QUEEN’S

UNIVERSITY
BELFAST

ESTP1845

A new Nawaz-Enscore-Ham-based heuristic for permutation flow-
shop problem with bicriteria of makespan and machine idle-time

Liu, W., Jin, Y., & Price, M. (2016). A new Nawaz-Enscore—-Ham-based heuristic for permutation flow-shop
problem with bicriteria of makespan and machine idle-time. Engineering Optimization, 48(10), 1808-1822. DOI:
10.1080/0305215X.2016.1141202

Published in:
Engineering Optimization

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights

© 2016 The Authors

This is an Author’s Original Manuscript Manuscript of an article published by Taylor & Francis in Engineering Optimization on 18 February
2016, available online: http://www.tandfonline.com/doi/full/10.1080/0305215X.2016.1141202

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:19. Jul. 2018

https://pure.qub.ac.uk/portal/en/publications/a-new-nawazenscorehambased-heuristic-for-permutation-flowshop-problem-with-bicriteria-of-makespan-and-machine-idletime(3a1a979a-9b59-4d7d-aa02-1c0fe39508f2).html

A New Nawaz—Enscore—Ham based Heuristic for Permutation
Flowshop Problem with Bicriteria of Makespan and Machine Idle-time
Weibo Liu, Yan Jin", Mark Price

School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Ashby
Building, Belfast, BT9 5AH, UK

y.jin@qub.ac.uk

A New Nawaz—Enscore—Ham based Heuristic for Permutation

Flowshop Problem with Bicriteria of Makespan and Machine Idle-time

A new heuristic based on Nawaz—Enscore—Ham (NEH) algorithm is proposed for
solving permutation flowshop scheduling problem in this paper. A new priority
rule is proposed by accounting for the average, mean absolute deviation,
skewness and kurtosis, in order to fully describe the distribution style of
processing times. A new tie-breaking rule is also introduced for achieving
effective job insertion for the objective of minimizing both makespan and
machine idle-time. Statistical tests illustrate better solution quality of the

proposed algorithm, comparing to existing benchmark heuristics.

Keywords: heuristic; flow shop; scheduling; makespan; idle-time

1 Introduction

Flow shop scheduling is an active research area in manufacturing, as it has many
interesting industrial applications and is also an attractive field of theoretical study
(Yenisey and Yagmahan 2014). Industrial applications can be found in automotive
manufacturing (Xu and Zhou 2009; Framinan et al. 2014), integrated circuit fabrication
(Liu and Chang 2000), photographic film production (Aghezzaf and VVan Landeghem
2002), pharmaceutical and agro-food industries (Boukef, Benrejeb, and Borne 2007).
The Flow shop scheduling problem has been proved as NP-hard when the machine
number is larger than 2 (Garey, Johnson, and Sethi 1976). It has become a rather
challenging problem not only in research, but also for industrial practice. To simplify
the problem, permutation flow shop scheduling problem (PFSP), in which the order of
jobs passing through every machine is always kept the same, is often used as it is a
special case of flow shop problem. PFSP is also proved to be NP-hard (Garey and
Johnson 1979) and many methods have been proposed to solve PFSP with a criterion of

minimizing makespan or maximum job lateness. Some successes have been obtained

(Allahverdi 2004; Chandra, Mehta, and Tirupati 2009).

The NEH (Nawaz, Enscore Jr., and Ham 1983) heuristic has been regarded as
the best algorithm to solve PFSP and many heuristics based on NEH have been
proposed with the objective of minimizing makespan or total flow time, and have
demonstrated improved performance. NEHKK1 (Kalczynski and Kamburowski 2008),
NEH-D (Dong, Huang, and Chen 2008), NEHKK?2 (Kalczynski and Kamburowski
2009) and NEHFF (Fernandez-Viagas and Framinan 2014) are currently popular
constructive heuristic algorithms, representing the state of the art in the field. Single
objective scheduling is employed in most existing heuristics and the objectives only
focus on makespan (Gao and Pan 2011; Liu, Fang, and Lin 2013), total flow time (Pan
and Ruiz 2013; Msakni et al. 2015), or total tardiness (Yenisey and Yagmahan 2014).
However, a single objective may not be good enough to represent reality as most of real
life scheduling problems naturally involve multiple objectives. The current trend is to
apply multiple objectives while further improving existing heuristics by new
approaches. To start to address this problem, this paper studies the PFSP with two
objectives, i.e., minimization of both makespan and machine idle-time. Minimizing
makespan is to deliver orders as soon as possible, while minimizing idle-time could
help improve machine utilization. In the past, minimizing makespan has been
mistakenly regarded as equivalent to minimizing machine idle-time, but recent research
by (Liu, Jin, and Price 2014) has shown that although they are related, they are clearly
different and in fact can be in conflict with each other. Herein, a novel heuristic
algorithm based on NEH approach is proposed by utilizing a new priority rule and a
new tie breaking method with the two objectives. Its effectiveness is validated through

statistical tests with common benchmarks (Taillard 1993; Vallada, Ruiz, and Framinan

2015) by comparing to existing dominating algorithms including NEH, NEHKK1,
NEH-D, NEHKK2 and NEHFF.

In literature, many heuristic methods have been introduced to solve PFSP. Early
examples can be found in (Johnson 1954; Palmer 1965; Gupta 1971; Campbell et al.
1970; Gupta 1976; Dannenbring 1977). Nawaz et al. (1983) proposed a ground-
breaking algorithm on which many heuristics were introduced for PFSP (Framinan et al.
2004; Ruiz and Maroto 2005; Gupta and Stafford 2006). Recent advance lies in the
proposition of NEHKK1 (Kalczynski and Kamburowski 2008), NEH-D (Dong et al.
2008), NEHKK?2 (Kalczynski and Kamburowski 2009) and NEHFF (Fernandez-Viagas
and Framinan 2014), all of which demonstrated improved performance.

Typically, two key steps are required in these NEH-based heuristic algorithms.
The first step is to sort all jobs with one priority rule to form the initial partial sequence,
and the second step is to insert the rest jobs one by one to the existing sequence for
achieving certain objective. Since ties often occur in the second step, the tie-breaking
method is also crucial to the performance of the heuristic algorithm. In NEH algorithm,
the priority rule is based on the non-increasing sum of processing times, and job
insertion is with the objective to minimize makespan, but no tie-breaking method is
used. Once a tie occurs, usually the first feasible position is selected. Based on the first
or the second step, many improved NEH heuristics were developed. Nagano and
Moccellin (2002) developed a priority rule according to the non-increasing difference
between total processing times and job waiting time, and it was competitive compared
to NEH. Low et al. (2004) developed the MNEH algorithm by introducing a priority
rule according to the descending sum of artificial processing times and a tie-breaking
rule that chose the position with the least idle-time on the bottleneck machine.

Kalczynski and Kamburowski (2007) developed a series of NEH modifications

including NEHKK, NEHKK1 and NEHKK2 based upon the concept of Johnson’s rule.
Dong et al. (2008) introduced the NEH-D heuristic, which includes a priority rule by
taking account of processing time variation combined with mean value and a tie-
breaking rule choosing the position with the least machine utilization variation.
Fernandez-Viagas and Framinan (2014) proposed a tie-breaking rule aiming to
minimize total idle-time in system in his NEHFF heuristic. Table 1 summarizes some

recent popular heuristic algorithms.

Table 1. Some NEH-based heuristics in terms of priority rule and tie-breaking rule

Heuristics | Priority rule Tie-breaking rule
NEH Descending sum of operation times Usually the first
(1983) position is selected
when ties exist
NEHNM Descending difference between total | Same as NEH
(2002) processing time and lower bound of job
waiting time
MNEH Descending sum of artificial processing | The position with the
(2004) times least idle-time on
bottleneck machine is
selected
NEHKK Same as NEH The position is selected
(2007) with the least maximum
completion time of the
sequence between two
tie positions
NEHKK1 | Non-increasing sum of weighted | Job x is inserted into
(2007) processing times min(a, b;) where |the first (or last)
a;=Ym, [(m-l)z(m-z) +m— k] tie position if a, < by (or
>
b= 3 [%(m_z) e 1] o ay = by)
NEH-D Descending sum of mean and standard | The position with more
(2008) deviation of processing times balanced machine
utilization is selected
NEHKK2 | Non-increasing sum of weighted | Same as NEHKK1 with
(2009) processing times min(a;, b;) where corresponding a, and
3
aj = Y= tik + Zhet (:g - P
4

E) (ts+1-hi — te+ni) + bi = Xkeqtix —

3
Yh=1 <_§ - 3) (ts+1-ni = teens) and

s
4

s = |m/2], t = [m/2]

NEHFF Same as NEH Choose the position

(2014) with the least front

delay and idle-time

Machine idle-time has been rarely utilized in the literature for PFSP, but it is an
important performance measure in manufacturing enterprises, and many companies are
using it to drive their operators’ behaviour on the shop floor. As shown in Fig.1, apart
from machine operations, the empty space is categorized as front delay, idle-time (IT),
and back delay (Spachis 1978). Front delay could be occupied by production prior to the
current batch, while back delay could be filled in by the subsequent operations, but the
idle-time is a real waste, which should be minimized. The idle-time on machine k
generated by the i" job can be computed by [T = max{Cpj_1 — Cfi_1] 0}. In the
literature, minimizing machine idle-time was adopted as a strategy to minimize
makespan instead of the objective. The most widely accepted objective is to minimize
idle-time on the last machine with a makespan criterion. Jobs which do not generate
idle-time on last machine are chosen and added to schedule one by one (Sarin and
Lefoka 1993), which is similar to MINimum Idle-time (MINT) algorithm which intends
to minimize idle-time on the last machine (Gupta 1972). Liu and Reeves (2001)
introduced an idle-time based index for composite heuristics for PFSP by calculating
the fitness of unscheduled jobs to the last job of partial schedule. Few studies have

focused on idle-time minimization directly.

Figure 1. Front delay, idle-time (IT) and back delay of schedule (i.k indicates the
processing time of job i on machine k)

A single criterion has been widely used in the heuristics for PFSP, but a single
criterion is not good enough for describing complex practical problems. Therefore,
researchers have begun to consider applying multiple criteria to solve many real-world
scheduling problems (T’kindt and Billaut 2006). Framinan et al. (2002) developed two
constructive heuristics by using the NEH search strategy for the two-objectives of
makespan and flowtime. Braglia and Grassi (2009) developed a heuristic MOGI by
integrating the technique for ordered preference by similarity of ideal solution
(TOPSIS) with NEH for the objective of makespan and maximum tardiness. The multi-
criteria decision making technique TOPSIS is adopted for each step of the NEH
heuristic. Chandra et al. (2009) proposed a heuristic procedure for PFSP with objective
of earliness and tardiness for a bulk-drugs manufacturer with wide range of due date. In
the recent literature review (Yenisey and Yagmahan 2014) the consideration of PFSP
with multiple objectives concluded that much attention was paid to multi-objective
heuristics for PFSP but idle-time criterion has rarely been taken into account for multi-
objectives scheduling. Therefore, herein we consider idle-time minimization together
with makespan criterion for PFSP.

The remainder of this paper is organized as follows. In section 2, the example
problem studied is described. The newly proposed heuristic is developed in Section 3.
In section 4, test cases and computational results are presented, assessing the

effectiveness of the proposed algorithm. Final conclusions are presented in section 5.

2. Problem definition

In this example ofa permutation flowshop, n jobs are to be processed consecutively on

m machines and the order of jobs on every machine keep the same. Since the

movements of jobs are not in the same pace, buffers exist between machines when jobs
wait, and machines may be idle if no job is ready. In order to complete jobs as soon as
possible and maximize machine utilization, makespan and machine idle-time are to be
minimized. Following convention (T’kindt and Billaut 2006) the problem can be
categorized as Fp|prmu|Crax, I T, where Fr, represents an m machine flow shop, prmu
stands for permutation, and Cnax, I T represent makespan and idle time. Table 2 shows
the notation used in this paper.

Table 2. Notation adopted in this paper

Parameter Description

n Total number of jobs

m Total number of machines

[Index for job, 1<i<n

k Index for machine, 1<k <m

[i] The i" job of schedule

tik Processing time of job i on machine k

1T Idle-time of machine k generated by the i job
Crik Completion time of the i" job on machine k

The objective function can be expressed as

Min: F=wy * Cippm + (1 — wy) Xing 221 [Ty Q)

where w; is the weight of Cp,; . The assumptions used in this paper are described

below.

(1) All jobs are available at time zero and start as soon as possible.

(2) Processing time is known and deterministic.

(3) Setup time is included in processing time.

(4) Machines are continuously available but cannot process two or more jobs
simultaneously.

(5) Job pre-emption is not permitted.

(6) Buffers’ capacity between machines is infinite.

(7) Only permutation schedules are allowed.

3. The proposed algorithm

3.1 PR yp: New priority rule

All jobs are sorted according to the descending sum of
(AVGI + MADI + abs(SKEi)1/3 + 1/KURi1/4),

where AVG; represents the average processing time of job i on all machines, MAD; is
the mean absolute deviation of processing times of job i, SKE; and KUR; represents
skewness and kurtosis of processing times of job i respectively. Mathematically, they

are expressed as follows.
1
AVG; —¥iis tio 2
1
MAD; = — XL, [t — AVGy], ©)

3
% Yke1(tik—AVG;)

(J% ka=1(ti,k—AVGi)2>

SKE; = 7 4)

4
—~¥, (tix—AVGy)

(%ka=1(ti,k_AVGi)2)2.

KUR; = ®)

The general idea of the new priority rule is the same as NEH, i.e., priority is
given to the job with the largest total processing time. But further components are added
to more accurately describe the distribution of processing times on every machine,
which would have far more effect on the scheduling solution. In the literature, STD; is
used for this purpose in NEH-D (Dong, Huang, and Chen 2008), which demonstrated

improved performance. But the square effect of the difference between sample values

and mean value in computing STD; could not be eliminated after taking the square root
and it can easily enlarge data deviation. To overcome the shortcoming of standard
deviation, herein, the mean absolute deviation, MAD;, is considered.

Although the average AVG; and the MAD; are considered, they are not sufficient
to describe the whole distribution of processing times. The average is used to measure
central tendency and the deviation MAD; depicts the degree of variation from the
average. However, as shown in Fig. 2 and Fig. 3, different distributions may share the
same average and deviation. But they should be differentiated when scheduling. For this
purpose, skewness and kurtosis are proposed to allow this differentiation. A large
skewness (positive and negative) indicates high frequency of operation times deviated
from the average. Therefore the corresponding job should be given a higher priority.
Kurtosis defined in Eq. (5) measures the relative peakedness of a distribution. Low
kurtosis means high processing time dispersion. So the job with a large kurtosis of
processing times on each machine should be allocated high priority. Therefore, two new
hypotheses are proposed here:

1. ajob with a large skewness of processing times should be given a higher

priority;

2. ajob with a low kurtosis should be given a higher priority.

0.7
0.6
0.5
0.4
0.3
0.2

0.1

Figure 2. Distributions A, B and C with the same average and deviation but different

skewnesses

-4 3 2 -1 0 1 2 3 4

Figure 3. Distributions A, B and C with the same average, deviation and skewness but
different kurtoses

Actually, the average is the first moment of a set of data while the mean absolute
deviation is used to stand for the second central moment. The skewness and kurtosis
represent the 3™ and 4™ central moments respectively. To make them dimensional, the
3" order root of SKE; and 4™ order root of KUR; are adopted together with AVG; and

MAD; when allocating priorities.

3.2 TByp: New tie-breaking for job insertion

In the new tie-breaking rule, named as TB s, the average and standard deviation of job

flow times are used to choose the position for the newly inserted job. Mathematically,

the position associated with the largest P = (f — std(f))/Cpnax » Where f = 2 . f

n

represents the mean dynamic flow times of all jobs, f; = Cfjjm — Cji—13,1 » Cjo1 = 0,

and std(f) = 2\/& no(f- f)z represents the standard deviation of flow times.

Usually minimizing flow times leads to makespan minimization and machine

idle-time increase, and vice versa. The example in Fig. 4 illustrates this point. In Fig.

4(b), the average dynamic flow time is lower than the one in Fig. 4(a) but it has more
idle-time in the schedule. Given the same sum of idle time and makespan, a large
average flow time makes the schedule tight with less idle-time in schedule at the cost of
makespan. In order to balance the two objectives, large average flow time divided by
makespan is pursued. Notably, small flow time variation keeps the schedule smooth.
Consequently, large average and low variation of job flow time are adopted as a
combined tie-breaking rule while keeping small makespan.

Job [3] flow time

A
\ J

1.1 3.1 2.1 Objective value=24
Idle-time=3
12 3.2 — 2.2 Makespan=21
1.3 . . 33 Average flow time=13.67

Job [1] flow time

A

-
=

Job [2] flow time

A
\J

(a) 1-3-2
3.1 1.1 2.1 Objective value=24
32 Idle-time=5
: Makespan=19

Average flow time=11.67

(b) 3-1-2

Figure 4. Tie-breaking rule: (a) job 1 added into the 1% position; (b) job 1 added into the
2" position

For example in Fig. 4, job 1 is going to be inserted into partial sequence 3-2 and
two new partial sequences with the same objective value 24 are generated, (a) 1-3-2 and
(b) 3-1-2. From Fig. 4 (a) it can be seen that the flow times of job 1, 3 and 2 are 13, 13
and 15. The average is 13.67, maximum completion is 21 and standard deviation is 1.15
while in sequence (b) the flow times are 9, 13 and 13 respectively with average of
11.67, maximum completion time of 19 and deviation of 2.31. Therefore, sequence 1-3-
2 is selected with P of (13.67-1.15)/21=0.60, larger than that of sequence 3-1-2 with P

of (11.67-2.31)/19=0.49 according to the new tie-breaking method.

3.3 NEHLJP: New heuristic based on PR jp & TB_sp

Based on the above proposed rules, a new heuristic named NEHLJP is proposed as

follows.

(1) Sortall jobs according to descending sum of
(AVG;+MAD;+abs(SKE;)/3+1/KUR;/*);

(2) Take the first two jobs and determine the 2-job partial sequence;

(3) For the rest of jobs, insert it into each possible position and retain the partial
sequence associated with the least objective value, as defined in Eq. (1). If ties
exist, tie-breaking method is applied;

(4) Repeat step 3 until every job is scheduled.

4. Tests and results

To evaluate the performance of the new proposed heuristic, Taillard (Taillard 1993) test
bed, VRF benchmark (Vallada, Ruiz, and Framinan 2015) and a randomly generated
test bed were used. The test bed presented by Taillard includes 120 instances, 12
different size problems ranging from small size problem, n=20 and m=5 to large size
problem n=500 and m=20. Each problem includes 10 instances. It is widely used for
PFSP with the makespan criterion, and it has also been applied to criterion of total or
mean flow time (Sarin and Lefoka 1993). VRF benchmark is the newest hard test bed
including 480 instances ranging from n=10 and m=5 problem to n=800 and m=60
problem. Apart from these two benchmarks, a set of randomly generated instances were
also used due to the fluctuated performance of each exiting heuristics on different test

beds. There are 450 instances randomly generated with n € {10, 20, 40, 80, 120, 160,

200, 300, 400} and m € {10, 20, 30, 40, 50}, 10 replications for each combination. The
processing times are set uniformly distributed in the range of [1, 99]. So three test beds

were used and 1050 instances were tested in total. The Relative Percentage Deviation

(RPD) is employed as a performance measure where RPDg = f5q~R

-100%, HS,

q

represents the value obtained by heuristic of problem instance g and RSq is the objective
function value of the best approach of the instance. All algorithms are run in Matlab
R2013b on a PC with CORE i5 -3210M CPU 2.50 GHz and 4.00GB memory.

To fully depict the performance of the new proposed heuristic NEHLJP, 11 sets
of tests were conducted under different weights of makespan with w; = 0,0.1,0.2, ...,1
respectively. Figure 5 shows performance of each heuristic under different weights of
objectives in terms of average RPD (ARPD) on Taillard test bed. As the weight of
makespan varyies in the objective, the ARPD values of reference heuristics fluctuate.
For example, NEH-D is better than the others when only one criterion is applied, but it
is worse when bicriteria is given. When idle-time and makespan carry equal weight,
NEHLJP, NEHKK1 and NEHKK?2 show better performance than NEH-D. This
indicates that idle-time and makespan are different although they may be related.

To coordinate the two objectives, it is reasonable to define w; as 0.5. Because
makespan and idle-time are both measures of time which are limited resource for
industry. Taking the results of NEH-D heuristic on 20 jobs, 50 jobs and 100 jobs of
Taillard test bed as examples, the average of makespan and idle-time are 1868, 3491,
6096 and 1853, 2873, 3944 respectively. Makespan and idle-time have the same
magnitude in the objective function. Therefore the weighted objective function is

feasible.

16 —
NEH
FEE NEH-D
14 4 [0 NEHKK1
] E— NEHKK2
NEHFF
B NEHLJP

ARPD

T T
VAV AV AV AV AVAN,
e]

P 7
b

3 04 05 07 038 9 0

o F O ST T T
N
o [

Figure 5. Performance of each heuristic with different w, on Taillard test bed

To further verify the effectiveness of the proposed NEHLJP heuristic, the new
sorting rule and tie-breaking rule were tested in the following sections respectively by

comparing to existing heuristics on Taillard benchmark.

4.1 Test results of using the new priority rule

The new priority rule is adopted in NEH heuristic combined with other four existing
priority rules. As shown in Table 3, the new priority rule in PR was superior to that of
existing heuristics in terms of ARPD, 22.41%, 10.34%, 7.04% and 13.85% better than

NEH, PRp, PRkk1 and PRkk. respectively.

Table 3. ARPDs of each priority rule adopted in NEH heuristic (%)

Instance NEH PRp PRkk:i PRkke PRLUp
20[5 2.07 251 1.47 195 215
20[10 4.80 5.38 3.67 6.18 3.11
2020 4.04 437 432 244 4.09
50[5 079 136 055 055 1.16
5010 3.69 366 333 379 3.08
5020 352 2.03 210 433 214
1005 0.80 045 054 066 0.70
100j10 2.30 2.06 2.05 160 1.72
10020 3.73 2.05 289 344 233

200110 112 110 092 076 057
20020 345 166 277 293 253
50020 2.00 134 236 048 149
AVG 269 233 225 242 2.09

4.2 Test results of using the tie-breaking rule

The test results of tie-breaking rule are shown in Table 4. Each tie-breaking rule is
adopted in NEH heuristic. The ARPDs of reference heuristics are 0.95, 0.92, 0.90, 0.97,
0.78 and 0.89. The results show that TBgr outperforms the others, followed by TB,sp,
TBkk1, TBkk2, TBp and NEH. Significant differences between TBy; and other four tie-
breaking rules can be observed. However, the tie-breaking rule TBy, achieves better
performance with the new proposed priority rule PRy than TBgr. Due to the superiority
of the new priority rule, every tie-breaking rule is applied together with the new priority
rule and tested on Taillard benchmark. As depicted in Table 5, by adopting the new
priority rule, the new tie-breaking rule TByj resulted in the best solution quality with an

ARPD value of 0.87, better than TBg¢.

Table 4. Tie-breaking rule adopted in NEH heuristic (%)

Instance NEH TBp TBkki TBkk2 TBge TBLJP
20[5 031 035 052 053 0.78 0.65
2010 055 0.14 0.55 055 029 0.22
2020 0.00 0.10 0.00 0.00 0.0 0.10
50[5 0.10 057 0.13 0.16 0.40 042
5010 266 3.06 311 311 1.03 267
5020 0.14 0.18 0.16 0.16 0.13 0.20
10055 0.23 0.20 0.21 022 0.28 0.29

10010 1.31 0.76 0.77 0.78 1.07 0.59

100j20 1.73 0.84 1.09 1.09 112 0.60

200110 1.04 0.74 0.73 0.60 091 0.96

200120 1.87 236 1.77 186 202 257

500120 150 179 1.78 263 125 1.39
AVG 095 092 090 097 0.78 0.89

Table 5. Each tie-breaking rule implemented with PR (%)

Instance NEH TBp TBkki TBkke TBge TBrsp
20[5 042 0.29 0.16 0.15 0.60 0.18
2010 053 042 1.26 126 102 1.10

2020 0.07 0.00 0.00 0.00 0.05 0.22
50|5 0.17 028 0.13 0.08 0.07 0.6
5010 221 132 175 175 154 0.68
50120 0.70 154 059 059 052 0.82
1005 029 031 046 053 011 0.29
100j20 097 112 069 050 091 117
10020 194 327 104 104 253 215
20010 0.79 099 099 090 095 0.88
20020 174 190 279 326 134 188
50020 169 175 134 150 140 1.70
AVG 089 104 090 092 0.88 0.87

4.3 Test results of the new heuristic algorithm with the new priority and tie-

breaking rule

Table 6 shows the test results of each heuristic with respect to bicriteria of makespan
and idle-time on Taillard benchmark. The ARPD of NEHLJP is 2.09, the best among all
reference heuristics, followed by NEHKK1, NEH-D, NEHKK2, NEHFF and NEH. The
ARPD results of all reference heuristics on VRF benchmark are 3.18, 2.46, 3.12, 2.56,
3.06 and 2.41 respectively. NEHLJP demonstrates that the best solution quality is that
with the lowest ARPD value. It can be seen from Table 6 and 7, that the performance of
existing heuristics fluctuates largely, indicating that the two objectives makespan and
machine idle-time conflict sometimes. It can be concluded that the new heuristic

NEHLJP performs the best on both test beds.

Table 6. ARPD of each heuristic with bicriteria using Taillard benchmark (%)
Instance. NEH NEH-D NEHKK1 NEHKK2 NEHFF NEHLJP

20|5 212 244 1.67 2.22 2.61 1.96
20110 510 531 4.04 6.16 4.82 4.04
2020 396 4.28 4.23 2.35 4.06 4.16
50|5 066 151 0.43 0.55 0.96 1.02
50110 3.80 3.30 3.37 3.81 2.15 1.66
50120 3.61 1.87 2.38 4.25 3.59 2.36
1005 0.77 041 0.52 0.72 0.83 0.68
100120 2.02 1.33 0.90 0.47 1.78 1.65
10020 4.65 3.32 3.48 4.22 4.04 3.46
200110 115 1.06 0.81 0.95 1.02 0.68
20020 2.48 219 1.71 1.77 2.64 1.72

50020 2.16 1.33 2.78 2.09 1.90 1.64

AVG 271 2.36 2.19 2.46 2.53 2.09

Table 7. ARPD of each heuristic with bicriteria on VRF benchmark (%)

Problem NEH NEH-D NEHKK1 NEHKK2 NEHFF NEHLJP

S L S L S L S L S L S L S L
10x5 100x20 0.76 3.61 205 232 0.67 432 007 243 109 447 137 4.08
10x10 100x40 2.10 238 1.09 0.60 180 234 272 169 210 229 155 281
10x15 100x60 4.28 3.23 154 158 3.09 342 3.01 266 428 323 213 224
10x20 200x20 3.90 3.82 241 288 4.17 291 197 303 390 288 246 223
20x5 200x40 3.07 3.06 530 243 333 331 423 249 363 315 221 268
20x10 200x60 4.88 3.31 511 280 517 269 174 247 502 329 479 214
20x15 300x20 594 320 230 185 6.64 214 492 3.00 588 267 466 161
20x20 300x40 3.54 321 349 245 297 313 277 221 354 224 334 198
30x5 300x60 2.65 1.83 151 223 119 163 238 124 256 211 282 1.05
30x10 400x20 5.59 3.10 424 168 6.48 3.04 461 220 537 253 287 193
30x15 400x40 4.27 245 475 065 341 179 721 199 417 215 532 084
30x20 40060 4.06 2.12 3.17 155 422 257 236 167 406 224 274 261
40x5 500x20 220 3.30 221 138 221 317 224 135 242 204 229 276
40x10 500x40 4.67 282 256 198 512 310 590 269 635 177 238 260
40x15 500x60 4.84 240 567 168 461 170 382 189 414 179 341 202
40x20 600x20 3.80 223 546 114 645 220 311 034 446 213 328 203
50x5 600x40 128 252 090 129 090 159 182 075 051 123 129 092
50x10 600x60 3.65 241 158 1.60 3.85 245 4.08 110 257 144 215 196
50x15 700x20 3.02 157 415 127 455 186 376 112 3.03 187 500 2.00
50x20 700x40 4.60 244 596 1.81 501 195 516 157 520 3.00 241 171
60x5 700x60 191 2.02 197 121 153 220 165 111 326 203 1.77 195
60x10 800x20 3.28 180 286 120 231 196 230 051 264 174 244 123
60x15 800x40 3.83 3.11 197 153 419 236 411 164 469 262 313 152
60x20 800x60 5.62 293 540 117 6.22 189 388 185 520 188 273 044
AVG 3.18 2.46 3.12 2.56 3.06 2.41

In order to further confirm the superiority of NEHLJP, the test on randomly
generated instances is conducted and the results are shown in Table 8. The ARPD value
of NEHLJP was 2.02, ascendingly followed by NEH-D, NEHKK2, NEHFF, NEHKK1

and NEH.

Table 8. ARPD of each heuristic with bicriteria on randomly generated benchmark (%)
Instance NEH NEH-D NEHKK1 NEHKK2 NEHFF NEHLJP

10110 3.27 165 4.37 5.05 3.27 1.88
1020 2.67 3.53 2.67 2.60 2.67 3.07
10130 1.78 1.23 341 3.44 1.78 0.82
1040 344 1.29 2.19 3.05 3.44 1.80
1050 146 3.21 1.46 1.64 1.46 2.20
20110 355 3.17 3.28 4.52 3.38 2.02
2020 510 5.01 5.32 2.60 5.10 2.79
20130 3.78 3.90 4.37 5.07 3.78 3.10
20/40 3.88 2.60 3.67 2.86 3.88 2.20

2050 222 450 2.46 3.61 2.35 4.21

40110 3.07 3.27 1.69 3.75 2.54 2.43

4020 3.58 290 1.89 4.31 3.29 3.58
40130 428 3.09 4.86 3.12 4.28 2.94
40140 3.09 2.03 3.77 3.31 3.33 1.78
4050 257 298 2.34 2.79 2.58 0.96
80j10 152 161 1.99 2.12 1.23 2.34
80)20 573 285 3.26 1.79 5.04 2.53
80130 4.85 3.90 4.08 4.51 4.84 1.84
80[40 351 324 3.14 3.54 3.26 1.57
8050 179 1.80 2.85 1.88 1.79 2.20
120j20 1.18 1.52 1.16 1.41 1.15 1.42
12020 4.82 2.56 3.49 2.62 4.66 3.10
120130 223 242 2.86 2.73 2.33 3.75
120140 237 2.46 2.47 3.19 2.51 1.75
12050 1.86 2.96 3.03 2.23 1.64 2.13
160110 148 1.19 1.46 0.63 0.97 1.09
16020 3.37 3.33 2.72 3.37 2.62 0.77
160130 3.23 214 3.15 3.15 2.46 2.05
160140 346 2.35 3.02 241 2.15 2.08
16050 2.88 1.15 3.10 2.07 2.74 2.03
200110 091 086 0.92 0.70 0.50 0.91
20020 2.67 211 2.37 1.79 2.84 2.84
200130 272 216 3.24 1.41 2.20 2.30
200140 2.18 1.65 2.99 2.90 2.06 1.14
20050 219 152 1.79 1.81 1.72 1.16
30010 059 021 0.62 0.45 0.38 0.72
30020 282 094 2.15 2.44 1.92 1.08
30030 243 3.13 1.27 2.79 2.88 3.44
300140 188 144 2.06 1.83 2.58 1.84
30050 221 1.80 2.12 1.99 2.97 1.65
40010 0.36 0.23 0.37 0.22 0.50 0.18
40020 196 1.09 1.61 1.74 1.75 1.57
40030 3.77 261 3.50 1.35 3.90 2.06
40040 237 2.03 1.52 1.14 2.08 2.13
40050 2.37 2.73 2.22 1.41 1.67 1.40
AVG 274 232 2.63 2.52 2.59 2.02

In order to check if the differences of ARPD between heuristics are statistically
significant, a multifactor analysis of variance (ANOVA) was carried out. All three
hypotheses (normality, homocedasticity and independence of the residuals) were
carefully checked but were not found to be suitable. The normality is rejected since all
variables focus on the right side of zero according to the adopted performance measure.

Therefore a non-parametric Mann-Whitney test was conducted.

When the confidence level was set as 0.05, no significant differences were
observed on Taillard benchmark among all reference heuristics. The reason is due to the
small size of benchmark (Kalczynski and Kamburowski 2008), (Fernandez-Viagas and
Framinan 2014). While on VRF benchmark, NEHLJP showed no significant difference
from other heuristics except for NEH. The reason is both benchmarks are developed for
makespan criterion instead of bicriteria of makespan and idle-time. No significant
performance differences among all heuristics can be observed. While on the randomly
generated test bed, it can be concluded that NEHLJP is significant better than existing

heuristics. The non-parametric test results can be seen in Table 9.

Table 9. Non-parametric test of Mann-Whitney on the new random test bed

Algorithm P

NEH — NEH-D 0.003
NEH — NEHKK1 0.315
NEH — NEHKK?2 0.034
NEH — NEHFF 0.319
NEH — NEHLJP 0.000

NEH-D — NEHKK1 0.064
NEH-D — NEHKK?2 0.497
NEH-D — NEHFF 0.059
NEH-D — NEHLJP 0.022
NEHKK1 - NEHKK2 0.277
NEHKK1 - NEHFF 0.964
NEHKK1 - NEHLJP 0.000
NEHKKZ2 - NEHFF 0.245
NEHKK2 — NEHLJP 0.005
NEHFF — NEHLJP 0.000

With respect to computation times of each heuristic, extra computation time is
needed for calculating two objectives comparing to with single criterion of makespan.
For example, it will take 0.3 secs to complete the computation for a 50 jobs 20
machines problem, and 240 secs for 200 jobs and 20 machines problem for NEHLJP.

The computational time is relatively small, within the manageable scale even for a large

size problem, given the computer’s average speed. In practice, the schedule quality is

the key factor to be considered for industry instead of computation time.

5. Conclusions

In this paper, a new heuristic named NEHLJP is proposed by incorporating one new
priority rule and one new tie-breaking rule, with bicriteria of both makespan and idle-
time. In order to validate the NEHLJP performance, the Taillard test bed, Vallada test
bed and a randomly generated test bed are used. The test results show that NEHLJP
heuristic can provide a high quality solution on all test beds, outperforming all existing
heuristics.

The main contribution of this paper lies in the new proposed priority rule PR
taking account of skewness and kurtosis representing the 3™ and the 4™ moment of a
distribution. By this new rule, processing time distribution can be differentiated so as to
be sequenced. Additionally, a new tie-breaking mechanism TByj for minimizing
makespan and idle-time simultaneously is introduced. The effectiveness of both PR

and TByp are validated through statistical tests.

Reference

Aghezzaf, E.-H., and H. Van Landeghem. 2002. “An Integrated Model for Inventory
and Production Planning in a Two-Stage Hybrid Production System.” International
Journal of Production Research 40 (17): 4323-4339.

Allahverdi, Ali. 2004. “A New Heuristic for M-Machine Flowshop Scheduling Problem
with Bicriteria of Makespan and Maximum Tardiness.” Computers & Operations
Research 31 (2): 157-180.

Boukef, H., M. Benrejeb, and P. Borne. 2007. “A Proposed Genetic Algorithm Coding
for Flow-Shop Scheduling Problems.” International Journal of Computers,
Communications & Control 2 (3): 229-240.

Campbell, H. G., R. A. Dudek, and M. L. Smith. 1970. “A Heuristic Algorithm for the
N Job, M Machine Sequencing Problem.” Management Science 16 (10): B630—
637.

Chandra, P., P. Mehta, and D. Tirupati. 2009. “Permutation Flow Shop Scheduling with
Earliness and Tardiness Penalties.” International Journal of Production Research
47 (20): 5591-5610.

Dannenbring, D. G. 1977. “An Evaluation of Flow Shop Sequencing Heuristics.”
Management Science 23 (11): 1174-1182.

Dong, X., H. Huang, and P. Chen. 2008. “An Improved NEH-Based Heuristic for the
Permutation Flowshop Problem.” Computers & Operations Research 35 (12):
3962-3968.

Fernandez-Viagas, V., and J. M. Framinan. 2014. “On Insertion Tie-Breaking Rules in
Heuristics for the Permutation Flowshop Scheduling Problem.” Computers &
Operations Research 45: 60-67.

Framinan, J. M., J. N. D. Gupta, and R. Leisten. 2004. “A Review and Classification of
Heuristics for Permutation Flow-Shop Scheduling with Makespan Objective.”
Journal of the Operational Research Society 55 (12): 1243-1255.

Garey, M. R., D. S. Johnson, and R. Sethi. 1976. “The Complexity of Flowshop and
Jobshop Scheduling.” Mathematics of Operations Research 1 (2): 117-129.

Garey, Michael Randolph, and David Stifler Johnson. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W.H.
Freeman and Company.

Gupta, J. N. 1976. “A Heuristic Algorithm for the Flowshop Scheduling Problem.”
Revue Francaise d ’Automatique, Informatique, Recherche Operationnelle 10: 63—
73.

Gupta, J. N. D. 1972. “Heuristic Algorithms for Multistage Flowshop Sdcheduling
Problem.” AIIE Transactions 4 (1): 11-18.

Gupta, J. N. D. 1971. “A Functional Heuristic Algorithm for the Flowshop Scheduling
Problem.” Operational Research Quarterly 22 (1): 39-47.

Gupta, J. N. D., and E. F. Stafford. 2006. “Flowshop Scheduling Research after Five
Decades.” European Journal of Operational Research 169 (3): 699-711.

Johnson, S. M. 1954. “Optimal Two and Three-Stage Production Schedules with Setup
Times.” Naval Research Logistics Quarterly 1: 61-68.

Kalczynski, P. J, and J Kamburowski. 2008. “An Improved NEH Heuristic to Minimize
Makespan in Permutation Flow Shops.” Computers & Operations Research 35 (9):
3001-3008.

Kalczynski, P.J., and J. Kamburowski. 2009. “An Empirical Analysis of the Optimality
Rate of Flow Shop Heuristics.” European Journal of Operational Research 198
(1): 93-101.

Liu, C. Y., and S. C. Chang. 2000. “Scheduling Flexible Flow Shops with Sequence-
Dependent Setup Effects.” IEEE Transactions on Robotics and Automation 16 (4):
408-4109.

Liu, H., L. Gao, and Q. Pan. 2011. “A Hybrid Particle Swarm Optimization with
Estimation of Distribution Algorithm for Solving Permutation Flowshop
Scheduling Problem.” Expert Systems with Applications 38 (4): 4348-4360.

Liu, J., and C. R. Reeves. 2001. “Constructive and Composite Heuristic Solutions to the
P//> Ci Scheduling Problem.” European Journal of Operational Research 132 (2):
439-452.

Liu, W., Y. Jin, and M. Price. 2014. “A New Heuristic to Minimize System Idle Time
for Flowshop Scheduling.” In Poster Presented at the 3rd Annual EPSRC
Manufacturing the Future Conference. Glassogw, September 23-24.

Liu, Y. C., K. T. Fang, and B. Lin. 2013. “A Branch-and-Bound Algorithm for
Makespan Minimization in Differentiation Flow Shops.” Engineering Optimization
45 (12): 1397-1408.

Low, C.,J. Y. Yeh, and K. I. Huang. 2004. “A Robust Simulated Annealing Heuristic
for Flow Shop Scheduling Problems.” The International Journal of Advanced
Manufacturing Technology 23: 762—767.

Msakni, M. K., W. Khallouli, M. Al-Salem, and T. Ladhari. 2015. “Minimizing the
Total Completion Time in a Two-Machine Flowshop Problem with Time Delays.”
Engineering Optimization: 1-18. doi:10.1080/0305215X.2015.1099639.

Nagano, M. S., and J. V. Moccellin. 2002. “A High Quality Solution Constructive
Heuristic for Flow Shop Sequencing.” Journal of the Operational Research Society
53 (12): 1374-1379.

Nawaz, M., E. E. Enscore Jr., and I. Ham. 1983. “A Heuristic Algorithm for the M-
Machine, N-Job Flow-Shop Sequencing Problem.” Omega 11 (1): 91-95.

Palmer, D. S. 1965. “Sequencing Jobs through a Multi-Stage Process in the Minimum
Total Time-a Quick Method of Obtaining a near Optimum.” Operational Research
Quarterly 16 (1): 101-107.

Pan, Q. K., and R. Ruiz. 2013. “A Comprehensive Review and Evaluation of
Permutation Flowshop Heuristics to Minimize Flowtime.” Computers &
Operations Research 40 (1): 117-128.

Ruiz, R., and C. Maroto. 2005. “A Comprehensive Review and Evaluation of
Permutation Flowshop Heuristics.” European Journal of Operational Research
165 (2): 479-494.

Sarin, S., and M. Lefoka. 1993. “Scheduling Heuristic for the N-Job M-Machine Flow
Shop.” Omega 21 (2): 229-234.

Spachis, A. S. 1978. “Job-Shop Scheduling with Approximate Methods.” PhD diss.,
Imperial College London (University of London).

T’kindt, V., and J. C. Billaut. 2006. Multicriteria Scheduling Problems: Theory, Models
and Alogrithms. Berlin: Springer.

Taillard, E. 1993. “Benchmarks for Basic Scheduling Problems.” European Journal of
Operational Research 64: 278-285.

Vallada, E., R. Ruiz, and J. M. Framinan. 2015. “New Hard Benchmark for Flowshop
Scheduling Problems Minimising Makespan.” European Journal of Operational
Research 240 (3): 666-677.

Xu, J., and X. Zhou. 2009. “A Class of Multi-Objective Expected Value Decision-
Making Model with Birandom Coefficients and Its Application to Flow Shop
Scheduling Problem.” Information Sciences 179 (17): 2997-3017.

Yenisey, M. M., and B. Yagmahan. 2014. “Multi-Objective Permutation Flow Shop
Scheduling Problem: Literature Review, Classification and Current Trends.”
Omega 45: 119-135.

Table 1. Some NEH-based heuristics in terms of priority rule and tie-breaking rule
Table 2. Notations adopted in this paper

Table 3. ARPDs of each priority rule adopted in NEH heuristic (%)

Table 4. Tie-breaking rule adopted in NEH heuristic (%)

Table 5. Each tie-breaking rule implemented with PR jp (%)

Table 6. ARPD of each heuristic with bicriteria using Taillard benchmark (%)

Table 7. ARPD of each heuristic with bicriteria on VRF benchmark (%)

Table 8. ARPD of each heuristic with bicriteria on randomly generated benchmark (%)
Table 9. Non-parametric test of Mann-Whitney on the new random test bed

Figure 1. Front delay, idle-time (IT) and back delay of schedule (i.k indicates the
processing time of job i on machine k)

Figure 2. Distributions A, B and C with the same average and deviation but different

skewnesses

Figure 3. Distributions A, B and C with the same average, deviation and skewness but
different kurtoses

Figure 4. Tie-breaking rule: (a) job 1 added into the 1% position; (b) job 1 added into the

2" position

Figure 5. Performance of each heuristic with different w; on Taillard test bed

- Job [3] flow time
1.1 3.1 2.1
1.2 3.2 2.2
~
1.3 33 [23
P Job [1] flow time _
- Job [2] flow time _
(a) 1-3-2
3.1 1.1 21 |
3.2

TR TR

(b) 3-1-2

Objective value=24
Idle-time=3
Makespan=21

Average flow time=13.67

Objective value=24
Idle-time=5
Makespan=19

Average flow time=11.67

