity of using multiple plots in order to
represent several attributes.

Figure 3 demonstrates representation of classes on a
histogram. One can see the overall pattern of value
distribution in the entire set of objects and compare it to
the patterns for the classes. There are several bottlenecks in
this visualization:

N The shape of a histogram depends on the chosen
granularity.

N The technique supports well the comparison of one class
(aligned to the baseline at the bottom) to the whole set.
Making comparisons between classes is difficult.

N When working with large sets of objects, it is necessary
to zoom the histogram for seeing details (for example,
on the right and left ends of ranges of normally-
distributed attributes). However, zooming destroys the
overall view.

N Access to individual data instances is practically
impossible.

In Figure 4, one can see how classes can be represented on
a scatterplot. The problem with this display is overplotting:
many points (probably, of different colour) may overlap.
Therefore it is impossible to guarantee that the pattern
perceived from such a display (if any) is correct.

Representation of classes on a table lens display can be
done by means of colouring table rows according to the

Figure 2. Representation of class characteristics by box plots. The
group of box plots on the left corresponds to the classification of
the counties of the USA according to the population density. On
the right, the results of clustering are reflected. All box plots show
the distribution of values of the attribute ‘Proportion of age group
50-64 years’. The topmost box plots correspond to the entire set
of counties, and the plots below represent the classes. In addition,
mean values and standard deviations for the respective object sets
are shown below each box plot

Figure 4. Scatter-plots of the attributes ‘Proportion of age group less than 5 years old’ and ‘Proportion of age group 65 years and more’.
The points are coloured according to the classes by population density (left) and to the clusters resulting from the cluster analysis (right)

Figure 3. Histogram representation of the attribute ‘Proportion of age group 50-64 years’ built with the granularity of 50 bins. The bars are
divided into coloured segments according to the number of objects belonging to each of the classes. On the left, the classification according
to population density is represented, on the right — the results of clustering
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classes the respective objects belong to. Rows correspond-
ing to the same class can be grouped together (Figure 5).
Within a group, the rows can be sorted according to values
of some attribute. However, as we have already mentioned,
the technique of table lens is inappropriate for large object
sets.

In a parallel coordinate plot (Figure 6), objects are
represented by polygonal lines connecting points (‘coordi-
nates’) on parallel axes, which represent attributes. The
lines can be painted according to class colours. In simple
cases, this visualization may be helpful for forming a general
view of distribution of characteristics within an object
subset (class). However, like with the scatterplot, a great
problem of this display is overplotting, which in most cases
prevents perceiving properties of classes. This is illustrated
in Figure 6. Even if some pixels are painted in a colour of a
class, this does not guarantee that there are no lines
corresponding to objects from other classes passing
through the same point but not visible due to the high
density of lines.

As it follows from our analysis, none of the visualization
techniques properly supports the exploratory analysis of
large datasets on all reading levels: overall (the whole
dataset), intermediate (arbitrary subsets, or classes), and
elementary (individual data items). Hence, there is a need in
designing a new technique, for example, by amending one
of the existing techniques. As we have discussed, a
promising approach is combining data aggregation with
data selection, i.e. aggregated representation of the entire
set and subsets (classes) with a superimposed display of
individual characteristics of user-selected objects. We have
indicated two practical approaches to achieve this: either to
modify some display technique representing individual data

items so that it could also show aggregated information or
to extend some aggregated representation technique with a
possibility to display individual characteristics. The former
approach seems more promising than the latter one. At
least, some modifications of scatterplot and parallel
coordinate plot techniques towards representing aggre-
gated data already exist (while we could not find a proper
way to extend the table lens technique). At the same time, it
seems quite difficult to find a way to extend histogram and
box plot displays for including individual data.

The modifications of scatterplot are known as binned
scatterplot or two-variable histogram (see, for example,
[C91] or [W99]). They exploit the idea of binning —
dividing the plot area into small cells (bins) and counting the
number of data instances fitting into each bin. The counts are
then represented by painting the cells into different colours
or shades of grey. There is a possibility to represent selected
individual instances by symbols (e.g. small hollow circles)
superimposed on such a representation, although we did not
find in the literature any mentioning of this being actually
done. A disadvantage of binning is that it excludes the
possibility to represent several classes within a single display:
it is difficult to show in a legible way howmany items of each
class fit into each of the bins. Hence, only display multi-
plication may be used for this purpose. However, in a case of
more than two attributes, multiple scatterplots are needed,
and their multiplication will tremendously complicate the
overall visualization.

The parallel coordinate plot (PCP) technique seems to be
a more suitable candidate for an extension towards the
representation of aggregated information. Various attempts
to include aggregated information in a parallel coordinate
plot have been made by a number of researchers. In next
section, we briefly consider their suggestions.

Figure 5. Table lens representation with grouping of rows by
classes (results of cluster analysis). Only a part of data is visible due
to the limitations of the screen size

Figure 6. A parallel coordinate plot with the lines coloured
according to the classes defined on the basis of population density
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3. ENHANCING PARALLEL COORDINATES

A. Inselberg introduced the parallel coordinate plot in the
1980s as a geometrical abstraction for presenting selected
projections of a multidimensional attribute space (see
http://www.cs.tau.ac.il/,aiisreal/— ‘Home of Parallel
Coordinates’ — for the history of PCP). At about the
same time, D. Schilling introduced a similar to PCP ‘value
path’ technique for multi-criteria optimization problems
[SRC83]. In early papers, various mathematical and
algorithmic properties of PCP were studied ([I85],
[ICR87]). Later, A. Inselberg and E. Wegman in parallel
considered PCP as a tool for exploratory data analysis
([I90], [I98], [W90], [MW91]).

It is necessary to stress that the presence of N axes for N
attributes does not mean that the plot fully reflects the N-
dimensional space without loosing important information.
Actually, the plot displays values of N attributes in (N-1)
pairwise projections.

The technique of PCP attracted attention of many
researchers, who suggested various extensions and mod-
ifications. A complete overview of the related work is
beyond the scope of this paper. We shall only consider the
suggestions that introduce display of aggregated data into
PCP and thereby make it more appropriate for large
datasets. This includes drawing coloured bands along the
axes to represent the attribute ranges for the whole data set
and for classes ([S00]), putting box plots on the axes
([T02]), and even drawing histograms along axes ([OL96],
[PT03]). Such enhancements can be called ‘parallel box
plots’ and ‘parallel histograms’ [PT03]. These additions are
very useful for the understanding of properties of subsets
and their comparison. However, such additional graphics
inside a PCP overlap with lines, which complicates the
perception. Besides, each graph represents only a single
attribute ignoring its relationships to other attributes.

Another way of introducing summary information is
showing average or median lines for the whole set and for
classes ([S00]). This is done by connecting positions on
neighbouring axes corresponding to the mean or median
values of the respective attributes. However, since the mean
or median values are counted for each attribute indepen-
dently, one needs to be cautious and avoid interpreting the
resulting lines as the most typical profiles (i.e. combinations
of characteristics) for the sets of objects.

In [MW91], it is proposed to draw a ‘line density plot’
instead of individual lines. For this purpose, the area
between axes is divided into zones (pixels), and the number
of lines passing through each zone is counted. The so
obtained counts are normalized and shown by painting the
zones into different colours or colour grades. This
technique, which is analogous to ‘binning’ on a scatterplot,
supports quite well the overall analysis level and is suitable
for large and very large datasets. Although this was not
suggested in [MW91], it can be easily imagined how to
superimpose drawing of selected individual lines upon the
density-based background painting of the plot area.
However, this technique does not allow us to represent
object classes on the same display. Hence, the intermediate
analysis level can only be supported by means of display
multiplication.

Drawing bands, or envelopes, around selected subsets of
lines provides yet another variety of aggregation. Extending
PCP by showing envelopes of subsets of lines was proposed
already as early as in [I85] and [ICR87]. Later, A.Inselberg
proposed an iterative procedure of visual data mining [I98]
that consists of sequential narrowing of envelopes by means
of selecting subintervals of attribute values. In this
procedure, subsets are defined by means of interaction
with the PCP display. It is not relevant to investigation of
arbitrary classes.

A combination of hierarchical clustering with PCP is
proposed in [FWR99]. The authors represent clusters of
objects by variable-width opacity bands rather than
individual lines. Only cluster centres are shown on top of
the bands by lines. Several clusters can be shown and
analysed simultaneously. The outlines of the bands
correspond to Inselberg’s envelopes, and the opacity
gradually decreased from cluster centres to the boundaries
without taking into account line densities.

A similar approach was proposed in [HC00], where
PCP was enhanced by rule induction methods. Discovered
rules are visualized using semi-transparent overlapping
bands.

This method was further developed in [BH03] where a
fuzzy membership function for object subsets resulting
from hierarchical clustering was represented by varying
opacity. The authors introduced special drawing hints to be
used instead of alpha-blending — a rather slow technique
of graphical output typically used for transparent drawing
and painting on the computer screen.

Building envelopes around lines representing selected
subsets of objects is a convenient tool for comparing
characteristics of a subset (specifically, ranges of attribute
values) to those of the whole data set. However, the
applicability of this method for comparison of subsets is
limited because overlapping of their envelopes complicates
the analysis (see Figure 7).

As a conclusion from this overview, we find the following
PCP modifications to be supportive for exploration of
properties of object classes:

1. Replacing individual lines on a PCP by class envelopes.
2. Putting additional graphics on axes to represent the

distribution of attribute values in the whole data set and
in subsets.

These ideas were used in our own implementation of
PCP-based technique for class investigation described in
the next section.

4. OUR APPROACH

In our implementation, it is possible to replace drawing of
individual lines by either class envelopes or special graphics
on the axes representing summary information about the
distribution of attribute values in the whole object set and
in different classes. Lines for user-selected objects can be
overlaid on such an aggregated representation.

Let us now consider both aggregation modes in more
detail, starting with class envelopes. Actually, envelopes in
their ‘pure’ form are not especially informative: they only
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show ranges of attribute values regardless of the distribu-
tion of the values within the ranges. Hence, just a single
outlier can significantly increase the width of a band
representing some class. Therefore, in most real-world
cases, envelopes of different classes greatly overlap and do
not help to reveal substantial differences in class character-
istics. It would be good to build ‘smart envelopes’ ignoring
outliers. Alternatively, an envelope could be drawn so as to
provide more information concerning value distribution of
each attribute.

We have chosen the second option: we divide each value
range into subintervals containing approximately equal
number of lines and connect corresponding breaks (quan-
tiles) on adjacent axes. As a result, an envelope is divided
into stripes. For better visibility, stripes can be painted
slightly differently, as is shown in Figure 8. The user can
choose the desired number of subintervals. Thus, in
Figure 8, division into 10 subintervals is represented.

It may be seen from Figure 8 that a divided envelope
gives much better understanding of characteristics of a class
that just its outline. The main impression from the outline
is that characteristics within the class greatly vary. However,
the partition of the envelope shows us that 80% of values of
each attribute lie within quite a narrow interval. It can be
seen, for example, that the class is characterized by mostly
low values of the third attribute (this is true at least for 90%
of class members) and mostly medium values of the second
attribute (again, at least 90% of class members have medium
values of this attribute). Unfortunately, it is hard to say
anything concerning how the first 90% are related to the
second 90%. In general, these subsets are different, and
discarding the leftmost and the rightmost stripes will not
give us a band containing 80% of all lines. This is a
consequence of the independent partition of the range of
each attribute, which must be borne in mind to avoid
misinterpretation of the display.

Despite of this problem, the stripe display can still be
useful for investigation of class properties and comparison
of classes. In our implementation, the user may switch on
and off the representation of any class. This helps the user
to focus on a particular class and to make pairwise
comparisons between classes, which is easier than analysing
three or more classes simultaneously. Class envelopes can
be painted in a transparent or opaque mode. Besides, the
user can choose which stripes must be painted (filled) and
which only shown by bounding lines. Thus, the display in
Figure 9 represents two classes out of three: class 2 (lighter
colour) and class 3 (darker colour), which is also shown in
Figure 8. The class envelopes are divided into 10 stripes.
The user has chosen the second and the ninth stripes to be
painted in the transparent mode. For the remaining stripes,
only outlines are shown.

The display in Figure 9 shows us that class 2 and class 3
differ most significantly by values of the second attribute,
proportion of the age group from five to 17 years. Quite
substantial distinction exists also with respect to the propor-
tion of children under five years old. There is no difference in
proportions of people of the age 65 years or more.

In order to compare the distribution of characteristics
within a class to that in the entire set of objects, it is possible
to display analogous stripes for the whole set. An alternative
way is statistics-based scaling of the axes, which is described
in our earlier paper [AA01]. The technique is illustrated
in Figure 10. The same information as in Figure 9 is
represented, but the axes are distorted and aligned so that
the centre of each axis corresponds to the median value of
the respective attribute and the middle positions between
the centre and the ends correspond to the quartiles.

From Figure 10, it can be noticed that class 3 (shown in
the darker colour) substantially deviates from the whole set

Figure 8. The distribution of object characteristics within a class is
shown by dividing the value range of each attribute into 10 equal-
frequency subintervals. Hence, each subinterval corresponds to 10%
of objects of the class

Figure 7. Transparent colour bands, or envelopes, represent the
ranges of object characteristics for the classes of counties according
to the population density (left) and the clusters according to the
age structure (right)
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with respect to the proportions of the age groups under five
years and from five to 17 years. Class 2 has more or less
‘standard’ proportions of these age groups as well as the
group 50–64 years: the bulk of values lie between the first

and the last quartiles of the entire dataset. Concerning the
age groups 18–29 years and 30–49 years, the proportions in
class 3 are about ‘standard’ while class 2 tends to have
higher proportions than in class 3 and in the entire set in
general. Both class 2 and class 3 have smaller proportions of
the age group 65 and more years in comparison to the
distribution for the whole set of counties. Class 3 is also
characterized by smaller proportions of the age group 50–
64 years.

The modification of the ‘enveloping’ technique by
partitioning envelopes into stripes can be viewed at the
same time as a generalization of putting box plots on plot
axes. Thus, when the user chooses to divide the envelopes
into four stripes, the division represents the medians and
quartiles of the attributes, analogously to box plots. Finer
partitions provide more detailed information about value
distributions.

Drawing graphics on the axes is an alternative method
provided in our implementation for displaying information
concerning value distributions. Instead of box plots, which
show only medians and quartiles, we use graphs that may be
called ‘ellipse plots’. Ellipse plots can represent arbitrary
partitions, analogously to ‘striped’ envelopes.

Figure 11 illustrates how ellipse plots are built.
Analogously to partitioning envelopes, the value range of
each attribute (pertinent to a class or to the entire dataset)
is divided into a desired number of equal-frequency
subintervals. Then, instead of connecting corresponding
quantiles on adjacent axes, as we do when striping
envelopes, we draw ellipses around the subintervals, i.e.
the horizontal diameters of the ellipses are proportional to
the lengths of the subintervals. With this technique, we can
also use the vertical diameters of the ellipses to convey

Figure 10. Comparison of value distributions in two classes to
that in the entire dataset by means of statistics-based scaling of the
axes

Figure 11. The same class as in Figure 8 (class 3) is represented
by ellipse plots. For building the ellipses, the value ranges of the
attributes are partitioned into 10 equal-frequency intervals. In the
background, ellipse plots for the entire set of counties are shown

Figure 9. Comparison of distributions of attribute values in two
classes. Class envelopes are partitioned into 10 stripes, of which
only two (2nd and 9th) are painted, according to user’s choice
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additional information. We make them proportional to the
sizes of the subsets represented by the ellipses.

In Figure 11, the smaller ellipses show the distribution of
attribute values in the same class as is shown in Figure 8 by
a ‘striped’ envelope (specifically, class 3 resulting from the
clustering). Like in Figure 8, division into 10 subintervals is
applied, i.e. each ellipse represents 10% of the class
members. Hence, all information available in Figure 8 can
also be seen in Figure 11. Additionally, the bigger ellipses
in the background represent the distribution of attribute
values in the entire dataset, so that class 3 can be
conveniently compared with the whole set of counties.
Analogously to the smaller ellipses, each big ellipse stands
for 10% of all counties. Thus, we can see on the upper axis
that 10% of the whole set of counties that have the highest
proportions of the age group below five years contain 40%
members of class 3, and top 20% of the whole set contain
almost 70% of the class members. A similar observation can
be drawn from the second axis corresponding to the age
group from five to 17 years: top 20% of the whole set
contain about 80% of the class.

Besides comparing the distributions, we can also estimate
the size of class 3 in relation to the size of the whole set: the
proportions between the heights of the ellipses suggest that
the class contains approximately one-fifth of all counties.

Ellipse plots can also be used for comparing two or more
classes. Thus, in Figure 12 class 2, class 3 and the entire set
are represented simultaneously. For easier comprehension,
the attribute ranges are divided this time into five
subintervals instead of 10. As can be seen from the figure,
the user can choose which of the ellipses will be filled and
which remain hollow. In this example, filling is used for the
central ellipse in each ellipse plot (i.e. middle 20% of objects

of the respective sets). The filling can be opaque, as in the
figure, or transparent.

With Figure 12, we can make similar comparison of class
2 and class 3 as with Figure 9. Additionally, we can relate
our observations concerning these two classes to the
distributions of attribute values in the entire dataset. We
can also estimate the relative sizes of the classes: class 2 is
nearly two times bigger than class 3 and constitutes about
40% of the entire set of counties.

Like with envelopes, we can also apply statistics-based
scaling of the axes. After applying this transformation, the
display from Figure 12 looks as is shown in Figure 13. Now,
the area around the median line can be viewed as a sort of
‘standard’ range of characteristics, and we can investigate the
deviations of the classes from this standard range. The
information perceived from this picture is similar to what is
conveyed by the ‘striped’ envelopes in Figure 10.

In comparison to a ‘striped’ envelope, a collection of
ellipse plots representing the same information does not
produce an integral image. This is a weakness and an
advantage at the same time: a weakness because a single
image is easier perceived (and, hence, easier compared with
an analogous image of another set of objects) and an
advantage since the misleading interpretation of stripes as
line containers (i.e. that each line is fully contained in a
single stripe) is precluded.

As compared to traditional box-and-whiskers plots,
ellipse plots are more general: they can represent not only
medians and quartiles but any number of quantiles (in our
implementation, from 2 to 10). We use ellipses rather than
boxes because two adjacent ellipses touch just in a single
point and, hence, can be easier distinguished visually.

Display of aggregated information can be combined with
drawing lines for selected individual objects. Object
selection can be done through any display. In particular,

Figure 12. Value distributions in two classes (class 2 and class 3)
and the entire dataset are represented by ellipse plots on the basis
of partitioning into 5 equal-frequency intervals. Each ellipse stands
for 20% of objects of the respective set. The vertical diameters of
the ellipses are proportional to the sizes of the sets

Figure 13. Statistics-based scaling of axes has been applied to the
display in Figure 12
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one can select objects by clicking or dragging on the parallel
coordinate plot. The typical reaction is selection of the
objects the lines of which come near the mouse position (in
the case of clicking) or cross the rectangular area specified
by mouse dragging. When some object classes are
propagated to a PCP display, the lines of selected objects
are coloured according to the classes the objects belong to
(see Figure 14), otherwise the lines are shown in black.

A special type of interaction is possible for a PCP display
with ellipse plots. Clicking on an ellipse selects the objects
from the corresponding subset. Thus, Figure 14 shows the
result of clicking on the rightmost ellipse on the top axis.
This ellipse represents the top 10% of the whole set of
counties with respect to the proportions of children under
five years old. The click on the ellipse has selected this
group of objects. It can be seen that the group consists
mostly from members of class 3 (dark lines) with a smaller
fraction of objects from class 2 (light lines) and only a few
members of class 1. Unfortunately, the lines belonging to
class 1 (red) cannot be distinguished from the lines of class
3 (blue) in a greyscale reproduction.

Clicking on another ellipse modifies the selection. Thus,
Figure 15 shows how the plot from Figure 14 changes after
clicking on the rightmost ellipse on the axis second from
top, which corresponds to the proportions of the age group
from five to 17 years old. The result is selection of the
counties the lines of which belong to both ellipses clicked.
These are the counties with proportions of the age groups
less than five years old and five to 17 years old lying among
the top 10% over the country. This subset of counties
includes only one member of class 2; the remaining
counties belong to class 3.

The general discipline for the interaction with ellipse
plots is following: clicking on two or more ellipses on the
same axis results in adding new selections to the previously
made ones (logical ‘OR’ operation); clicking on an ellipse
on another axis results in intersecting the previous selection
with the new one (logical ‘AND’).

5. DISCUSSION AND CONCLUSION

Our work on PCP modification has been incited by the
observation that this technique as well as other traditional
methods for data visualization and display coordination
cannot properly support analysis of large datasets. Our
special interest is analysis of object classes, in particular,
results of applying clustering algorithms of data mining (in
general, outputs of data mining procedures are often quite
difficult to interpret; therefore, a proper visualization
support is required). A traditional approach for represent-
ing object classes on data displays is so-called multi-
coloured brushing, i.e. painting display elements (dots on
a scatterplot, lines on a parallel coordinate plot, etc.) in the
colours of corresponding classes (see, for example,
[HT98]). However, due to overplotting, brushing often
fails to convey correct information concerning the classes.
Hence, for large datasets, brushing should be substituted
by other methods of representing class-relevant informa-
tion. We believe that the most appropriate approach is to
provide such information in an aggregated form.

Our modifications of the basic parallel coordinate plot
technique increase its appropriateness for large datasets at
the cost of replacing representation of individual instances
by the display of aggregated information concerning a

Figure 14. Clicking on an ellipse results in the corresponding
objects being selected and their lines appearing on the plot. Here,
clicking on the rightmost ellipse on the top axis has selected the
top 10% of counties with respect to the proportions of children
under 5 years old

Figure 15. Clicking on the rightmost ellipse on the second axis
has modified the selection from Figure 14. Now, selected are the
lines of the counties with proportions of the age groups less than 5
years old and from 5 to 17 years old being among the top 10%
over the country
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dataset as a whole and its subsets (object classes). This
allows one to apply parallel coordinate plots for data
analysis on the overall and intermediate levels. The
elementary level of analysis is supported by the possibility
to show individual characteristics of selected objects on top
of the aggregate representation.

We have suggested two alternative methods for represent-
ing aggregated information: ‘striped’ envelopes and ellipse
plots. Both are based on partitioning the value ranges of the
attribute into equal frequency intervals. The envelope
representation conveys information concerning value distri-
bution in an object set through a single image whereas ellipse
plots do not promote such an integral perception. While
ellipse plots are perceptually more complex than ‘striped’
envelopes, the latter may induce the misleading interpretation
of lines being fully enclosed in the stripes without intersecting
their boundaries. Ellipse plots can be better combined with
drawing individual lines than envelopes.

A limitation of the suggested approach is that it is
suitable only for a relatively small number of classes. It is
very difficult to compare class characteristics when many
classes are simultaneously shown in the display. Although
the user may select the classes to view and perform pairwise
comparisons, this procedure may become impractical with
dozens or hundreds of classes.

The aggregate representations can gain from a proper
scaling of PCP. Thus, statistics-based scaling decreases the
influence of outliers and therefore can make the visualiza-
tion more effective. Additionally, it can convey overall level
information concerning the distribution of characteristics in
the entire dataset. At this cost, the envelope or ellipse plots
corresponding to the whole dataset may be omitted from
the display thus making it simpler and more legible.

An important feature of the proposed approach is its
scalability. Overplotting is reduced because mostly aggre-
gated characteristics are shown and, optionally, just a subset
of lines. The computational complexity is M*N*log(N),
where N is a number of instances, and M is a number of
their attributes. Therefore, the applicability is limited only
by the amount of RAM on user’s computer.

This restriction can be removed by implementing the
visualization in a client-server mode and using a powerful
database system on the server side. Thus, the database can
compute and provide aggregated characteristics of data
(particularly, value ranges, quantiles and other necessary
statistics). This is sufficient for the visualization and
interactive manipulation. Instance data can be transferred
only on demand, for a selected area of interest.

However, a weakness of both ‘striped’ envelopes and
ellipse plots is that they convey summary information for
each attribute independently of others. One can compare
values distributions of different attributes in classes and
entire dataset but cannot investigate relationships between
the attributes and cannot explore the distribution of value
combinations. Thus, neither envelopes nor ellipse plots give
an idea concerning the ‘typical profiles’ of class members.

This weakness can be partly compensated by the
possibility to represent individual characteristics for selected
object subsets. Appropriate selections can be made by
means of interacting with the parallel coordinate plot. For
example, the user may set a kind of ‘trajectory mask’ by

clicking on ellipses on different axes and see how many
objects have their characteristics fitting in this mask, where
these objects are on a map or other displays, and what
classes they belong to. In principle, this is equivalent to
applying a dynamic query tool [AWS92], but in the case of
ellipse plots information about value distributions can be
conveniently used. However, in this interactive way, the
user cannot explore all possible masks (characteristic
profiles) but only a few. Hence, additional tools are needed
to properly support profile analysis.

We plan to implement a computational tool that would
count all existing combinations of characteristics for a user-
specified partitioning of value ranges of attributes. This may
be a partitioning by quantiles, as in ellipse plots and ‘striped’
envelopes, or a partitioning into a desired number of equal
intervals. While the computation itself is rather simple, the
combination analysis tool requires a convenient user interface
for selecting and partitioning attributes and an effective
visualization of the results obtained. Another idea is to
combine user-defined partitioning with an automated dis-
covery of association rules by means of data mining followed
by interactive visualization and analysis of the results.

Similar ideas can be applied and further developed for the
analysis of time-series data. In this case, we can assume that
values for consecutive time moments are auto-correlated.
This assumption may allow us to develop methods for more
sophisticated visual analysis.
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