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Abstract: In the future, automated demand response mechanisms will be used as spinning reserve.
Demand response in the smart grid must be resilient to cyber-physical threats. In this paper,
we evaluate the resilience of demand response when used as spinning reserve in the presence
of cyber-physical threats. We quantify this evaluation by correlating the stability of the system in the
presence of attacks measured by system frequency (Hz) and attack level measured by the amount of
load (MW) that responds to the demand response event. The results demonstrate the importance of
anticipating the dependability of demand response before it can be relied upon as spinning reserve.
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1. Introduction

Utilizing communication, control and computation technologies in the modern smart grid can
enhance the reliability of the smart grid, reduce electricity costs and provide new real-time customer
services. However, these enhancements create new cyber-physical threats that can be exploited by
malicious entities to disrupt smart grid operations on a large scale. Cyber-physical threats are threats
that originate in the cyber domain and have an impact on the physical domain of the system [1].
For example, a sudden load drop in the smart grid (physical impact) can be caused by sending
malicious remote disconnect commands (cyber attack) to a large number of electric meters [2].

Typically, Demand Response (DR) can be used for many purposes, including energy efficiency,
price response, peak shaving, reliability (contingency) response, and regulation response [3].
Many factors determine the type of response a load can provide, such as time of use, duration and speed
of response, frequency and magnitude of load required. Based on those factors, there is a growing
trend to use DR As Spinning Reserve (DRASR) to provide a reliability response, which is required by
many regulations and standards [4]. This functionality of DR is susceptible to cyber-physical threats.

One of the main requirements of the smart grid, as identified by The U.S. Department of Energy
(DoE) Smart Grid System Report [5] and other reports from the National Institute of Standards and
Technology (NIST) and the National Energy Technology Laboratory (NETL) [6], is to operate resiliently
against system disturbances, attacks, and natural disasters. The fundamental problem then is to
evaluate the resilience of the smart grid in the presence of system disturbances, attacks, and natural
disasters. Evaluating the resilience of such large-scale, complex and heterogeneous system-of-systems
in the presence of adverse situations caused by intentional cyber-attacks and random system faults is
a non-trivial and challenging task. To simplify resilience evaluation of this complex system, we follow
an approach in which the evaluation is focused on one smart grid function at a time. A function
here refers to any task or mission of a certain component or system in the smart grid. In this paper,
we evaluate the resilience of DRASR (function) in the presence of cyber-physical threats. In this
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work, we investigate the question: Is DRASR resilient to cyber-physical threats? DRASR can be
considered resilient if the required amount of load to compensate for a contingency is always curtailed
within a bounded time. In order to quantify this evaluation, the impact on the smart grid resulting
from a cyber-physical attack on DRASR is measured. We use the frequency of the power system
(Hz) to measure the impact on the smart grid. On the other hand, the impact of the cyber-physical
attack is measured by the amount of load (MW) that responded to the DR request in the presence of
cyber-physical attacks. The relationship between the impact (Hz) and the required load (MW) can be
used to evaluate the resilience of the smart grid to cyber-physical attacks based on the acceptable level
of impact imposed on the power system.

In order to perform this evaluation, the required cyber and physical aspects of the system are
modeled and simulated using NS-2 (ns-2.34) [7] and PowerWorld (version 17, PowerWorld Corporation,
Champaign, IL, USA) [8], respectively. The setup simulates a system that uses DRASR in the presence
of cyber-physical threats. Then, we use this setup to perform a sensitivity analysis of the impact on the
system (Hz) and the amount of load (MW) that responds to a contingency. This sensitivity analysis
creates a boundary between acceptable and failed DRASR operation. Finally, we demonstrate that at
least one cyber-physical attack can cause DRASR failure. As demonstrated in Section 3.2, we follow
a systematic methodology that can also be applied to evaluating other smart grid functions. This
methodology can be summarized in four main steps:

1. Identify dependencies and failure conditions of the function under evaluation (DRASR in
this case).

2. Create an attack tree by exploiting the dependencies identified in the first step.
3. Perform sensitivity analysis based on the first two steps to identify the boundaries between

acceptable and failed function operation.
4. Analyze a bottom-up attack scenario to verify that at least one cyber-physical attack is possible.

The rest of this paper is organized as follows: Section 2 discusses smart grid resilience and the
concept of demand response as a spinning reserve. Section 3 presents the simulation setup used in
the evaluation process. Then, a step by step description of the evaluation process is demonstrated.
The results of the evaluation process are discussed in Section 4. Finally, Section 5 discusses the broader
implications of our work, and concludes the paper.

2. Background and Related Work

In this section, we first discuss the general notion of resilience and present our definition as
applicable to the smart grid. Then, we discuss the motivation, advantages and requirements of using
DRASR as a contingency reserve (also known as reliability response).

2.1. Smart Grid Resilience

Many definitions exist in the literature for resilience. Most of these definitions describe resilience
as the ability of a system or entity to avoid, absorb and recover from failures [9]. In this work, we
adopt the following definition of resilience based on the definition of resilience given by Laprie [9],
and the definition of dependability given by Avizienis et al. [10]: resilience is the persistent ability of
the smart grid to avoid service failures that are more frequent and more severe than are acceptable
when facing changes in the environment, and to recover from failures whenever they occur. A number
of factors such as cyber-attacks, internal system failures, policy changes, configuration changes, or
deployment changes can result in adverse conditions and disrupt system operation. We are specifically
interested in evaluating the resilience of the smart grid under cyber-physical threats.

In recent years, evaluating the resilience of the smart grid has been a topic of interest in different
research disciplines. A combination of qualitative and quantitative approaches are used in this
evaluation. In the cyber-physical security domain, researchers are interested in evaluating resilience
in the presence of cyber-physical threats and/or after adding cyber-security components that should
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enhance the resilience to those threats [11–13]. Researchers in this discipline rely on risk assessment
methodologies to evaluate resilience, which is considered the goal for risk management, that is,
risk management enhances the resilience of the system under study [14]. By definition, risk is the
likelihood of an event multiplied by the potential impact of that event. In the cyber-security domain,
the risk is usually computed as risk = vulnerability × threat × impact.

While this type of assessment covers likely risks (because of the vulnerability assessment step),
it marginalizes unlikely risks (that are still possible), and does not cover unknown risk. While more
systematic approaches are being developed in this domain [15], most of the work has been done in an
ad hoc fashion.

On the other hand, more systematic approaches have been proposed in the environmental
hazards/socio-technical systems discipline to evaluate the resilience of smart grids (and critical
infrastructures in general). Resilience is evaluated in this discipline for events like natural disasters
(e.g., earthquakes and hurricanes), component failure and human vandalism [16,17]. Because of
the nature of the events in this field of research, probabilistic approaches (statistical and stochastic)
are used and generalized to do the evaluation. The main problem with this type of analysis is that
failure probability models are mainly designed based on statistical data for physical components in
the system (e.g., transformers and generators in the presence of an earthquake), or stochastic models
of failures for those components. This requires estimates of the probabilities of failures for these events
in the system, which are non-trivial to compute [18].

There has been an attempt to use the same probabilistic approaches to analyze smart
grids under cyber-attacks in both the cyber-physical security domain and the environmental
hazards/socio-technical systems domain [13,19]. However, using the same method to estimate
the probability of cyber-attacks (that cause failures) may not be appropriate because it is hard to
represent cyber-attacks using probabilistic methods similar to the ones used to model failures because
of earthquakes (e.g., what is the probability of a zero-day attack?). In addition, these methods do not
capture the behavior of the attacker (attack scenario), which results in unrealistic attack modeling and
impact analysis of the attack. For example, assigning a random variable to represent the mean time
to attack that will cause a failure of a single power component like a generator neglects the attack
scenario and leads to unrealistic impact analysis.

Cyber-physical attacks have different impacts on the smart grid like loss of power, loss of load,
loss of information, or damage of equipment [20]. These impacts may propagate and affect higher-level
smart grid functions causing high-level function failures. Figure 1 demonstrates how the smart grid
can be logically decomposed into a physical power layer, a monitoring and communication layer
called Advanced Metering Infrastructure (AMI), and an application layer consisting of higher-level
functions such as automated metering, outage management (OM) and DR. In addition to the essential
functional layers, there is a need for an orthogonal cyber security layer (CS) for protecting the system
against failures and attacks and ensuring the integrity, confidentiality and availability of the system.
A resilient smart grid should be able to avoid function failures that are more severe or frequent than
is acceptable.

Measuring resilience of critical infrastructure in general has been a topic of interest for
researchers [21,22]. Strigini [21] summarizes three main measures that can be used to quantify resilience:

1. Measures of dependability in the presence of disturbances.
2. Measures of the amount of disturbances that a system can tolerate.
3. Measures of the probability of correct service given that a disturbance occurred.

What is common between these three types of measures is that they all require identifying function
failures and acceptable degradation levels of smart grid services, which is consistent with the resilience
definition presented earlier. In this paper, we quantify resilience by correlating and combining the first
two measures listed above.

Our approach in quantifying resilience relies on: (1) measuring the dependability of a smart grid
function (DRASR in this case) in the presence of cyber-physical attacks [21], where a failure in this
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function is measured by power system frequency (Hz); and (2) the cyber-physical attack measured by
the amount of load that actually responds to a DR event.
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Figure 1. A functional view of the smart grid layers (AMI: advanced metering infrastructure).

2.2. DR as Spinning Reserve

The primary function of the power system is to deliver continuous power. However, a large,
complex system such as the power grid faces several threats to its stability in the form of disturbances
and contingencies. The power system in North America operates stably at 60 Hz. Minor disturbances
and contingencies such as generation loss cause the frequency to fluctuate, but as long as the system is
able to prevent the frequency from going out of the optimal operation region (59.97 Hz–60.03 Hz) and
quickly recover to 60 Hz, the system operates continuously [23].

Power reserves are the primary mechanism to handle disturbances and contingencies and keep
the system operating in its optimal operation region (59.97 Hz–60.03 Hz). Reserves are classified as
spinning or non-spinning, where spinning refers to the unused but synchronized capacity of the system
and non-spinning refers to the unconnected capacity. The reserves are used by various response
mechanisms such as Governor and Automatic Generation Control (AGC) to balance the frequency of
the system. Based on their type, power reserves are classified as regulating reserves and contingency
reserves. Mechanisms such as governor response and AGC use the regulating reserves to handle
normal operational disturbances in the system. Contingency reserves (also referred to as reliability
response) handle supply contingencies such as loss of generation [23].

In the future, automated DR mechanisms will be used as a spinning reserve by utilities to
automatically manage load in the system during times of contingencies, or during times of peak
demand. For instance, during a contingency such as generator trip, DR will enable an intelligent
system controller (or an operator) to send control commands in the form of load reduction requests to
selected customers (or customer appliances), who (or which) will comply by shutting off the requested
amount of load, thus providing a means to balance and stabilize the system without resorting to more
expensive means like buying more energy. DR thus promises to be an efficient, low-cost option for
utilities to ensure system stability.

There are several reasons that make DR suitable for this type of reliability response. First,
it is infrequently needed (a few times a month) and only needed for a short amount of time
(usually 10–15 min). This makes DR less intrusive to customers’ daily lives. Second, DR commands
can be automatically deployed with the right communication and control technologies that provide
fast responses. In addition, DR provides faster responses than generation. Finally, using DRASR may
reduce the cost of operating and maintaining typical spinning reserve (synchronized generation) [24].
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DR can be considered resilient if the required amount of load is always curtailed within a bounded
time, where the required load and time are dependent on utility-specific requirements. Using this
definition, we can evaluate if DR was successful in performing its function as a spinning reserve
in the presence of a cyber-physical attack (i.e., whether DR was resilient to cyber-physical attacks).
Studies have shown that DR signals can be sent from the utility to customers’ loads within about
70 s [3]. If DR was not successful in its function as a spinning reserve, then this means that certain
requirements were violated, system stability was not maintained and additional actions should be
taken to stabilize the system (like increasing generation).

3. Resilience Evaluation of DRASR

To evaluate the resilience of DRASR, we simulate a scenario where DR commands are sent to Air
Conditioning (AC) devices of designated customers. There are existing implementations where DR
was implemented on ACs [3,25,26]. ACs are suitable for DR activities because turning them off for
10–15 min to compensate for a contingency is not intrusive for customers. Moreover, ACs can satisfy
the required amount of load (MW) that can achieve the required balance between generation and load
if curtailed. This does not preclude other types of load from being used in the future for the same
functionality (e.g., electric vehicles). The ACs should respond by turning off to compensate for certain
contingency. In this section, we present the simulation setup that is used to simulate DR (cyber and
physical parts of the system). Similar simulation setup was used in our previous work [2]. Then, we use
the simulation setup to evaluate the resilience of DRASR in the presence of cyber-physical attacks.

3.1. Modeling and Simulation Setup

Separate simulation tools are used to model the cyber and physical (power) parts of the system.
NS-2 is used to simulate the communication network between the utility and the customer side. On the
other hand, PowerWorld is used to simulate the power side of the system. Analytical models are
used to model how events propagate from the cyber domain to the physical domain. The results we
obtained from these models do not apply directly to real world systems; however, more complex
and sophisticated representations of real systems can be used by applying the same methodology.
For instance, our analysis methodology can be applied to models of existing power systems to obtain
specific results pertinent to those systems. A model of the system is represented in Figure 2. This model
does not represent the entire smart grid. However, it only represents the parts that are required for
DRASR operation. In this case, we assume that the DR commands are transmitted through the AMI
network. Next, we describe the details of the system and the models used to represent it.

Head End—The head end represents the central control system of smart meters on the utility side.
The head end is responsible for sending DR commands to customers’ controllable air conditioners for
load curtailment. We assume that DR commands are sent to the smart meters by the head end and
smart meters transfer those commands to the air conditioners in the customer premises.

Wireless Mesh Network—This model represents the communication network between the head
end and the meters (customer side), which includes wired and the wireless networks. We make the
simplifying assumption that wireless network dominates the characteristics of the communication
network. The wireless network is actually the Radio Frequency Mesh (RF mesh) in the neighborhood
model which consists of wireless smart meters that communicate with the head end in ad hoc fashion
through a wireless router placed at the center of the region. Full details of the RF mesh configuration
can be found in our previous work [2].

Neighborhood Model—We model 400 smart meters distributed in a region with a wireless
router placed at the center of the region. Our preliminary simulation results showed that 400 smart
meters is a suitable number for a single wireless router. In a practical implementation, this number
may vary and can be enhanced by the use of repeaters that extend the communication range of the
wireless router [27]. Our analysis considers 457 RF Meshes [2]. In this neighborhood model, buildings
are uniformly distributed in the region with residential, commercial and industrial customer types.
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Customer types, percentages, distribution in the neighborhood model, and air conditioner load ratings
are assigned based on analytical model of an example neighborhood based on census data for ZIP code
area 90057, and real air conditioner load ratings [28]. Customer ratings and air conditioners values are
shown in Table 1.
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Figure 2. AMI model, that is used to communicate demand response (DR) commands to the air
conditioning (AC) units, consists of four elements: (1) the Head End at the utility for smart meter
management; (2) “n” Radio Frequency (RF) mesh networks of “m” smart meters each (colored circles)
and a wireless router at the center (diamond); (3) a neighborhood model that defines meter and air
conditioners; and (4) a model of the power system.

Table 1. Neighborhood model of meter and air conditioner distribution (AC: air conditioning).

Customer Type Percent of Customers (%) Num. of ACs Avg. AC (kW)

Industrial 0.50 2 -
Commercial 12.20 49 3.50

Residential *, 1 unit 5 17 3.50
Residential, 2 units 2 6 3.50

Residential, 3–5 units 5 20 1.44
Residential, 5–9 units 6 21 1.44

Residential, 10–19 units 12 45 1.44
Residential, 20+ units 70 240 0.70

Totals 100 400 -

* Residential type customers have different unit types. For example, ‘2 units’ means one complex that has two apartments.

Power Model—The IEEE 9-bus, three-machine test model, is used to model the power system
in this evaluation. This model is used frequently in the literature for stability and frequency control
analysis. Starting with the PowerWorld library version of the 9-bus model, the model was configured
to include [29], that is, IEEE Type 1 (IEEET1) for the exciter, Steam turbine-governor model (TGOV1)
for the governor and IEEL for the load. The IEEE 9-bus model has a load of 315 MW (Figure 3).
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Figure 3. IEEE 9-Bus power model.

3.2. Evaluation Process

DR should respond when there is a contingency by curtailing the required amount of load to
stabilize the system to its normal frequency levels (59.97 Hz–60.03 Hz) within the required time
(15 min) [23]. DRASR can be considered resilient if the frequency and time requirements are met.
By the end of this evaluation, we demonstrate how the resilience of DR in the presence of attacks
can be quantified in terms of system frequency (Hz). We next present the step-by-step procedure for
evaluation for DRASR.

3.2.1. Identify Dependencies and Failure Conditions

The function under study in this case is DR when used as spinning reserve. By focusing on this
single function, we are scoping down the evaluation of this large-scale complex system. The failure
conditions of DRASR can be identified based on its requirements. DR is required to stabilize system
frequency by curtailing the required amount of load within the required time. The required amount of
load is defined based on the size of contingency that happens (e.g., generator failure), whereas time
requirements are defined by standards.

DRASR directly depends on the communication network and control devices that transfer, receive
and execute DR requests. There are other dependencies related to how DR diagnoses contingencies
and makes its decision (e.g., which customers to choose for load curtailment). However, those aspects
are out of the scope of this paper. We rely on subject matter experts such as power system operators
and contingency planners to identify those dependencies. Cyber-attacks on the communication and
control components of the DR system at the time of a contingency may have direct consequences on
the amount and timing of load curtailment. Manipulation of system load may impact the stability of
the physical system measured by its frequency.

3.2.2. Create Attack Tree

Based on the dependencies identified in the first step, an attack tree is created (Figure 4). The main
objective behind creating the attack tree is to increase abstraction in the evaluation process by grouping
cyber-attacks that have similar impact.
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Figure 4. Attack tree for DR as spinning reserve function.

The attack tree is created systematically, although connections to the results are manual. The attack
tree is created using a top-down approach with four main steps: (1) setting the attacker’s objective for
causing failure in the function under study; (2) identifying the physical impacts of the cyber-attacks
that cause function failure (load manipulation in this case); (3) identifying the cyber-attacks that may
lead to physical impacts; and (4) identifying the attack techniques that may lead to the cyber-attacks.

This attack tree can be divided into four levels. The first level is the function failure
(attacker’s objective), which is system instability that also includes violating required standards.
In this case, the main violation is operating in the under-frequency region. There are several other
consequences for operating in the under-frequency region in the system, which results from loss of
generation (or increase in load) [23]. For example, under-frequency may have effects on power system
equipment like motors and transformers [23].

The second level represents the direct impacts of the cyber-attacks on the physical system which
are manipulate system load and manipulate system generation (Figure 4). One example of manipulating
system generation is the famous Aurora generator test [30]. In this paper, we are interested in
load manipulation. Similarly, manipulate system generation can also be extended to lower levels
of the attack tree. Load manipulation may result from causing load reduction, preventing load
reduction or increasing load. The physical factor that causes function failure is manipulated at this
level. The physical factor in this case is the actual amount of load that responds to a contingency.
Manipulating this amount may result in function failure (i.e., system instability).

The third level represents the cyber-attacks that stimulate the physical factors. The cyber-attacks
are listed based on the dependencies identified in Section 3.2.1. For example, DR depends on the
communication network to transfer its commands. Blocking load curtailment commands results in
preventing load reduction (physical factor). This is how the attack propagates from the cyber domain
to the physical domain. In Figure 4, the attack tree nodes in the second and third levels do not include
all the scenarios through which the top level node (goal of the attack) can be achieved. In addition,
there might be faults from non-malicious events that may have the same impact on the smart grid.

The fourth level is the action that the attacker takes to perform the attack (i.e., how the attacker
implemented the attack). For example, the attacker may need to compromise the headend or launch
a Denial of Service (DoS) attack in order to block DR load curtailment commands. The fourth level
of the attack tree can be extended to more detailed levels. For example, the leaf nodes of the attack
tree can be extended to demonstrate how the control devices on the customer side are compromised.
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However, we stop at the fourth level because we are not concerned about the cause of attack, but rather
in evaluating resilience after the attack happens.

In the following two subsections, NS-2 and PowerWorld simulation tools are used to evaluate
the consequences of cyber-physical attacks on DRASR by simulating the required components
for DRASR operation. The transition from the attack tree to simulation and analysis of results is
performed manually here, but the process could be automated with the availability of a comprehensive
cyber-physical smart grid testbed that would simulate individual smart grid functions.

3.2.3. Perform Sensitivity Analysis Based on the First Two Steps

The goal of this sensitivity analysis is to quantify the resilience of the system by drawing
a boundary between acceptable DRASR performance and DRASR failure in the presence of an attack.
The impact of variation of DR responses to variation of contingencies is analyzed. There are two inputs
to the sensitivity analysis: (a) the size of the contingency that happens, which is a loss of certain MW
of generation; and (b) the amount of load that responds to the contingency through DR. The metric
that demonstrates system stability is the frequency of the system (Hz) (i.e., output of the sensitivity
analysis). This analysis is performed on the power system to answer what happens if a contingency
occurs in the presence of a cyber-attack that eventually reduces the amount of load that responds to
the contingency. By performing this analysis at the second level of the attack tree, cyber-attacks with
the same impact are abstracted.

A contingency is simulated in the IEEE 9-bus model in PowerWorld by causing a loss of certain
MW of generation. For each contingency, the amount of load curtailed (responded to DR) is varied
from 0% to 100%, where 100% represents the required amount of load that should have responded to
the contingency. We made sure that the biggest simulated contingency does not cause the frequency
to drop below 59.1 Hz. If the frequency drops below 59.1 Hz, other protection mechanisms will
intervene like Under Frequency Load Shedding (UFLS) and Under Frequency Generator Protection
(UFGP) [23]. These protection mechanisms are out of the scope of this paper. The frequency of the
system is monitored after each run as shown in Figure 5.
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Figure 5. Frequency of the system after 100 s of a contingency (y-axis) when varied load responds
(x-axis) to the DR request. According to the percentage of load that responds, three regions are created:
restricted, continuous and optimal. The figure also demonstrated the impact of the DoS attack when
DR responds to a 16 MW contingency. On average, 34% of the load responded as shown in the figure.

A boundary for acceptable system performance can be seen in Figure 5 (blue) where the frequency
of the system stabilizes to its normal level. This figure also demonstrates the coupling between the
physical factor (load that responded to the DR request) and the frequency of the system. The resilience
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of DRASR in the presence of cyber-attacks is quantified by system frequency at the end of the simulation.
If the frequency deviates from its nominal values (i.e., 60.0 Hz) at the end of the simulation then DR
failed in its function as a spinning reserve and the smart grid may be unstable. Based on the values
of the frequency, the power system can be operating in one of three regions: optimal operation
region (59.97–60.03 Hz), continuous operation region (59.50–59.97 Hz) and restricted operation region
(59.10–59.50 Hz). The results are discussed in more detail in Section 4.

3.2.4. Analyze a Bottom-Up Attack Scenario

While the sensitivity analysis done in the third step demonstrates the consequences of the attack in
the system, analyzing a bottom-up attack scenario validates that certain attacks can actually propagate
to the top nodes of the tree. This step is not intended to validate each and every attack path, but is
instead intended to demonstrate (to researchers and stakeholders) that at least one path may succeed,
which makes the impact on the root node realistic. As mentioned in Section 3.2.2, there are still
unexpected or unforeseen risks that can occur and invoke the same physical consequences that will
lead to DRASR failure. The leaf nodes (cyber-attacks) are modeled to verify that they can actually
cause failure of DRASR by manipulating system load. Based on the attack tree that is generated in the
previous step, many attacks may propagate from the cyber domain to the physical domain.

Customers’ control devices are usually susceptible to being compromised, especially if they are
connected to the Internet. If these devices are compromised and configured to ignore a DR request,
then load reduction will be blocked when needed. The success of this attack path depends on the
percentage of compromised devices (ACs) in the serviced area.

In this step, we analyze a DoS attack targeting the wireless router in each RF mesh. If there
is a DoS attack targeting the wireless router at the time of DR event, then DR commands may be
blocked. As a result of this attack, load curtailment will be blocked. In the attack scenario, we assume
that there is a 16 MW (5% of the total generation in the system) contingency in the system (loss of
generation). DRASR is used to compensate for the contingency. We assume that, on average, each RF
mesh (of the 457) should curtail 35 KW. One way of curtailing this amount in one RF mesh is through
the distribution shown in Table 2. Finding the optimal distribution to curtail this amount of load is out
of the scope of this paper.

Table 2. Demand response (DR) load curtailment customer and load distribution for a 16 MW contingency
in the whole region.

Customer Total Num. Avg. AC Load (kW) Avg. Load
Type of ACs per Customer Curtailed (kW)

Commercial 457 3.50 1599.5
Residential *, 1 unit 457 3.50 1599.5
Residential, 2 units 457 3.50 1599.5

Residential, 3–5 units 914 1.44 1316.16
Residential, 5–9 units 457 1.44 658.08

Residential, 10–19 units 2285 1.44 3290.4
Residential, 20+ units 8683 0.70 6078.1

Totals 13,710 - 16,141.24

* Residential type customers have different unit types. For example, ‘2 units’ means one complex that has two apartments.

As a response to this contingency, the head end starts issuing DR commands to the designated
customers. Normally, air conditioners should receive those commands through smart meters and
curtail the load. However, we assume that two rogue nodes exist in each RF mesh launching a DoS
attack at the wireless router by simultaneously generating low bit-rate traffic. Realistically, an attacker
can accomplish this attack using different means. For example, an attacker could compromise smart
meters in a certain RF mesh and reprogram them to increase the frequency at which they send meter
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reads. Alternatively, an attacker could take control of other customer devices such as the service
gateway within a Home Area Network (HAN) to send spurious traffic, creating a DoS attack.

In the wireless simulation, we capture which customers received the DR commands and,
accordingly, which customers curtailed the load (based on Table 2). Because of the attack, DR
was not able to stabilize the system and bring the frequency back to the optimal operation region
(59.97–60.03 Hz). Because of the DoS attack, only 34% of load is curtailed, which brings the frequency
to 59.86 Hz (continuous operation region). This means that extra actions should be taken to bring the
frequency back to the optimal operation region like increasing generation or shedding load. Figure 5
demonstrates the results of the attack on top of the sensitivity analysis.

4. Results

Based on the sensitivity analysis, the operating states of the underlying power system can be
divided into three regions (Figure 5).

4.1. Optimal Operation Region (59.97–60.03 Hz)

This is the safe and desired region of operation. In this region, the required amount of load
responded to bring the frequency to its normal level within the required time. By analyzing this
category, we can identify the level of disturbance that the system can tolerate. The disturbance
in this case is the percentage of load that does not respond to the DR request because of the attack.
From Figure 5, we can put a lower bound on the percentage of load that should respond to a contingency
for the system to be claimed resilient, which varies based on the size of the contingency. For example,
88.0% of the load should respond for a 15 MW contingency in order to maintain the system in the
optimal operation region. In other words, the system is resilient to 12.0% disturbance in load response
for a 15 MW contingency.

4.2. Continuous Operation Region (59.50–59.97 Hz)

While this region is still safe, it is not the desired region of operation and requires frequency
correction. This means that the DR system did not curtail the required amount of load within the
required time to bring the frequency back to its normal conditions. Additional actions should be taken
to get to the optimal operation region like increasing generation or load shedding. For example, if less
than 88.0% of the required load responds to a 15 MW contingency, then the system will be in the
continuous operation region.

4.3. Restricted Operation Region (59.10–59.50 Hz)

The system may remain in this region for a restricted amount of time (based on steam turbine
off-frequency limits [23]). Being in this region means that the DR system failed to achieve its goal,
which directly affects the resilience of the entire smart grid. For example, if only 5.0% of the required
load responds to a 40 MW contingency, then the system will be in the restricted operation region.
After deploying DR at time of contingency, if the frequency is in the optimal operation region, then DR
succeeded and the system is resilient. Otherwise, DR either partially (continuous operation region) or
fully (restricted operation region) fails. This demonstrates the importance of anticipating the successful
operation of DRASR. An effective situational awareness capability could thus save precious time
whenever there is a contingency.

Using our approach, we were able to quantify resilience of DRASR in two ways:

1. The stability level of the system measured by system frequency (Hz) when there is an attack on
DR measured by the percentage of load that responds at the time of a contingency.

2. The attack level on DR measured by the percentage of load that responds that the system can
tolerate at the time of a contingency, in order to stay in the optimal operation region.
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5. Conclusions

By modeling and simulating DR functionality in the smart grid, we quantified the resilience of
DRASR by applying a systematic evaluation methodology that can be used to evaluate other smart grid
functions as well. The results demonstrate the minimum amount of load (MW) that should respond to
a DR event when there is a power contingency for DR to be claimed resilient. They also demonstrate the
stability of the system measured by system frequency (Hz) in the presence of variations of attack levels.

This work demonstrates the importance of assessing the resilience of specific functions such as
demand response when those functions are used as spinning reserve. The results of this assessment
guides the design of security measures and the selection of technologies that improve resilience to all
failures. An understanding of the factors affecting smart grid resilience is useful when implementing
security policies to protect the systems from cyber-physical attack. We have applied this approach in
the assessment of demand response and plan to evaluate the functional resilience of other smart grid
components as future work.
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