Marquette University
e-Publications@Marquette

Mathematics, Statistics and Computer Science Mathematics, Statistics and Computer Science,
Faculty Research and Publications Department of
11-1-2010

PowerPack: Energy Profiling and Analysis of High-

Performance Systems and Applications

Rong Ge
Marquette University, rong.ge@marquette.edu

Xizhou Feng
Marquette University, xizhou.feng@marquette.edu

Shuaiwen Song
Virginia Polytechnic Institute and State University

Hung-Ching Chang
Virginia Polytechnic Institute and State University

Dong Li
Virginia Polytechnic Institute and State University

See next page for additional authors

Accepted version. IEEE Transactions on Parallel and Distributed Systems, Vol. 21, No. S (May 2010),
DOI. © 2010 IEEE. Used with permission.

https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://dx.doi.org/10.1109/TPDS.2009.76

Authors
Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W. Cameron

This article is available at e-Publications@Marquette: https://epublications.marquette.edu/mscs_fac/3

https://epublications.marquette.edu/mscs_fac/3

658 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 5, MAY 2010

PowerPack: Energy Profiling and Analysis of
High-Performance Systems and Applications

Rong Ge, Member, IEEE, Xizhou Feng, Member, IEEE, Shuaiwen Song,
Hung-Ching Chang, Student Member, IEEE, Dong Li, and Kirk W. Cameron, Member, IEEE

Abstract—Energy efficiency is a major concern in modern high-performance computing system design. In the past few years, there
has been mounting evidence that power usage limits system scale and computing density, and thus, ultimately system performance.
However, despite the impact of power and energy on the computer systems community, few studies provide insight to where and how
power is consumed on high-performance systems and applications. In previous work, we designed a framework called PowerPack that
was the first tool to isolate the power consumption of devices including disks, memory, NICs, and processors in a high-performance
cluster and correlate these measurements to application functions. In this work, we extend our framework to support systems with
multicore, multiprocessor-based nodes, and then provide in-depth analyses of the energy consumption of parallel applications on
clusters of these systems. These analyses include the impacts of chip multiprocessing on power and energy efficiency, and its
interaction with application executions. In addition, we use PowerPack to study the power dynamics and energy efficiencies of dynamic
voltage and frequency scaling (DVFS) techniques on clusters. Our experiments reveal conclusively how intelligent DVFS scheduling
can enhance system energy efficiency while maintaining performance.

Index Terms—Distributed system, CMP-based cluster, energy efficiency, power measurement, system tools, power management,

dynamic voltage and frequency scaling.

1 INTRODUCTION

POWER and energy are primary concerns in modern high-
performance computing system design. Operational
costs for powering and cooling large-scale systems will soon
exceed acquisition costs [26]. Recent architectures such as
IBM Blue Gene/L use low-power processor designs to
significantly boost the power efficiency of large-scale
systems, but still require power budgets of several mega-
watts. Today, large-scale systems and the computing centers
that house them are consuming massive amounts of energy
(typically 5-10 megawatts in total) to satisfy the needs of
advanced computational science. Consequently, national
laboratories such as ORNL have to commission substations
from regional power companies to support their growing
energy needs [2]. The addition of power substations to
support future systems is costly and takes years of planning
and coordination. The need for high-performance comput-
ing power efficiency is further amplified when considered in
the context of looming US policy changes driven by concerns
about the energy crisis and global warming [10].

e R. Ge is with the Department of Mathematics, Statistics, and Computer
Science, Marquette University, Milwaukee, WI 53233.

E-mail: rong.ge@marquette.edu.

o X. Feng is with the Department of Mathematics, Statistics, and Computer
Science, Marquette University, Milwaukee, WI 53233, and with the
Network Dynamics and Simulation Science laboratory at Virginia Tech,
Blacksburg, VA 24060. E-mail: xizhou.feng@marquette.edus.

e S. Song, H.-C. Chang, D. Li, and K.W. Cameron are with the Department
of Computer Science, Virginia Tech, Blacksburg, VA 24060.

E-mail: {s562673, hcchang}@ut.edu, {lid, cameron}@cs.vt.edu.

Manuscript received 31 Oct. 2008; revised 17 Mar. 2009; accepted 23 Mar.
2009; published online 23 Apr. 2009.

Recommended for acceptance by F. Petrini.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-10-0436.
Digital Object Identifier no. 10.1109/TPDS.2009.76.

1045-9219/10/$26.00 © 2010 IEEE

To improve the energy efficiency of high-performance
computing systems and applications, it is critical to profile
the power consumption of real systems and applications at
fine granularity. Many factors influence power and energy
consumption in high-performance systems, including each
component’s electrical specification, the system usage
characteristics of the applications, and system software. In
addition, power consumption and application performance
are tightly coupled and often conflicting and complex.
Improving energy efficiency without negatively affecting the
performance of an application is challenging. Thus, we need
direct power measurement to understand how each system
component contributes to total system power consumption.
Nevertheless, measuring component power alone is not
sufficient to improve our understanding of the interaction
between application performance and power consumption.
Techniques are needed to correlate the power consumption
of a component with the software executing on the system.
Fine-grain application and component-level profiling can be
used to identify how, when, and where power is consumed
by high-performance systems and applications.

1.1 Related Work

Despite the need for power monitoring infrastructures, few
tools provide fine-grain power/energy profiling correlated
to applications and multiple system components. To date,
none have profiled multicore processors or chip multi-
processing (CMP) and dynamic voltage and frequency
scaling (DVFS) at this level of granularity. The dearth of
tools is primarily due to a lack of readily available,
standardized hardware sensors in today’s computer servers
that are used as the basic building blocks of most high-
performance systems.

Published by the IEEE Computer Society

GE ET AL.: POWERPACK: ENERGY PROFILING AND ANALYSIS OF HIGH-PERFORMANCE SYSTEMS AND APPLICATIONS 659

Most existing power profiling research is focused on a
single computer component such as processor [6], [36], disk
[37], memory [36], and networking interface [35]. The
approaches used include simulation [6], [11], [21], [29],
[35], [36], [37], performance-profile-based estimation [27],
[30], and direct measurement [5], [13], [27], [30]. The
simulation approach refers to modeling power consump-
tion of various components at the microarchitectural level
during design time [6], [33], [34], [36]. The performance-
profile-based approach estimates component power con-
sumption using performance logs [27], [30]. Both ap-
proaches typically require some direct measurement for
parameter calibration and result validation. Although these
techniques can provide useful insights such as major power
consuming performance events, they are limited to a single
computing component without revealing the power profile
of the entire system. Related efforts estimate weighted
power and energy consumption of threads or applications
on a single-node computer system by counting performance
events and system activities from system logs or simulation
traces [5], [8], [14], [20]. Though useful, these approaches
provide little information about the energy usage of
individual components.

Some have studied the power efficiency of parallel and
distributed systems, at the system or building level [25],
[31], [32]. One technique is to measure power using
proprietary hardware to instrument power feeds to the
infrastructure. For example, the IBM PowerExecutive
toolkit [25] uses this approach to monitor the power draw
on selected IBM Blades and servers. Another technique is to
measure power via panels on the power distribution units.
Researchers at Lawrence Berkeley National Laboratory
used this technique to investigate the power usage of a
Cray XT4 system [31] as well as early studies measuring
power for full data centers [32]. Other less scientific
approaches, used in the past for ASC Terascale facilities
[3], estimate system power consumption based on prior
experiences or rules-of-thumb at design and acquisition
time. Early studies on power and energy consumption of
large-scale distributed systems have led to revised policy
considerations at the US Department of Energy and US
Environmental Protection Agency (EPA) [1]. However,
course-grained power profiling is not particularly useful
for determining exactly where and how power is consumed
by an application and the individual components in a
distributed system.

1.2 Contributions of This Work

To address the need for fine-grained power/energy
profiling on typical parallel and distributed systems (i.e.,
computer clusters), we created a power/energy/perfor-
mance profiling infrastructure named PowerPack, and used
it to evaluate energy efficiency and power-aware techni-
ques for parallel applications [12]. PowerPack is a combina-
tion of hardware (e.g., sensors and digital meters) and
software (e.g., drivers, instrumentation APIs, benchmarks,
and analysis tools) that achieves automatic power and
energy profiling at component and code segment granu-
larity. PowerPack provides correlations between system/
application activities and system power/energy consump-
tions on distributed systems. Due to increased system

complexity and sensitivity, in this work, we redesigned
PowerPack to support emerging multicore, multiprocessor
systems with advanced power management capabilities
such as DVFS.

Particularly, in this paper, we have made the following
contributions:

1. We design, implement, and validate a first-of-its-
kind framework for accurate and scalable power
profiling and evaluation of multicore, multiproces-
sor-based distributed systems and applications.

2. Using our framework, we investigate power and
energy profiles of parallel scientific applications at
a level of detail previously not possible and at a
scale not found in the extant literature. We
compare and contrast the evolution of power
budgets from single-core, single-processor, to
multicore, multiprocessor systems.

3. We quantitatively show and analyze how DVEFS
changes power and energy profiles of applications
and their energy efficiency on emergent power
scalable systems. We emphasize that profiling the
changes in power consumption at this level of
granularity has not been previously presented in the
extant literature (including in our previous work).

The remainder of this paper is organized as follows:

Section 2 presents the design, implementation, and valida-
tion of the PowerPack framework. Then, as a case study and
proof of concept, the detailed power and energy profiles of
the NPB benchmarks on a multicore, multiprocessor-based
cluster are provided in Section 3. Next, we analyze the
power-performance efficiency of the NPB benchmarks for
different single-chip multiprocessing configurations in
Section 4. Section 5 extends PowerPack to power-perfor-
mance evaluation of DVFS scheduling. Finally, Section 6
summarizes our findings and future work.

2 THE PoweRPACK FRAMEWORK

2.1 Overview

As described above, the PowerPack framework is a set of
toolkits composed of both hardware and software compo-
nents. The hardware components include sensors, meters,
circuits, and data acquisition devices that enable direct power
measurement and instrumentation. The software compo-
nents include drivers for various meters and sensors, and
user-level APIs for controlling power profiling and code
synchronization. Together, these hardware and software
components enable two unique features: 1) fine-grained
component-level power measurement and 2) automatic
synchronization between power profiles and application
code segments.

Fig. 1 shows a typical PowerPack deployment for power
profiling on a high-performance cluster. PowerPack simul-
taneously measures system power by component. To obtain
isolated component power, we tap a precision sensing
resistor into each individual DC power line (explained in
detail later in this section) and then measure the voltage
difference at two ends of the resistor using a digital meter.
All system DC power lines are measured simultaneously
and used to derive component power according to a
derived mapping between lines and components. To obtain

660 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

Power

supplg%>

Main board,
disk, memory,
fan and etc

multiple nodes beowulf

NO. 5, MAY 2010

$ NI data
resistor) acquisition

Data Collection

Fig. 1. An implementation of the PowerPack framework on a 9-node cluster with 18 AMD dual-core Opteron processors. AC Power is
monitored at the node level using a Watt's Up Pro power meter and/or the ACPI standard interface. Within a node, DC power is monitored
for each system component using the NI data acquisition system. PowerPack software automatically synchronizes system and application
software events with power profiles. PowerPack AC and DC power profiling software is portable and has been tested on over half a dozen

systems.

total system power including AC/DC conversion, AC
power is measured via an inline sensor device between
the system power cable and the wall. The current version of
PowerPack supports various types of power sensors (or
meters): 1) National Instruments data acquisition system
such as Analog Input Module NI 9205NI and cDAQ chassis
NI ¢cDAQ9172 for DC power measurement; 2) Watt’s Up
Pro power meter for AC power measurement; and
3) Advanced Configuration and Power Interface (ACPI)
enabled power supply. The combination of DC measure-
ments and AC measurements allows us to capture and
isolate total power usage including inefficiencies in AC to
DC conversion. This redundant set of measurements allows
us to verify the accuracy of each technique.

The software contained in PowerPack serves two pur-
poses: online data recording and postmortem data analysis.
The online data recording components record meter readings
and synchronize power profiling with code segments.
Previous versions of PowerPack used client-server structures
to synchronize power profiling with code segments, i.e., the
data collection servers polled the meters and recorded data;
then, the client API triggered the server to record data. For
improved scalability, the new implementation of PowerPack
uses a time-stamp-based approach to synchronize multiple
data streams from various meters, sensors, and performance
instruments. We note that the gathering of power profiling
data is purposely “out-of-band,” meaning the data is
collected, collated, and analyzed on a separate computer
(see Fig. 1). Such measurement ensures power profiling does
not impact the system under test. Postmortem data analysis
software processes the data and creates the power profiles of
applications, systems, and components. The results in this
work were obtained using NI devices, Watt’s Up Pro power
meters, and Baytech power distribution units. However,
PowerPack also supports meters from Yokogawa and Radio-
Shack [12]. The latest version of PowerPack software frame-
work leverages any hardware power measurement device to
control and correlate the measured data to system compo-
nents, system software events, and application source code.

PowerPack directly measures one node at a time. To
obtain in-depth power consumption of an entire cluster, we
use a node remapping approach. Node remapping works as
follows: Suppose we are running a parallel application on
M nodes. We fix the measurement equipment to one
physical node (e.g., node #1) and repeatedly run the same
workload M times. Each time we map the tested physical
node to a different virtual node. Since all slave nodes are
identical (as they should be and we experimentally
confirmed for homogeneous clusters), we use the M
independent measurements on one node to emulate one
measurement on M nodes. For fine-grain analysis of a
heterogeneous environment, we can instrument one version
of each type of node for coverage.

Except where otherwise noted, all results in this paper
were obtained from a 9-node cluster named Dori. Each Dori
node contains two dual-core AMD Opteron processors
running at 1.8 GHz , six 1 GB SDRAM modules, one
Western Digital WD800 SATA hard drive, one Tyan
Thunder S2882 motherboard, two CPU fans, and two
system fans. Though we limit our results to this system,
we have ported PowerPack to a number of other systems
with processors varying from Pentium II through Pentium
IV and AMD Athlon [12]. The current dual-core dual-
processor system was selected to further demonstrate the
effectiveness of PowerPack for profiling multicore architec-
tures that have begun to dominate high-performance cluster
deployments [28]. While our discussion is specific, our
approach is portable to any commodity-based cluster with a
standard power supply (e.g., ATX and BTX), and any
number or types of processors, disks, memory, and NICs.

2.2 Fine-Grain Systematic Power Measurement

PowerPack uses direct or derived measurements to isolate
components within nodal power profiles. Specifically, we
isolate CPU, memory, disk, motherboard, CPU fans, and
system fans. Using combined AC and DC measurements, we
canalsoisolate the power supply. The remaining components
are treated as “others,” which includes onboard video card,

GE ET AL.: POWERPACK: ENERGY PROFILING AND ANALYSIS OF HIGH-PERFORMANCE SYSTEMS AND APPLICATIONS 661

keyboard, onboard network adapter, etc. Our measurement
approach is as follows: if a component is powered through
several individual pins, we measure power consumption
through each pin and use the sum as the component power; if
two or more components are powered through shared pins,
we observe the changes on all pins while adding/removing
components and running different microbenchmarks to infer
the mapping between components and pins. Specifically,
here is the technique used for each component.

CPU power. According to our experiments and con-
firmed by the ATX power supply design guide, the four
cores are powered through four +12 VDC pins. Thus, we
can profile CPU power consumption by measuring all +12
VDC pins directly.

Disk power. The disk is connected to a peripheral power
connection independently and Powered by one +12 VDC
pin and one +5 VDC pin. By directly measuring both +12
VDC and +5 VDC pins, we can profile disk power
consumption directly.

Memory power. Memory modules are powered through
four +5 VDC pins. The power consumption for memory is
directly measured from these four pins. In previous work,
we relied on a linear extrapolation technique to deduce
memory power consumption. For systems where memory
is not powered through dedicated pins, we recommend
using our previous linear extrapolation techniques [12] to
isolate memory power consumption.

Motherboard power. NIC and other onboard compo-
nents are powered through +3.3 VDC pins. It is challenging
to separate NIC power consumption from other onboard
components directly. However, our measurements indicate
the onboard NIC only consumes a minimal amount of
power under maximum load. We verified this by monitor-
ing the total system power consumption changes under
saturated network card bandwidth. We verified these
findings by consulting the documentation of the NIC. Thus,
based on our empirical measurements, we approximate
NIC power with a constant value. For simplicity, we treat
the power consumption of other onboard components as
constant too. We justify this assumption since worker nodes
running parallel scientific applications on computational
clusters typically do not access onboard components (such
as the video card) on slave nodes. Our measurements show
that dynamic power usage from the memory and proces-
sors far exceed NIC and motherboard power consumption.
As mentioned, PowerPack isolates the energy use for CPU,
memory, NIC, and disk. Profiling and analysis of other
components including PCI devices is left to future work.

CPU and system fans. Integrating multiple cores into a
single computing node demands more powerful cooling. In
the system under test, there are two CPU fans, with one for
each processor, and two system fans on each node of our
dual-core dual-processor cluster. Each fan is powered by a
+12 VDC pin and a +5 VDC pin.

2.3 Automatic Power Profiling and Code
Synchronization

Once the manual instrumentation setup is complete, the

process of obtaining and controlling power profiling is fully

automated by software. In fact, the PowerPack software

includes all the microbenchmarks necessary to isolate

power lines in the instrumented node. Additionally, all

Meter Reacer| Meter Reace] ~— [Meter Reade
Thread Thread Thread
ine ine

d l i l{ Shared Memory

FPowerteter Cortrol Thread

T I

Message Listener Power Data Log

FPowerAnalyzer

Message Client System Statues Log

-

F 3
Library Calls

Library Calls_

Application System Status Profiler

Fig. 2. Software architecture for automatic power and energy profiling.
Through modular design, our software automates the process of
profiling power data and correlates the results to source code in a
distributed system.

the experimental data gathered herein are obtained remo-
tely via local intranet. In this section, we describe the
software components of PowerPack that automate the entire
profiling process and correlate the power profiles with
application source code. PowerPack provides a suite of API
calls for the application to control and communicate with a
meter control process.

The structure of the profiling software is shown in Fig. 2,
in which the data collection computer executes a meter
control thread and a group of meter read threads. Each
meter read thread corresponds to one digital meter. The
meter read threads collect readings from the meters and
send them to the meter control thread. The meter control
thread monitors messages from applications running on the
cluster and modifies shared variables of the meter read
threads according to messages received.

To synchronize the live power profiling process with the
running application, profiled applications trigger message
operations through a set of user-level APIs or library calls
informing the meter control thread to take corresponding
actions to annotate the power profile. Thus, by inserting
the power profile API pmeter_start_session and pmeter_
end_session before and after the code region of interest, we
are able to map the power profile to the source code. In
Fig. 3, we list a commonly used subset of the power profile
API in PowerPack.

We extended the above approach to work with existing
commercial data acquisition software such as the NI
LabView system. Instead of writing our own drivers for
this meter, we record data samples coming from the NI
c¢DAQ9172 chassis with user-configured LabView modules,
then align and merge these samples with other data sources

662 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

pmeter_init (char *ip_address, int *port);

//connect to meter control thread
pmeter_log

(char *log_file, int *option);

//set power profile log file and options
pmeter_start_session (char *session_label);
//start a new profile session and label it

pmeter_end_seesion ();
//stop current profile session

pmeter_finalize();
//disconnect from the meter control thread

Fig. 3. The commonly used PowerPack power meter profile API.

containing synchronization information (e.g., AC power
profile from the Watts Up power meter).

3 COMPONENT AND SYSTEM POWER PROFILES

3.1 Systemwide Power Distribution

We begin our analysis with systemwide power distribu-
tion for sequential applications on a single compute node.
Fig. 4 shows the snapshots of power distribution under
two kinds of scenarios—case 1: no user application is
running on the system and case 2: the system is running
one of three applications from the SPEC CPU 2000
benchmark suite [24] (164.gzip and 171.swim) and the
Linux standard file copy command (cp) programs. These
three benchmarks are computation intensive (164.gzip),
memory access intensive (171.swim), and disk access
intensive (cp), respectively. Compared against the power
profile when the system is idle, their power profiles
reveal how a component’s powers change when stressed.
For case 2, the system is running four instances of the
same program so that each of the four cores simulta-
neously executes one of them and the load is symmetric.
We obtain the following observations from the figure:

1. Since different workloads stress different compo-
nents, both system power and individual component
power vary with workload. Component usage is also
reflected in the power profile.

2. The system power under zero user workload
(152.2 watts) is more than 72.9 percent of the total
system power under load. Reducing power con-
sumption of the power supply and fans could save
significant energy. We note that cheap, inefficient
power supplies are typical in clusters that use
commodity parts. Power supplies traditionally ac-
count for less than 2 percent of the acquisition
budget of a server node. Improving power supply
and fan efficiencies is important but well beyond the
scope of our work.

3. When the system is under load, CPU power
dominates (e.g., for 164.gzip, CPU power is
56 percent of system power). However, depending
on the workload characteristics, disk and memory
may also be significant consumers of the total
power budget. The components that dominate the

NO. 5, MAY 2010

258

"CPU =E=3
Henory
isk ===

280
Systen—-Fan iRl
Fower

i5a

<

e

[
[

iee

Power {Hatts)

TR

IR,
Setetel

SRR

56

T
IR
25
55
LRLRKS

,.
%
5355
Setetel
SRS

T
%
o2}

164, gzip 171.swin

Fig. 4. Power distribution for a single node under different workloads:
(a) CPU-bounded workload 164.zip, (b) zero user workload or idle,
(c) memory-bounded workload 171.swim, and (d) disk-bounded work-
load cp.

power budget in a system should be the first targets
of optimizations for power and energy reduction.

3.2 Power Profiles of Parallel Applications

As a case study and proof of concept, we profile the power
and energy consumption of the NAS parallel benchmarks
(Version 3.2) on our cluster using the PowerPack frame-
work. The NAS parallel benchmarks [4] consist of five
kernels and three applications that mimic the computation
and data movement characteristics of parallel computa-
tional fluid dynamics (CFD) applications. We measured
CPU, memory, disk, CPU fan, and motherboard power
consumption over time for different benchmarks running
on different numbers of compute nodes.

3.2.1 Nodal Power Profile of the FT Benchmark

We select a parallel FT benchmark in this study and show
its power profile. The FT benchmark exhibits obvious
alternating computation phase, memory phase, and com-
munication phase. Therefore, its power profile reveals how
components’ power change with execution phases for a
single application. In particular, the FT benchmark begins
with a warm up phase and an initialization phase followed
by a certain number of iterations. Each iteration consists of
computation (fft), memory access (matrix transpose), all-to-
all communication, memory access, computation, and a
reduce communication. In Fig. 5, we plot the power profiles
of the NPB FT benchmark with problem size B during the
first several iterations when running on 16 cores of four
nodes. From this point, the illustrated power profiles of a
parallel application are for one of the computing nodes
unless explicitly stated otherwise.

The power profiles are almost identical for all
iterations in which spikes and valleys occur with regular
patterns coinciding with the characteristics of different
computation stages. In other words, there exist “power
phases” corresponding to the workload phases. The CPU
power consumption varies from 119 watts in the
computation stage to 72 watts in all-to-all communication
stage. The memory power consumption varies from
28 watts in the memory stage to 18 watts in communica-
tion stage. The power profiles of CPU and memory are

GE ET AL.:

POWERPACK: ENERGY PROFILING AND ANALYSIS OF HIGH-PERFORMANCE SYSTEMS AND APPLICATIONS

663

Power Profile of FT Benchmark (Class B, NP=16)

startup initialize

---X--

=3
=]

@
o

Power {watts)

5

N
o

]
[l

.,

"
Il
[l
'
[l
[l
1
'
]
v
1
q

Memory

16.4 184 20.4 22.4 24.4

Y
26.4 28.4 30.4 32.4 344 Disk

Time (seconds)

Fig. 5. Power use on one of four nodes for the FT benchmark, class B workload. Here, each node runs four processes with one process per core.

fft

Transpose_x_yz

cfit fft

<&
<=

transpose_local

offtgli, o mpi_all-to-all

transpos'ejinis

]
IA
120 "
{nd-recv sendrecy wait
100 e o

80

60 -

Power (Watts)

40

20

X
---------Iéé.-."-

CPU

Memory

eefecccccccscnssccssccccccchecciiefonan

e e L L L L LT TEr Sy [Apy.) S,

0

41.734 42234 42734 43234

43.734

.

—

Disk

44234 44734 45234 45734 46.234

Time (Seconds)

Fig. 6. Mapping between power profile and code segments for FT benchmark with Class B, 16 processes on four nodes. Using code analysis and
code power profile synchronization mechanisms provided in PowerPack, we can map the power phases to each individual function and perform
detailed power efficiency analysis on selected code segments. This is useful when exploring function-level power-performance optimization.

related: when memory power increases, CPU power
typically decreases and vice versa.

We also observed fairly constant power consumption for
the disk since the FT benchmark requires few disk accesses.
The power consumed by the motherboard (NIC + other
chipset components) and fans (CPU and system fans) is
constant. For simplification, we will not discuss the disk,
motherboard, and fans power consumption in succeeding
discussions since none of the benchmarks under study task
the disk extensively and we observed that the motherboard
and fan power consumption vary little across applications.

3.2.2 Mapping Power Profile to Source Code

PowerPack can correlate an application’s power profile to its
source code, thereby allowing us to study the power
behavior of a specific function or code segment. Fig. 6 shows
the mapping between the power profile and the major
functions of the FT benchmark. From this figure, we observe
the power variations for functions that are compute intensive
(cffts-1), memory intensive (transpose-local), and commu-
nication intensive (all-to-all). This information can be used to

target code segments of application for power reduction. The
level of granularity allows us to quantify the ability of the
component to minimize energy consumption when not in
use. For example, the CPU still consumes almost 41 percent
of its peak power during sending and receiving commu-
nications. This is likely due to spin locks running on the
processor while blocked waiting for a data transmission.

3.2.3 Power Profile Variation with Node and
System Size

Scaling a fixed workload to an increasing number of
computing cores and nodes may change the workload
characteristics (the percentage of CPU computation, memory
access, and message communication). We use PowerPack to
assess if the change is reflected in the power profiles. We have
profiled the power consumption for all NPB benchmarks
with different combinations of number of computing cores
(up to 16), number of nodes, and problem sizes. In Fig. 7, we
provide an overview of the profile variations under different
system setups for benchmarks FT, EP, and MG.

664

Power Profile of FT Benchmark (Class B)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 5, MAY 2010

Power Profile of FT

1PROC/NODE 4PROCS/NODE
T NP=1 NP=2 NP=4 NP=8 150 NP=4 INP=8 NP=16,
25s 1 18s | 14 1 1
2" : i . :<_ZL>' ® 100
g St o7\ ghamannead MIWM g
=~ I 1 | =
5 50 | : 1 1 5 50
% 1 1 1 1 g
o , | Memory : ! ! | £
Time (seconds) Time (seconds)
@
Power Pr0f||e1(gglo:’cb/eNrSBr£ark (Class B) Power Profile of EP benchmark
4PROCS/NODE
150 —+ NP=4 NP=8 NP=16
NP=1] NP=2 (NP=4 NP=8 | 150 T 4 e 1s
S h S 1 S 1 . 1
100 + | : : : . < > :4":
£ W:M:MM ;‘3100--,' ".'jvr.f
2 cPU ! : b g cPU | o
o500 + ! , i 1 9] 1 1o
: | L 2 w0 L
= Moo : : : : & Memory] 1 :
0 ' Lo : T
Time (seconds) Time (secc;nds)
(b)
Power Profile of MG benchmark(Class B) Power Profile of MG
1PROC/NODE 4PROCS/NODE
150 NP=4 NP=8 NP=16
NP=1 1 NP=2 I NP=4 1 NP=8 I 50— 18 s o
4.2s \ 2.7s 1B T s 7 4—’:4—>:4—§|
210 | A} A M
£ 14 — 100 +
CPU
: WM g L VUM
] 1 1 1 1 2 1 1 1
2 50 | 1 | | T 50 1 | 1
o 1 1 1 1 g 1 1 1
1 1 1 1 3 1 1 1
Memory 1 1 1 1 o o Memory 1 1 1
1 1 T T T

Time (seconds)

Time (seconds)

©

Fig. 7. FT, EP, and MG on different numbers of nodes. NP stands for the number of total simultaneous processes for the program. The figures on the
left are with setup UP, and those on the right are with setup CMP. Scaling a fixed workload to increasing number of nodes may change the workload
characteristics (the percentage of CPU computation, memory access, and message communication) and the change is reflected in the power profile.
(a) Power profiles on one node for FT benchmark. (b) Power profiles on one node for EP benchmark. (c) Power profiles on one node for MG

benchmark.

Two parallel computing setups are studied for each
benchmark. The first setup assigns one process per node.
Under this setup, only one out of the four cores on each
used node executes the application while the other three
cores are idle. We denote this setup UP (for chip
Uniprocessing). The second setup assigns four processes
per node. Under this setup, all the four cores on a node are
involved in executing the application. We denote this setup
CMP (for Chip Multiprocessing). Fig. 7 shows segments of
synchronized power profiles under these two setups with
various numbers of computing cores and nodes; all power
profiles correspond to the same computing phase in the
application on the same node.

Fig. 7a shows the power profiles on one of the computing
nodes for FT with two iterations. For both setups of UP and

CMP, the duration of each phase shortens as the number of
computing cores increases since parallelism results in some
speedup. Also, since the workload is broken into smaller
pieces, CPU and memory peak power decrease as the
number of computing cores increase. Although the CPU
and memory profiles with two different setups share the
same trend as the number of computing cores increases, the
absolute power values per node under UP setup are smaller
than those under CMP setup. For example, when the total
number of processors is four (NP = 4), the peak CPU and
memory power under UP setup can be 23 watts and
12 watts smaller, respectively. With UP, a node consumes
less power since only one of the four available cores
executes FT, while with CMP all the four cores execute FT.
Although with UP, a single node consumes less power, the

GE ET AL.: POWERPACK: ENERGY PROFILING AND ANALYSIS OF HIGH-PERFORMANCE SYSTEMS AND APPLICATIONS 665

total system over all the nodes consumes more power since
UP needs four times the node count as needed by CMP.
Total system energy consumption and efficiency will be
discussed in the next section.

The embarrassingly parallel benchmark (EP) is essentially
computation intensive and communication free. Hence, CPU
intensity doesn’t change as the number of computing cores
increases. The fairly constant CPU power consumption in
Fig. 7b reflects this property under both setups. However,
the absolute CPU power consumption with UP setup is less
than that under CMP setup. For example, when the total
number of computing cores is four, the CPU power
consumption under UP setup is 30 watts smaller. Again,
this is explained by the fact that UP only uses one of the four
available cores on a node while CMP uses all the four codes
for executing EP. One interesting observation in this case is
memory power doesn’t noticeably change with the number
of computing cores or with the setup. This is explained by the
minimal memory accesses of EP. As we shall see in the next
section, fixing the total number of computing cores across
UP and CMP setups results in the same performance for EP
while the total energy consumption under the CMP setup is
less than half of the energy using UP.

The multigrid benchmark (MG) is more computation
intensive than FT and also exhibits computational load
imbalance across computing cores; i.e., each run exhibits a
slightly different power profile depending on the data set it
is assigned. Generally though, the average power for MG
decreases with an increase in the number of nodes for both
CPU and memory. This is due to changes in the computa-
tion to communication ratio as the number of computing
cores increases. Parallel overhead increases with the
number of computing cores which results in a dampening
of the power consumption per node. When the total number
of computing cores is four, the difference in CPU power for
MG under the two setups is about 35 watts, the most among
the three benchmarks shown in this section. Such significant
difference in CPU power consumption indirectly reflects
the computational intensity of MG. Again, we will discuss
efficiency metrics for MG in the next section.

4 ENERGY EFFICIENCY OF PARALLEL
APPLICATIONS

In this section, we apply PowerPack to analyze the energy
efficiency of parallel applications. While nodal power (P)
describes the rate of energy consumption at a discrete point
in time, energy (E) specifies the total number of joules spent
in time interval (¢, t2), as a sum of products of average power
(P) and delay (D = t, — t;) over all the computing nodes:

#nodes

> /ttz P(t)dt =

1

FE =

4.1 Energy Scaling

Equation (1) specifies the relation between power, delay
(the final measure of performance), and energy. To reduce
energy, we need to reduce the delay, the average power, or
both. Within the context of parallel processing, by increas-
ing the number of processors, we can not only speed up the
application’s execution (decrease delay) but also increase

the total power consumption. Depending on the scalability
of the application, the energy consumed by an application
may be constant, grow slowly, or grow very quickly with
the number of processors.

For distributed parallel applications, we use two metrics
to compare the energy-performance behavior of different
parallel applications such as those of the NPB benchmarks:
1) the speedup (D;/Dy) for performance scalability, where
D; is the sequential execution time on one process, and Dy
is the parallel execution time with N computing cores in
parallel and 2) normalized system energy (En/E;) for
energy scalability, or the ratio of energy on a parallel system
of N computing cores to energy using sequential execution
and a single process.

As in the previous section, we study the performance and
energy scalability under two parallel computing setups: UP
and CMP, and compare the values between these two
setups. Fig. 8 shows the variations of speedup and energy
with the number of total parallel computing cores for the two
setups. We observe that energy consumption using the CMP
setup is always less than using the UP setup for the system
under test, while speedups are more complicated. In detail,
we identify three energy-performance categories for the
codes we measured.

Type L Under either of the two setups, energy remains
constant or approximately constant while speedup in-
creases linearly with the number of parallel computing
cores, as shown in Fig. 8a. Between the two setups,
performance is about the same for a given number of
computing cores but energy is less under CMP setup. EP,
SP, LU, and BT exhibit this behavior. Such applications are
computation intensive with minimal or overlapped com-
munication; the execution time decreases proportionally
with the number of computing cores; and chip multi-
processing provides the best energy efficiency (about
70 percent energy savings) with similar performance.

Type II. Under either of the two setups, both energy and
speedup increase with the number of parallel computing
cores, but speedup increases faster. Between the two setups,
both speedup and energy consumption under UP setup are
larger than those under CMP setup. MG and CG share this
behavior as shown in Fig. 8b. Such applications are
computation intensive, have a large memory footprint,
and nonnegligible communication; parallel processing
reduces their execution times with an associated energy
increase; the large memory footprint causes speedup to
decrease when the parallel processing setup (across nodes)
shifts to multicore processing (within a node) since more
processes share a fixed amount of physical memory.

Type IIL. Under both UP and CMP setups, speedup and
energy consumption increase with the number of computing
cores at comparable rates. Between the two setups, the
speedup curves may cross, e.g., between NP = 4and NP = 8
for FT benchmark, as shown in Fig. 8c. As in the other
measured codes, the energy consumption under the UP setup
islarger than that under the CMP setup for a given number of
computing cores. FT and IS belong to type III. These
applications are communication intensive; performance does
not scale well with the number of parallel computing cores;
any performance improvement is accompanied by energy

666

Speedup for EP Benchmark

—o— PROCNODE
a L — 4PROCSNODE —— /7
=
Qo
(7] /
4 / ¢
0 ‘ ;

1 2 4 8 16
Number of Parallel Processes

Speedup for MG Benchmark
«=4— {PROC/NODE
4 +— /
4PROCS/NODE
a
S 3
°
@
g, P
’ /
1

1 2 4 8 16
Number of Parallel Processes

Speedup for FT Benchmark

—&— PROCNODE
41 4PROCSNODE 77 —
o
3° /
Q
8
o 2 4././{
1 4
0 ;
1 2 4 8 16

Number of Parallel Processes

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 5, MAY 2010

Energy Consumption for EP Benchmark

16
£
o
g12
7 =4—1PROC/NODE
§ 8 - 4PROCSNODE
]
5 4
[
w ® - N o
0 = - —8
1 2 4 8 16
Number of Parallel Processes
(a)
Energy Consumption for MG Benchmark
5
g === 1PROCNODE
z 47 4PROCS/NODE
£
723
c
8
- 2
2 /
211
w
0
1 2 4 8 16
Number of Parallel Processes
(b)
Energy Consumption for FT Bechmark
5 == 1PROC/NODE
=
S 4 4PROCS/NODE
a
£
23
[
8
=27
2
2
g1 o
0

1 2 4 8 16
Number of Parallel Processes

(©

Fig. 8. Energy-performance efficiency. These graphs are normalized by values for performance (i.e., speedup) and total system energy under UP
setup where only one process is running on one core of a processor. (a) EP shows linear performance improvement with constant energy
consumption. (b) MG is capable of some speedup with the number of parallel processes with a corresponding increase in the amount of total system
energy. (c) FT shows only minor performance improvement but relatively more increase in total system energy.

increase. Reducing communication cost can improve the
overall performance for such applications, which is sup-
ported by the speedups at NP = 4. That is, when the parallel
computing setup shifts form UP to CMP, the speedup at
NP = 4 increases because of reduced communication cost.

Our analysis indicates that energy scaling of parallel
applications is strongly tied to parallel scalability. In other
words, as applications have good scalability, they also make
more efficient use of the energy when using more
computing cores. In our study, communication is a major
impacting factor, and large communication to computation
ratio leads to less scalable performance and less efficient use
of energy for both UP and CMP setups. Memory contention
is another impacting factor that largely determines the
difference in performance and energy scalability between
UP and CMP setups. Our results show the scalability up to
16 cores. As the number of cores increases, the resulting
performance and energy scalability will be decided by how
communication to computation ratio and memory conten-
tion change with the number of cores.

4.2 Resource Scheduling

An application’s energy scaling is dependent on its speedup
or parallel efficiency. For certain applications such as FT and
MG, we can achieve speedup by running on more cores but
with increased total energy consumption. Our measurements
indicate there are trade-offs between power, energy, and
performance that should be considered to determine the best
“operating points” or the best configurations in number of
cores (NP) based on the user’s needs. For performance-
constrained systems, the best operating points will be those
that minimize delay (D). For power-constrained systems, the
best operating points will be those that minimize power (P) or
energy (£). For systems where energy efficiency is optimized
or power performance must be balanced, the choice of
appropriate metric is whether the performance gain was
worth the additional energy requirement. The energy-delay
product ED® (« is real number and « > 1) is commonly used
as a single metric to weigh the effects of power and
performance for a given application under different config-
urations. The smaller ED” the configuration achieves for an

GE ET AL.: POWERPACK: ENERGY PROFILING AND ANALYSIS OF HIGH-PERFORMANCE SYSTEMS AND APPLICATIONS 667

Energy-Performance Tradeoff for Parallel
Applications (MG, Class=B)

Energy-Performance Tradeoff for Parallel
Applications (MG, Class=B)

2 - T —e—upP
= CMP .
% 1.6 16 /
£ —e—UP [y i3
= 1.2 CMP — - - ’/,/
o
c =
2 o8 "~ 208
5]
]
% 0.4 1 \\’\’ 0.4 1
]
0 T T T T 0
1 2 4 8 16 1 2 4 8 16
Number of computing cores Number of computing cores
Energy-Performance Tradeoff for Parallel Energy-Performance Tradeoff for Parallel
Applications (MG, Class=B) Applications (MG, Class=B)
2 2
1.6 1.6
—e—UP
o 12 oMP— o 1.2
o] a .
C RN woos
\\‘\ —e—upP
0.4 —s 0.4 \\ CMP
0 0 T T
1 2 4 8 16 1 2 4 8 16

Number of computing cores

Number of computing cores

Fig. 9. Energy-performance trade-off of NPB benchmark MG on a high-performance cluster. We compare four different types of energy efficiency
metrics: performance-oriented, energy-oriented, and performance-energy tradeoff in EDP and ED2P, under two process configurations (UP and
CMP). EDP is the inverse of perf/J and ED2P is the inverse of Perf?/J. Though the exact optimal operating points differ under different efficiency
metrics, using multiple cores per node is more energy efficient in most cases.

application, the better the efficiency of this configuration for
this application. EDP (the energy-delay product where oo = 1)
and ED2P (the energy-delay’ product where o =2) are
popular metrics in the form of ED® for computer clusters.
EDP is equivalent to the inverse of performance per Joule
(perf/]) and ED2P is equivalent to the inverse of performance
square per Joule (perf®/.J).

We use NPB MG benchmark (class B) as an example to
show the relationship between four metrics (normalized £
and D, EDP, and ED2P) and the number of cores. Fig. 9
presents the values under UP and CMP setups. To
minimize energy (E), we should schedule four cores on a
single node to efficiently parallelize MG. To minimize delay
(D), we should schedule eight computing cores to execute
MG, where each of the eight cores resides on a different
node. This setup achieves 4.67x speedup. For energy
efficiency, the EDP metric suggests scheduling eight cores
on two nodes for 3.12x speedup and 0.72x energy cost.
Using the ED2P metric suggests running with 16 cores on
four nodes for 4.33x speedup and 1.26x energy cost. For
accuracy, the average delay and energy consumption
obtained from multiple runs are used in Fig. 9.

5 PoOwWER-PERFORMANCE EFFICIENCY FOR
PowEeR-AWARE CLUSTER

So far, discussions have been limited to “conventional”
distributed systems without specific, controllable power
modes. Today, many distributed systems have various power
modes available to conserve energy. For example, typical
AMD Opteron and Intel Xeon processors can scale power
through changing of a frequency and voltage pair; this
technique is referred to as DVFS. The power consumption on

such processors typically changes significantly with fre-
quency [22].

DVES has been used for power reduction and energy
conservation in high-performance distributed systems [7],
[15], [16], [18], [19], [23] by scaling down processor
frequency during processor slackness, or when slower
processor speed does not impact performance significantly.
This work assumes the power consumed by the CPU
dominates system power, and thus, scaling down frequency
can significantly reduce system power. In this work, it is not
our intent to study all the different types of CPU scheduling
algorithms for effective use of DVFS. Our intention is to
demonstrate the insight PowerPack provides to quantita-
tively explain the power-performance efficiency and energy
conservation of applications using DVEFS.

The AMD Opteron processors on our experimental
cluster have two publicly available (i.e., exposed) frequen-
cies 1,000 and 1,800 MHz. As typical in these types of
systems, we were able to experimentally add three other
frequencies for use: 1,200, 1,400, and 1,600 MHz. Table 1
shows the power-performance efficiency of the NPB
benchmarks with 16 processes on four nodes. The
columns “XXX MHz"” refer to the CPU speed at which
we run the applications. The rows “XX.C.16” refer to the
NPB code with problem size C on 16 processes. For each
application row (e.g., IS.C.16) and frequency column (e.g.,
1,800), there is a pair of numbers in a top cell and a
bottom cell. The number in the top cell is the normalized
delay and the number in the bottom cell is the normalized
energy. These numbers are normalized to the highest
frequency (1,800 MHz). We observe that NPB applications
show two categories of power-performance efficiency
under different processor frequencies.

668

TABLE 1
Energy-Performance Profiles of NPB Parallel Benchmarks

Code Frequency (MHz)
1800 | 1600 | 1400 | 1200 | 1000
IS.C.16 [1.00 1.07 [1.04 |1.05 |1.16
1.00 097 1090 [0.83 |0.95
FT.C.16 |1.00 1.05 |1.11 |[1.20 |1.30
1.00 095 1092 |0.88 |0.99
CG.C.16 | 1.00 1.04 |1.10 |1.16 |1.26
1.00 095 1091 [0.87 |0.97
EP.C.16 | 1.00 1.23 | 1.29 |[1.50 |1.80
1.00 1.00 |1.03 |[1.05 |1.29
LU.C.16 | 1.00 1.00 |1.07 |1.24 |1.22
1.00 092 10.89 083 |0.92
MG.C.16 | 1.00 1.05 |1.08 |1.13 [1.20
1.00 097 10.92]0.87 |0.95
BT.C.16 | 1.00 1.05 |1.15 [1.26 |141
1.00 095 1093 [0.89 |1.03

The columns “XXX MHZz” refer to the CPU speed at which we run the
applications. The rows “XX.C.16” refer to the NPB code with problem
size C on 16 processes. For each application row (e.g., IS.C.16) and
frequency column (e.g., 1,800), there is a pair of numbers in a top cell
and a bottom cell. The number in the top cell is the normalized delay and
the number in the bottom cell is the normalized energy. These numbers
are normalized to the highest frequency (1,800 MHz).

1. Decreasing CPU frequency causes a nearly propor-
tional increase in application execution time and
possible increase in energy consumption for applica-
tions, such as EP and BT.

2. Decreasing CPU frequency causes an increase in
application execution time but saves energy. The
percentage of energy savings may be comparable to,
better than, or less than the percentage of perfor-
mance degradation. All the other NPB applications
belong to this category.

To quantitatively explain why DVFS has such different
impacts on application power-performance efficiency, we
use PowerPack fine-grain profiling information to study
how voltage and frequency scaling impact the power
consumption of each component, especially the CPU,
during application execution.

Power Profile at 1800MHz on Idle System
140

120
100
80 A’-‘\/\NWNA/V\/*—’\/\VW-W—M

60 - b

Power (Watts)

40 4

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

Time

NO. 5, MAY 2010

First, we study the power profiles at various CPU
frequencies when there is no user workload running on the
system (idle), as shown in Fig. 10. When CPU frequency
decreases from 1,800 to 1,000 MHz, CPU power consump-
tion decreases from about 79 to about 53 Watts, and power
consumption on the other components is unchanged. This
confirms the typical assumption that scaling down CPU
frequency reduces only CPU power but that as a
percentage of total system energy the amount of power
savings is significant. The 26 Watts CPU power drop from
1,800 to 1,000 MHz comes from both dynamic power and
leakage power.

Next, we analyze the power profiles of EP. Fig. 11 shows
the profiles of EP at 1,800 and 1,000 MHz. From this figure,
we observe: 1) with a fixed CPU frequency, the power
consumption of each component does not vary much over
time, 2) when scaling CPU frequency from 1,800 down to
1,000 MHz, CPU power decreases noticeably but less than
proportionally while other components” power does not
change. Since EP is computation intensive, scaling down
processor frequency proportionally increases the execution
time. As a result, when scaling down CPU frequency from
1,800 to 1,000 MHz, EP consumes more energy despite
operating at a lower frequency because the increase in
execution time offsets the benefits of reduced CPU power.
In fact, scaling the CPU frequency to maximum benefits
both energy and performance for EP.

Fig. 12 shows the profiles of FT. Unlike EP which consists
mainly of a computation phase, FT presents alternating
computation, memory, and communication phases. The
impact of voltage and frequency scaling varies with these
execution patterns. When scaling down processor fre-
quency from 1,800 to 1,000 MHz, the CPU power drops
about 40 Watts from 124 to 84 Watts during computation
phases, and drops about 22 Watts from around 82 to
60 Watts during communication phases. Note that proces-
sor power consumption with a fixed frequency is larger
during communications than during idle time (no user
applications running), indicating there are some computa-
tions involved during communications. CPU frequency
scaling also impacts the memory access pattern and
memory power consumption for FT, which is not seen in
EP; the memory power profile of FT fluctuates more at 1,000
than at 1,800 MHz. Meanwhile, scaling down processor
frequency slightly increases the execution time of FT

Power Profile at 1000MHz on Idle System
140

120

100

80 - q

60 - b

Power (Watts)

40 N

Fig. 10. Power profiles at 1,800 and 1,000 MHz when system is idle. When CPU frequency decreases from 1,800 to 1,000 MHz, CPU power
consumption decreases from about 79 to about 53 Watts, and the power consumption of other components is unchanged.

GE ET AL.: POWERPACK: ENERGY PROFILING AND ANALYSIS OF HIGH-PERFORMANCE SYSTEMS AND APPLICATIONS

Power Profile at 1800MHz for EP

100

Power (Watts)

Power (Watts)

40 B

CPUFAN - -

80 - b

60 - b

Time

669

Power Profile at 1000MHz for EP
140

120 |

100 [

80 [=

60 |- B

40 - E

Time

Fig. 11. Power profiles at 1,800 and 1,000 MHz when the system is executing EP. When CPU frequency decreases from 1,800 to 1,000 MHz, CPU
power consumption decreases from about 110 Watts to about 69 Watts, and the power consumption of other components is unchanged.

Power Profile at 1800MHz for FT

60 b

Power (Watts)

Time

Power Profile at 1000MHz for FT
140

120 |

100 |-

80 |
60 b

Power (Watts)

Time

Fig. 12. Power profiles at 1,800 and 1,000 MHz when the system is executing FT. When CPU frequency decreases from 1,800 to 1,000 MHz, CPU
power consumption decreases from about 110 to about 69 Watts, and power consumption of other components is unchanged.

because of a large portion of communication whose
execution time nearly changes with frequency. Despite the
overall increased execution time, scaling down CPU
frequency conserves energy for FT.

The power profiles under various voltages and fre-
quencies indicate that adapting the CPU frequency to
meet the different computation needs during various
execution phases for an application like FT would achieve
the best combination of energy and performance. Specifi-
cally, if we scale up CPU frequency to its maximum
during computation and scale it down during memory
and communication, we can potentially save energy with
less impact on execution time. Fig. 13 shows the resulting
power profiling of an intelligent scheduling following this
idea. In this scheduling, the CPU frequency is set to

Power Profile with Intelligent Scheduling

Power (Watts)

40 | -

20 -

CPU with scheduling
CPU with 1800MHz e

Time

Fig. 13. Power profiles of FT when intelligent DVFS scheduling is
employed. Compared to the profiles when CPU is fixed at 1,800 MHz,
the power consumption during communication drops about 30 Watts
with minimal increase in execution time.

1,800 MHz during computation and memory-intensive
phases, and 1,200 MHz during communication phases. As
we can see, the power consumption during communica-
tions with intelligent scheduling is about 30 watts less
than that with fixed 1,800 MHz, and the execution times
are similar. Overall, this scheduling achieves 12.1 percent
energy savings with 1.2 percent performance impact. The
same idea adopted in [17], [18] achieves significant energy
savings with minimal performance impact.

6 CONCLUSION

We presented PowerPack for power-performance profiling
and evaluation of distributed systems and applications at
both component level and functional granularity. With the
aid of PowerPack, we quantified the power-performance
efficiency of applications on current and emerging dis-
tributed systems, analyzed the impacts of emergent
technologies such as chip multiprocessing (CMP) and
DVFS, and discussed the opportunities and approaches
for improving power and energy efficiency of distributed
systems and applications. We showed that PowerPack
provides a systemwide view of power and energy con-
sumption with high fidelity.

We used PowerPack to explore the systemwide power
consumption for chip multiprocessors. Our results indicate
that multicore systems contribute to higher energy effi-
ciency for a given application, though the impact of
multicores on power, energy, and efficiency are closely
correlated to the application’s workload characteristics.
PowerPack was able to directly verify performance and
energy efficiency for given applications depending on the

670

applications” memory and communication patterns and
their interaction with individual cores.

This work also experimentally showed the phase-based
nature of power profiles and their correlation to application
execution patterns. Such observations indicate that with
intelligent DVFS scheduling, power savings can be achieved
in many cases without impacting performance. Addition-
ally, our quantitative presentations of power/energy
profiles suggest a rather complex relationship between
CPU power consumption and frequency. This observation
raises questions on the energy models used in various
existing DVFS studies on distributed systems, which either
focus on processor dynamic power [9] without considering
processor leakage power and power consumed by other
system components, or simply assumes the CPU power
consumption is proportional to product of frequency and
voltage squared [23].

The methodology described in this work can be easily
extended to other architectures and measurement equip-
ment. For example, we can directly use the power sensors
integrated in emergent computer systems by several
manufacturers for more convenient power measurement.
As ongoing work, we have adopted PowerPack to thermal
profiling as well though we have not tested these extensions
at scale due to limited availability of systems. Currently, we
are also working with several companies to incorporate
PowerPack techniques in their custom infrastructure de-
ployments in large data centers built for computation.

ACKNOWLEDGMENTS

This work was supported in part by the US Department of
Energy under Grant No. DE-FG02-04ER25608 and the US
National Science Foundation under Grant No. CCF-#0347683.

REFERENCES

[1] T.U.E.P. Agency, http://www.energystar.gov/index.cfm?
c=prod_development.server_efficiency_study, 2009.

[2] T.V. Authority, http://www.tva.gov/environment/reports/
ornl/index.htm, 2005.

[3] AM. Bailey, “Accelerated Strategic Computing Initiative (ASCI):
Driving the Need for the Terascale Simulation Facility (TSF),”
Proc. Energy Workshop and Exposition, 2002.

[4] D. Bailey et al., “The NAS Parallel Benchmarks 2.0,” Technical
Report #NAS-95-020, NASA Ames Research Center, 1995.

[5S] F. Bellosa, “The Benefits of Event-Driven Energy Accounting in
Power-Sensitive Systems,” Proc. Ninth ACM SIGOPS European
Workshop, 2000.

[6] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” Proc.
27th Int’l Symp. Computer Architecture, 2000.

[71 G. Chen, K. Malkowski, M. Kandemir, and P. Raghavan,
“Reducing Power with Performance Contraints for Parallel Sparse
Applications,” Proc. First Workshop High-Performance, Power-Aware
Computing, 2005.

[8] J. Chen, M. Dubois, and P. Stenstrom, “SimWattch: Integrating
Complete-System and User-Level Performance and Power Simu-
lators,” IEEE Micro, vol. 27, no. 4, pp. 34-48, July/Aug. 2007.

[9] S.Cho and R. Melhem, “Corollaries to Amdahl’s Law for Energy,”

Computer Architecture Letters, vol. 7, no. 1, pp. 25-28. 2008.

U. Congress, www.gpoaccess.gov/plaws/, 2006.

N. Eisley, V. Soterious, and L.-S. Peh, “High-Level Power Analysis

for Multi-Core Chips,” Proc. Ninth Int’l Conf. Compilers, Architec-

ture and Synthesis for Embedded Systems (CASES), 2006.

X. Feng, R. Ge, and K.W. Cameron, “Power and Energy Profiling

of Scientific Applications on Distributed Systems,” Proc. 19th IEEE

Int’l Parallel and Distributed Processing Symp. (IPDPS), 2005.

(10]
(1]

[12]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

(13]

(14]

(15]

[10]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]
(23]
(26]

(27]

(28]
[29]

(30]

(31]

(32]

(33]
(34]
(35]

(36]

[37]

NO. 5, MAY 2010

J. Flinn and M. Satyanarayanan, “Powerscope: A Tool for Profiling
the Energy Usage of Mobile Applications,” Proc. Second IEEE
Workshop Mobile Computer Systems and Applications, 1999.

J. Flinn and M. Satyanarayanan, “PowerScope: A Tool for
Profiling the Energy Usage of Mobile Applications,” Proc. Second
IEEE Workshop Mobile Computer Systems and Applications, 1999.
V.W. Freeh, D.K. Lowenthal, F. Pan, and N. Kappiah, “Using
Multiple Energy Gears in MPI Programs on a Power-Scalable
Cluster,” Proc. 10th ACM Symp. Principles and Practice of Parallel
Programming (PPoPP), 2005.

V.W. Freeh et al., “Exploring the Energy-Time Tradeoff in MPI
Programs,” Proc. 19th IEEE/ACM Int’l Parallel and Distributed
Processing Symp. (IPDPS), 2005.

R. Ge and K.W. Cameron, “Power-Aware Speedup,” Proc. IEEE
Int’l Parallel and Distributed Processing Symp. (IPDPS), 2007.

R. Ge, X. Feng, and K.W. Cameron, “Performance-Constrained
Distributed DVS Scheduling for Scientific Applications on Power-
Aware Clusters,” Proc. ACM/IEEE Supercomputing (SC '05), p. 34,
2005.

R. Ge, X. Feng, W.-C. Feng, and K.W. Cameron, “CPU MISER: A
Performance-Directed, Run-Time System for Power-Aware Clus-
ters,” Proc. Int’l Conf. Parallel Processing (ICPP), 2007.

S. Gurumurthi et al., “Using Complete Machine Simulation for
Software Power Estimation: The SoftWatt Approach,” Proc. Eighth
Int’l Symp. High-Performance Computer Architecture (HPCA), 2002.
S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.
Franke, “DRPM: Dynamic Speed Control for Power Management
in Server Class Disks,” Proc. 30th Ann. Int’l Symp. Computer
Architecture, 2003.

C.-H. Hsu, “Compiler-Directed Dynamic Voltage and Frequency
Scaling for CPU Power and Energy Reduction,” PhD dissertation,
2003.

C.-H. Hsu and W.-C. Feng, “A Power-Aware Run-Time System
for High-Performance Computing,” Proc. ACM/IEEE Supercomput-
ing (SC), 2005.

Standard Performance Evaluation Corporation, “The SPEC Bench-
mark Suite,” http:/ /www.spec.org, 2002.

IBM PowerExecutive, http://www-03.ibm.com/systems/
management/ director /extensions /powerexec.html, 2007.

IDC, Worldwide Server Power and Cooling Expense 2006-2010,
2006.

C. Isci and M. Martonosi, “Runtime Power Monitoring in High-
End Processors: Methodology and Empirical Data,” Proc. 36th
Ann. IEEE/ACM Int’l Symp. Microarchitecture (MICRO-36), 2003.
H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon, The TOP500
Supercomputer Sites, http://www.top500.org., 2007.

J. Janzen, “Calculating Memory System Power for DDR SDRAM,”
Micro Designline, vol. 10, no. 2, 2001.

R. Joseph, D. Brooks, and M. Martonosi, “Live, Runtime Power
Measurements as a Foundation for Evaluating Power/Perfor-
mance Tradeoffs,” Proc. Workshop Complexity-Effective Design, 2001.
S. Kamil, J. Shalf, and E. Strohmaier, “Power Efficiency in High
Performance Computing,” Proc. Fourth High-Performance, Power-
Aware Computing Workshop, 2008.

LBNL, “Data Center Energy Benchmarking Case Study: Part 5—
Case Studies on a Corporate Data Center,”Prepared by Rumsey
Engineers for Lawrence Berkeley Nat’l Laboratory, Environmental
Energy Technologies Division, p. 20, 2003.

Mentor Graphics Corporation, 1999.

Synopsys Corporation, Powermill Data Sheet, 1999.

H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A Power-
Performance Simulator for Interconnection Networks,” Proc. 35th
Ann. IEEE/ACM Int'l Symp. Microarchitecture (MICRO-35), 2002.
W. Ye et al,, “The Design and Use of Simplepower: A Cycle-
Accurate Energy Estimation Tool,” Proc. 37th Design Automation
Conf., pp. 340-345, 2000.

J. Zedlewski et al., “Modeling Hard-Disk Power Consumption,”
Proc. Second Conf. File and Storage Technologies, 2003.

GE ET AL.: POWERPACK: ENERGY PROFILING AND ANALYSIS OF HIGH-PERFORMANCE SYSTEMS AND APPLICATIONS 671

Rong Ge received the PhD degree in computer
science from Virginia Tech. She is currently an
assistant professor of computer science at
Marquette University. Her research interests
include performance modeling and analysis,
parallel and distributed systems, energy-effi-
cient computing, high-performance computing,
and computational science. She is a member of
the IEEE and the IEEE Computer Society, and
a member of the ACM and Upsilon Pi Epsilon.
More details about her research and background can be found at
http://www.mscs.mu.edu/~rge.

Xizhou Feng received the PhD degree in
computer science from the University of South
Carolina. He is currently a research assistant
professor of Computer Science at Marquette
University and an adjunct faculty in the Network
Dynamics and Simulation Science laboratory at
Virginia Tech. His research interests include
high-performance computing algorithms and
systems, distributed systems and cyberinfras-

W8 tructure, computational biology and bioinfor-
matics, and modelmg and simulation of complex systems. He is a
member of the IEEE and the IEEE Computer Society, and a member of
the ACM. More details about his research and background can be found
at http://ndssl.vbi.vt.edu/people/fengx.php.

Shuaiwen Song received the BE degree in
software engineering from Dalian University of
Technology, China. He is currently working
toward the PhD degree in the Department of
Computer Science at the Scape Laboratory at
Virginia Tech, where he is also a researcher.
His research interests include parallel and
distributed systems, multicore systems,
power-aware and high-performance comput-
ing, and performance modeling and analysis.
More details about his research and background can be found at
http://www.s562673 @cs.vt.edu.

Hung-Ching Chang received the BS degree in
electronic engineering from Huafan University,
Taiwan, in 2003. He has been working toward
the PhD degree in computer science at Virginia
Polytechnic Institute and State University since
2007. His major research interests include high-
performance parallel computing, power-aware
computing, and computer architecture. He is a
student member of the |IEEE.

Dong Li received the BS degree in electronics
engineering from BeiHang University, China, in
2001, and the MS degree in computer science
from the Royal Institute of Technology, Sweden,
in 2006. He is currently working toward the PhD
degree at the Virginia Polytechnic Institute and
State University. His research interests include
power-aware computing in the high-performance
computing domain and performance prediction of
parallel applications.

Kirk W. Cameron received the BS degree in
math from UF in 1994 and the PhD degree in
computer science from LSU in 2000. He is
currently an associate professor of computer
science at Virginia Polytechnic Institute and
State University. He directs the SCAPE Labora-
tory at Virginia Tech, where he pioneered the
area of high-performance, power-aware comput-
ing to improve the efficiency of high-end
systems. He has received numerous awards
and accolades for his research and publications including the National
Science Foundation Career Award in 2004, the Department of Energy
Career Award in 2004, the USC COE Young Investigator Research
Award in 2005, the Best Paper Nominee SCO06, the VT COE Fellow in
2007, the IBM Faculty Award in 2007, the Uptime Institute Fellow in
2008, and was invited to the 2008 National Academy of Engineering
Symposium. He is on the editorial board and the editor for the IEEE
Computer “Green IT” column. He is a member of the IEEE and the IEEE
Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

	Marquette University
	e-Publications@Marquette
	11-1-2010

	PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications
	Rong Ge
	Xizhou Feng
	Shuaiwen Song
	Hung-Ching Chang
	Dong Li
	See next page for additional authors
	Authors

	untitled

