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Abstract In this work, we introduce a novel tensor-
based functional for targeted image enhancement and
denoising. Via explicit regularization, our formulation
incorporates application dependent and contextual in-
formation using first principles. Few works in litera-
ture treat variational models that describe both ap-
plication dependent information and contextual knowl-
edge of the denoising problem. We prove the existence
of a minimizer and present results on tensor symme-
try constraints, convexity, and geometric interpretation
of the proposed functional. We show that our frame-
work excels in applications where nonlinear functions
are present such as in gamma correction and targeted
value range filtering. We also study general denoising
performance where we show comparable results to ded-
icated PDE-based state of the art methods.
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1 Introduction

A simple approach to noise reduction is to apply an
isotropic convolution kernel to the image data, e.g., nor-
malized Gaussian filters or box filters [39]. Due to the
simplicity of the approach, spatial and contextual infor-
mation are neglected and therefore the output image is
blurred. A common approach to adaptive filtering is to
let the image gradient control the amount of filtering
see, e.g., the seminal work of Perona and Malik (P-
M) [48]. They introduced an edge-stopping function to
limit the filtering close to edges and corners. The P-M
filter is often referred to as a nonlinear isotropic diffu-
sion filter [56]. The filter’s edge-stopping function acts
to preserve image structure, thereby obtaining supe-
rior image quality compared to isotropic filtering. The
successor to P-M filtering was introduced by Weick-
ert [56] where additional adaptivity to image struc-
ture is achieved by using a second-order tensor. The
main idea of the tensor-based formulation is to smooth
parallel to image structures. The concept is based on
the structure tensor [10,29]. The tensor is a windowed
second moment matrix that describes the local orien-
tation as a tensor field. Transforming the tensor field
to align parallel to the image structure, one obtains a
structure-preserving filtering scheme. The transformed
tensor field is then used in the filtering scheme and is
denoted as the diffusion tensor.

The linear diffusion scheme is the solution of the dif-
fusion equation, a partial differential equation (PDE),
and it is closely related to the notion of scale-space [45,
39]. Therefore it has been of interest to investigate also
P-M formulation and its successors of adaptive image
filtering in terms of a variational framework. The mo-
tivation is that the variational framework allows for a
generic approach to model the denoising problem and
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Fig. 1 The presented framework studies image denoising from the viewpoint that the image data is not only corrupted by
“noise” but also pertubated by some nonlinear function. In this figure, the nonlinear function corrects for the overexposed
image. We incorporate this nonlinear function called a “mapping” as a feedback component in the iterative update scheme.

For additional examples of the mapping function see Figure 2.

related image processing applications. By modifying the
objective function this enables the inclusion of existing
applications, e.g., active contours [38], deblurring [22,
47], optical flow [34,17,36], and inpainting [7,21]. De-
note by v : R? — R the image data. The variational
approach to image diffusion is to model an energy func-
tional, F, of the form

E(u) = F(u) + AR(u), (1)

where F' is a fidelity term and the positive constant A
determines the influence of R, the regularization term.
The aim is to find the minimizer of the energy func-
tional E. Here we are interested in tensor-based for-
mulations of the regularization term. In particular we
study and introduce an application dependent, tensor-
driven anisotropic diffusion scheme. Furthermore, we
introduce the gradient energy tensor [28] as an alterna-
tive to the structure tensor [29].

1.1 Approach

Let 2 be a two-dimensional domain, denoting the sup-
port of the image u in pixels. Assume u to be dif-
ferentiable and denote the gradient operator as V =
(0z,0,) ", where T is the transpose. The gradient of
u is defined as Vu = (0,u,dyu)". Throughout this
work we introduce a mapping function. We let this map-
ping be a differentiable nonlinear function m : R — R,
which describes a mapping of the image value range,
u. For notational convenience we write Vm(u) rather
than V(m(u(x,y))) where (z,y) € §2 to express the dif-
ferentiation of the mapping w.r.t. its argument. Given
a noisy image, the mapping function can be estimated
or defined from prior knowledge of the enhancement
problem. Figure 1 illustrates the application of gamma
correction. By letting the mapping function be an (es-
timated) prior of the nonlinear transform we obtain a

feedback component in the optimization scheme tai-
lored for the specific application. This mapping is not
only capable of preserving spatial features (e.g., cor-
ners, lines) but also preserves (or smooth) image data
in certain image intensity ranges, i.e., the filter also de-
pends on the image value range.

The mapping can be either global or local depending
on the application. We consider a global gamma map-
ping (Section 7), local targeted region filtering (Section
8), and global region filtering via local oversegmenta-
tion maps (Section 9). A preview of these applications
is given in Figure 2 and Table 1 shows the correspond-
ing interpretations of the mapping function. We em-
phasize that the determination of a relevant mapping
function is highly application dependent. For readers
familiar with anisotropic diffusion [56,48] we remark
that the selection of mapping function can be thought
as the accurate selection of a diffusivity function. How-
ever, while the diffusivity function is gradient and data
dependent, the mapping function is intensity and ap-
plication dependent. In connection to the variational
model (1) we study regularization terms of the form

R(u) = /QVm(u)TW(Vm(u))Vm(u) dx, (2)

where ¢ = (7,y) and W € R?*? is a positive semi-
definite tensor that incorporates orientation dependent
information.

1.2 Synthetic example

Figure 3 illustrates the advantage when performing noise
reduction with targeted filtering. In this image, the
noise component is only present in the background of
the image. The foreground, or object, consisting of cir-
cles of different diameters and intensities are not cor-
rupted by noise. Based on this prior knowledge we set,
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Fig. 2 In this work we introduce a mapping function in the energy (2). We consider three applications, each with different
definitions of the mapping. First we perform gamma correction, illustrated on the first row. In the second application (second
row) we perform targeted filtering. In the third application we perform general denoising by estimating the mapping from the

image data via an oversegmentation map.

in this example, the mapping as to be sigmoidal, i.e.

m (u;a,c) = (1 +exp(—a(u——c)))™, a,c>0, (3)
The parameters were set to @ = 100 and ¢ = 1/2 as
u € [0, 1], these parameters correspond to a smooth ap-
proximation of a step-function translated to 1/2. As an

instance of our framework, we use total variation with
a mapping function (introduced in Section 4). Visually,
comparing the result to Markov Random Field (MRF)
[52], Total Generalized Variation (T'GV) [16] and BM3D
[24] our approach appears more similar to the noise free
image. MRF, TGV and BM3D all oversmooth the four
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Total variation mapping (see (52))

Markov random field
MRF [52]

TGV [16]

Total generalized variation
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Fig. 3 Synthetic example where an image has been corrupted with additive Gaussian noise with standard deviation 20 in
a specific value range. By appropriately defining the mapping in (2) we are able to preserve image details oversmoothed by
MRF, TGV and BM3D. In this example the mapping function was of sigmoidal type, (3) with a = 100 and ¢ = 1/2.

small circles and details. We note however that in this
simple example, assuming that the input image can be
accurately partitioned in noise-free and noisy regions,
one can naturally apply a restoration method on these
partitions. However, in the case of more complex image
regions, see Figure 2 second and third row, such heuris-
tic partitioning of the image value range is in general
a highly non-trivial task. Furthermore, by incorporat-
ing the mapping into the filtering process, one does not
require an additional heuristic post-processing step to
accurately fuse these independent regions.

1.3 Overview and summary of contributions

The main contribution of this work is to study the ef-
fects of the mapping function in the tensor-based reg-
ularization term (2). The corresponding minimizer is
presented in Theorem 1. We show in the experimental
part that the inclusion of the nonlinear mapping, as
a component of the filtering scheme, improves the fil-

tering performance compared to applying the mapping
as a separate pre- or post-processing step. The denois-
ing applications we consider are gamma correction of
the intensity range, targeted filtering, and adaptive de-
noising where the image value distributions are used to
drive the filtering process. Furthermore, we introduce
the gradient energy tensor (GET) [28] as an orienta-
tion dependent term into the regularization term. Our
formulation allows us to utilize both the eigenvalues
and eigenvectors of the tensor.

In Section 2 we give an overview of denoising ap-
proaches related to the current work. Section 3 further
details the diffusion framework and introduces some ad-
ditional notation. In Section 4 we present the main re-
sults of this paper, summarized in Theorem 1. To min-
imize the proposed functional we prove the existence
of its Euler-Lagrange (E-L) equation. Furthermore, we
derive properties in the subsequent analysis useful for
image denoising applications. We show that the pro-
posed functional describes several variational denoising
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Applications

I. Gamma correction

Global mapping applied pizel-wise
II. Targeted filtering

Local mapping applied globally (on the value range)
III. Oversegmentation

Local mappings applied locally (within one segment)

Table 1 Overview of the different applications considered in
this work and their relation to local and global mappings.
A discussion on the difference between these two classes of
mappings is given in Section 10. Figure 2 shows examples of
the different applications. For additional details, we refer to
the respective section in the experimental evaluation.

methods as special cases and we extend these to in-
clude the mapping function. In particular we extend
our gradient energy total variation formulation [2] to
also include the mapping function. In the same section
we also give some additional properties of the energy
and its E-L equation. Section 5 briefly reviews the GET
tensor and presents an empirical evaluation where the
tensor is compared to the structure tensor for orienta-
tion estimation. The GET tensor is used to formulate
the gradient energy total variation scheme with a map-
ping function in Section 6.

In the experimental evaluation, Section 7, we show
empirically that providing the nonlinear mapping of
the image data as a feedback component yields an im-
proved result compared to (I) transforming the image
value range and then denoise, or (II) denoise and then
transform the image value range. In Section 8 we let
the mapping define a user-set value range for targeted
filtering. Section 9, we evaluate our framework on a
third application where we let the filtering process be
based on an oversegmentation map. Section 10 gives
an extensive discussion on the difference between local
and global mapping functions and their applicability in
the context of image denoising. A preview of the above
mentioned applications and their relation to the differ-
ent classes of mappings are given in Table 1. Recall that
the mappings are nonlinear. Section 11 concludes this
work.

2 Related works
2.1 Variational methods

The connection between energy functionals and the cor-
responding E-L equation for image processing formula-
tions have been investigated before, we refer to e.g.,
[6] and references therein. The total variation (TV)
formulation was introduced by Rudin et al. [50]. The

TV-model is well studied, both theoretically and prac-
tically, see [19] for an overview of the method and its
application areas. One major draw-back with the TV-
approach for image denoising applications is its ten-
dency to show staircasing effects. The total generalized
variation (TGV) introduced by Bredies et al. [16], which
includes higher order differentials, does not suffer from
these artifacts. The drawback of the approach is that
the introduced smoothness of the higher-order deriva-
tives may cause image features to be oversmoothed.
Other relevant extensions of the TV model to include
additional smoothness constraints are, e.g., [12,23,13].

The extension of TV to variational tensor-based for-
mulations was investigated by Roussos and Maragos
[49], Lefkimmiatis et al. [43] and Grasmair and Lenzen
[33]. These approaches consider the structure tensor
[10,29] and model the objective functions in terms of
the tensor eigenvalues. Roussos and Maragos define their
regularization term as R(u) = [, (1, p2) da, where
1 is a strict convex function and p1, pus are the eigen-
values of the structure tensor, thus the regularization
is only indirectly taking into account the image struc-
ture as it ignores the eigenvectors. Similar to Roussos
and Maragos, Lefkimmiatis et al. consider the Schatten-
norm of the structure tensor eigenvalues. In contrast,
Grasmair and Lenzen define the regularization R(u) =
fn V' VuT A(u)Vu dz, where A is the positive semidef-
inite structure tensor with remapped eigenvalues. The
objective function is then solved using a finite element
method instead of deriving a variational solution. An al-
ternative approach was proposed by Krajsek and Scharr
[40] who formulated a linear anisotropic regularization
term for tensor-valued image diffusion. The common
factor by the aforementioned methods is that they use
the structure tensor. Due to the fact that the struc-
ture tensor is defined as the integration of the outer
product of the image gradient, the divergence theorem
is not applicable when deriving the minimizer of the
corresponding functional. We show this fact in Section
3.3, Proposition 1. To our knowledge, the only tensor-
based total variation approach that also considered the
eigenvectors, has been studied in [2], where the lesser
known gradient energy tensor (GET) is used instead of
the structure tensor.

In our previous work [4] we proposed to filter cer-
tain value ranges of the image data, i.e., an image value
range adaptive filter. In a related work, [5], we interpret
the image data as observations from a stochastic pro-
cess and use an oversegmentation of the input image
to define the mapping function. The basic approach is
to describe each locally homogeneous region using first
and second statistical moments to drive a nonlinear fil-
tering process. In this work we combine the mapping
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function [4,5] and the tensor-based method [2], leading
to novel results.

2.2 Block-matching methods

In addition to local, e.g., tensor-based, methods, a dif-
ferent paradigm in the denoising literature has emerged
called non-local methods. These methods rely on block-
matching of neighbourhoods and have been shown to
efficiently suppress image noise. The basic idea is to av-
erage similar patches in a local neighbourhood, where
similarity is measured with respect to some criteria.
The denoising methods block-matching by sparse 3-D
transform (BM3D) [24] and non-local means (NLM)
[18] are two such methods. NLM and BM3D are funda-
mentally similar since both use collaborative filtering.
Rather than computing new pixel-centres from matched
neighbourhoods as in NLM, BM3D considers patches
and adaptively denoises a group of local neighbour-
hoods. In this context we mention Levin et al. [44]
who studied image denoising quality w.r.t. patch-size
and patch-complexity in view of natural image statis-
tics, they conclude: while the restoration of homoge-
neous regions is straightforward by increasing the sam-
ple size, an increase of patch-size for textured regions
has limited impact on the restoration quality as pix-
els in these regions are weakly correlated. Since, BM3D
combines block-matching, linear transform threshold-
ing and Wiener filtering, the noise can only be sup-
pressed efficiently given that sufficiently many simi-
lar patches are found. Therefore, as a consequence of
inaccurate template matching criteria, oversmoothing
may occur in highly textured regions. We compare our
framework with BM3D in the experimental evaluation.

In contrast to patch-matching methods, we present
an altogether different view-point to image denoising
by focusing on adaptive value range filtering and re-
gion specific noise removal. Application areas where a
mapping function has shown beneficial are visualiza-
tion of medical images [4] and colour-image denoising
[5]. In the present work, we further study this approach
by considering a wide range of applications: denois-
ing overexposed images, targeted filtering and denois-
ing of natural images. The potential improvement of
image quality and interesting mathematical exposition
motivates the subsequent presentation of a theoretical
framework. However, before proceeding to the main re-
sults, we summarize the background on standard scalar-
and tensor valued diffusion methods.

3 Review of image diffusion methods

To make this work self-contained we briefly review con-
cepts from calculus of variations and its role in deriv-
ing standard diffusion methods. Moreover, we introduce
some additional notation and terminology that is used
in the remainder of the paper.

3.1 Concepts of image diffusion

The classical approach to image diffusion is to consider
functionals, or energy models, consisting of a fidelity
term, F'; and a regularization term, R, see (1). More-
over, the energy often takes the form

1
E(u) = 5 / (u —u®)? dz + \R(u), (4)
Q
where € (2 is the image domain, 1 is the observed
(noisy) image. The constant A is a positive scalar and
determines the effect of the regularization. One well-
studied choice of prior is the p-Dirichlet energy

R(u) = /Q]%|Vu|p dx, (5)

where p = 1 corresponds to Total Variation [50] and
p > 1 has been studied in. e.g., [41,8]. To minimize F,
assuming it is convex, one finds the stationary point by
solving the corresponding Euler-Lagrange (E-L) equa-
tion

SE(u) = 0, (6)
and

.0 :
SE(u)v = 811_r>r(1) %E(u +ev) in f2 (7)
With homogeneous Neumann boundary condition, Vu-
n = 0, the E-L equation of (4), (5) is the following

boundary value problem

u—u® — Adiv (|VuP~2Vu) =0in 2 (8)
Vu-n =0on 012,

where mn is the normal vector on the boundary 0f2. If
p = 2, the E-L equation describes linear (isotropic) dif-
fusion [39] and if p = 1 it describes the formal TV-
formulation of Rudin et al. [50]. The w that minimizes
(4), (5) is obtained by solving (8). The corresponding
initial value problem is then

Oyu — div (|Vu|p*2Vu) =0 in 12
Vu-n=0 ondf? 9)
u(0) = u® on £,

and results in the diffusion equation [51,25,42]. In the
case of isotropic filtering, the diffusion equation has a
closed form solution.
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3.2 Nonlinear diffusion

Isotropic filtering does not preserve characteristic im-
age features such as edges and corners due to the ro-
tational symmetry of the Laplacian operator. There-
fore, when solving the E-L equation in (8), the image is
blurred. Introducing a diffusivity function, also known
as an “edge-stopping” function g : R — R™ in (8), Per-
ona and Malik [48] formulated the PDE

Vu-n =0 on 0f2. (10)

{u —u® — Adiv (¢(|Vu|)Vu) =0in 2
The function g¢(s), with s = |Vu|, acts to reduce the
filtering if the image gradient takes large values. The
function’s principal behaviour is g(s) — 1 as s — 0
and g(s) — 0 as s — oo and a common choice is the
negative exponential function

g(s) = exp(—s?/k?), (11)

where k > 0 is an edge-stopping parameter. Although
this formulation resolves many drawbacks of linear im-
age diffusion, noise is preserved along edges since the
filtering is simply “stopped” for large image gradients.
An alternative to using the negative exponential func-
tion as the diffusivity function is to let the problem
define which edge-stopping function is suitable. In the
work on targeted iterative filtering [4] we let the map-
ping be defined by a user selected sigmoidal function,
that compresses the value range of 12-bit image data for
the purpose of medical visualization. The regularization
term introduced in [4] is defined as

R(w) = [ V(] dz, (12)

where the mapping m : R — R and m € C?(f2) is a
sigmoidal function. Furthermore, note that Vm(u) =
m/(u)Vu. In this case the mapping defines the visual-
ization windows, thus replaces the ad-hoc selection of a
potential function, e.g., (11). The corresponding PDE
equation is given by

u—u’ — Am/ (u) div (m/(u)Vu) =0 in . (13)

Since u® € L?(£2) and m € C*(92), it follows that u €
W12($2), where W12(£2) is the Sobolev space equipped
with the norm ||u||§V1,2(Q) = ||u\|%2(9) + ||Vu||2Lg(Q)
(see, e.g., [31]). Depending on the definition of m/ the
function can be understood as the diffusivity function
g in (11). Note that the PDE (13) is equivalent to the
formulation in [4] due to the novel Lemma 2 in Section
4.2.

3.3 Tensor-based diffusion

The main deficiency of the methods presented in Sec-
tion 3.2 is that the filtering is simply stopped close
to image features such as edges and corners. To fil-
ter parallel to line-structures Weickert [56] introduced a
tensor-based anisotropic diffusion scheme. The filtering
scheme is defined as the PDE

u—u’ — \div(D(T)Vu) =0 in £. (14)

The adaptivity of the filter is determined by the diffu-
sion tensor D : R?*2 — R2*2, constructed from a non-

linear mapping of the structure tensor T : R? — R2*?
defined as

T(Vu) =w* (VuVu '), (15)

where * is a convolution operator and w is a smooth ker-
nel, e.g., a Gaussian function [29,10]. The tensor is a
windowed second moment matrix, it is positive semidef-
inite, thus it estimates the local energy distribution and
can be thought of being a covariance matrix [30]. The
eigenvector of T' corresponding to the largest eigenvalue
is aligned orthogonal to the image structure. Therefore,
to avoid blurring image structures, the diffusion tensor
D is computed as D(T) = O"Tg(A)O where g is the
diffusivity function (e.g., (11)), O are the eigenvectors
and A has the eigenvalues of T on its diagonal [26].

Before continuing we show why a straightforward
variational formulation, which gives the PDE (14) with-
out the convolution (15), cannot be extended into a
variational formulation for (14) with the convolution
(15) by inserting the convolution into the regularizer.

This problem has previously been studied by, e.g.,
Scherzer and Weickert [51]. Here we tackle the energy
functional directly and show that the failing compo-
nent is the application of Green’s identity. Now, let
F : R?%2 — R2X2 be a tensor-valued function and de-
fine the regularization term

R(u) = [ Vu'F(Vu)Vu dz. (16)
0

To compute the variational derivative of R we need par-

tial integration in higher dimensions defined by Green’s

identity [31]: Let A be a vector field and v once contin-

uously differentiable, then

/ A(Vu) Vo de = / vA(Vu) -n dS
o) a0

—/ vdiv(A(Vu)) dz. (17)
fe)

When F is defined by a nonlinear function and a convo-
lution operator there is no operator A such that Green’s
formula applies. This is shown in the following propo-
sition.
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Proposition 1 Let f : R?*X2 — R?*2 pe q differen-
tiable tensor valued-function and w be a smooth (Gaus-
sian) function. If

F(Vu) = f(ws* (VuVau")), (18)

then the corresponding Euler-Lagrange equation of (16)
does not exist.

Proof Assume that the variational derivative of (16)
exists. To show this assertion we set

s(e) = w* (V(u+ev)V(u+ev)'), (19)
and let

F(5()) = F(V(u+2v)). (20)
Then from (7) and (16) we have

OR(u+ev)

Oe N

g

de

From the product rule of differentiation we are inter-
ested in the following part from (21):

/QV(quev)Tf(s(s))V(Ustv) dx. (21)

g /Q VaT (s(e))Vu de
- /Q \v1H (W) Vu dex, (22)

from which we only need to consider the differentiation
of f w.r.t. g, i.e.,

0f(s(e)) _ 0f 0s

ds 0s 0’ (23)
With s as in (19) we have
0Os 0 -
e W ((%V(U—FEU)V(U—FEU) )

=wx (2VuVo' +2sVoVe'). (24)

Now, we evaluate the limit ¢ — 0 and obtain from (22),
(23), (24) the following result

lim , Vau ' (‘W) Vu dx
_ /Q vuT <W({;§0>) (w (WUW))) Vu do
£ /QA(VU)TVU dzx, (25)

for any operator A(Vu). Since the element v cannot
pass the convolution operator, Green’s formula (17) can
not be applied to give an E-L equation of (16). O

In the next section we present one of the main results of
this work: the mapping function-based functional and
its E-L equation.

4 Mapping-based Image Diffusion

In this section we integrate a nonlinear mapping into a
framework of tensor-based image diffusion.

4.1 Variational formulation

In the following, let m € C?(£2) be the mapping func-
tion which describes the nonlinear mapping of the im-
age value range. Also let W : R™ — R"*™ be a posi-
tive semidefinite tensor. Set s = Vm(u). Let the com-
ponents of W(s) be differentiable, then W, (s) is the
component-wise differentiation of W(s) w.r.t. s, such
that W, € R™* X7 is defined as

Wi, (s)
Ws(s) = : . (26)
W, (s)
In order to simplify notation in the following calcula-
tions we introduce a prescript-notation for matrix con-
traction, we define
Vul Wy, (s)
Vu' Wy, (s)
which contracts n? x n matrices such as (26) to an nxn
matrix.

The next theorem generalizes our initial formula-
tion [2] (cf. Theorem 1) which states the relation be-
tween a tensor-functional and its corresponding E-L
equation. In this work we extend the theorem to dimen-
sions n > 2 and to include the mapping m. Compared
with [2] we state the theorem in a simplified form, ex-
ploiting newly found identities which result in a gener-

alized tensor-based application-driven image denoising
framework.

Theorem 1 Let the reqularization term R, be given by
R(u) = / Vin(u) W (Vm(u) Vim(u) de, (28)
0

where u,m € C?(2) and W : R™ — R™" and Vm
W is a tensor-valued function. Set s = Vm(u), then
the corresponding E-L equation is given by
u—u’ — )\((m')2 div (S1Vu)
+div ((m/)2S2Vu) ) =0in 2 (29)
n - (S1+52)Vu =0 on 902

where
Sy =2W(s) +m' g, Ws(s), (30a)
Sy =2W(s)" +m’ g, Ws(s). (30D)
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Proof The proof is a generalization of the results pre-
sented in [2] (cf. Theorem 1) and is given in Appendix A.

Depending on choice of mapping m and tensor W
in (28), we show in Table 2 that the proposed scheme
generalizes several diffusion methods from literature.
The same table also shows the methods that are sub-
ject to further study in this paper. In the subsequent
sections we investigate some additional selections of W
and m that extend the gradient energy total variation
scheme (GETV) presented in [2] to include the map-
ping. Also we extend the scalar TV formulation to in-
clude the mapping function. Before proceeding to spec-
ify W and m, consider the following properties of the
proposed functional and corresponding E-L equation in
Theorem 1.

4.2 Properties

In the general case ¢, W, is a non-symmetric tensor,
however one may be interested in positive definiteness
or other symmetry constraints. For example it is often
desirable in orientation estimation that the magnitude
response of the estimated orientation is equivalent in
vertical and horizontal directions in the image plane.
If Sy and S5 in (29) are symmetric, then it aids the
subsequent analysis of otherwise complex expressions
to determine positive-definiteness. Therefore, we derive
necessary conditions for W to yield a symmetric ¢, Ws
in this section. In the following, we show that a tensor
S exists such that the tensors defined by S; and Ss in
the E-L equation are symmetric, i.e.,

S =28, =S5 (31)

It is easy to identify two additional constraints required
for S to be of the form (31) from (30a),(30b), i.e., it is
necessary that W =W and ¢,Ws = (v,Ws) - Let

W= (Cbl i) , (32)

then the following corollary state the set of symmetric
tensors W that yield a symmetric tensor S in (31).

Corollary 1 Let W € R?*2 be the symmetric tensor
(32) with differential components, then if

i) bs, = as,
i1) cs; = bs,

are both satisfied, ¢, Ws s also a symmetric tensor.

Proof Since W is symmetric we can write ¢, Ws as

o Wa(8) = g (a“ b*) +uy, <b51 CSl) . (33)

Gs, bs, bs, Cs,

Conditions 7) and i7) follow directly from the constraint
vuWs = (vuWs) " 0

The solution of ¢) and i) is clearly not unique. For
example, one solution is given by

b= /a52 dsy = /cs1 dss. (34)

If instead b is given, then a and ¢ must satisfy

a = /551 dss, (35)
c= /552 ds1, (36)

which results in

/ b, dsy b
W = (37)

b / by, ds

to which we can also add any constant symmetric ma-
trix. We note that in the general case it may be difficult,
or not interesting, to evaluate Corollary 1. However, as
a theoretical tool it may serve the purpose to derive
classes of tensors S that are symmetric.

The following lemmas are particularly useful and
enable the reformulation of the E-L equation (29) in a
single divergence form. In this case we set M = 57 = S
where M in contrast to S in (31) is not necessarily a
symmetric tensor.

Lemma 1 Let M € R"*", then
div (MVu) = div (M) Vu + tr (M Hu), (38)
where H is the Hessian matriz.

Proof We first write the left hand-side of (38) as a sum,
then by expanding its partial derivatives we get

div (MVu) =Y 0, (M; jua,)
ij

= Z(ﬁziMi,j)ij + Mi:juij
ij

=div (M) Vu + tr (M Hu), (39)
which shows the result. O

Lemma 2 Given a tensor M € R™ ™ with differen-
tiable components, the following relation holds
(m')? div (M Vu) + div ((m')>? M Vu)

=2m' div (m' MVu). (40)
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Methods Regularizer M in E-L equation Comment
Without mapping u—ug — Adiv(MVu) =0
Isotropic / |Vu|? dz I
Q
TV [50] / |Vu| de 1/|Vul
Q
EAD [1] / Vu W(Vu)Vu dz WH+WT + W,
Q
GETV [2] / [Vul(A1(v-€)? + Aa(w - €)?) de S see (63) with m(u) = u
Q

With mapping

u—ug — Am/(u) div(MVu) =0

EEF[EE?] /Q |Vm(u)|? de m/(u)I

TVm (novel) / [Vm(u)| de 1/|Vul See (49)-(52)
2

GETVm (novel) /:Q [Vm(u)|(M(v-€)2 4+ Xa(w-€)?) de  m'(u)S see (63)

Table 2 Examples of E-L equations for different choices of mapping functions and tensors. We have listed linear diffusion,
total variation (TV), extended anisotropic diffusion (EAD), gradient energy total variation (GETV), targeted iterative filtering
(TIF) and density driven diffusion (D3). The corresponding boundary conditions can be computed using (30a) and (30b). The
methods TVm and GETVm are extensions, introduced in this work, of TV and GETV with a mapping function.

Proof From Lemma 1, the left hand-side of (40) can be
written as

(m')? ( div (M) Vu + tr (M Hu) )
+ div ((m/)*M) Vu + tr ((m’)*M Hu)
- ((m’)2 div (M) + 2m/'m"Vu M
+ ()2 div (M) ) Vi + 2(m' )24 (M H)
=2 ((m')2 div (M) + m’m”VuTM) Vu
+2(m/)?tr (M Hu)
= om/ [div (m/ M) Vu + tr (m' M Hu) } ,

which concludes the proof. a

Observe that depending on m, its derivative m’ can
in the general case obtain negative values. However,
due to linearity of the divergence operator, any non-
negative factors originating from m’ cancel as indicated
in the right-hand side of (40), i.e.,

(£m') div ((£m")MVu) < +m'div(m'MVu).

Assuming that M is at least positive (semi)-definite,
then the final discretized E-L equation will have a con-
vergent behaviour.

In particular, with the sufficient condition for tensor
symmetry of W and ¢, W5, and the above simplification

of the divergence terms in Lemma 2, we obtain the E-L
equation of the regularization term in Theorem 1 on
the following (considerably) simplified form.

Corollary 2 Let W € R™ ™ be a symmetric tensor,
then the E-L equation (29) is given by

u—u — Am’ div (m'MVu) =0 in 2 (41)
n-MVu=0 ondf2
where
M =2W(s) +m' ¢, Ws(s). (42)

Proof Since W = W T it follows that S; = Sa, whereby
Lemma 2 can be applied to (29). O

Convexity In this section we investigate and dis-
cuss convexity of the proposed functional in the case
m(u) = u and W is a symmetric and positive semidefi-
nite tensor. If m is a monotonically increasing function,
the below results can be generalized using similar argu-
ments, however, for a general function m the description
of a convex function remains an open problem. Our ap-
proach is based on the eigenvalue decomposition of the
tensor W.

Consider the quadratic form Vu ' W (Vu)Vu rewrit-
ten in the eigendecomposition of W with eigenvalues
A1, A2 > 0 and eigenvectors v, w, then

Vu! W(Vu)Vu = Vu' Moo + Aww ' [Vu

=\v [VuVu' o+ dow ! [VuVu ' w.  (43)
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Fig. 4 (a) Ilustration of eigen- wl b | a8l W (Vu) A DP(Vu)

vector basis at coordinate (z,y). T . L P

Dashed (red) arrows indicate the VuVu —T | K TS /}
eigenvectors of W and S and thick ™ \ : / :
(black) arrows VuVuT . (b) Illustra- :
tion of the paraboloid (47) where we \ \ 'r__ ,,,,,, ""V /TZ
set ¢ = 1147 + T2q3 and 11,72 > 0. S i k) 0 < :

x;y) ¢ = \/% g1

The product VuVu " has orthonormal eigenvectors & =
(£1,6) 7 and &+ = (&, &))" such that P = (¢,&)
and A has the corresponding eigenvalues x; and k2 on
its diagonal. Note that by the spectral theorem [35], the
eigendecomposition of VuVu' is always well-defined,
i.e., £ is not singular. This is shown by the generalized
definition of &, i.e., in the case of |Vu| # 0 then & =
Vu/|Vu|, and in the case of |Vu| = 0 we let P = T
where [ is the identity matrix.

In the following, we substitute the eigendecomposi-
tion of VuVu' = PTAP into (43):

Vu W (Vu)Vu = Mo PAP v + Xw " PAP w

o P (O Py auw P (1 0) PTw (a4)
0 ko 0 Ko

and insert x; = |Vu|? and kg = 0. Then after rewrit-

ing (44) we obtain

Vu ' W(Vu)Vu = A\ [Vul?(v-6)2 +Xa|Vaul? (w-€)2. (45)

In (45), v- & = cos(f) and w - £ = sin(d), where 0 is the
rotation angle as shown in Figure 4 (a). This means
that the scalar products define the rotation of W in
relation to the image gradient direction. Note that as
W describes the local directional information, its eigen-
vectors will be parallel to the orthonormal eigenvectors

of VuVu', i.e., v|| ¢ and w|| &L if 6 = 0.

Remark 1 We could have arrived at (45) directly by
introducing |Vu|? in the nominator and denominator
of (43). However, this approach would not be valid
since it introduces a singularity when |[Vu| = 0. In-
stead we exploited properties from the spectral theo-
rem and thus (45) is always well-defined even in the
case |Vu| = 0.

The next result shows that the proposed functional
is convex when W is symmetric and positive semidefi-
nite with eigenvalues A1, Ao > 0. When the functional is
strictly convex it is guaranteed from the theory of con-
vex optimization that its stationary point gives the min-
imum energy, and thus results in the optimal solution
[15]. Note that m(u) = u. Now consider the convexity
of the proposed functional in the below Corollary.

(a) (b)

Corollary 3 Let m(u) = u, then the functional, R in
(28), is convex w.r.t. the element u.

Proof To prove the convexity of R we write @(u) =
Vu W (Vu)Vu in terms of the eigenvectors and eigen-
values of W. Then, from (45) it follows that

B(Vu) = [VulP M€ (oo )€+ At (wwT)E)
= |Vul2eT (Aov" + Xoww )€

_ (7 0
-7 (5 ) ve (46)
where V = (v,w) and 7;(Vu) = |Vul|?\; > 0 for i =
172' Let q= Vf = (QI7Q2)T7 then

&(Vu) = 11gi + 12¢5, 7 >0, (47)

is a quadratic form in the basis of orthonormal eigen-
vectors V and 7;. The quadratic form is always well-
defined due to the spectral theorem. The paraboloid
(47) has positive curvature everywhere as illustrated in
Figure 4 (b). Since u is mapped continuously to the
paraboloid, R is convex in u. a

Extending scalar-valued diffusion It is straight-
forward to show that the quadratic form in (28) is re-
lated to the standard Euclidean p-norms:

Proposition 2 Let W = |Vm(u)|? and ¢ = p—2 where
1 <p< oo, then

Vm(u) " |Vm(u)|?Vm(u) = [Vm(u)|P. (48)

Proof Substitute ¢ = p—2 in the left-hand side of (48).
Since Vm(u) " Vm(u) = |[Vm(u)|?, the right-hand side
is obtained after canceling common terms in the quo-
tient. a

We obtain mapping-based isotropic diffusion by set-
ting ¢ = 0 in (48), i.e., it yields the regularization term
(12) studied in [4]. In this case the E-L equation is given
by (13). Additionally, from (48), if we select ¢ = —1
then

R(u) = /Q|Vm(u)| de. (49)
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The regularization term (49) can also be interpreted
in relation to the standard Rudin-Osher-Fatemi (ROF)
TV-model [50], see definition in [6], pp. 39-43, but now
with a mapping function.

The formulation (49) can also be obtained formally
from the initial functional (28) in Theorem 1. Set

1
W(Vm(u)) = =———1, (50)
[Vm(u)|

then the differentiation with respect to each component
of W yields

1

-
—_— . 1
(m,)zwuquVu (51)

vu Wvm) (Vm(u)) = —
Since W in (50) is obviously symmetric, Corollary 2 is
applicable and the resulting E-L equation is given by

Vu

W)ZOIH Q
n-Vu=0o0ndfN .

_ .0 _ ! q:
uU—1u )\mdlv( (52)

The standard isotropic diffusion and total variation
formulations are obtained by setting m(u) = w, which
yields m/(u) = 1 in (48). Thus the standard methods
are special cases of our presented framework. The in-
troduction of the mapping function adds an additional
nonlinear component that controls the amount of filter-
ing based on some prior knowledge of the image value
range.

Before continuing to the tensor-valued formulations
of Theorem 1, we recall the gradient energy tensor [28]
and present an empirical evaluation of the tensor com-
pared to the structure tensor [10]. In [1] we proved that
the connection between the functional and its E-L is
not preserved when the structure tensor is subject to
a nonlinear mapping of its eigenvalues. This has also
been observed by others [40,11], furthermore, an ex-
plicit derivation of this fact is given in Proposition 1,
Section 3.3 of this work. Since the GET does not have
a post-convolution of its tensor components we remove
some obstacles to preserve the connection between the
energy and the corresponding E-L equation.

In the next section we review the gradient energy
tensor before introducing the gradient energy total vari-
ation scheme with a mapping function.

5 Gradient Energy Tensor

In this section we review the gradient energy tensor [28]
(GET) and analyse how sensitive it is with regards to
orientation estimation compared with the structure ten-
sor. Our analysis show that the GET can approximate
the structure tensor for image denoising.

5.1 Background and definition

The origin of the gradient energy tensor comes from
the 1-D energy operator [14], and in particular, from
the observation that the energy of a signal can be es-
timated from its squared magnitude [37]. The gradient
energy tensor is a symmetric tensor, like the structure
tensor, and it can be shown that GET is phase invari-
ant, orientation equivariant second order tensor [27,46].
The GET tensor is lesser known in the computer vision
community and it was first introduced by Felsberg and
Kothe [28]. The motivation for considering the GET in
this work, as opposed to the structure tensor, is three-
fold (T) the GET can potentially enable real-time image
diffusion implementations which is not possible with
the structure tensor (due to the post-convolution of its
tensor-components, for details see [3]), (II) the GET
preserves the relation between the energy and the E-L
equation when the tensor is positive semi-definite and
(ITI) to promote further studies on the tensor. Similarly
to the structure tensor, GET is of rank 2 and deter-
mines the directional energy distribution of the signal
gradient.

The classical GET is defined in terms of the image
data in u [28]. Here we use an alternative, but equiv-
alent, formulation of GET expressed in the image gra-
dient. Let Hm(u) = V(Vm(u)") be the Hessian and
V(Am(u)) = V(V'Vm(u)), where A is the Laplace
operator, then we define GET as

GET(Vm(u)) = Hm(u)Hm(u)
- %(Vm(u)[VAm(u)}T + [V Am()Vm()T). (53)

Since the GET components are expressed in terms of
the image gradient, Theorem 1 is applicable. In con-
trast to the structure tensor (15), the gradient energy
tensor (53) does not (necessarily) require a convolution
operator to form a rank 2 tensor.

Example responses from the two tensors are illus-
trated in Figure 5. Note that due to the convolution
operator, the structure tensor is not sensitive to struc-
tures smaller than the width of the averaging filter used
to compute it (in this case the standard deviation of the
Gaussian filter was set to 1). The presence of second and
third-order derivatives in GET makes it slightly more
sensitive to noise. However, it allows us to capture ori-
entation of structures not possible to detect using the
structure tensor.

5.2 Spectral properties of GET

An investigation of the positivity of the 1-D energy op-
erator was presented in [14]. In the 2-D case, the pos-
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Fig. 5 Visualization of estimated lo-
cal orientations for (a) the structure
tensor and (b) the gradient energy
tensor.

(a) Remapped structure tensor

itivity of the operator is reflected in the sign of the
eigenvalues. Let the components of the GET be a, b
and ¢, i.e.,

GET = (Z i’) , (54)

then the GET is positive semidefinite if the following
lemma is satisfied.

Lemma 3 The GET is positive semidefinite if
tr (Hm(u)Hm(u)) — Vm(u) VAm(u) > V1, (55)
where | = tr (GET)? — 4det(GET) > 0.

Proof Since GET is symmetric it has real eigenvalues.
Thus by its eigenvalue decomposition it is sufficient to
show that tr (GET) > /1 (i.e., (55)) in order for GET
to be positive semidefinite. [ is necessarily positive since
l=(a—c)?+4b*>0. O

The GET-tensor can attain zero-values despite the gra-
dient is not zero, and in some cases the eigenvalues may
be negative. Here, we set the negative eigenvalues to
positive in the GET™" tensor. We define

GET* (Vim(u)) = vo” || 4+ wu s, (56)

and v, w are the eigenvectors and pi1, po eigenvalues
of the GET respectively. In the standard approach of
anisotropic diffusion one considers the diffusion tensor,
which is the structure tensor with transformed eigenval-
ues as described in Section 3.3. We do a similar mapping
of (56) by using the negative exponential function, i.e.,
we have

D(Vm(u)) = exp(—~GETT (Vm(u))/k?)
= >\1va + /\2wa, (57)

(b) Remapped energy tensor

and v, w are the same eigenvectors as in (56) and the
eigenvalues \; o = exp(—|p1,2|/k?). Now GET™, is pos-
itive semidefinite as exp is the matrix exponential func-
tion obtained by a Taylor series expansion. Figure 5
shows a visual comparison between the remapped en-
ergy tensor and the diffusion tensor. Visually, the local
orientation estimation appears nearly identical between
the two tensors. Next, we quantify this assertion.

5.3 Analysis

In this part we discuss the effect of noise perturbation
on the tensor’s estimated orientations. We consider a
radially symmetric test-pattern shown in Figure 7 (a).
As a baseline for the evaluation we use the noise-free
angles that have also been used to compute the test-
pattern image. For each tensor and considered noise
level, we compute the local neighbourhoods dominant
distribution angle by projecting the tensor components
on a vector z in the complex plane [32],

z=a—c+i2b, (58)

where a, b and ¢ are components of a symmetric 2 x 2
matrix. We compare the mean absolute difference of the
angular error in Figure 6 (a) for different noise levels. In
(b) we show the percentage of pixels that have an an-
gular error smaller than 1 degree. It is evident that the
two tensors are marginally different. As the noise-level
increases beyond standard deviation 20, the structure
tensor performs better due to the post-convolution of
the tensor components. At standard deviations 0 and
10 of noise the difference is approximately 8% and 3%
respectively. Our third evaluation is a comparison of
the histogram error quantized to 10 bins in the range
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Fig. 6 Results of sensitivity analysis of orientation estimation by using the structure tensor and the gradient energy tensor.
We used the radially symmetric pattern (a) for different noise levels in Figure 7. (a) shows the mean absolute angular error.
(b) illustrates the percentage of pixels which has an angular error smaller than 1 degree. (c) shows the histogram of angular
errors divided into 10 bins from 0 to 7 radians. See text for details.
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Fig. 7 (a) Original, noise free circular pattern. (b) Ground truth orientation. Orientation in radians at standard deviation 20

of noise, (c¢) Structure tensor and (d) Gradient energy tensor.

0 — 7 at the intersection point seen in (b), i.e., at the
noise level of standard deviation 20. The histogram is
shown in (c) and we see that the error distribution is
indeed similar for the two tensors. We also see that
for the angles less than 0.5 rad the structure tensor
shows higher errors than the structure tensor due to
the post-convolution of its components. However, con-
sidering the right most bins, the structure tensor has
fewer pixels with large errors than the gradient energy
tensor.

Objectively, the gradient energy tensor has more
large magnitude errors than the structure tensor. How-
ever, this is expected since the energy tensor lacks a
post-convolution of the tensor components to compen-
sate for the noise. Nevertheless, considering that the
difference between the two tensors mean angular error
is small, as indicated in (a), it still suggests that the
gradient energy tensor can be used in a diffusion frame-
work, a claim that we further support in our numeri-
cal experiments, and was shown in [3]. In the following
sections we use the gradient energy tensor to model a
tensor-based total variation framework.

6 Mapping-based Gradient Energy Tensor
Total Variation

In this section we extend our previous work [2,1] on the
gradient energy tensor total variation (GETV). In par-
ticular we introduce the mapping to GETV and denote
the formulation as GETVm.

6.1 The objective function

The below corollary gives the definition of the GETVm
scheme. The tensor that steer the filter is the trans-
formed gradient energy tensor, i.e., (57). In the follow-

ing, let W be a tensor such that the following relation
holds

D(Vm(u)) = (u)[Vm(u)|,

where D is the tensor in (57) and has eigenvalues Ay, Az
and eigenvectors v, w. Then (59) can be reformulated
into a modified expression of (45), i.e.,

Vm(u) "W (Vm(u))Vm(u)
= M |[Vm(u) P~ (v - €)* + Ko Vim(u) 71w - €)%, (60)

where the left hand side is the integrand of (28). Now
we give the following statement

W(Vm (59)
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Corollary 4 Set s = Vm(u) and let ¢ = 1 in (60).
Then the gradient energy total variation regularization
term is given by

R(u) = /Q ()| (v )% + Ao(w- £)2) dz,  (61)

and the tensor ,Ws in (27) is

1 (s1Vu'D(s)
VuWS(S) - _W <82VUTD(S)>

1 (Vu'Dy (s)
* |s] (VUTDSZ(S)) ’ (62)

where D is defined in (57).
Proof See Appendix B. ad

Due to the definition of the tensor D in (59) the
resulting functional describes an anisotropic total vari-
ation filtering method. The tensor acts as a weight
limiting the TV filtering perpendicular to image struc-
tures. In a homogeneous region D(Vm(u)) ~ I the reg-
ularization term in the functional reduces to R(u) =
Jo IVm(u)| dx previously described in (49). It is obvi-
ous that the GET-tensor will be isotropic in homoge-
neous regions.

In the section below we show how to derive the E-L
equation corresponding to the selection of W in (59)
that yields the diffusion scheme.

6.2 Diffusion formulation

To obtain the diffusion formulation of GETVm, note
that W in (59) is symmetric. Then, according to Corol-
lary 2, it is straightforward to show that the tensors
in the E-L equation (29) are given by S = 51 = Sy =
2W + ¢ Wem'. With ¢, Ws given in (62) we obtain

3= {220 L (o)
sl

) m,(f)w | (63)

where

=2t - L (4700
o) e

Now, from Corollary 2, (41) we get the E-L equation

Vu
— 0 — 'di —_— = 1
u—Uu m dlv<M|Vu|> 0in 2 (65)
n-MVu =0 on 012

The difference to TV is the introduction of a map-
ping function and the tensor in front of Vu/|Vu| in the
divergence. These weights control the anisotropy of the
TV scheme: reducing the filtering orthogonal to image
structures and accelerating the filtering parallel to im-
age structures. The orientation estimation is achieved
using the GET-tensor with positive eigenvalues, defined
in (56). However, note that using GET is not unique,
any tensor, also the diffusion tensor constructed from
the structure tensor may be applicable in this frame-
work.

The derivatives of D with respect to dym(u) and
Oym(u) in (64) are obtained by first computing the
eigenvectors v and w and eigenvalues A1, Ay of D. The
differentiation of D in (59) w.r.t. 53 = 0, m(u) reads

Dy, = (95,00 )M\ +vv" (95, M1)
+ (851wa))‘2 + U)U)T(851>\2)7 (66)

and \; = exp(—|u;|/k?), i = 1,2 with the corresponding
orthonormal eigenvectors (b # 0)

! _i,, ~ 2b
v = (’Ug) = mv, where 0 = (c—a—i—\ﬁ)’ (67)

and

_ [w1 _L~ . 2b
_<w2>_|u~)w’ where w_(c—a—\[l)’ (68)

and [ is given in Lemma 3. Appendix C further details
the components of (66). In the case b = 0 the eigenval-
ues are given on the diagonal of GET and the orthonor-
mal eigenvectors are given by the identity matrix. The
implication of b = 0, is that derivatives with respect to
dsvv’ and dsww " in (66) vanish.

6.3 Discretization

The PDEs we have introduced in this work can all be
expressed on the form

g — () div (M Y =
u—ug — Am'(u) div <M|Vu| =0, (69)

where Vu +— M and M € R?*? is a tensor different
for each application (selection) of W and m. Different
selections of W are outlined in Table 2.

To approximate the PDEs we use a simple, but
generic, PrimalDual approach of Chan, Golub and Mulet
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ISO/m, TV/m GETV/m
A 0.1 0.05
T /8
8 10-12
0% 1
k 100

Table 3 Parameters of the numerical scheme were fixed
for all applications. “/m” denotes with and without map-
ping. The abbreviations stand for isotropic diffusion (ISO),
isotropic diffusion with a mapping function (ISOm) [5], to-
tal variation (TV) [50], total variation with a mapping func-
tion (T'Vm), see (52), gradient energy tensor total variation
(GETV) [2] and GETV with a mapping function (GETVm),
see (65).

[20]. The idea is straight-forward and the aim is to avoid
explicit computation of the quotient in (69), therefore
they introduce a dual variable, d. In the following, let
A, 3,7 and 7 be small positive constants. In our case we
define the dual variable as

o _MVu (70)

VIVuZ + 3’

where we introduce § in the denominator. This gives
the nonlinear equation system

u—ug — Am/ (u) div(d) = 0 (T1a)
d\/|Vul2 + 8 — MVu = 0. (71b)

We update of the primal variable u as

W =P 41 (WP = ug — A (uF)div(d® ) (72)

where k is an iterator. To solve for the dual variable in
(71b) we introduce the iterator 4, and use the current

u® as initial value, i.e., we have

k _ gk k k|2 _ k
diy  =d +y(df\/|VuF|? + B — MpVu®) (73)
d"t d§+1

The divergence term in (71a) is discretized using for-
ward finite differences [57], i.e.,

div(d*t!) = of d*+! + o d* T, (74)
where

Ofu=wu(zr+1,y) —u(z,y) (75a)
Ofu=u(x,y+1)—u(z,y). (75b)

In M, (69), we are required to compute terms such
as 1/|Vu|. Therefore, in practice we regularize the de-
nominator term with a small positive constant, i.e.,

|Vulg = y/uZ +uZ + (3 as they appear in M. In the

0 0.2 0.4 06 08 1

Fig. 8 Mapping function for gamma correction. Illustration
of different gamma parameters (dash-dotted), corresponding
compensation curves (dashed) and the compensation curve
with 10% error (thick). The dash-dotted curve is used to ob-
tain the noisy images and the thick curve is used to obtain
the denoised results in Figure 9.

gradient energy tensor (53), we are required to com-
pute third-order derivatives (see appendix (98a)-(98c¢))
for terms such as 9, Au. However, rather than to expand
these terms using derivative rules, we found that it is
sufficient to approximate these terms using a central
difference derivative. The finite differences are regular-
ized with a smooth kernel. Here we use a Gaussian filter
of standard deviation 1 before computing the finite dif-
ferences. The filter size was kept constant for all images
and all noise levels in the experimental evaluation. We
also fixed the parameters A, 3, v, 7 and the number of
inner iterations k for all experiments. The parameter
values are shown in Table 3.

7 Application I: Gamma correction

In this section we apply total variation with a mapping
function (TVm), see (52), to the problem of denois-
ing overexposed images corrupted with multiplicative
noise. Multiplicative noise is the common noise model
in, e.g., ultrasound imaging, synthetic aperture radar
(SAR) imaging, sonar and laser imaging, etc.

The intention with this application is not to show
state of the art results denoising of multiplicative noise,
rather we show empirically that (I) gamma correction
(GC) and then denoise, or (IT) denoising and then gamma
correction is suboptimal to (III) using a combined filter-
ing scheme compensating for the gamma correction in
the evolution process of the minimiser. The parameters
were set as shown in Table 3. We consider the following
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Noisy Filter then GC GC then filter Mapping-based filter
v=0.8

PSNR: 8.6
SSIM: 0.50

PSNR: 15.7
SSIM: 0.56

PSNR: 11.9 244 25.1 25.8
SSIM: 0.56 0.74 0.75 0.79

Fig. 9 Examples of combined gamma correction (GC) and denoising compared to “denoise and then gamma correct” and
“gamma correct and then denoise”. If the degradation parameter is set to v = 1, (77) is a one-to-one mapping and (78) is
the identity. Instead of using the true gamma correction parameter 1/ we use 1/(1.17) to represent the uncertainty in the
estimate of an unknown inverse mapping. With a stronger nonlinearity, it can be seen that the mapping-based filter performs
better than the other approaches, both visually and with respect to error measures.

noise model: let u° be the degraded image, then range is degraded by the same strength of the noise-
components.
0
u’ = exp(In(u) +n(u)), (76) We use the “standard” gamma correction formula

and define the mapping function to correct for an over-
exposed image. In this sense, we define the mapping
function that corrects for this degradation as

where  ~ N (u|p, o) and u is the mean-value and o
the standard deviation. The main difference to Gaus-
sian noise is that multiplicative noise scales with the in-
tensity; the lower the intensity, the less noise is present.
Gaussian noise is uniform in the sense that the intensity — m(u) = u'/?, (77)
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Fig. 10 Denoising results for the mapping-based filter when v = 0.4. In each instance we accurately preserve the dominant
features while suppressing the main parts of the noise. The noise is multiplicative and o was set to 40 levels of the intensity

range in the noise model (76).

Fig. 11 Evaluation of gamma

correction of overexposed images 26 '3—'\\ 0.85 L
Cameraman, Barbara, Lena and 4'f' _____ ¢-—---- t---"" By ' "—"\o-\_.
Boat. As v becomes smaller, i.e., oo 08¢ = = === $=-=--- ®----= ~
the nonlinearity is more pro- 0.75 -
) o0 L ° --®- Noisy
nounced, the mapplng—based fil- c | e = 0.7 - ~®-Gamma correct and then denoise
ter consistently performs better =18+ 7 = Denoise and then gamma correct
: « Lo o 0.65 —e—Combined

than the two alternatives “de- & 16} o 06
noise and gamma correct” and wwho e B ®
“gamma correct and denoise”. 2l J 0.55 P @t
We set 0 = 40 of the intensity ol e O
range in (76).  F[ L | | | oas | | | |

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

where v > 0. If v < 1 then (77) corrects for an overex-
posed image, and if v > 1 corrects for an underexposed
image. Figure 8 shows the different values for v and its
inverse, we also show the difference to 10% offset of the
inverse gamma value. The reason why we include this
scale-factor is that in practical applications it is diffi-
cult, or impossible, to obtain an accurate estimate of
the true inverse-mapping. In the E-L equation we are
required to compute the derivative of the mapping, i.e.,
we have

m/(u) = lu

Y

Yo (78)
and normalize it by the maximum slope so that 0 <
m/(u) < 1 to assure stability when solving the PDE (52).

7.1 Results

Figure 9 shows the result of denoising an overexposed
image for the different cases of filtering order. Natu-
rally, if v = 1, then the case of “filter and then gamma
correct” is equivalent to the mapping-based filter (as
it should be). As v decreases, i.e., the nonlinearity be-
come more severe, we observe that the mapping-based
filter becomes superior to the two other approaches in
all cases. The error measures in Figure 11 clearly illus-
trates this relation. In particular, Figure 11 shows the

error measures for varying y-parameter and the differ-
ent orders (I), (IT), and (III) of filtering. The final error
values were obtained at the peak structural similarity
value (SSIM) [55]. The reason for the improved per-
formance is easiest explained in terms of a dynamic
system: by including the nonlinear mapping of the in-
tensity range as a component in the filtering scheme,
it acts as a feedback component adjusting the diffu-
sivity to conform with the final visualized result. This
behaviour is also illustrated in Figure 1, Section 1.

In addition to the error graph, we show the final
result for the mapping-based filter of Cameraman and
Boat as v = 0.4 in Figure 10. It is visible that most
of the noise has been removed and that edges remain
well-preserved.

8 Application II: Targeted value range filtering

In this section we present an application where the im-
age value range is set from prior information based on
user interaction.

Figure 3 in the introduction illustrates a fixed selec-
tion of the image value range where we know which
value range is noisy prior to filtering. Thus, we can
achieve high quality result where we preserve fine de-
tails in the image. These results are not possible to
obtain with state of the art denoising methods such as



Mapping-based Image Diffusion

19

Mapping

Selected region

——Fitted - R

0-35[ Fitted - G
Fitted - B
0.3 - - =Histogram - R
Histogram - G
0.25 = = =Histogram - B
\
0.2
\
'
0.15h n
' "
'
0.1p !
v
0.05 4,
0 s
0 0.2 0.4 0.6 0.8 1
—Fitted-R
0.08 Fitted - G
——Fitted - B

0.07 ® |- - -Histogram -
Histogram -

0.06 - - -Histogram -

@ oD

0.05

0.04}s

0.03 [\

0.02(y20"
4

0.01

0.2 0.4 0.6 0.8 1
Histogram

Result

Fig. 12 Two examples of targeted value range filtering from user selected regions. On the first row we focus on the text. As
visible in the close-up in the Result-column the noise is removed in the white text whereas and preserved in the red background.
On the second row we instead choose to filter the red color of the soda can, and as visible in the Result-column the red is
denoised whereas the noise remains in the white text. The column labeled “Mapping” is computed from the fitted (normalized
to 1) density functions in the right-most column. See text for details.

MRF [52], TGV [16] or BM3D [24] since they denoise
the complete image value range.

8.1 User-based value-mapping

In the introduction we also gave an initial example of
user-based region selected value range filtering, see the
first row of Figure 2 which shows a result when filter-
ing the butterfly’s wings. In the same figure, the cor-
responding mapping shows the region of interest that
is processed by our algorithm. The denoised result is
shown in the right column. It is visible that the noise in
the desired region is reduced meanwhile noise in other
value ranges are preserved.

We give an additional example in Figure 12. In the
right most column we also show the histogram for the
selected color region in the left column. The histogram
shows the sample value-distribution of each color chan-
nel and the corresponding estimated Gaussian distribu-
tion. These distributions make up our channel specific
mapping functions. In this targeted-value range appli-
cation we first reduce the noise of the letters written on
the soda can. This is achieved by selecting a sample re-
gion in the image outlined on the letter “C”, displayed
on the first column in the first row. The resulting map-
ping shows that the algorithm is targeting the desired

region. A close-up in the result-column shows that the
filtering is confined to the letters - leaving the noise in
the remainder of the value range undisturbed.

Next, we mark a region with red color and filter the
image. The corresponding close-up on the second row
shows that the red color is free of noise and that the
white color of the letters still contains noise, just as de-
sired. This type of filtering process is beneficial when
the application’s noise-component is known prior to fil-
tering. Also, there may be cases when one can tolerate
the preservation of noise meanwhile other regions are
smoothed.

When performing the filtering process the fitted den-
sity functions are normalized in the same way as was
done in the application of gamma correction in the pre-
vious section.

9 Application III: Denoising via an
oversegmentation map

In the third application we treat the problem of global
image denoising, i.e., in contrast to applications I and
II, we now consider the whole (spatial) image domain
(2. Here, the mapping function will be estimated from
locally homogeneous regions via an oversegmentation
map.
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9.1 Method definitions

We define the tensor W and the mapping in functional
(28) to describe isotropic diffusion (ISO), isotropic dif-
fusion with a mapping function (ISOm) [5], total vari-
ation (TV) [50], total variation with a mapping func-
tion (TVm), see (52), gradient energy tensor total vari-
ation (GETV) [2] and GETV with a mapping function
(GETVm), see (65). The definitions of these methods
are outlined in Table 2. The diffusivity parameter in
(57) for GETV and GETVm is set according to

exp(l) -1,

k=
exp(1) — 27

(79)
where o2 is the image noise variance [26]. In the follow-
ing evaluation the aim is not to show superiority over
all existing denoising algorithms. We rather investigate
how an oversegmentation map affects the final denoised
result and we believe interesting results will follow from
this approach. To get comparative performance result
of the below outlined approach, we compare our for-

mulation to original code of state of the art denoising
methods BM3D [24], TGV [16] and MRF [52].

9.2 Approach and motivation

Objects in an image, or more specifically, their value
distributions, can be described by a stochastic process.
Such processes can be estimated from image segments,
or homogeneous regions, via an oversegmentation map.
Figure 13 shows one such partitioning of similar regions.
In this case, each region (or object) is associated with
its own set of features [54]. In image denoising the aim is
to remove the noise while preserving image features. In
other words we want to obtain a “clean” image without
the noise component, i.e., we want to infer the true un-
derlying statistical process that describes the noise free
image. Therefore, modelling the image filtering process
based on estimated densities is a means to incorporate
a prior into the filtering scheme. Here, the aim is to
separate objects based on certainty estimates originat-
ing from the underlying distributions. In practice we
rely on the principle of ergodicity to estimate first and
second order moments of each segments sample distri-
bution. Additionally, we assume uncorrelated pixels be-
tween segments to drive the diffusion process. The idea
is to exploit properties of statistical sample distribu-
tions in a way such that we can reduce the uncertainty
to which segment a pixel, located at the border of two
segments, belongs to. This is achieved by incorporating
the statistical properties of pixel density functions into
the filtering scheme.

Based on this motivation we let the derivative of the
mapping function, i.e., m’, describe the sample distri-
bution. Thus, the mapping function can be interpreted
as the corresponding cumulative density function.

In this application, our approach to image denois-
ing is a four step procedure: (I) Compute an overseg-
mentation that conforms to homogeneous regions. (II)
In the case of natural colour images, transform the
colour space into colour opponent components. (III)
Construct the mapping derivative, m’, from estimated
density functions. (IV) Solve the corresponding E-L
equation for a given W. We use the CIELAB colour rep-
resentation of the noisy images to decorrelate its RGB
components [53]. In the following we introduce the con-
cept of oversegmentation maps and show how they can
be used to compute mapping functions to drive the dif-
fusion process.

9.3 Oversegmentation

The introduction of a mapping into the diffusion frame-
work was first presented in [5]. In this work we extend
the initial formulation to include a tensor component,
this is enabled by the functional in Theorem 1. How-
ever, before specifying the filtering method, we explain
how to obtain an oversegmentation map to estimate the
image statistics.

The selection of image regions suitable for image
denoising is a non-trivial task. Much research has fo-
cused on devising efficient methods to partition images
into homogeneous areas that adhere to image structure
boundaries. It is not until recently these partitioning
methods are efficient enough to produce sufficiently ac-
curate regions for image denoising while achieving com-
putation times suitable for practical applications. One
oversegmentation method that satisfy these demands is
SEEDS, superpixels extracted via energy-driven sam-
pling [9]. With the assumption that each segment in
the oversegmentation map is independent, we estimate
local second order statistics for each segment. A sen-
sitivity analysis on the selection of number of regions
was done in [5], which showed that the filtering pro-
cess is robust to the number of segments used in the
oversegmentation map. Furthermore, note that the se-
lection of oversegmentation method is not unique. We
expect that as the oversegmentation methods continue
to improve boundary localizations, they may further
accelerate their applicability in denoising applications.
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Fig. 13 Image “Boat”. Top left original
image, right is the degraded image cor-
rupted with additive Gaussian noise with
standard deviation 20. Down left, overseg-
mentation map and down right, is the ob-
tained mapping function.

Oversegmentation

9.4 Estimating a mapping

The spatial extent of a segment in the oversegmentaion
map should conform to approximately homogeneous re-
gions. If the requirement is fulfilled, then the observed
data (or pixels) within one region can be assumed to
originate from the same stochastic process and mod-
eled using the same density function. We use this idea
to derive a confidence value that describes the certainty
that a sample (pixel) belongs to a region or not, e.g.,
a noisy observation would have a low confidence. We
model the mapping m to reflect the confidence level
that a sample belongs to a neighbourhood. To do so we
define the mapping from a local neighbourhood L. As-
suming independence between each segment, we model
the data sample in the neighbourhood using a Gaus-
sian distribution with associated mean p and variance
o2. In practice we estimate the statistical moments us-
ing the sample mean and variance of the segment. The
mapping function is defined as

"us py o

= 1 9w i, 00), (80)

€L

Mapping

where

Q(U;Mz‘,m‘) =

Lo (3ms)

Thus, instead of controlling the filtering based on edge-
strength, e.g., as in P-M (11), the filtering is now de-
fined by m/, the certainty that an observed sample be-
long to the local neighbourhood. The selection of neigh-
bourhood £ is arbitrary, but for simplicity we choose its
size to be 3 x 3. In (80) we use the product of the prob-
ability density functions (PDF) rather than the sum
which would yield a proper Gaussian mixture model
(GMM). The motivation is that at edges, the GMM
would not reduce the filtering as efficiently as in the case
of a product mapping function. When filtering colour
images we compute one oversegmentation of the noisy
image. This map is then used to compute the density
estimates in each channel of the colour image represen-
tation.
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ISO TV

ISOm TVm

BM3D

TGV

GETV

MRF

Fig. 14 Comparison of visual quality. The Boat’s bow appears more clear where we have applied the mapping function,
compared to ISO, TV and GETV. Visually, TGV appear similar to TVm and GETVm. While ISO and ISOm are oversmoothed,
MRF and GETV exhibits color artifacts in the blue sky. Although, BM3D has good visual and good error values (Table 4),

its approach to denoising is fundamentally different from the PDE-based method introduced in this work.

9.5 Results

We already mentioned in the introductory paragraph
of this section that we do not aim to outperform state
of the art denoising methods. Rather we study how the
usage of an oversegmentation map influence the noise
removal. Our PDE-framework defines a natural way of

reducing the filtering process at border regions rich with
detail and texture, so as to not oversmooth corners and
lines. We show that the mapping function is the key
component for this approach.

Figure 14 illustrates a result for all considered meth-
ods, obtained at their maximum SSIM values. The right
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PSNR | SSIM
Noisy 22.10 0.47
ISO 25.09 0.75
ISOm 25.36 0.76
TV 26.71 0.80
TVm 26.66 0.80
GETV 27.60 0.77
GETVm 26.70 0.80
TGV 27.98 0.82
BM3D 31.36 0.90
MRF 28.26 0.81

Table 4 Error values for the Boat image in Figure 13 and
14. We see that the mapping function in particular improves
the SSIM values. Compared to TGV, BM3D and MRF our
results are most similar to TGV and MRF.

illustration in Figure 13 shows the mapping for GETVm.
We see that the red color-region on the bow of the Boat
has high uncertainty, thus in this region, the mapping-
based algorithms will reduce the filtering. Note that the
color coding is in the RGB-space in the mapping-figure
although the actual filtering is done in the CIELAB-
space. This means that red color in the mapping cor-
responds to filtering in the CIELAB intensity channel
whereas green and blue describe the opponent color
channels. White color indicates that each CIELAB-value
is well described by the estimated sample distributions
and therefore we have high filtering in each CIELAB
channel. Moreover, the color cyan indicates filtering of
only the chroma information, not the structural infor-
mation present in the intensity channel. Due to the
mapping, the filtering is reduced in regions with high
uncertainty. Example of such regions are the sail and
the mountain in the background, see, e.g., ISOm in
Figure 14. Here, this gives an improved visual appear-
ance without oversmoothing details in these regions
while suppressing the noise in the background. With
respect to the error measures for the Boat image, see
Table 4, it is obvious that BM3D outperforms all com-
pared methods. However, GETV is on-par with TGV
and MRF. The mapping makes the most difference for
GETYV, showing more improvement than any of the
other approaches. Although the PSNR value decreases
marginally for TVm compared to TV, the denoised re-
sult in Figure 14 appears less oversmoothed for TVm.

Figure 15 shows the original and the noisy image of
Lena. The same figure also depicts the mapping pro-
duced by the GETVm method. Figure 16 illustrates
the result of filtering the Lena image for the respective
method. In this case, image regions are well-preserved
by the mapping, e.g., the brim of the hat and the hair.
Note that the mapping-based methods have a tendency

23
PSNR | SSIM

Noisy 22.08 0.40
ISO 27.69 0.80
ISOm 28.09 0.81
TV 29.05 0.83
TVm 29.32 0.83
GETV 29.12 0.76
GETVm 29.42 0.84
TGV 30.03 0.85
BM3D 33.10 0.91
MRF 29.71 0.82

Table 5 Error values for the Lena image in Figure 15 and 16.
In this case the mapping improves all error values. Compared
to TGV, BM3D and MRF our results are most similar to
TGV and MRF.

to oversmooth features in highly textured regions, e.g.,
the feathers in Lena’s hat. This is due to the viola-
tion of homogeneous partitioning of the oversegmenta-
tion map, clearly visible in Figures 13 and 15. This is
a frequent problem for these types of image structure.
With respect to the error measures, Table 5, we see
that BM3D is again superior to all considered methods.
We also note that the introduction of mapping function
does improve the ISO, TV and GETV error values and
visual appearance.

10 Discussion and summary of results

This work introduces an alternative viewpoint to image
filtering, as such, we discuss the usability of the method
and give some additional interpretations.

The novelty of our approach is the idea of including
a mapping of the image value range in the variational
framework. To this end, the resulting PDE does not
only describe spatially-adaptive filtering but also de-
pends on the image value range. Important to note is
that the mapping m can be defined as either a local or a
global function. By this we mean that the mapping can
be defined locally, i.e., in a region, or alternatively, glob-
ally as in the application of gamma correction where the
mapping is applied pixel-wise. We shortly elaborate on
the difference between these classes of mapping func-
tions.

For interesting image processing applications, e.g.,
the ones considered in this work, it is formally neces-
sary to decouple the derived Euler-Lagrange equation
from the initial variational formulation. The reason is
that none of the complex definitions of the mapping
and the nonlinear mappings of the tensor GET™* allows
us obtain an energy functional on the form (17). This is
due to the result in Proposition 1. However, note that
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Fig. 15 Image “Lena”. Top left origi-
nal image, top right shows the degraded
image corrupted with additive Gaussian
noise of standard deviations 20. Down left
shows the oversegmentation map of the
noisy image and down right illustrates the
obtained mapping function.

Oversegmentation

the decoupling is only in the case GET has negative
eigenvalues. For an extended discussion of GET and its
properties see [28]. If we instead consider the structure
tensor: the energy and the E-L equation are fully de-
coupled due to the convolution operator, we again refer
to Proposition 1.

The versatility of our framework allows a large num-
ber of image processing problems to be considered. In
this work we illustrate applications of image denoising.
We hypothesize that the mapping can be used in, e.g.,
image value range compression, visualization, deblur-
ring and inpainting, etc. We also see possible extensions
to estimate (or learn) the mapping from datasets of im-
ages or self-similarity measures of patches in an image.

Naturally our approach is not the only way to achieve
any of the considered applications. However, it is a rea-
sonable assumption that coupling the filtering process
with the nonlinear mapping is a preferred formulation.
Our method is a framework that provides a natural and
explicit coupling for image enhancement: it relates the-
oretical expositions with user-defined as well as data-
specific priors. This versatility, comes at a cost of per-
formance. In fact, one can tailor methods to solve each

Mapping

application independently, this is what BM3D has done
with great success for the application of image denois-
ing. Although heuristic methods can give better perfor-
mance w.r.t. error measures, their scalability to other
applications remain limited.

To further motivate our approach and clarify its po-
tential we wish to highlight specific differences between
the mapping functions we have considered in the re-
spective applications. In particular we discuss, what we
call, local and global mapping functions and in what
context the mapping is a suitable approach.

Table 1, Section 1, gives an overview of the different
mapping functions considered in this work.

10.1 Global mappings

A global mapping is a mapping where each image sam-
ple (pixel) is mapped with the same definition of the
mapping function, i.e., u — m(u).

This type of mapping is used in the first application
on gamma correction. We emphasize that in this case
the mapping does not provide any additional explicit
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Fig. 16 Comparison of visual quality. The brim of Lena’s hat appears more clear where we have applied the mapping function,
compared to ISO, TV and GETV. As expected, ISO and ISOm are oversmoothed. TVm, GETVm and TGV all have similar
visual appearance. In this example image, there are no apparent color artifacts. Visually, Lenas hair retains more details in

BM3D, TGV and MRF compared with TVm and GETVm.

edge information of the image. However, the mapping
does provide information how the image values should
map, e.g., to correct for the gamma distortion in the
final result. Recall that the property of the mapping is
that if a line/corner, or feature, is present in the im-
age value range after the mapping, then the feature is

preserved. If the structure is not present in the value
range after the mapping then the feature is not pre-
served. Again, although the purely global mapping for-
mulation does not give an explicit edge-stopping effect,
the mapping will aid the discontinuity preservation in-
duced by the PDE given that the feature information
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is present after the mapping. Moreover, since the map-
ping is nonlinear, a weak edge in the input data may be
transformed to a strong edge as the mapping is applied.
Thus, the mapping gives an implicit edge-preservation
effect. Next we contrast the global mapping function
with the local mapping.

10.2 Local mapping

We have considered two types of local mappings. First
we defined a local mapping of the color image value
range (Application II), where we target the filtering
process to a certain color range. The selection of the
color range is based on user-input but may also be gen-
eralized to prior value ranges based on application re-
quirements. The advantage of having a coupled value
and spatial-range filtering process is clear in this tar-
geted application: one does not need to explicitly han-
dle the transition (border) between filtered and unfil-
tered value range data. This is implicitly handled by
the smoothness of the mapping function.

In the third application, we defined an oversegmen-
tation map where each segment in the map describe a
local homogeneous region. From these segments we es-
timate local density functions and via a mixture model
we achieve an edge stopping effect between the seg-
ments. This edge-stopping effect can be seen in Fig-
ure 2 (second row, middle figure) and in the mappings
in Figure 13 and 15, respectively. Individually, density
functions do not provide any information about edge-
localization, rather it is the combination of densities
that prove edge-localization. This combination of map-
pings depends on a large number of pixels and their
relation. This is comparable, but goes beyond the local
estimation of the edge-stopping function in P-M diffu-
sion etc. The method used to produce the oversegmen-
tation map is not unique. Moreover, one can apply any
method that produces an oversegmentation map. Nat-
urally, the effect of the mapping in the filtering process
will depend on the accuracy of detected segment bound-
aries.

11 Conclusions

This work introduced a mapping of the image value
range into a variational framework. The key compo-
nent is the mapping function that allows us to replace
the ad-hoc edge-stopping function otherwise present in
diffusion schemes. After adopting the mapping func-
tion to a set of image processing problems we conclude
that the mapping contributes positively to the filter-
ing process. Moreover, we have shown that the map-

ping can be estimated (or set) for each application in
a non-parametric way. OQur main finding is that con-
text aware tensor-based image filtering can be derived
from principles of energy minimization. However, with
respect to general image denoising, state of the art de-
noising methods outperform our framework. If we con-
sider targeted value range applications our methodol-
ogy clearly demonstrates advantageous aspects by im-
proving feature preservation while reducing the image
noise. It is expected that, under appropriate mappings,
related energy based problem will benefit from the pre-
sented work. Naturally, assuming a reasonable map can
be formulated, the direct extension to these alterna-
tive applications is to generalize existing regularization
terms.
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A Proof of Theorem 1

To prove Theorem 1, compute the variational derivative of
the functional (28). The first variation is given by

0

0R = —R(u +¢ev) . (82)
Oe e=0

Now, we let u +— u + ev in R(u) and we get

R(u + ev) = Vm(u + ev) T W(Vm(u 4 ev)) Vm(u + ev)

=m'(u+ev)?V(u+ev)T (83a)
=A
-W(Vm(u + ev))V(u + ev), (83b)
=B

then, from the product rule of differentiation, we need to con-
sider the following terms

%R(u +ev) = (%A(u + Ev)) B

+A (QB(U—Q—EU)) . (84)
Oe
To simplify the notation define
z1 =m/(u+ ev)(u1 + ev1)
2= : , (85)
zqg = m/(u+ ev)(uq + €vq)

and note the relation

zle=0 = Vm(u) = s. (86)
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We first consider the differentiation of the B-component w.r.t where we set

€. In order to differentiate the B-component use the chain rule T

of differentiation: Vu ' We, (s)Vu

= . = Ws(s)Vu, 91
OW(z) OW(2) 0z OW (2) 0zq © - vulVa(®) 1)
. T Al Ao T et VuT Ws,(s)Vu
Oe 0z1 Oe O0zq Oe d
then and o, Ws(s) is defined in (26). The definitions G and H will
be used in the application of Green’s formula (17). Now we
) o focus on the differentiation of the A-component w.r.t. € in
&B(z) = % (W(2)V(u+ev)) (83a), i.e., we set u — u + ev and get
0
= (aw(z)) V(u+ev) + W(z)Vo, (87) ﬁA(u + ev)
Oe

with = 2m/ (u 4 ev)m”’ (u + ev)vV (u + ev) |

P +m/(u+ev)?Vo . (92)
—Wi(z) = |W. "

Oe (=) [ =1 (2) (m (u+evjo(us +ev) With (92) we evaluate the limit € — 0 of (83a) which results

+m/(u+ sv)m) m
0
(—A(u + EU)) B
Oe e=0

+ W.,(2) (m”(u + ev)v(ug + €vq)
+m/(u+ E’l})’l}d>] , (88)

evaluating the limit € — 0 in (87) with (88) we get

%B(z) = [Wsl (s) (m”(u)vul + m'(u)m)

e=0

+ W, (s) <m”(u)vud + m'(u)vd)] Vu
+ W (s)Vo. (89)

Next, we focus on the second product in (84). Then, with (89)
and after few rewrites, we obtain the following

A (%B(u + sv))

=m'(u)?Vu" [WSI (s) (m”(u)vul —+ m’(u)vl)

=0

+ Ws,(s) <m”(u)vud + m’(u)vd)] Vu
+m/ (u)?Vu T W(s)Vu
=m/(u)? [VuTVVS1 (s)Vu <m”(u)vu1 + m’(u)vl)

(90a)

+ v’ Ws,(s)Vu (m”(u)'uud + m/(u)vd>]

+m' (w)?VuT W (s)Vv (90b)
- m’(u)2<Q, (m”(u)vVu + m'(u)Vv)>
+ m’(u)2<Vu, W(s)Vv> (90¢)
= (m/ ()*m" ()@, Vu) v
=G
+ <Vv, (m'(u)3Q +m/ (w)?W(s)T )vu>, (90d)

=H

= <2m'(u)m”(u)vVuT + m'(u)2VvT) W(Vm(u))Vu
= < 2m/ (w)ym' (u)VuT W(Vm(u))Vu ) v
E
v (m'(u)QW(Vm(u)) )vu, (93)
P

where the definitions E and F' will be used in the application
of Green’s theorem. Summing (90d) and (93) and making use
of G, H and E, F yields

%R(u + ev)

= / (G+ E)vdx
e=0 2
+ / Vo (H + F)Vu de. (94)
(]

The second integral of (94) is now on the form Vv A(Vu),
i.e., we can integrate it w.r.t. Vv by using Green’s formula
(cmp. (17)) and get

/ Vo (H 4 F)Vu dz
(]

:/ v(n-(H+ F)Vu) de/ vdiv ((H + F)Vu) de,
EXe) e

where the natural Nuemann boundary condition is given by
n - (H + F) = 0. Substituting G, H, E, F' defined in (90d)
and (93) into the above expression, and after rearranging the
terms and dropping the parentheses for improved clarity, we
get

m'm/'VuT [2W + vuWs (s)m’} Vu
— div ((m’)2 (W +WT +m! WWS(S))W) —0in 0
n-(F+ H)Vu =0 on 02
(95)

The above E-L equation can be simplified by considering the
following expansion

div ((m')2[2W + oo Ws(s)m']Vu)
=2m'm/" VuT 2W + o, Ws(s)m'|Vu
+ (m/)? div (2W + ¢, Ws(s)m')Vu). (96)
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Substituting the first term of the right hand side of (96) into
the PDE of (95) we get:

div (m)?[2W + ¢, Ws(s)m']Vu)
— (m/)?div (2W + ¢, Wa(s)m']Vu)
— 2div ((m/)Q [W +wT 4 m VUWS(S)] vu) =0. (97)

The final result is obtained after subtracting the last term
from the first term in (97), which concludes the proof. O

B Proof of Corollary 4

To derive the gradient energy tensor diffusion scheme we set
W and D as specified in (59). With this relation between
W and D we introduce E and set E = 1/|Vm(u)|, then
W = DE. Before proceeding with the proof, we specify the
components of GET. The components of GET (54) are

a = (amux)z + (accuy)2 — Uy (6337;“:0 + awyuy)
b= (0zuqz)(0zuy) + (Oyua)(Oyuy)

(98a)

1
- i(uw (Oyaua + Oyyuy) + Uy (Ozauaz + Oxyuy)) (98b)
c= (Byuy)2 + (8yum)2 - uy(aymum + 8yyuy)~ (98C)

Now we need to compute o, Wv(Vu) in (27) with s = Vu,
that is, we have

Vu' E, D VuTDuz
0w Weu(Vu) = (WT e D) 4B (WT Duy) . (99)
The derivatives of E reads
1 1
Ey, =04, — = — == Uz, 100a,
. -] " (100a)
1 1
By =0y —— = ————Uy. 100b
v Y ‘VUl |VU|3U’Z’J ( )

The tensor ¢, Wy (Vu) in the E-L scheme, can now be ex-
pressed as (62). O

C Eigendecomposition

This part decomposes D in its eigendecomposition and com-
putes D, and Duy. ‘We have

2 2
D(Vu) = UAUT = ( 1 ”132) A1+ ( w1 wlé"““) A2,
viv2 V3 wiwe w3
where A1,2 = exp(—|p1,2|/k?) and p1 = %(tr (GET) + o)
and po = %(tr (GET) — «) are the eigenvalues of GET with
a = +/(a — ¢)2 + 4b2. We obtain the eigenvectors of GET by

solving GET? = p19, i.e., we have the following equation
system

(a—c—a)t1 + 2bvo =0
{ 2b01 +(c—a—a)io =0 (101)
The orthonormal eigenvectors of GET are (67) and (68). Now,
we focus on 0y, D in (66). After expanding the derivatives of
the eigenvectors we obtain

Ou, 01 = —(Oyatz + Oyyuy), (102a)
Ou, U2 = OzaUs + OzylUy + Ou, (102b)
Ou, W1 = Oy, 01, (102¢)
Ou, W2 = OpzUz + OpylUy — Ou, 0, (102d)

and
B, 8] = 15|71 (01 (Ou, 01) + T2(0u, 02)), (103a)
Bu, | @ = @]~ (W1 (u, W1) + B2(du, B2)). (103b)
The derivatives of the tensor’s eigenvalues are:
Bu, 1,2 = Ou, exp(—|u1,2|/k?)

= —Sgn;+’2)<8uztr (GET) + 6%@))\1,2, (104)

where

By, =a" ! (tr (GET) 8y, tr (GET) — 20, det(GET)>

(105)
and
Ou, tr (GET) = —(Opauz + Ozyuy), (106a)
Oy, det(GET) = 0y, (ac — b?)
= _(aac:cua: + axyuy)c
+ b(Oyzus + Oyyly)- (106b)

In the case b = 0 the difference to the above derivation is
that det(GET) = ac, thus 0., « and 9, det(GET) should be
modified accordingly. The component VuTDuy follows the
same line of calculations and is therefore omitted here.
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