The Differentiable Functions from \mathbb{R} into \mathcal{R}^{n}

Keiko Narita
Hirosaki-city
Aomori, Japan

Artur Korniłowicz

Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok
Poland
Yasunari Shidama ${ }^{1}$
Shinshu University
Nagano, Japan

Abstract

Summary. In control engineering, differentiable partial functions from \mathbb{R} into \mathcal{R}^{n} play a very important role. In this article, we formalized basic properties of such functions.

MML identifier: NDIFF_4, version: $\underline{7.12 .024 .171 .1135}$

The notation and terminology used in this paper are introduced in the following articles: [25], [26], [6], [2], [27], [8], [7], [24], [1], [4], [3], [5], [9], [22], [20], [28], [21], [10], [23], [17], [13], [11], [12], [15], [19], [18], [16], and [14].

Let us observe that there exists a sequence of real numbers which is convergent to 0 and non-zero.

For simplicity, we adopt the following convention: x_{0}, r denote real numbers, i, m denote elements of \mathbb{N}, n denotes a non empty element of \mathbb{N}, Y denotes a subset of \mathbb{R}, Z denotes an open subset of \mathbb{R}, and f_{1}, f_{2} denote partial functions from \mathbb{R} to \mathcal{R}^{n}.

The following proposition is true
(1) For all partial functions f_{1}, f_{2} from \mathbb{R} to \mathcal{R}^{m} holds $f_{1}-f_{2}=f_{1}+-f_{2}$.

[^0]Let n be a non empty element of \mathbb{N}, let f be a partial function from \mathbb{R} to \mathcal{R}^{n}, and let x be a real number. We say that f is differentiable in x if and only if:
(Def. 1) There exists a partial function g from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ such that $f=g$ and g is differentiable in x.
One can prove the following proposition
(2) Let n be a non empty element of \mathbb{N}, f be a partial function from \mathbb{R} to \mathcal{R}^{n}, h be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and x be a real number. Suppose $h=f$. Then f is differentiable in x if and only if h is differentiable in x.

Let n be a non empty element of \mathbb{N}, let f be a partial function from \mathbb{R} to \mathcal{R}^{n}, and let x be a real number. The functor $f^{\prime}(x)$ yields an element of \mathcal{R}^{n} and is defined as follows:
(Def. 2) There exists a partial function g from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ such that $f=g$ and $f^{\prime}(x)=g^{\prime}(x)$.

One can prove the following proposition
(3) Let n be a non empty element of \mathbb{N}, f be a partial function from \mathbb{R} to \mathcal{R}^{n}, h be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and x be a real number. If $h=f$, then $f^{\prime}(x)=h^{\prime}(x)$.

Let us consider n, f, X. We say that f is differentiable on X if and only if:
(Def. 3) $\quad X \subseteq \operatorname{dom} f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.

The following propositions are true:
(4) If f is differentiable on X, then X is a subset of \mathbb{R}.
(5) f is differentiable on Z iff $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds f is differentiable in x.
(6) If f is differentiable on Y, then Y is open.

Let us consider n, f, X. Let us assume that f is differentiable on X. The functor $f_{\mid X}^{\prime}$ yields a partial function from \mathbb{R} to \mathcal{R}^{n} and is defined by:
(Def. 4) $\operatorname{dom}\left(f_{\uparrow X}^{\prime}\right)=X$ and for every x such that $x \in X$ holds $f_{\lceil X}^{\prime}(x)=f^{\prime}(x)$.
One can prove the following propositions:
(7) Suppose $Z \subseteq \operatorname{dom} f$ and there exists an element r of \mathcal{R}^{n} such that $\operatorname{rng} f=\{r\}$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)_{x}=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(8) Let x_{0} be a real number, f be a partial function from \mathbb{R} to \mathcal{R}^{n}, g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and N be a neighbourhood of x_{0}. Suppose $f=g$ and f is differentiable in x_{0} and $N \subseteq \operatorname{dom} f$. Let given h, c.

Suppose $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1} \cdot\left(\left(g_{*}(h+c)\right)-\left(g_{*} c\right)\right)$ is convergent and $f^{\prime}\left(x_{0}\right)=\lim \left(h^{-1} \cdot\left(\left(g_{*}(h+c)\right)-\left(g_{*} c\right)\right)\right)$.
(9) If f is differentiable in x_{0}, then $r \cdot f$ is differentiable in x_{0} and $(r \cdot f)^{\prime}\left(x_{0}\right)=$ $r \cdot f^{\prime}\left(x_{0}\right)$.
(10) If f is differentiable in x_{0}, then $-f$ is differentiable in x_{0} and $(-f)^{\prime}\left(x_{0}\right)=$ $-f^{\prime}\left(x_{0}\right)$.
(11) If f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}, then $f_{1}+f_{2}$ is differentiable in x_{0} and $\left(f_{1}+f_{2}\right)^{\prime}\left(x_{0}\right)=f_{1}{ }^{\prime}\left(x_{0}\right)+f_{2}{ }^{\prime}\left(x_{0}\right)$.
(12) If f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}, then $f_{1}-f_{2}$ is differentiable in x_{0} and $\left(f_{1}-f_{2}\right)^{\prime}\left(x_{0}\right)=f_{1}{ }^{\prime}\left(x_{0}\right)-f_{2}{ }^{\prime}\left(x_{0}\right)$.
(13) Suppose $Z \subseteq \operatorname{dom} f$ and f is differentiable on Z. Then $r \cdot f$ is differentiable on Z and for every x such that $x \in Z$ holds $(r \cdot f)^{\prime}{ }_{Z}^{\prime}(x)=r \cdot f^{\prime}(x)$.
(14) If $Z \subseteq \operatorname{dom} f$ and f is differentiable on Z, then $-f$ is differentiable on Z and for every x such that $x \in Z$ holds $(-f)^{\prime}{ }_{Z}(x)=-f^{\prime}(x)$.
(15) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1}+f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}+f_{2}\right)^{\prime}{ }_{Y}(x)=f_{1}{ }^{\prime}(x)+f_{2}{ }^{\prime}(x)$.
(16) Suppose $Z \subseteq \operatorname{dom}\left(f_{1}-f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1}-f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{1}-f_{2}\right)^{\prime}{ }_{Z}(x)=f_{1}{ }^{\prime}(x)-f_{2}{ }^{\prime}(x)$.
(17) If $Z \subseteq \operatorname{dom} f$ and $f \upharpoonright Z$ is constant, then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\upharpoonright Z}^{\prime}(x)=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(18) Let r, p be elements of \mathcal{R}^{n}. Suppose $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds $f_{x}=x \cdot r+p$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $f_{\mid Z}^{\prime}(x)=r$.
(19) For every real number x_{0} such that f is differentiable in x_{0} holds f is continuous in x_{0}.
(20) If f is differentiable on X, then $f \upharpoonright X$ is continuous.
(21) If f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.

Let n be a non empty element of \mathbb{N} and let f be a partial function from \mathbb{R} to \mathcal{R}^{n}. We say that f is differentiable if and only if:
(Def. 5) f is differentiable on $\operatorname{dom} f$.
Let us consider n. One can check that $\mathbb{R} \longmapsto\langle\underbrace{0, \ldots, 0}_{n}\rangle$ is differentiable.
Let us consider n. Note that there exists a function from \mathbb{R} into \mathcal{R}^{n} which is differentiable.

One can prove the following proposition
(22) For every differentiable partial function f from \mathbb{R} to \mathcal{R}^{n} such that $Z \subseteq$ dom f holds f is differentiable on Z.

In the sequel G_{1}, R are rests of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and D_{1}, L are linears of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Next we state a number of propositions:
(23) Let R be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose R is total. Then R is rest-like if and only if for every real number r such that $r>0$ there exists a real number d such that $d>0$ and for every real number z such that $z \neq 0$ and $|z|<d$ holds $|z|^{-1} \cdot\left\|R_{z}\right\|<r$.
(24) Let g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and x_{0} be a real number. Suppose $1 \leq i \leq n$ and g is differentiable in x_{0}. Then $\operatorname{Proj}(i, n) \cdot g$ is differentiable in x_{0} and $(\operatorname{Proj}(i, n))\left(g^{\prime}\left(x_{0}\right)\right)=(\operatorname{Proj}(i, n) \cdot g)^{\prime}\left(x_{0}\right)$.
(25) Let g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and x_{0} be a real number. Then g is differentiable in x_{0} if and only if for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds $\operatorname{Proj}(i, n) \cdot g$ is differentiable in x_{0}.
(26) Let f be a partial function from \mathbb{R} to \mathcal{R}^{n} and x_{0} be a real number. Suppose $1 \leq i \leq n$ and f is differentiable in x_{0}. Then $\operatorname{Proj}(i, n) \cdot f$ is differentiable in x_{0} and $(\operatorname{Proj}(i, n))\left(f^{\prime}\left(x_{0}\right)\right)=(\operatorname{Proj}(i, n) \cdot f)^{\prime}\left(x_{0}\right)$.
(27) Let f be a partial function from \mathbb{R} to \mathcal{R}^{n} and x_{0} be a real number. Then f is differentiable in x_{0} if and only if for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds $\operatorname{Proj}(i, n) \cdot f$ is differentiable in x_{0}.
(28) Let g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $1 \leq i \leq n$ and g is differentiable on X. Then $\operatorname{Proj}(i, n) \cdot g$ is differentiable on X and $\operatorname{Proj}(i, n) \cdot g_{\lceil X}^{\prime}=(\operatorname{Proj}(i, n) \cdot g)_{\uparrow X}^{\prime}$.
(29) Let f be a partial function from \mathbb{R} to \mathcal{R}^{n}. Suppose $1 \leq i \leq n$ and f is differentiable on X. Then $\operatorname{Proj}(i, n) \cdot f$ is differentiable on X and $\operatorname{Proj}(i, n) \cdot f_{\uparrow X}^{\prime}=(\operatorname{Proj}(i, n) \cdot f)_{\uparrow X}^{\prime}$.
(30) Let g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Then g is differentiable on X if and only if for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds $\operatorname{Proj}(i, n) \cdot g$ is differentiable on X.
(31) Let f be a partial function from \mathbb{R} to \mathcal{R}^{n}. Then f is differentiable on X if and only if for every element i of \mathbb{N} such that $1 \leq i \leq n$ holds $\operatorname{Proj}(i, n) \cdot f$ is differentiable on X.
(32) For every function J from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into \mathbb{R} and for every point x_{0} of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ such that $J=\operatorname{proj}(1,1)$ holds J is continuous in x_{0}.
(33) For every function I from \mathbb{R} into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ such that $I=\operatorname{proj}(1,1)^{-1}$ holds I is continuous in x_{0}.
(34) Let S, T be real normed spaces, f_{1} be a partial function from S to \mathbb{R}, f_{2} be a partial function from \mathbb{R} to T, and x_{0} be a point of S. Suppose $x_{0} \in \operatorname{dom}\left(f_{2} \cdot f_{1}\right)$ and f_{1} is continuous in x_{0} and f_{2} is continuous in $\left(f_{1}\right)_{x_{0}}$. Then $f_{2} \cdot f_{1}$ is continuous in x_{0}.
(35) Let J be a function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into \mathbb{R}, x_{0} be a point of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$, y_{0} be an element of \mathbb{R}, g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and f
be a partial function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $J=\operatorname{proj}(1,1)$ and $x_{0} \in \operatorname{dom} f$ and $y_{0} \in \operatorname{dom} g$ and $x_{0}=\left\langle y_{0}\right\rangle$ and $f=g \cdot J$. Then f is continuous in x_{0} if and only if g is continuous in y_{0}.
(36) Let I be a function from \mathbb{R} into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle, x_{0}$ be a point of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle, y_{0}$ be an element of \mathbb{R}, g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and f be a partial function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $I=\operatorname{proj}(1,1)^{-1}$ and $x_{0} \in \operatorname{dom} f$ and $y_{0} \in \operatorname{dom} g$ and $x_{0}=\left\langle y_{0}\right\rangle$ and $f \cdot I=g$. Then f is continuous in x_{0} if and only if g is continuous in y_{0}.
(37) For every function I from \mathbb{R} into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ such that $I=\operatorname{proj}(1,1)^{-1}$ holds I is differentiable in x_{0} and $I^{\prime}\left(x_{0}\right)=\langle 1\rangle$.
Let n be a non empty element of \mathbb{N}, let f be a partial function from $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ to \mathbb{R}, and let x be a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. We say that f is differentiable in x if and only if the condition (Def. 6) is satisfied.
(Def. 6) There exists a partial function g from \mathcal{R}^{n} to \mathbb{R} and there exists an element y of \mathcal{R}^{n} such that $f=g$ and $x=y$ and g is differentiable in y.
Let n be a non empty element of \mathbb{N}, let f be a partial function from $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ to \mathbb{R}, and let x be a point of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. The functor $f^{\prime}(x)$ yields a function from $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ into \mathbb{R} and is defined by:
(Def. 7) There exists a partial function g from \mathcal{R}^{n} to \mathbb{R} and there exists an element y of \mathcal{R}^{n} such that $f=g$ and $x=y$ and $f^{\prime}(x)=g^{\prime}(y)$.
We now state several propositions:
(38) Let J be a function from \mathcal{R}^{1} into \mathbb{R} and x_{0} be an element of \mathcal{R}^{1}. If $J=\operatorname{proj}(1,1)$, then J is differentiable in x_{0} and $J^{\prime}\left(x_{0}\right)=J$.
(39) Let J be a function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into \mathbb{R} and x_{0} be a point of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$. If $J=\operatorname{proj}(1,1)$, then J is differentiable in x_{0} and $J^{\prime}\left(x_{0}\right)=J$.
(40) Let I be a function from \mathbb{R} into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$. Suppose $I=\operatorname{proj}(1,1)^{-1}$. Then
(i) for every rest R of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle,\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ holds $R \cdot I$ is a rest of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and
(ii) for every linear operator L from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ holds $L \cdot I$ is a linear of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$.
(41) Let J be a function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into \mathbb{R}. Suppose $J=\operatorname{proj}(1,1)$. Then
(i) for every rest R of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ holds $R \cdot J$ is a rest of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle,\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and
(ii) for every linear L of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ holds $L \cdot J$ is a bounded linear operator from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$.
(42) Let I be a function from \mathbb{R} into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle, x_{0}$ be a point of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle, y_{0}$ be an element of \mathbb{R}, g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and f be a partial function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $I=\operatorname{proj}(1,1)^{-1}$ and $x_{0} \in \operatorname{dom} f$ and $y_{0} \in \operatorname{dom} g$ and $x_{0}=\left\langle y_{0}\right\rangle$ and $f \cdot I=g$ and f is
differentiable in x_{0}. Then g is differentiable in y_{0} and $g^{\prime}\left(y_{0}\right)=f^{\prime}\left(x_{0}\right)(\langle 1\rangle)$ and for every element r of \mathbb{R} holds $f^{\prime}\left(x_{0}\right)(\langle r\rangle)=r \cdot g^{\prime}\left(y_{0}\right)$.
(43) Let I be a function from \mathbb{R} into $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle, x_{0}$ be a point of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle, y_{0}$ be an element of \mathbb{R}, g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and f be a partial function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $I=\operatorname{proj}(1,1)^{-1}$ and $x_{0} \in \operatorname{dom} f$ and $y_{0} \in \operatorname{dom} g$ and $x_{0}=\left\langle y_{0}\right\rangle$ and $f \cdot I=g$. Then f is differentiable in x_{0} if and only if g is differentiable in y_{0}.
(44) Let J be a function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into \mathbb{R}, x_{0} be a point of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$, y_{0} be an element of \mathbb{R}, g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and f be a partial function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $J=\operatorname{proj}(1,1)$ and $x_{0} \in \operatorname{dom} f$ and $y_{0} \in \operatorname{dom} g$ and $x_{0}=\left\langle y_{0}\right\rangle$ and $f=g \cdot J$. Then f is differentiable in x_{0} if and only if g is differentiable in y_{0}.
(45) Let J be a function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ into \mathbb{R}, x_{0} be a point of $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$, y_{0} be an element of \mathbb{R}, g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$, and f be a partial function from $\left\langle\mathcal{E}^{1},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $J=\operatorname{proj}(1,1)$ and $x_{0} \in \operatorname{dom} f$ and $y_{0} \in \operatorname{dom} g$ and $x_{0}=\left\langle y_{0}\right\rangle$ and $f=g \cdot J$ and g is differentiable in y_{0}. Then f is differentiable in x_{0} and $g^{\prime}\left(y_{0}\right)=f^{\prime}\left(x_{0}\right)(\langle 1\rangle)$ and for every element r of \mathbb{R} holds $f^{\prime}\left(x_{0}\right)(\langle r\rangle)=r \cdot g^{\prime}\left(y_{0}\right)$.
(46) Let R be a rest of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $R_{0}=0_{\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle}$. Let e be a real number. Suppose $e>0$. Then there exists a real number d such that $d>0$ and for every real number h such that $|h|<d$ holds $\left\|R_{h}\right\| \leq e \cdot|h|$.
In the sequel m, n denote non empty elements of \mathbb{N}.
One can prove the following propositions:
(47) For every rest R of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and for every bounded linear operator L from $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$ holds $L \cdot R$ is a rest of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$.
(48) Let R_{1} be a rest of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $\left(R_{1}\right)_{0}=0_{\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle}$. Let R_{2} be a rest of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle,\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose $\left(R_{2}\right)_{\left.0_{\langle\mathcal{E}},\| \| \cdot \|\right\rangle}=0_{\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle}$. Let L be a linear of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Then $R_{2} \cdot\left(L+R_{1}\right)$ is a rest of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$.
(49) Let R_{1} be a rest of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose $\left(R_{1}\right)_{0}=0_{\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle \text {. Let } R_{2} \text { be a }}$ rest of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle,\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose $\left(R_{2}\right)_{\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle}=0_{\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle}$. Let L_{1} be a linear of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and L_{2} be a bounded linear operator from $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ into $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Then $L_{2} \cdot R_{1}+R_{2} \cdot\left(L_{1}+R_{1}\right)$ is a rest of $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$.
(50) Let x_{0} be an element of \mathbb{R} and g be a partial function from \mathbb{R} to $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$. Suppose g is differentiable in x_{0}. Let f be a partial function from $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ to $\left\langle\mathcal{E}^{m},\|\cdot\|\right\rangle$. Suppose f is differentiable in $g_{x_{0}}$. Then $f \cdot g$ is differentiable in x_{0} and $(f \cdot g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(g_{x_{0}}\right)\left(g^{\prime}\left(x_{0}\right)\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[11] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[12] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[13] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.
[14] Takao Inoué, Adam Naumowicz, Noboru Endou, and Yasunari Shidama. Partial differentiation of vector-valued functions on n-dimensional real normed linear spaces. Formalized Mathematics, 19(1):1-9, 2011, doi: 10.2478/v10037-011-0001-x.
[15] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from \mathbb{R} into \mathcal{R}^{n}. Formalized Mathematics, 17(2):179-185, 2009, doi: 10.2478/v10037-009-0021-y.
[16] Keiko Narita, Artur Kornilowicz, and Yasunari Shidama. More on the continuity of real functions. Formalized Mathematics, 19(4):233-239, 2011, doi: 10.2478/v10037-011-0032-3.
[17] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[18] Hiroyuki Okazaki, Noboru Endou, Keiko Narita, and Yasunari Shidama. Differentiable functions into real normed spaces. Formalized Mathematics, 19(2):69-72, 2011, doi: 10.2478/v10037-011-0012-7.
[19] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45-49, 2011, doi: 10.2478/v10037-011-0008-3.
[20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[21] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[22] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[23] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[28] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received September 28, 2011

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 22300285.

