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ABSTRACT 

Vision provides us with an ever-changing neural representation of the world 

from which we must extract stable object categorisations.  We argue that visual 

analysis involves a fundamental interaction between the observer’s top-down 

categorisation goals and the incoming stimulation.  Specifically, we discuss the 

information available for categorisation from an analysis of different spatial 

scales by a bank of flexible, interacting spatial-frequency (SF) channels.  We 

contend that these channels’ activity is not simply determined “bottom-up” by 

the stimulus.  Instead, we argue that following perceptual learning a 

specification of the diagnostic, object-based, SF information dynamically 

influences the “top-down” processing of retina-based SF information by these 

channels.  Our analysis of SF processing provides a case study that emphasises 

the continuity between higher-level cognition and lower-level perception. 
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For many, psychophysical research on spatial frequency (SF) conjures up images 

of dark laboratories and experiments that contribute little to cognition.  Further, 

psychophysicists themselves have often not explicitly considered the use of SF 

analysis by cognition.  Here, we build a bridge between these independent 

research traditions.  We emphasise that SF analysis is a product of both the 

stimulus properties and the visual categorisation/recognition goals of the 

observer and we reconcile conflicting evidence regarding the observers’ 

influence on SF analysis.  Further, we argue that, as a function of perceptual 

learning, categorisation goals exert an increasing and dynamic influence on SF 

processing, even at early visual analysis stages.  However, first, in order to 

understand the interaction between the top-down categorisation goals and the 

bottom-up stimulus information, we need to consider a distinction between the 

retinal stimulus SF specification and that for object recognition. 

 

BACKGROUND: RECOGNITION AT MULTIPLE SPATIAL SCALES 

Imagine the following scene: you are sitting on a bench waiting for a 

friend and visually scanning the environment for his familiar face.  The wait is 

not long before you spot a face, from a distance.  As the face gets progressively 

closer, it looks familiar.  In fact, your friend is now smiling in your direction.   

This everyday event has involved the interaction between visual 

information from the outside world and recognition processes in the brain. 

Recognition starts with outside world information projected on the retina 



 4 

according to the laws of optics.   Importantly, retinal image size varies with 

viewing distance (Figure 1).  Consequently, as observers, we are confronted with 

ever-changing retinal projections of outside world information to recognize.  We 

will bring a book closer to our eyes to resolve its sentences, words or letters, 

whilst we might step back from a painting or a visual scene to appreciate its 

global impression.  But then, we will also find that a happy face remains happy 

over many viewing distances, whereas other expressions, such as sadness, can 

only be recognized from closer up.  Our visual system has evolved a bank of 

spatial frequency (SF) channels (Box 1) to handle the variety of scale information 

impinging on the retina.  However, because the information carried by these 

channels varies with viewing distance, for stable recognition, the observer 

requires an additional, object-based, description of the SF’s. 

 

BOX 1: SPATIAL FREQUENCY CHANNELS 

The visual system transforms the visual input into a description in terms of light-

dark transitions repeating at various frequencies (e.g. see the stripes below 

Figure 2) across the retina.  This is accomplished by a set of SF ‘channels’ (or 

filters), a few of which are depicted by the narrower individual curves in Figure 

2.  Each channel shows ‘tuning’; that is preferential sensitivity to one particular 

frequency and declining sensitivity to increasingly different frequencies.  The 

range of frequencies to which a channel responds defines its ‘bandwidth’ 

(indicated by the arrows across one of the channels in Figure 2).  This is often 
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described in octaves, where an octave is a doubling of frequency (e.g. from 2 to 4 

cycles-per-degree (c/deg) is a 1 octave step, from 4  to 8 c/deg is another 1 

octave step).  Channel bandwidths are mostly in the range of 1 – 1.5 octaves 

[38,39].  It is estimated that there are approximately 6 channels [39], which 

together define a Contrast Sensitivity Function (CSF, see broad curve in Figure 

2).  The CSF describes the relationship between SF and sensitivity to luminance 

contrast. 

 

OBJECT-BASED vs. RETINA-BASED SPATIAL FREQUENCIES 

The frequency with which light-dark transitions repeat across an object 

image defines the object-based SF information in that image.  These frequencies, 

measured in cycles-per-object, offer an absolute, stimulus-based measure of the 

cyclical information present in a stimulus.  They represent one measure of the 

information that the observer might use for visual categorisation. 

As demonstrated in Figure 3, a given number of cycles-per-stimulus can 

be rendered in a large image (e.g. A, B, …) or in a smaller image (e.g. A’, B’, …), 

depending on how many pixels represent each cycle (henceforth, we refer to 

cycles-per-object, cycles-per-image, cycles-per-face and cycles-per-stimulus 

interchangeably, because we will assume that the stimulus fills the image, as in 

Figure 3).  

What happens when the external object cycles are projected onto the 

observer’s two-dimensional retina of light receptors?  Psychophysicists measure 
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these variations with the number of cycles-per-degree of visual angle impinging 

on the retina —i.e. the number of object cycles in the projected retinal image 

divided by the number of degrees that this projected image spans on the retina.  

This provides a retina-based SF image description. 

The retinal projection of a face will change with viewing distance and 

correspond to one of the images of Figure 3 (e.g. A’–E’).  Changes in retinal size 

vary the SF information available to the visual system.  When a face moves 

towards the observer, its retinal projection size gradually increases.   With size 

increase, two things happen: the retina-based HSF information initially 

represented in the smaller image shifts towards the lower retina-based SF’s of the 

larger image; new retina-based HSF information is added and becomes available 

for recognition.  When a face moves away from the observer, the opposite 

happens:  its retinal projection size diminishes, retina-based HSF’s are “peeled 

off” and the object information originally present in retina-based LSF’s move 

towards retina-based HSF’s.   

Cycles-per-object and cycles-per-degree of visual angle are 

complementary measures.  They characterize two important aspects of a visual 

recognition task and two research traditions.  The aim of visual cognition 

researchers is to understand the critical band(s) of cycles-per-object that 

represent the diagnostic information responsible for this or that categorisation.  

However, because retinal projections of diagnostic object SF’s will vary in size, 

the critical band(s) of diagnostic SF will be “seen” by different SF channels (as 
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studied in psychophysics) with different contrast sensitivities.  Thus, in a visual 

recognition task, an interaction will happen between the “top-down”, task-

dependent, diagnostic, object-based information and the CSF of the visual 

system, whose “bottom-up” input includes the retinal projection of the 

diagnostic information.  We next analyse how this varying retinal projection 

might support stable recognition. 

 

THE RETINA-BASED SF INFORMATION USED FOR RECOGNITION  

Figure 3 suggests a simple mechanism for visual recognition across size changes.  

Assume a recognition task requiring SF information represented in a narrow 

band of cycles-per-object (e.g. one octave, from 4 to 8 object cycles).   Given an 

image filtered to contain only this diagnostic band, because this information 

“passes over” different SF channels as the observer moves towards the object, 

channels could be “automatically” turned on (or off) by the presence (or absence) 

of the diagnostic information band within their tuning curve.  Channel selection 

would then be “bottom-up,” determined by the laws of physical optics projecting 

the diagnostic object SF’s onto the retina.  If SF channels scaled to image size like 

this, then identification would be invariant over many viewing distances.  

However, we will see that such a simple size-invariant recognition mechanism 

has been dis-confirmed. 

Consider letter identification as a case study.  Using identification of band-

pass filtered letters, embedded in identically filtered noise, Parish and Sperling 
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[1] observed that letter identification performance was determined by the object 

SF’s present and was invariant to changes in viewing distance (i.e. changes in 

retinal object size).  Spatial frequency channels scaled with the retinal size of the 

letters to extract the same object SF’s.   However, subsequent work showed that 

letter identification is not size invariant.  Both Majaj et al. [2] and Chung et al. [3] 

reported that changes in channel frequency did not scale with corresponding 

changes in letter size.  Instead, with smaller letter sizes, the tuning peaks shift 

progressively towards lower object SF’s [3]; observers identify large letters by 

their high frequency edges, but small letters by their low frequency gross strokes 

([2]; see also [4] for scale dependent face detection).  If changing letter size 

changes the SF band mediating their identification, and therefore the features 

subsuming identification, what is left of the simple model that scales channels to 

stimulus sizes to track the same letter information across different letter sizes?  

This question forces us to step back and reconsider how other factors, such as 

recognition task, might affect channel selection “top-down.”  Further, recent 

work underlines the potential for more flexible processing of SF (Box 2). 

 

BOX 2: FLEXIBILITY OF SPATIAL FREQUENCY CHANNELS 

Early studies of SF channels assumed linearity of channel response to stimulus 

intensity and parallel (independent) processing of SF information across 

channels.  These assumptions have been shattered with evidence of collinear 

summation [40,41] spatial pooling  [42] contrast-gain control [43,44] and perceptual 
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learning (to be discussed later).  Collinear summation suggests long-range lateral 

facilitation between channels of a similar SF and orientation, ruling out their 

independence.  In a related vein, spatial pooling suggests integration of proximal 

elements, interfering with the independent processing of local elements implied 

if channels were independent.  Global influence on local processing is also 

apparent where the perceived contrast of a stimulus fragment depends on the 

average contrast of surrounding fragments, implying a gain control mechanisms 

across channels. 

 From a conception of channels as fixed, oriented, SF-tuned filters that 

process the retinal image independently and in parallel, a modern conception 

arises in which channels are functional constructs emerging from a network of 

excitatory and inhibitory interactions in the brain.  The properties of these 

channels are not fixed, because perceptual learning can modify the underlying 

neuronal network and adapt the visual system to the perceptual task at hand 

[27]. 

 The neural structures underpinning SF channels are not yet fully 

elucidated.  In primary visual cortex, visual area V1 has small receptive fields, 

mapping the fovea, susceptible to encode fine scale variations in the input.  

Away from the fovea, receptive fields increase to encode coarser scale variations.  

Neurons in area V2 and extrastriate visual areas have larger receptive fields than 

V1.  Thus, foveal representations incorporate fine scales provided by V1 and 

coarser scales from different extrastriate areas.  The access to a varying range of 
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spatial filters across the retina endows the network implementing the properties 

of SF channels with considerable flexibility and computational power.  

 

EFFECTS OF RECOGNITION TASK ON INFORMATION USE 

Typically, visual events afford many categorizations resulting from the 

observer’s cognitive requirements.  For example, a face can be identified as 

George, a male, in his mid-thirties, often smiling, sometimes sad, and so forth.  

Further, any object can be identified at different levels of specificity, depending 

on expertise.  For example, a bird will be categorized as a sparrow, or even as a 

dusky seaside sparrow by an expert [5,6].  An important empirical endeavour 

has therefore been to characterize the critical band(s) of object-based SF’s that 

allow the multiple categorizations of a single visual event [7].  If, as discussed, 

diagnostic band varies across task and viewing distance, then size invariance 

comes into question making it important to understand how different tasks are 

performed over different viewing distances to better understand the ecology of 

recognition—the idea that some recognition tasks can be performed over a range 

of viewing distances, others not. 

The diagnostic band of SF’s of a given categorization task depends on (a) 

the distribution of category-specific diagnostic information in object frequencies 

and (b) the contrast sensitivity function of the observer, which will modulate the 

availability of the diagnostic information as a function of viewing distance. 

Interactions between (a) and (b) could determine which SF channel(s) is chosen 
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as a function of (1) stimulus size and (2) which portion of the visual field is 

attended. 

 To illustrate, Gold, Bennett and Sekuler [8] compared how efficient 

humans are when identifying ten letters and ten faces.  All stimuli were band-

passed with various one and two-octave SF filters from low to high SF’s.  For 

both bandwidths, observers were able to identify letters over a wider range of 

frequencies than faces suggesting that the diagnostic band(s) of frequencies 

depends on object class.  Further, our own work shows that observers use 

different object-based SF bands for the same object class depending on 

categorisation task.  For example [9; see also 10-13, Box 3], upon seeing the 

“Hybrid Face” stimulus of Figure 4a, observers instructed to report its specific 

expression (task A) would tend to say “happy,” using LSF’s, but would tend to 

say “non-expressive”, using HSF’s, when asked whether the same stimulus was 

expressive or not (task B). 

 In sum, recognition requires information from the visual stimulus.  The 

evidence suggests that this information will vary with object class and 

categorization task (see Box 3).  If these top-down task factors affect the relevant 

band of object information to extract, then do they affect early SF channel 

selection?  
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BOX 3: THE RESEARCH AGENDA FOR RECOGNITION 

If the bank of SF channels specifies one analysis of retinal information in terms of 

SF bands, the agenda for recognition is to understand how brain mechanisms 

extract, combine and utilise object information represented in different channels.  

For example, Figure 4c illustrates how facial expressions are recognised on the 

basis of different facial features, each represented by a specific combination of 

localized SFs.  Such findings [11-13, 45] question the nature of the information 

used for recognition: one or several SF band(s) per se, or specific features 

represented across several SF bands, as in Figure 4c.  This will largely set the 

research agenda and its associated methods.  To illustrate, to determine the 

“preferred SF band(s) of X” the agenda should be to derive the SF parametric 

tuning curve for recognizing category X.  That is, to split the stimulus into 

different conditions of SF bands, normalize power across conditions and 

compare responses—where these can be brain [46-49] or behavioural responses. 

However, visual stimuli in Fourier space really are 3D signals (the X and Y 

dimensions of the image plus the third Z dimension of SF bands) but SF tuning 

curves only estimate the third dimension of SFs.  So, the methods of tuning 

curves, inherited from the psychophysics of simple sine-wave gratings, are not 

sufficiently powerful to determine, within any SF band, the specific information 

responsible for recognizing complex stimuli: this information could be any 

combination of features represented within this SF band.  In addition, the 

emphasis on tuning to a preferred SF band tends to deemphasize the integration 
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across SF bands that could represent the feature combination in question. Thus, 

the research agenda for scale-based recognition must move on, from studying a 

complex 3D signal in one dimension, to embrace the study of scale processing in 

three dimensions.  This Gabor analysis of human recognition information [11-13, 

45] is consistent with evidence of top-down, retinotopic control of SF channels 

[19].   

 

TOP-DOWN CONTROL OF SF CHANNELS? 

Our hybrid face and scene work suggests that the categorisation task might cue 

the observer to the SF channels from which to extract information.  Analogous 

results in the psychophysical literature provide more direct evidence on the 

question of whether an observer could select SF channel(s). 

Specifically, studies of SF uncertainty show that when an observer must 

detect a grating at a particular SF, they perform worse when it is randomly 

intermixed with other SF’s than when it is presented in a block of trials at a 

constant SF [14,15].   Support for top-down channel selection arises because 

uncertainty effects are reduced or eliminated if the observer is symbolically cued 

(i.e. a top-down cue such as an auditory tone or a number) to stimulus SF on 

each, forced-choice, trial in an intermixed block [14,15].  Further evidence for top-

down channel control is that when symbolic cues lead an observer to expect a 

grating at one SF their, forced-choice, detection of gratings at unexpected SF’s 
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deteriorates with increasing distance from the cued SF [16], reminiscent of 

cortical SF channel tuning (Box 1). 

Similar expectancy effects were observed with scene and face stimuli [9; see 

also 17]; observers were unaware of a face presented in the non-sensitised SF 

bandwidth of a face-hybrid (Figure 4a).  Further, we found that, as with gratings, 

when symbolic auditory cues led an observer to expect a stimulus in a particular 

SF bandwidth, their categorisation of scenes was impaired in the unexpected 

bandwidth of a scene-hybrid (Fig 4b) or a scene + noise stimulus (see Figure 5 

left panels) [18].  Finally, we observed that attention to particular SF bandwidths 

for scene categorisation can be specific to retinal location supporting the 

possibility that channel selection may involve early, retinotopically mapped, 

stages of visual analysis [19]. 

In sum, all these results imply that observers can select a specific SF 

channel(s) as a function of task information; a top-down effect.  In contrast, 

critical-band noise-masking studies suggest that observers have little top-down 

control over SF channels [2,20-22; but see 23].  Figure 5 illustrates the logic of 

these experiments.  Solomon and Pelli [20] used critical-band noise-masking to 

investigate letter identification.  They found that the SF peak of the channel(s) 

used by an observer to identify letters shifted very little between low and high-

pass noise conditions, even though letter information covers a broad part of the 

object frequency spectrum [2,20; but see 3].  This led them to conclude that 
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observers have little ability to select SF channels.  So, how are we to resolve these 

opposing findings on top-down control of SF processing? 

 

RECONCILIATION:  LEARNING OF SIGNAL AND NOISE SF’s 

We will argue that top-down channel selection depends on being able to 

learn the distribution of diagnostic signal SF information in noise and that this 

varies between SF uncertainty and cueing experiments on the one hand and 

those using critical-band noise-masking on the other.   

Consider an observer faced with a novel object to categorise.  The object 

representation will be partially obscured by various noise sources.  The observer 

needs to learn, what diagnostic object information is available in the different 

retina-based SF bandwidths to support categorisation.   An immediate problem 

confronting the observer is determining which elements of the stimulus are 

signal and which noise.  Fortunately, the effects of noise will automatically 

reduce, without attention from the observer, because the noise averages out over 

time.  Conversely, we argue that categorising the object requires the observer to 

attend the object-based SF information in different retina-based SF bands.  This 

should drive a perceptual learning process about which SF’s facilitate a 

particular categorisation of the object.   Thus, over an extended period of 

everyday experience, an observer might learn that 8-32 cycles-per-face are 

diagnostic for face identification and how to extract this information from the 

relevant SF channels.   
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Now consider the effects of this prior knowledge on performance in 

experiments.  In previous noise-masking studies [2,3,20-22], the observers were 

not explicitly told about the SF characteristics of the signal or noise.  Thus, we 

might expect that performance will be strongly determined by observers’ often 

extensive prior learning of the diagnostic SF bands for stimulus categorisation 

(e.g. if we assume one hour per day reading, we reach the age of 50 having gone 

through about a billion letters [2]).   Consequently, learning to use other channels 

in an experiment will proceed slowly if at all.  Conversely, in work on 

uncertainty and cueing, the cues specifically establish expectations about signal 

SF’s and in the case of hybrid stimuli, because of their binary nature, about noise 

SF’s as well.  As suggested by the perceptual learning literature [24], this direct 

information on both signal and noise SF’s might be crucial for observers to learn 

to select channels, especially when they must overcome prior learning and when 

the snapshot timeframe of an experiment is not sufficient to allow the full 

benefits of temporal averaging of noise to accrue.   

In sum, we argue that observers’ ability to select channels is determined 

by an interaction between learning, knowledge and task-based expectations.  

From this two key, interrelated, issues for the future research agenda arise.  The 

first concerns specifying the mechanisms by which categorisation drives learning 

of the diagnostic information and the SF channels carrying it and the second the 

neural locus of these effects.  
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MECHANISMS AND LOCUS OF LEARNING 

We noted earlier that the effects of categorisation and cueing on channel selection 

are SF tuned [16] and retinotopically mapped [19].  In further work, we found 

that categorisation increased perceptual sensitivity for cross (not within) 

category discrimination (a categorical perception effect) of Gabor patch stimuli in 

a way that was very highly tuned to stimulus orientation [25].  Similarly, 

research shows perceptual learning [26] that is also specific to features such as 

stimulus retinal position [26,27]and dependent on attention [24,28; but see 29].  

This raises the possibility that top-down attention to category differences drives 

perceptual learning about them.  The specificity of perceptual learning has been 

interpreted as evidence that it may involve early sensory analysis 

[24,26,27,30,31].   

However, it has also been argued that if learning one task simply changed 

early sensory analysis this could interfere with the performance of other tasks 

dependent on the same analysis [26,31]; a version of the stability-plasticity 

dilemma.  Helping stability, it has been argued that highly specific learning may 

be explained through re-weighting of outputs from early sensory analysis [32].  

This may not be a complete explanation as there is converging physiological 

evidence [26,33] for modifications to early sensory analysis, although the 

interpretation of this remains controversial.  An alternative possibility, 

summarised by Ahissar and Hochstein [24], is that  “learning…. begins at high level 

areas of the visual system, and when these do not suffice, progresses backwards to the 
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input levels”.  By making high level modifications the first choice, stability is also 

helped. 

Consistent with multi-level learning (see also [34]), we suggest that 

category learning may involve observers learning the settings of the visual filters 

at the stage(s) of analysis that optimises extraction of diagnostic information.  

This could account for the widely distributed neural correlates of visual category 

learning [35] as a function of task.  In our tasks, the psychophysical evidence 

suggests observers learn the relevant settings of early SF filters.  We further 

suggest that these settings could then be implemented dynamically, top-down, 

via feedback connections from the cortical regions holding the relevant category 

representations when the need arises to perform a particular task [26,31,33,34].  

Dynamic control of filter settings would help to maximise the stability of 

perception for other tasks. 

Evidence for the possibility of dynamic control arises from the growing 

literature showing that attention can modulate multiple stages of visual analysis 

including V1 [36].  Of particular interest is the recent application of linear pattern 

classification methods to the analysis of fMRI data to extend attentional 

modulation work beyond the 2D space domain by showing that attention can 

modulate orientation channel activity as early as V1 [37].   Such methods are 

beginning to pave the way to provide converging evidence on the link between 

our psychophysical observations of task driven selective processing of SF’s and 

the underlying brain mechanisms. 
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CONCLUDING REMARKS 

A major challenge to our interaction with the world is the stable 

categorisation of visual events in conditions of ever-changing retinal stimulation.  

An important analysis of the available object information can be made in terms 

of SF’s.  Visual processing must establish the mapping between the viewing 

distance dependent retina-based SF information and the diagnostic object-based 

SF’s that subtend stimulus perception and vary as a function of object class and 

categorisation task.  To frame this complex interaction, we have made two 

critical points:  

(1) Channel selection is not simply stimulus driven and bottom-up; 

instead, observers can actively and dynamically change SF channel 

selection as a function of their cognitive task, a top-down control on 

the early, retinotopically-mapped selection of SF information.   

(2) When the observer explicitly attends the stimulus SF’s supporting 

recognition this drives perceptual learning about the SF channels 

carrying diagnostic, object-based, SF information as a function of 

retinal image size. 

In sum, top-down selection of diagnostic information, in retinotopically 

mapped SF channels, provides a bridge between the cognitive demands of the 

observer recognising visual events and the low-level constraints of the visual 

system which provides the available SF information. 
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QUESTIONS 

 Is attention drawn to SF channels, or to the features of an object represented 

across specific SF channels? 

 How is SF information integrated across channels and time to perform a 

recognition task? 

 How does the learning of diagnostic SF’s and channels proceed? 

- How is the stability-plasticity dilemma addressed? 

 How is top-down control of SF channels implemented following learning? 

- What is the anatomy of the top-down influences on earlier visual 

processing of SF?   Which are the relevant neural circuits? 

- What are the mechanisms (e.g. priming of channels, selective attention 

to channels, or inhibition of channels)? 
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Figure captions 

 

Figure 1.  Illustration of how viewing distance affects the retinal size of a given 

stimulus.  Consider the three pictures of a smiling face.  Imagine that the small 

picture corresponds to your friend standing far away (e.g. at 8 meters).  The 

retinal projection of his face is small as illustrated.  As he moves closer (e.g. at 4 

meters, then at 2), the projection changes:  it increases in size by a factor of two.  

Of course, as he walks towards you, the increase is effectively continuous and 

inversely proportional to the distance between your friend and your eyes. 

The retinal size, measured in number of degrees of visual angle on the X or Y 

dimension, of a distal stimulus is given by visual_angle = 

(atan(stimulus_size/distance)). 

 

Figure 2.  Spatial frequency channels and the contrast sensitivity function (CSF).  

The broad curve represents a typical CSF, which describes how the amount of 

contrast required to perceive a stimulus varies as a function of its SF.  The effect 

of variation in stimulus SF on the appearance of a simple sinewave grating 

stimulus is shown below the figure.  The CSF defines the envelope of a set of SF 

channels (represented by the narrow curves) each of which is responsive to 

(passes) a narrow band of SF’s.  The arrows shown at the bottom of the figure 

suggest that observers may attend to one (solid arrow) or more channels (dotted 

arrows) depending on their current task requirements. 
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Figure 3.  Object-based spatial frequencies.  An object represented in a digital 

image can be filtered to analyse its SF content—that is, its cyclical information.  

Here the left face is decomposed with five spatial filters.  Each filter spans a one-

octave bandwidth (see Box 1), without overlap between frequency bands. We can 

peel off each layer of object SF from the original stimulus and analyze the 

remaining SF information.  Starting with the original face on the left, we peel off 

the layer of highest SF’s (labelled HSF: X/2 x Y/2 in Figure 3) and obtain the face 

labelled A.  The High Spatial Frequency (HSF) filter retains facial information 

associated with the most detailed light-dark transitions in the face (e.g the hairs, 

eyebrows and wrinkles of a face).  If the image is of size X by Y, the most detailed 

variations are those represented by X/2 and Y/2 cycles-per-face (because it takes 

at least two pixels to express one cycle, i.e. one light-dark transition).  Because all 

information expressed over 2 pixels has been removed in A, we can divide its 

size in two (to obtain face A’) without any loss of face SF information between A 

and A’:  A and A’ share the same number of cycles-per-face, despite the fact that 

A’ is half the size of A.  The process of peeling off HSF can be applied recursively 

[50].  The next spatial filter extracts a SF band between X/2 and X/4 cycles-per-

face, the next filter SF band between X/4 and X/8 cycles-per-face, and so forth 

with decreasing details until the Low Spatial Frequencies (LSF) filter.  Extracting 

the next level of HSF frequencies from A results in B, which has the same face SF 

information as B’.  In the figure, the vertical arrows represent that change in 
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image size results from varying viewing distance; the horizontal arrow indicates 

increasing viewing distance.  Images A .. E represent the availability of cycles-

per-face information at a fixed viewing distance.  Images A’ .. E’ represent the 

same cycles-per-face information with a varying viewing distance.  This 

illustrates that cycles per faces can be identical across two stimuli when their 

cycles per degree of visual angle are not. 

 

Figure 4.  Face and scene stimuli.  (a) A hybrid face stimulus (adapted from [10]) 

formed by superimposing a high-pass filtered image of a neutral expression 

woman with a low-pass filtered image of a smiling man (i.e. the images have 

been filtered to remove the LSF’s or HSF’s respectively).  (b) A hybrid scene 

stimulus (adapted from [10]) containing a low-pass filtered highway image and a 

high-pass filtered city image.  View the images from a distance, or defocus them, 

to reveal the low-pass component of each hybrid stimulus. (c) Illustration of the 

SF information used to recognize six basic facial expressions plus neutral 

(adapted from [11]).  The data demonstrate that observers extract, combine and 

utilise SF information across bands to represent combinations of localized 

features that diagnose each expression (e.g. the mouth in ‘happy’, the two eyes in 

‘fear’ and the mouth and the surroundings of the nose in ‘disgust’). 

 

Figure 5.  The critical-band noise-masking method.  In the left panels a 

broadband city scene is shown combined with low (top) or high (bottom) pass 
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filtered noise (i.e. noise that has been filtered to remove the HSF or LSF 

components respectively).  In the centre panels a function is plotted showing the 

relationship between contrast energy and object-based SF.  The portion of the 

spectrum masked by the low and high-pass noise respectively is indicated by the 

overlaid noise samples.  In the right hand panel the human CSF is shown 

together with the SF channels underlying it.  The overlaid noise samples indicate 

the channels filled by the noise.  So, take the case of a scene presented in low-

pass noise (top row).  For simplicity of explanation, we assume that the low 

object-based spatial frequencies of the noise correspond to lower retina-based 

frequencies.  Accordingly, the lower SF channels will be polluted by noise.  

Researchers using this method suggest that if the observer can choose the 

channel(s) to monitor, and if there is available diagnostic information in the 

object frequency spectrum at higher SF’s, then we might expect the observer to 

switch to higher SF channels in order to avoid the low-pass noise.  The converse 

would be expected for high-pass noise.   
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