
A new Nawaz–Enscore–Ham-based heuristic for permutation flow-
shop problem with bicriteria of makespan and machine idle-time

Liu, W., Jin, Y., & Price, M. (2016). A new Nawaz–Enscore–Ham-based heuristic for permutation flow-shop
problem with bicriteria of makespan and machine idle-time. Engineering Optimization, 48(10), 1808-1822. DOI:
10.1080/0305215X.2016.1141202

Published in:
Engineering Optimization

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 The Authors
This is an Author’s Original Manuscript Manuscript of an article published by Taylor & Francis in Engineering Optimization on 18 February
2016, available online: http://www.tandfonline.com/doi/full/10.1080/0305215X.2016.1141202

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:19. Jul. 2018

https://pure.qub.ac.uk/portal/en/publications/a-new-nawazenscorehambased-heuristic-for-permutation-flowshop-problem-with-bicriteria-of-makespan-and-machine-idletime(3a1a979a-9b59-4d7d-aa02-1c0fe39508f2).html

A New Nawaz–Enscore–Ham based Heuristic for Permutation

Flowshop Problem with Bicriteria of Makespan and Machine Idle-time

Weibo Liu, Yan Jin
*
, Mark Price

School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Ashby

Building, Belfast, BT9 5AH, UK

y.jin@qub.ac.uk

A New Nawaz–Enscore–Ham based Heuristic for Permutation

Flowshop Problem with Bicriteria of Makespan and Machine Idle-time

A new heuristic based on Nawaz–Enscore–Ham (NEH) algorithm is proposed for

solving permutation flowshop scheduling problem in this paper. A new priority

rule is proposed by accounting for the average, mean absolute deviation,

skewness and kurtosis, in order to fully describe the distribution style of

processing times. A new tie-breaking rule is also introduced for achieving

effective job insertion for the objective of minimizing both makespan and

machine idle-time. Statistical tests illustrate better solution quality of the

proposed algorithm, comparing to existing benchmark heuristics.

Keywords: heuristic; flow shop; scheduling; makespan; idle-time

1 Introduction

Flow shop scheduling is an active research area in manufacturing, as it has many

interesting industrial applications and is also an attractive field of theoretical study

(Yenisey and Yagmahan 2014). Industrial applications can be found in automotive

manufacturing (Xu and Zhou 2009; Framinan et al. 2014), integrated circuit fabrication

(Liu and Chang 2000), photographic film production (Aghezzaf and Van Landeghem

2002), pharmaceutical and agro-food industries (Boukef, Benrejeb, and Borne 2007).

The Flow shop scheduling problem has been proved as NP-hard when the machine

number is larger than 2 (Garey, Johnson, and Sethi 1976). It has become a rather

challenging problem not only in research, but also for industrial practice. To simplify

the problem, permutation flow shop scheduling problem (PFSP), in which the order of

jobs passing through every machine is always kept the same, is often used as it is a

special case of flow shop problem. PFSP is also proved to be NP-hard (Garey and

Johnson 1979) and many methods have been proposed to solve PFSP with a criterion of

minimizing makespan or maximum job lateness. Some successes have been obtained

(Allahverdi 2004; Chandra, Mehta, and Tirupati 2009).

The NEH (Nawaz, Enscore Jr., and Ham 1983) heuristic has been regarded as

the best algorithm to solve PFSP and many heuristics based on NEH have been

proposed with the objective of minimizing makespan or total flow time, and have

demonstrated improved performance. NEHKK1 (Kalczynski and Kamburowski 2008),

NEH-D (Dong, Huang, and Chen 2008), NEHKK2 (Kalczynski and Kamburowski

2009) and NEHFF (Fernandez-Viagas and Framinan 2014) are currently popular

constructive heuristic algorithms, representing the state of the art in the field. Single

objective scheduling is employed in most existing heuristics and the objectives only

focus on makespan (Gao and Pan 2011; Liu, Fang, and Lin 2013), total flow time (Pan

and Ruiz 2013; Msakni et al. 2015), or total tardiness (Yenisey and Yagmahan 2014).

However, a single objective may not be good enough to represent reality as most of real

life scheduling problems naturally involve multiple objectives. The current trend is to

apply multiple objectives while further improving existing heuristics by new

approaches. To start to address this problem, this paper studies the PFSP with two

objectives, i.e., minimization of both makespan and machine idle-time. Minimizing

makespan is to deliver orders as soon as possible, while minimizing idle-time could

help improve machine utilization. In the past, minimizing makespan has been

mistakenly regarded as equivalent to minimizing machine idle-time, but recent research

by (Liu, Jin, and Price 2014) has shown that although they are related, they are clearly

different and in fact can be in conflict with each other. Herein, a novel heuristic

algorithm based on NEH approach is proposed by utilizing a new priority rule and a

new tie breaking method with the two objectives. Its effectiveness is validated through

statistical tests with common benchmarks (Taillard 1993; Vallada, Ruiz, and Framinan

2015) by comparing to existing dominating algorithms including NEH, NEHKK1,

NEH-D, NEHKK2 and NEHFF.

In literature, many heuristic methods have been introduced to solve PFSP. Early

examples can be found in (Johnson 1954; Palmer 1965; Gupta 1971; Campbell et al.

1970; Gupta 1976; Dannenbring 1977). Nawaz et al. (1983) proposed a ground-

breaking algorithm on which many heuristics were introduced for PFSP (Framinan et al.

2004; Ruiz and Maroto 2005; Gupta and Stafford 2006). Recent advance lies in the

proposition of NEHKK1 (Kalczynski and Kamburowski 2008), NEH-D (Dong et al.

2008), NEHKK2 (Kalczynski and Kamburowski 2009) and NEHFF (Fernandez-Viagas

and Framinan 2014), all of which demonstrated improved performance.

Typically, two key steps are required in these NEH-based heuristic algorithms.

The first step is to sort all jobs with one priority rule to form the initial partial sequence,

and the second step is to insert the rest jobs one by one to the existing sequence for

achieving certain objective. Since ties often occur in the second step, the tie-breaking

method is also crucial to the performance of the heuristic algorithm. In NEH algorithm,

the priority rule is based on the non-increasing sum of processing times, and job

insertion is with the objective to minimize makespan, but no tie-breaking method is

used. Once a tie occurs, usually the first feasible position is selected. Based on the first

or the second step, many improved NEH heuristics were developed. Nagano and

Moccellin (2002) developed a priority rule according to the non-increasing difference

between total processing times and job waiting time, and it was competitive compared

to NEH. Low et al. (2004) developed the MNEH algorithm by introducing a priority

rule according to the descending sum of artificial processing times and a tie-breaking

rule that chose the position with the least idle-time on the bottleneck machine.

Kalczynski and Kamburowski (2007) developed a series of NEH modifications

including NEHKK, NEHKK1 and NEHKK2 based upon the concept of Johnson’s rule.

Dong et al. (2008) introduced the NEH-D heuristic, which includes a priority rule by

taking account of processing time variation combined with mean value and a tie-

breaking rule choosing the position with the least machine utilization variation.

Fernandez-Viagas and Framinan (2014) proposed a tie-breaking rule aiming to

minimize total idle-time in system in his NEHFF heuristic. Table 1 summarizes some

recent popular heuristic algorithms.

Table 1. Some NEH-based heuristics in terms of priority rule and tie-breaking rule

Heuristics Priority rule Tie-breaking rule

NEH

(1983)

Descending sum of operation times Usually the first

position is selected

when ties exist

NEHNM

(2002)

Descending difference between total

processing time and lower bound of job

waiting time

Same as NEH

MNEH

(2004)

Descending sum of artificial processing

times

The position with the

least idle-time on

bottleneck machine is

selected

NEHKK

(2007)

Same as NEH The position is selected

with the least maximum

completion time of the

sequence between two

tie positions

NEHKK1

(2007)

Non-increasing sum of weighted

processing times min(ai, bi) where

 ai = ∑ [
(m−1)(m−2)

2
+ m − k]m

k=1 ti,k ,

 bi = ∑ [
(m−1)(m−2)

2
+ k − 1]m

k=1 ti,k

Job x is inserted into

the first (or last)

position if ax ≤ bx (or

 ax ≥ bx)

NEH-D

(2008)

Descending sum of mean and standard

deviation of processing times

The position with more

balanced machine

utilization is selected

NEHKK2

(2009)

Non-increasing sum of weighted

processing times min(ai, bi) where

 ai = ∑ ti,k
m
k=1 + ∑ (

h−
3

4

s−
3

4

−s
h=1

Same as NEHKK1 with

corresponding ax and

 bx

ε) (ts+1−h,i − tt+h,i) , bi = ∑ ti,k
m
k=1 −

∑ (
h−

3

4

s−
3

4

− ε)s
h=1 (ts+1−h,i − tt+h,i) and

s = ⌊m/2⌋, t = ⌈m/2⌉

NEHFF

(2014)

Same as NEH Choose the position

with the least front

delay and idle-time

Machine idle-time has been rarely utilized in the literature for PFSP, but it is an

important performance measure in manufacturing enterprises, and many companies are

using it to drive their operators’ behaviour on the shop floor. As shown in Fig.1, apart

from machine operations, the empty space is categorized as front delay, idle-time (IT),

and back delay (Spachis 1978). Front delay could be occupied by production prior to the

current batch, while back delay could be filled in by the subsequent operations, but the

idle-time is a real waste, which should be minimized. The idle-time on machine k

generated by the i
th

 job can be computed by IT[i],k = max{C[i],k−1 − C[i−1],k, 0}. In the

literature, minimizing machine idle-time was adopted as a strategy to minimize

makespan instead of the objective. The most widely accepted objective is to minimize

idle-time on the last machine with a makespan criterion. Jobs which do not generate

idle-time on last machine are chosen and added to schedule one by one (Sarin and

Lefoka 1993), which is similar to MINimum Idle-time (MINT) algorithm which intends

to minimize idle-time on the last machine (Gupta 1972). Liu and Reeves (2001)

introduced an idle-time based index for composite heuristics for PFSP by calculating

the fitness of unscheduled jobs to the last job of partial schedule. Few studies have

focused on idle-time minimization directly.

Figure 1. Front delay, idle-time (IT) and back delay of schedule (i.k indicates the

processing time of job i on machine k)

A single criterion has been widely used in the heuristics for PFSP, but a single

criterion is not good enough for describing complex practical problems. Therefore,

researchers have begun to consider applying multiple criteria to solve many real-world

scheduling problems (T’kindt and Billaut 2006). Framinan et al. (2002) developed two

constructive heuristics by using the NEH search strategy for the two-objectives of

makespan and flowtime. Braglia and Grassi (2009) developed a heuristic MOGI by

integrating the technique for ordered preference by similarity of ideal solution

(TOPSIS) with NEH for the objective of makespan and maximum tardiness. The multi-

criteria decision making technique TOPSIS is adopted for each step of the NEH

heuristic. Chandra et al. (2009) proposed a heuristic procedure for PFSP with objective

of earliness and tardiness for a bulk-drugs manufacturer with wide range of due date. In

the recent literature review (Yenisey and Yagmahan 2014) the consideration of PFSP

with multiple objectives concluded that much attention was paid to multi-objective

heuristics for PFSP but idle-time criterion has rarely been taken into account for multi-

objectives scheduling. Therefore, herein we consider idle-time minimization together

with makespan criterion for PFSP.

The remainder of this paper is organized as follows. In section 2, the example

problem studied is described. The newly proposed heuristic is developed in Section 3.

In section 4, test cases and computational results are presented, assessing the

effectiveness of the proposed algorithm. Final conclusions are presented in section 5.

2. Problem definition

In this example ofa permutation flowshop, n jobs are to be processed consecutively on

m machines and the order of jobs on every machine keep the same. Since the

movements of jobs are not in the same pace, buffers exist between machines when jobs

wait, and machines may be idle if no job is ready. In order to complete jobs as soon as

possible and maximize machine utilization, makespan and machine idle-time are to be

minimized. Following convention (T’kindt and Billaut 2006) the problem can be

categorized as Fm|prmu|Cmax,IT, where Fm represents an m machine flow shop, prmu

stands for permutation, and Cmax,IT represent makespan and idle time. Table 2 shows

the notation used in this paper.

Table 2. Notation adopted in this paper

Parameter Description

n Total number of jobs

m Total number of machines

i Index for job, 1≤ i ≤n

k Index for machine, 1≤ k ≤m

[i] The i
th

 job of schedule

ti,k Processing time of job i on machine k

IT[i],k Idle-time of machine k generated by the i
th

 job

C[i],k Completion time of the i
th

 job on machine k

The objective function can be expressed as

 Min: F = 𝑤1 ∗ C[n],m + (1 − 𝑤1) ∑ ∑ IT[i],j
m
j=1

n
i=1 (1)

where w1 is the weight of C[n],m. The assumptions used in this paper are described

below.

(1) All jobs are available at time zero and start as soon as possible.

(2) Processing time is known and deterministic.

(3) Setup time is included in processing time.

(4) Machines are continuously available but cannot process two or more jobs

simultaneously.

(5) Job pre-emption is not permitted.

(6) Buffers’ capacity between machines is infinite.

(7) Only permutation schedules are allowed.

3. The proposed algorithm

3.1 PRLJP: New priority rule

All jobs are sorted according to the descending sum of

(AVGi + MADi + abs(SKEi)
1/3 + 1/KURi

1/4),

where AVGi represents the average processing time of job i on all machines, MADi is

the mean absolute deviation of processing times of job i, SKEi and KURi represents

skewness and kurtosis of processing times of job i respectively. Mathematically, they

are expressed as follows.

 AVGi
1

m
∑ ti,k

m
k=1 , (2)

 MADi =
1

m
∑ |ti,k − AVGi|

m
k=1 , (3)

 SKEi =
1

𝑚
∑ (ti,k−AVGi)

3m
k=1

(√
1

𝑚
∑ (ti,k−AVGi)

2m
k=1)

3, (4)

 KURi =
1

𝑚
∑ (ti,k−AVGi)

4m
i=1

(
1

𝑚
∑ (ti,k−AVGi)

2m
k=1)

2. (5)

The general idea of the new priority rule is the same as NEH, i.e., priority is

given to the job with the largest total processing time. But further components are added

to more accurately describe the distribution of processing times on every machine,

which would have far more effect on the scheduling solution. In the literature, STDi is

used for this purpose in NEH-D (Dong, Huang, and Chen 2008), which demonstrated

improved performance. But the square effect of the difference between sample values

and mean value in computing STDi could not be eliminated after taking the square root

and it can easily enlarge data deviation. To overcome the shortcoming of standard

deviation, herein, the mean absolute deviation, MADi, is considered.

Although the average AVGi and the MADi are considered, they are not sufficient

to describe the whole distribution of processing times. The average is used to measure

central tendency and the deviation MADi depicts the degree of variation from the

average. However, as shown in Fig. 2 and Fig. 3, different distributions may share the

same average and deviation. But they should be differentiated when scheduling. For this

purpose, skewness and kurtosis are proposed to allow this differentiation. A large

skewness (positive and negative) indicates high frequency of operation times deviated

from the average. Therefore the corresponding job should be given a higher priority.

Kurtosis defined in Eq. (5) measures the relative peakedness of a distribution. Low

kurtosis means high processing time dispersion. So the job with a large kurtosis of

processing times on each machine should be allocated high priority. Therefore, two new

hypotheses are proposed here:

1. a job with a large skewness of processing times should be given a higher

priority;

2. a job with a low kurtosis should be given a higher priority.

Figure 2. Distributions A, B and C with the same average and deviation but different

skewnesses

Figure 3. Distributions A, B and C with the same average, deviation and skewness but

different kurtoses

Actually, the average is the first moment of a set of data while the mean absolute

deviation is used to stand for the second central moment. The skewness and kurtosis

represent the 3
rd

 and 4
th

 central moments respectively. To make them dimensional, the

3
rd

 order root of SKEi and 4
th

 order root of KURi are adopted together with AVGi and

MADi when allocating priorities.

3.2 TBLJP: New tie-breaking for job insertion

In the new tie-breaking rule, named as TBLJP, the average and standard deviation of job

flow times are used to choose the position for the newly inserted job. Mathematically,

the position associated with the largest P = (f̅ − std(f))/Cmax , where f̅ =
1

n
∑ fi

n
i=1

represents the mean dynamic flow times of all jobs, fi = C[i],m − C[i−1],1 , C[0],1 = 0,

and std(f) = √
1

n−1
∑ (fi − f)̅

2n
i=1

2
 represents the standard deviation of flow times.

Usually minimizing flow times leads to makespan minimization and machine

idle-time increase, and vice versa. The example in Fig. 4 illustrates this point. In Fig.

4(b), the average dynamic flow time is lower than the one in Fig. 4(a) but it has more

idle-time in the schedule. Given the same sum of idle time and makespan, a large

average flow time makes the schedule tight with less idle-time in schedule at the cost of

makespan. In order to balance the two objectives, large average flow time divided by

makespan is pursued. Notably, small flow time variation keeps the schedule smooth.

Consequently, large average and low variation of job flow time are adopted as a

combined tie-breaking rule while keeping small makespan.

Figure 4. Tie-breaking rule: (a) job 1 added into the 1
st
 position; (b) job 1 added into the

2
nd

 position

For example in Fig. 4, job 1 is going to be inserted into partial sequence 3-2 and

two new partial sequences with the same objective value 24 are generated, (a) 1-3-2 and

(b) 3-1-2. From Fig. 4 (a) it can be seen that the flow times of job 1, 3 and 2 are 13, 13

and 15. The average is 13.67, maximum completion is 21 and standard deviation is 1.15

while in sequence (b) the flow times are 9, 13 and 13 respectively with average of

11.67, maximum completion time of 19 and deviation of 2.31. Therefore, sequence 1-3-

2 is selected with P of (13.67-1.15)/21=0.60, larger than that of sequence 3-1-2 with P

of (11.67-2.31)/19=0.49 according to the new tie-breaking method.

3.3 NEHLJP: New heuristic based on PRLJP & TBLJP

Based on the above proposed rules, a new heuristic named NEHLJP is proposed as

follows.

(1) Sort all jobs according to descending sum of

(AVGi+MADi+abs(SKEi)
1/3+1/KURi

1/4);

(2) Take the first two jobs and determine the 2-job partial sequence;

(3) For the rest of jobs, insert it into each possible position and retain the partial

sequence associated with the least objective value, as defined in Eq. (1). If ties

exist, tie-breaking method is applied;

(4) Repeat step 3 until every job is scheduled.

4. Tests and results

To evaluate the performance of the new proposed heuristic, Taillard (Taillard 1993) test

bed, VRF benchmark (Vallada, Ruiz, and Framinan 2015) and a randomly generated

test bed were used. The test bed presented by Taillard includes 120 instances, 12

different size problems ranging from small size problem, n=20 and m=5 to large size

problem n=500 and m=20. Each problem includes 10 instances. It is widely used for

PFSP with the makespan criterion, and it has also been applied to criterion of total or

mean flow time (Sarin and Lefoka 1993). VRF benchmark is the newest hard test bed

including 480 instances ranging from n=10 and m=5 problem to n=800 and m=60

problem. Apart from these two benchmarks, a set of randomly generated instances were

also used due to the fluctuated performance of each exiting heuristics on different test

beds. There are 450 instances randomly generated with n ∈ {10, 20, 40, 80, 120, 160,

200, 300, 400} and m ∈ {10, 20, 30, 40, 50}, 10 replications for each combination. The

processing times are set uniformly distributed in the range of [1, 99]. So three test beds

were used and 1050 instances were tested in total. The Relative Percentage Deviation

(RPD) is employed as a performance measure where RPDq =
HSq−RSq

RSq
∙ 100%, HSq

represents the value obtained by heuristic of problem instance q and RSq is the objective

function value of the best approach of the instance. All algorithms are run in Matlab

R2013b on a PC with CORE i5 -3210M CPU 2.50 GHz and 4.00GB memory.

To fully depict the performance of the new proposed heuristic NEHLJP, 11 sets

of tests were conducted under different weights of makespan with w1 = 0, 0.1, 0.2, … ,1

respectively. Figure 5 shows performance of each heuristic under different weights of

objectives in terms of average RPD (ARPD) on Taillard test bed. As the weight of

makespan varyies in the objective, the ARPD values of reference heuristics fluctuate.

For example, NEH-D is better than the others when only one criterion is applied, but it

is worse when bicriteria is given. When idle-time and makespan carry equal weight,

NEHLJP, NEHKK1 and NEHKK2 show better performance than NEH-D. This

indicates that idle-time and makespan are different although they may be related.

To coordinate the two objectives, it is reasonable to define w1 as 0.5. Because

makespan and idle-time are both measures of time which are limited resource for

industry. Taking the results of NEH-D heuristic on 20 jobs, 50 jobs and 100 jobs of

Taillard test bed as examples, the average of makespan and idle-time are 1868, 3491,

6096 and 1853, 2873, 3944 respectively. Makespan and idle-time have the same

magnitude in the objective function. Therefore the weighted objective function is

feasible.

Figure 5. Performance of each heuristic with different w1 on Taillard test bed

To further verify the effectiveness of the proposed NEHLJP heuristic, the new

sorting rule and tie-breaking rule were tested in the following sections respectively by

comparing to existing heuristics on Taillard benchmark.

4.1 Test results of using the new priority rule

The new priority rule is adopted in NEH heuristic combined with other four existing

priority rules. As shown in Table 3, the new priority rule in PRLJP was superior to that of

existing heuristics in terms of ARPD, 22.41%, 10.34%, 7.04% and 13.85% better than

NEH, PRD, PRKK1 and PRKK2 respectively.

Table 3. ARPDs of each priority rule adopted in NEH heuristic (%)

Instance NEH PRD PRKK1 PRKK2 PRLJP

20|5 2.07 2.51 1.47 1.95 2.15

20|10 4.80 5.38 3.67 6.18 3.11

20|20 4.04 4.37 4.32 2.44 4.09

50|5 0.79 1.36 0.55 0.55 1.16

50|10 3.69 3.66 3.33 3.79 3.08

50|20 3.52 2.03 2.10 4.33 2.14

100|5 0.80 0.45 0.54 0.66 0.70

100|10 2.30 2.06 2.05 1.60 1.72

100|20 3.73 2.05 2.89 3.44 2.33

200|10 1.12 1.10 0.92 0.76 0.57

200|20 3.45 1.66 2.77 2.93 2.53

500|20 2.00 1.34 2.36 0.48 1.49

AVG 2.69 2.33 2.25 2.42 2.09

4.2 Test results of using the tie-breaking rule

The test results of tie-breaking rule are shown in Table 4. Each tie-breaking rule is

adopted in NEH heuristic. The ARPDs of reference heuristics are 0.95, 0.92, 0.90, 0.97,

0.78 and 0.89. The results show that TBFF outperforms the others, followed by TBLJP,

TBKK1,TBKK2, TBD and NEH. Significant differences between TBLJP and other four tie-

breaking rules can be observed. However, the tie-breaking rule TBLJP achieves better

performance with the new proposed priority rule PRLJP than TBFF. Due to the superiority

of the new priority rule, every tie-breaking rule is applied together with the new priority

rule and tested on Taillard benchmark. As depicted in Table 5, by adopting the new

priority rule, the new tie-breaking rule TBLJP resulted in the best solution quality with an

ARPD value of 0.87, better than TBFF.

Table 4. Tie-breaking rule adopted in NEH heuristic (%)

Instance NEH TBD TBKK1 TBKK2 TBFF TBLJP

20|5 0.31 0.35 0.52 0.53 0.78 0.65

20|10 0.55 0.14 0.55 0.55 0.29 0.22

20|20 0.00 0.10 0.00 0.00 0.10 0.10

50|5 0.10 0.57 0.13 0.16 0.40 0.42

50|10 2.66 3.06 3.11 3.11 1.03 2.67

50|20 0.14 0.18 0.16 0.16 0.13 0.20

100|5 0.23 0.20 0.21 0.22 0.28 0.29

100|10 1.31 0.76 0.77 0.78 1.07 0.59

100|20 1.73 0.84 1.09 1.09 1.12 0.60

200|10 1.04 0.74 0.73 0.60 0.91 0.96

200|20 1.87 2.36 1.77 1.86 2.02 2.57

500|20 1.50 1.79 1.78 2.63 1.25 1.39

AVG 0.95 0.92 0.90 0.97 0.78 0.89

Table 5. Each tie-breaking rule implemented with PRLJP (%)

Instance NEH TBD TBKK1 TBKK2 TBFF TBLJP

20|5 0.42 0.29 0.16 0.15 0.60 0.18

20|10 0.53 0.42 1.26 1.26 1.02 1.10

20|20 0.07 0.00 0.00 0.00 0.05 0.22

50|5 0.17 0.28 0.13 0.08 0.07 0.16

50|10 2.21 1.32 1.75 1.75 1.54 0.68

50|20 0.70 1.54 0.59 0.59 0.52 0.82

100|5 0.29 0.31 0.46 0.53 0.11 0.29

100|10 0.97 1.12 0.69 0.50 0.91 1.17

100|20 1.94 3.27 1.04 1.04 2.53 2.15

200|10 0.79 0.99 0.99 0.90 0.95 0.88

200|20 1.74 1.90 2.79 3.26 1.34 1.88

500|20 1.69 1.75 1.34 1.50 1.40 1.70

AVG 0.89 1.04 0.90 0.92 0.88 0.87

4.3 Test results of the new heuristic algorithm with the new priority and tie-

breaking rule

Table 6 shows the test results of each heuristic with respect to bicriteria of makespan

and idle-time on Taillard benchmark. The ARPD of NEHLJP is 2.09, the best among all

reference heuristics, followed by NEHKK1, NEH-D, NEHKK2, NEHFF and NEH. The

ARPD results of all reference heuristics on VRF benchmark are 3.18, 2.46, 3.12, 2.56,

3.06 and 2.41 respectively. NEHLJP demonstrates that the best solution quality is that

with the lowest ARPD value. It can be seen from Table 6 and 7, that the performance of

existing heuristics fluctuates largely, indicating that the two objectives makespan and

machine idle-time conflict sometimes. It can be concluded that the new heuristic

NEHLJP performs the best on both test beds.

Table 6. ARPD of each heuristic with bicriteria using Taillard benchmark (%)

Instance NEH NEH-D NEHKK1 NEHKK2 NEHFF NEHLJP

20|5 2.12 2.44 1.67 2.22 2.61 1.96

20|10 5.10 5.31 4.04 6.16 4.82 4.04

20|20 3.96 4.28 4.23 2.35 4.06 4.16

50|5 0.66 1.51 0.43 0.55 0.96 1.02

50|10 3.80 3.30 3.37 3.81 2.15 1.66

50|20 3.61 1.87 2.38 4.25 3.59 2.36

100|5 0.77 0.41 0.52 0.72 0.83 0.68

100|10 2.02 1.33 0.90 0.47 1.78 1.65

100|20 4.65 3.32 3.48 4.22 4.04 3.46

200|10 1.15 1.06 0.81 0.95 1.02 0.68

200|20 2.48 2.19 1.71 1.77 2.64 1.72

500|20 2.16 1.33 2.78 2.09 1.90 1.64

AVG 2.71 2.36 2.19 2.46 2.53 2.09

Table 7. ARPD of each heuristic with bicriteria on VRF benchmark (%)

Problem NEH NEH-D NEHKK1 NEHKK2 NEHFF NEHLJP

S L S L S L S L S L S L S L

10×5 100×20 0.76 3.61 2.05 2.32 0.67 4.32 0.07 2.43 1.09 4.47 1.37 4.08

10×10 100×40 2.10 2.38 1.09 0.60 1.80 2.34 2.72 1.69 2.10 2.29 1.55 2.81

10×15 100×60 4.28 3.23 1.54 1.58 3.09 3.42 3.01 2.66 4.28 3.23 2.13 2.24

10×20 200×20 3.90 3.82 2.41 2.88 4.17 2.91 1.97 3.03 3.90 2.88 2.46 2.23

20×5 200×40 3.07 3.06 5.30 2.43 3.33 3.31 4.23 2.49 3.63 3.15 2.21 2.68

20×10 200×60 4.88 3.31 5.11 2.80 5.17 2.69 1.74 2.47 5.02 3.29 4.79 2.14

20×15 300×20 5.94 3.20 2.30 1.85 6.64 2.14 4.92 3.00 5.88 2.67 4.66 1.61

20×20 300×40 3.54 3.21 3.49 2.45 2.97 3.13 2.77 2.21 3.54 2.24 3.34 1.98

30×5 300×60 2.65 1.83 1.51 2.23 1.19 1.63 2.38 1.24 2.56 2.11 2.82 1.05

30×10 400×20 5.59 3.10 4.24 1.68 6.48 3.04 4.61 2.20 5.37 2.53 2.87 1.93

30×15 400×40 4.27 2.45 4.75 0.65 3.41 1.79 7.21 1.99 4.17 2.15 5.32 0.84

30×20 400×60 4.06 2.12 3.17 1.55 4.22 2.57 2.36 1.67 4.06 2.24 2.74 2.61

40×5 500×20 2.20 3.30 2.21 1.38 2.21 3.17 2.24 1.35 2.42 2.04 2.29 2.76

40×10 500×40 4.67 2.82 2.56 1.98 5.12 3.10 5.90 2.69 6.35 1.77 2.38 2.60

40×15 500×60 4.84 2.40 5.67 1.68 4.61 1.70 3.82 1.89 4.14 1.79 3.41 2.02

40×20 600×20 3.80 2.23 5.46 1.14 6.45 2.20 3.11 0.34 4.46 2.13 3.28 2.03

50×5 600×40 1.28 2.52 0.90 1.29 0.90 1.59 1.82 0.75 0.51 1.23 1.29 0.92

50×10 600×60 3.65 2.41 1.58 1.60 3.85 2.45 4.08 1.10 2.57 1.44 2.15 1.96

50×15 700×20 3.02 1.57 4.15 1.27 4.55 1.86 3.76 1.12 3.03 1.87 5.00 2.00

50×20 700×40 4.60 2.44 5.96 1.81 5.01 1.95 5.16 1.57 5.20 3.00 2.41 1.71

60×5 700×60 1.91 2.02 1.97 1.21 1.53 2.20 1.65 1.11 3.26 2.03 1.77 1.95

60×10 800×20 3.28 1.80 2.86 1.20 2.31 1.96 2.30 0.51 2.64 1.74 2.44 1.23

60×15 800×40 3.83 3.11 1.97 1.53 4.19 2.36 4.11 1.64 4.69 2.62 3.13 1.52

60×20 800×60 5.62 2.93 5.40 1.17 6.22 1.89 3.88 1.85 5.20 1.88 2.73 0.44

AVG 3.18 2.46 3.12 2.56 3.06 2.41

In order to further confirm the superiority of NEHLJP, the test on randomly

generated instances is conducted and the results are shown in Table 8. The ARPD value

of NEHLJP was 2.02, ascendingly followed by NEH-D, NEHKK2, NEHFF, NEHKK1

and NEH.

Table 8. ARPD of each heuristic with bicriteria on randomly generated benchmark (%)

Instance NEH NEH-D NEHKK1 NEHKK2 NEHFF NEHLJP

10|10 3.27 1.65 4.37 5.05 3.27 1.88

10|20 2.67 3.53 2.67 2.60 2.67 3.07

10|30 1.78 1.23 3.41 3.44 1.78 0.82

10|40 3.44 1.29 2.19 3.05 3.44 1.80

10|50 1.46 3.21 1.46 1.64 1.46 2.20

20|10 3.55 3.17 3.28 4.52 3.38 2.02

20|20 5.10 5.01 5.32 2.60 5.10 2.79

20|30 3.78 3.90 4.37 5.07 3.78 3.10

20|40 3.88 2.60 3.67 2.86 3.88 2.20

20|50 2.22 4.50 2.46 3.61 2.35 4.21

40|10 3.07 3.27 1.69 3.75 2.54 2.43

40|20 3.58 2.90 1.89 4.31 3.29 3.58

40|30 4.28 3.09 4.86 3.12 4.28 2.94

40|40 3.09 2.03 3.77 3.31 3.33 1.78

40|50 2.57 2.98 2.34 2.79 2.58 0.96

80|10 1.52 1.61 1.99 2.12 1.23 2.34

80|20 5.73 2.85 3.26 1.79 5.04 2.53

80|30 4.85 3.90 4.08 4.51 4.84 1.84

80|40 3.51 3.24 3.14 3.54 3.26 1.57

80|50 1.79 1.80 2.85 1.88 1.79 2.20

120|10 1.18 1.52 1.16 1.41 1.15 1.42

120|20 4.82 2.56 3.49 2.62 4.66 3.10

120|30 2.23 2.42 2.86 2.73 2.33 3.75

120|40 2.37 2.46 2.47 3.19 2.51 1.75

120|50 1.86 2.96 3.03 2.23 1.64 2.13

160|10 1.48 1.19 1.46 0.63 0.97 1.09

160|20 3.37 3.33 2.72 3.37 2.62 0.77

160|30 3.23 2.14 3.15 3.15 2.46 2.05

160|40 3.46 2.35 3.02 2.41 2.15 2.08

160|50 2.88 1.15 3.10 2.07 2.74 2.03

200|10 0.91 0.86 0.92 0.70 0.50 0.91

200|20 2.67 2.11 2.37 1.79 2.84 2.84

200|30 2.72 2.16 3.24 1.41 2.20 2.30

200|40 2.18 1.65 2.99 2.90 2.06 1.14

200|50 2.19 1.52 1.79 1.81 1.72 1.16

300|10 0.59 0.21 0.62 0.45 0.38 0.72

300|20 2.82 0.94 2.15 2.44 1.92 1.08

300|30 2.43 3.13 1.27 2.79 2.88 3.44

300|40 1.88 1.44 2.06 1.83 2.58 1.84

300|50 2.21 1.80 2.12 1.99 2.97 1.65

400|10 0.36 0.23 0.37 0.22 0.50 0.18

400|20 1.96 1.09 1.61 1.74 1.75 1.57

400|30 3.77 2.61 3.50 1.35 3.90 2.06

400|40 2.37 2.03 1.52 1.14 2.08 2.13

400|50 2.37 2.73 2.22 1.41 1.67 1.40

AVG 2.74 2.32 2.63 2.52 2.59 2.02

In order to check if the differences of ARPD between heuristics are statistically

significant, a multifactor analysis of variance (ANOVA) was carried out. All three

hypotheses (normality, homocedasticity and independence of the residuals) were

carefully checked but were not found to be suitable. The normality is rejected since all

variables focus on the right side of zero according to the adopted performance measure.

Therefore a non-parametric Mann-Whitney test was conducted.

When the confidence level was set as 0.05, no significant differences were

observed on Taillard benchmark among all reference heuristics. The reason is due to the

small size of benchmark (Kalczynski and Kamburowski 2008), (Fernandez-Viagas and

Framinan 2014). While on VRF benchmark, NEHLJP showed no significant difference

from other heuristics except for NEH. The reason is both benchmarks are developed for

makespan criterion instead of bicriteria of makespan and idle-time. No significant

performance differences among all heuristics can be observed. While on the randomly

generated test bed, it can be concluded that NEHLJP is significant better than existing

heuristics. The non-parametric test results can be seen in Table 9.

Table 9. Non-parametric test of Mann-Whitney on the new random test bed

Algorithm P

NEH – NEH-D 0.003

NEH – NEHKK1 0.315

NEH – NEHKK2 0.034

NEH – NEHFF 0.319

NEH – NEHLJP 0.000

NEH-D – NEHKK1 0.064

NEH-D – NEHKK2 0.497

NEH-D – NEHFF 0.059

NEH-D – NEHLJP 0.022

NEHKK1 – NEHKK2 0.277

NEHKK1 – NEHFF 0.964

NEHKK1 – NEHLJP 0.000

NEHKK2 – NEHFF 0.245

NEHKK2 – NEHLJP 0.005

NEHFF – NEHLJP 0.000

With respect to computation times of each heuristic, extra computation time is

needed for calculating two objectives comparing to with single criterion of makespan.

For example, it will take 0.3 secs to complete the computation for a 50 jobs 20

machines problem, and 240 secs for 200 jobs and 20 machines problem for NEHLJP.

The computational time is relatively small, within the manageable scale even for a large

size problem, given the computer’s average speed. In practice, the schedule quality is

the key factor to be considered for industry instead of computation time.

5. Conclusions

In this paper, a new heuristic named NEHLJP is proposed by incorporating one new

priority rule and one new tie-breaking rule, with bicriteria of both makespan and idle-

time. In order to validate the NEHLJP performance, the Taillard test bed, Vallada test

bed and a randomly generated test bed are used. The test results show that NEHLJP

heuristic can provide a high quality solution on all test beds, outperforming all existing

heuristics.

The main contribution of this paper lies in the new proposed priority rule PRLJP

taking account of skewness and kurtosis representing the 3
rd

 and the 4
th

 moment of a

distribution. By this new rule, processing time distribution can be differentiated so as to

be sequenced. Additionally, a new tie-breaking mechanism TBLJP for minimizing

makespan and idle-time simultaneously is introduced. The effectiveness of both PRLJP

and TBLJP are validated through statistical tests.

Reference

Aghezzaf, E.-H., and H. Van Landeghem. 2002. “An Integrated Model for Inventory

and Production Planning in a Two-Stage Hybrid Production System.” International

Journal of Production Research 40 (17): 4323–4339.

Allahverdi, Ali. 2004. “A New Heuristic for M-Machine Flowshop Scheduling Problem

with Bicriteria of Makespan and Maximum Tardiness.” Computers & Operations

Research 31 (2): 157–180.

Boukef, H., M. Benrejeb, and P. Borne. 2007. “A Proposed Genetic Algorithm Coding

for Flow-Shop Scheduling Problems.” International Journal of Computers,

Communications & Control 2 (3): 229–240.

Campbell, H. G., R. A. Dudek, and M. L. Smith. 1970. “A Heuristic Algorithm for the

N Job, M Machine Sequencing Problem.” Management Science 16 (10): B630–

637.

Chandra, P., P. Mehta, and D. Tirupati. 2009. “Permutation Flow Shop Scheduling with

Earliness and Tardiness Penalties.” International Journal of Production Research

47 (20): 5591–5610.

Dannenbring, D. G. 1977. “An Evaluation of Flow Shop Sequencing Heuristics.”

Management Science 23 (11): 1174–1182.

Dong, X., H. Huang, and P. Chen. 2008. “An Improved NEH-Based Heuristic for the

Permutation Flowshop Problem.” Computers & Operations Research 35 (12):

3962–3968.

Fernandez-Viagas, V., and J. M. Framinan. 2014. “On Insertion Tie-Breaking Rules in

Heuristics for the Permutation Flowshop Scheduling Problem.” Computers &

Operations Research 45: 60–67.

Framinan, J. M., J. N. D. Gupta, and R. Leisten. 2004. “A Review and Classification of

Heuristics for Permutation Flow-Shop Scheduling with Makespan Objective.”

Journal of the Operational Research Society 55 (12): 1243–1255.

Garey, M. R., D. S. Johnson, and R. Sethi. 1976. “The Complexity of Flowshop and

Jobshop Scheduling.” Mathematics of Operations Research 1 (2): 117–129.

Garey, Michael Randolph, and David Stifler Johnson. 1979. Computers and

Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W.H.

Freeman and Company.

Gupta, J. N. 1976. “A Heuristic Algorithm for the Flowshop Scheduling Problem.”

Revue Francaise d’Automatique, Informatique, Recherche Operationnelle 10: 63–

73.

Gupta, J. N. D. 1972. “Heuristic Algorithms for Multistage Flowshop Sdcheduling

Problem.” AIIE Transactions 4 (1): 11–18.

Gupta, J. N. D. 1971. “A Functional Heuristic Algorithm for the Flowshop Scheduling

Problem.” Operational Research Quarterly 22 (1): 39–47.

Gupta, J. N. D., and E. F. Stafford. 2006. “Flowshop Scheduling Research after Five

Decades.” European Journal of Operational Research 169 (3): 699–711.

Johnson, S. M. 1954. “Optimal Two and Three-Stage Production Schedules with Setup

Times.” Naval Research Logistics Quarterly 1: 61–68.

Kalczynski, P. J, and J Kamburowski. 2008. “An Improved NEH Heuristic to Minimize

Makespan in Permutation Flow Shops.” Computers & Operations Research 35 (9):

3001–3008.

Kalczynski, P.J., and J. Kamburowski. 2009. “An Empirical Analysis of the Optimality

Rate of Flow Shop Heuristics.” European Journal of Operational Research 198

(1): 93–101.

Liu, C. Y., and S. C. Chang. 2000. “Scheduling Flexible Flow Shops with Sequence-

Dependent Setup Effects.” IEEE Transactions on Robotics and Automation 16 (4):

408–419.

Liu, H., L. Gao, and Q. Pan. 2011. “A Hybrid Particle Swarm Optimization with

Estimation of Distribution Algorithm for Solving Permutation Flowshop

Scheduling Problem.” Expert Systems with Applications 38 (4): 4348–4360.

Liu, J., and C. R. Reeves. 2001. “Constructive and Composite Heuristic Solutions to the

P//∑Ci Scheduling Problem.” European Journal of Operational Research 132 (2):

439–452.

Liu, W., Y. Jin, and M. Price. 2014. “A New Heuristic to Minimize System Idle Time

for Flowshop Scheduling.” In Poster Presented at the 3rd Annual EPSRC

Manufacturing the Future Conference. Glassogw, September 23-24.

Liu, Y. C., K. T. Fang, and B. Lin. 2013. “A Branch-and-Bound Algorithm for

Makespan Minimization in Differentiation Flow Shops.” Engineering Optimization

45 (12): 1397–1408.

Low, C., J. Y. Yeh, and K. I. Huang. 2004. “A Robust Simulated Annealing Heuristic

for Flow Shop Scheduling Problems.” The International Journal of Advanced

Manufacturing Technology 23: 762–767.

Msakni, M. K., W. Khallouli, M. Al-Salem, and T. Ladhari. 2015. “Minimizing the

Total Completion Time in a Two-Machine Flowshop Problem with Time Delays.”

Engineering Optimization: 1–18. doi:10.1080/0305215X.2015.1099639.

Nagano, M. S., and J. V. Moccellin. 2002. “A High Quality Solution Constructive

Heuristic for Flow Shop Sequencing.” Journal of the Operational Research Society

53 (12): 1374–1379.

Nawaz, M., E. E. Enscore Jr., and I. Ham. 1983. “A Heuristic Algorithm for the M-

Machine, N-Job Flow-Shop Sequencing Problem.” Omega 11 (1): 91–95.

Palmer, D. S. 1965. “Sequencing Jobs through a Multi-Stage Process in the Minimum

Total Time-a Quick Method of Obtaining a near Optimum.” Operational Research

Quarterly 16 (1): 101–107.

Pan, Q. K., and R. Ruiz. 2013. “A Comprehensive Review and Evaluation of

Permutation Flowshop Heuristics to Minimize Flowtime.” Computers &

Operations Research 40 (1): 117–128.

Ruiz, R., and C. Maroto. 2005. “A Comprehensive Review and Evaluation of

Permutation Flowshop Heuristics.” European Journal of Operational Research

165 (2): 479–494.

Sarin, S., and M. Lefoka. 1993. “Scheduling Heuristic for the N-Job M-Machine Flow

Shop.” Omega 21 (2): 229–234.

Spachis, A. S. 1978. “Job-Shop Scheduling with Approximate Methods.” PhD diss.,

Imperial College London (University of London).

T’kindt, V., and J. C. Billaut. 2006. Multicriteria Scheduling Problems: Theory, Models

and Alogrithms. Berlin: Springer.

Taillard, E. 1993. “Benchmarks for Basic Scheduling Problems.” European Journal of

Operational Research 64: 278–285.

Vallada, E., R. Ruiz, and J. M. Framinan. 2015. “New Hard Benchmark for Flowshop

Scheduling Problems Minimising Makespan.” European Journal of Operational

Research 240 (3): 666–677.

Xu, J., and X. Zhou. 2009. “A Class of Multi-Objective Expected Value Decision-

Making Model with Birandom Coefficients and Its Application to Flow Shop

Scheduling Problem.” Information Sciences 179 (17): 2997–3017.

Yenisey, M. M., and B. Yagmahan. 2014. “Multi-Objective Permutation Flow Shop

Scheduling Problem: Literature Review, Classification and Current Trends.”

Omega 45: 119–135.

Table 1. Some NEH-based heuristics in terms of priority rule and tie-breaking rule

Table 2. Notations adopted in this paper

Table 3. ARPDs of each priority rule adopted in NEH heuristic (%)

Table 4. Tie-breaking rule adopted in NEH heuristic (%)

Table 5. Each tie-breaking rule implemented with PRLJP (%)

Table 6. ARPD of each heuristic with bicriteria using Taillard benchmark (%)

Table 7. ARPD of each heuristic with bicriteria on VRF benchmark (%)

Table 8. ARPD of each heuristic with bicriteria on randomly generated benchmark (%)

Table 9. Non-parametric test of Mann-Whitney on the new random test bed

Figure 1. Front delay, idle-time (IT) and back delay of schedule (i.k indicates the

processing time of job i on machine k)

Figure 2. Distributions A, B and C with the same average and deviation but different

skewnesses

Figure 3. Distributions A, B and C with the same average, deviation and skewness but

different kurtoses

Figure 4. Tie-breaking rule: (a) job 1 added into the 1
st
 position; (b) job 1 added into the

2
nd

 position

Figure 5. Performance of each heuristic with different w1 on Taillard test bed

1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3

(a) 1-3-2

Objective value=24

Idle-time=3

Makespan=21

Average flow time=13.67

Job [1] flow time

Job [3] flow time

Job [2] flow time

Objective value=24

Idle-time=5

Makespan=19

Average flow time=11.67

1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3

(b) 3-1-2

