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Abstract

Terrestrial laser scanning (TLS) is often used to monitor landslides and other
gravitational mass movements with high levels of geometric detail and accuracy.
However, unstructured TLS point clouds lack semantic information, which is
required to geomorphologically interpret the measured changes. Extracting
meaningful objects in a complex and dynamic environment is challenging due to the
objects’ fuzziness in reality, as well as the variability and ambiguity of their patterns
in a morphometric feature space. This work presents a point-cloud-based approach
for classifying multitemporal scenes of a hillslope affected by shallow landslides.
The 3D point clouds are segmented into morphologically homogeneous and
spatially connected parts. These segments are classified into seven target classes
(scarp, eroded area, deposit, rock outcrop and different classes of vegetation) in a
two-step procedure: a supervised classification step with a machine-learning
classifier using morphometric features, followed by a correction step based on
topological rules. This improves the final object extraction considerably.
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Introduction and Related Work

THE MAPPING OF LANDSLIDES by close range photogrammetry and remote sensing (Tofani et al.,
2013; Scaioni et al., 2014) (collecting topographic information about locations where
landslides occur (Rogers and Chung, 2016), as well as the quantification of their extent and
volumetric dimension) are essential for building up landslide databases (Zieher et al., 2016).
Such databases provide input for process models and landslide risk analysis (Corominas
et al., 2014). High-resolution topographic data can be acquired from ground-based or
airborne platforms, typically using either laser scanning (H€ofle and Rutzinger, 2011) or
photogrammetric structure-from-motion image-matching techniques (Westoby et al., 2012).

Terrestrial laser scanning (TLS) is a well-established technique for monitoring
landslides and gravitational mass movements in general (Jaboyedoff et al., 2012; Scaioni
et al., 2014). TLS produces 3D point clouds with high levels of detail and accuracy, making
it particularly suitable for detailed investigations and monitoring tasks at hillslope scales
(Ghuffar et al., 2013; Barbarella et al., 2015; Guarnieri et al., 2015). After transformation
into a common coordinate system, multitemporal scans can be used to quantify surface
changes. However, unstructured TLS point clouds lack semantic information, which is
required to interpret the measured changes from a geomorphological point of view.

Landslides produce distinct morphological signatures on the surface (Pike, 1988),
which are represented in airborne laser scanning (ALS) digital elevation models (DEMs).
Thus, morphometric parameters, such as roughness or curvature, are calculated from ALS
DEMs and used for the characterisation or detection of entire landslides, or morphological
objects within a landslide (McKean and Roering, 2004; Glenn et al., 2006; Booth et al.,
2009; Kasai et al., 2009; Tarolli et al., 2012). Van den Eeckhaut et al. (2012) conceptualise a
landslide considering the morphological characteristics of its parts. This conceptualisation is
adopted in a rule-set and is used, together with morphometric features and a supervised
classification, to map landslides in ALS DEMs.

Object-based image analysis (OBIA) workflows have shown advantages in detection
and mapping landslides in optical satellite and airborne imagery (Stumpf and Kerle, 2011;
Martha et al., 2012; Kurtz et al., 2014). Such approaches: (i) suppress a noisy (“salt-and-
pepper”) appearance in classifications of high-resolution data; and (ii) integrate spatial
context. For supervised classifications of close-range and remote-sensing data, non-
parametric classifiers, such as random forests and support vector machines, have proven
successful (Mountrakis et al., 2011; Li et al., 2015; Weinmann et al., 2015; Belgiu and
Dr�agut, 2016).

In contrast to raster-based approaches, very little attention has been given to 3D object-
based analysis for mapping landslides in point clouds and for thorough analysis of their
subparts. Most studies that use point clouds for landslide investigations focus on change
detection or deformation analysis, without extracting semantic information from the point
cloud. For enhanced process understanding of mass movements and secondary erosion,
Dorninger et al. (2011) characterise landslides by segmenting ALS and TLS point clouds
into planar patches. Monserrat and Crosetto (2008) and Oppikofer et al. (2009) analyse the
rotation and translation of individual parts of a point cloud. The automated discretisation of
such parts, however, is difficult since the raw 3D point cloud only samples the exposed
surface. It provides a detailed geometric representation (X, Y, Z coordinates) but lacks
semantic information on discrete geomorphological objects or object classes (such as
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landslide scarp or deposit). Brodu and Lague (2012) developed a method to classify 3D
point clouds of natural scenes based on the dimensionality of point neighbourhoods at
multiple scales. They used the knowledge that the geometry of different objects tends to
behave uniquely at different scales, making it possible to distinguish between vegetation and
rocks, and riparian vegetation from the ground. The surface morphology of landslides and
their (vegetated) surroundings is both complex and dynamic, particularly at the detailed
scale of TLS surveys. In such complex natural scenes, extracting geomorphologically
meaningful objects in several different target classes remains challenging. The challenges
relate to the objects’ fuzziness in reality as well as the (intra-class) variability and ambiguity
(overlap between classes) of their patterns in morphometric feature space.

More research concerning 3D scene analysis and semantic object extraction from point
clouds is dedicated to urban environments (Pu et al., 2011; Niemeyer et al., 2014; Guo et al.,
2015; Weinmann et al., 2015) and forestry applications (Reitberger et al., 2009; Bremer
et al., 2013). In general, object-based point cloud approaches aim at assigning semantic
labels to the 3D points by relating them to distinct object classes (such as traffic signs,
buildings, fac�ades, roofs, trees and so on). Typically, workflows combine a segmentation of
the point cloud into spatially connected units (segments), with subsequent classification of
the resulting segments (Rutzinger, 2008). Some recent approaches for point cloud
classification are based on an initial over-segmentation, for example, using supervoxels (Lim
and Suter, 2009; Ramiya et al., 2016). Often, they utilise spectral information, such as RGB
colour values (Li et al., 2016; Ramiya et al., 2016). Spatial contextual reasoning is used in
the computer vision and robotics community to classify or interpret 3D point clouds (Hu
et al., 2013; Shapovalov et al., 2013).

This paper presents an approach based on point clouds for automatically classifying
multitemporal scenes of a hillslope affected by shallow landslides. The first objective is to
extract discrete and geomorphologically meaningful objects from TLS point clouds and
maximise the objects’ consistency throughout the time series. The objects are associated into
one of seven target classes (scarp, eroded area, deposit, rock outcrop and different classes
of vegetation). The second objective is to maintain the spatially accurate, detailed and 3D
representation of the scene as a point cloud throughout the analysis. These objectives are
pursued by integrating machine-learning methods for supervised classification and a
topological rule-set in an object-based analysis workflow. This approach is tested on a series
of nine point clouds from a test site with two landslides. To briefly demonstrate the
practicability and value of the object extraction, an example of monitoring secondary
erosion processes at the level of point cloud objects is also shown.

Test Site

The test site is located in the Schmirn valley (Tyrol, Austria). Two shallow landslide
scars (Fig. 1) have existed there since 1965. The larger one of the two landslide scars is
approximately 15 to 20 m wide, 30 m long (excluding the rather diffuse runout/
depositional zone) and has a maximum depth of two metres. The landslides are still
active, with retrogressive erosion at their scarps (that is, clods of material slide or topple
downward from the landslide scarp). Occasionally the sliding mass has been reactivated.
Moreover, secondary erosion of areas already exposed by runoff, wind or snow movement
can occur.

Geologically, the test site is characterised by B€undner Schist covered by regolith. The
hillslope is approximately 35° steep, facing south-west and located at about 1700 m
elevation. The lower part of the landslides’ surroundings is used as a meadow and the upper
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part as an occasional pasture. Larch trees and shrubs are scattered over some sections of the
test site. A few rock outcrops exist in the lower part.

Methods

The automated classification of geomorphological objects is based on segmentation of
3D point clouds into morphologically homogeneous and spatially connected parts. These
segments are classified into seven target classes in a two-step classification procedure. The
first step is a supervised classification using morphometric features. In a second step,
misclassified segments are corrected based on topological rules. In the following sections,
each processing step is explained in detail.

Data Acquisition and Preprocessing

The site with its two landslides has been surveyed with a TLS twice a year since 2011.
This results in a series of nine TLS point cloud epochs (PC_01 to PC_09) which are used
for testing the proposed point cloud classification approach. Two different TLS instruments
were used: an Optech Ilris-3D (for epochs PC_01 to PC_05) and a Riegl VZ-6000 (for
epochs PC_06 to PC_09). Due to different scanner specifications (such as wavelength, beam
divergence and capability to record multiple returns), sensor-dependent differences within
the point cloud time series must be assumed.

Scans (with a typical mean point density of about 500 points/m²) were acquired from
two different positions each time to reduce occlusions. The scans were registered via four
spherical targets and using an iterative closest point adjustment (ICP; Besl and McKay,
1992). To derive the parameters for the transformation of different epochs’ data into a
common reference system, ICP was applied only to stable parts of the slope. (Additionally,
using deformed parts for this task would impair the registration and consequently impact on
point cloud features and change analysis.) To reduce the data volume of the point clouds
and homogenise the point density to some extent, 3D block thinning (with 3 cm blocks;
similar to an octree filter) was applied, retaining only the point which is closest to each

Fig. 1. The two landslide scars at the upper part of the test site (Schmirn valley, Tyrol, Austria).
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block centre. These steps, as well as the following analysis workflow, were implemented
with Python scripting combined with the free open-source software (FOSS) geographical
information system (GIS) SAGA (System for Automated Geoscientific Analysis; Conrad
et al., 2015) and the proprietary SAGA add-on Laserdata LIS (Laserdata, 2017).

Point Cloud Features and Segmentation

Local Neighbourhood Features. Point clouds are characterised by computing six
features which describe the local morphology around each individual point in the cloud,
namely: 2D z range; 3D/2D density ratio; slope; standard deviation from a plane;
omnivariance; and geometric curvature. Both the neighbourhood size and the registration
accuracy impact the feature calculation results. To account for multiple scales, three
different neighbourhoods were used, of radius 0�2, 0�4 and 1�0 m, for each of the six
features (resulting in 18 features). For these three radii, a 3D neighbourhood and a 2D
neighbourhood are defined. A 2D neighbourhood is defined as a vertically oriented cylinder
of infinite height, centred at the search point. A 3D neighbourhood is defined as a sphere
centred at the search point.

The 2D z range is the difference between the highest and the lowest z value found in
the 2D neighbourhood. The 2D/3D ratio is defined as the number of points found in the 3D
neighbourhood, divided by the number of points found in the 2D neighbourhood.

The set of m neighbouring points found by the 3D radius search is used for a principal
components analysis (PCA). The point set is encoded into matrix A with m rows given by:

A ¼
x1 � �x y1 � �y z1 � �z

..

. ..
. ..

.

xm � �x ym � �y zm � �z

2
64

3
75; ð1Þ

from which a 39 3 covariance matrix (ATA) is derived as:

ATA ¼
Pm

i¼1ðxi � �xÞ2 Pm
i¼1ðxi � �xÞðyi � �yÞ Pm

i¼1ðxi � �xÞðzi � �zÞPm
i¼1ðxi � �xÞðyi � �yÞ Pm

i¼1ðyi � �yÞ2 Pm
i¼1ðyi � �yÞðzi � �zÞPm

i¼1ðxi � �xÞðzi � �zÞ Pm
i¼1ðyi � �yÞðzi � �zÞ Pm

i¼1ðzi � �zÞ2

2
64

3
75: ð2Þ

From this covariance matrix, eigenvectors and eigenvalues are derived. The eigenvector
corresponding to the shortest eigenvalue defines the plane fit normal of an orthogonal
regression plane and the centroid of the point set defines a point on this plane.

Slope is defined by the angle between the plane normal and a vertically oriented
direction vector. The standard deviation from plane feature describes the standard deviation
of the orthogonal point distance to the local fit plane (defined by the plane normal and the
point centroid). The omnivariance (k0) is a descriptor for the 3D distribution of points in
the neighbourhood. It is defined by equation (3) and the three eigenvalues (k1, k2, k3) found
by PCA with:

k0 ¼ ðk1; k2; k3Þ1=3: ð3Þ

After the normal vectors are defined for each point by PCA, the 3D point
neighbourhoods are evaluated in a second program run, allowing comparison of the fitted
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normal vector of the search point (np) with the normal vectors of all neighbouring points
(nnp(j)) of the set of k point neighbours. The geometric curvature (gc) is defined by:

gc ¼ 1
k

Xk
j¼1

knp � nnpðjÞk: ð4Þ

Point Cloud Segmentation. For the subsequent object-based analysis, point clouds are
partitioned into subsets of spatially connected points that represent morphologically
homogeneous (sub-)objects, each belonging to one distinct object class of interest (Fig. 2).
This segmentation procedure is a connected component analysis, implemented as seeded
region growing with random seed points (the choice of seeds has no notable effect on the
final classification results). At this step, three of the point cloud features are assumed to be
particularly relevant for separating objects (3D/2D density ratio, omnivariance and
geometric curvature for a neighbourhood with a radius of 0�2 m). An unsupervised pre-
classification in this morphometric feature space is performed by k-means clustering
(Forgy, 1965) with an empirical number of clusters k= 10. The nine point cloud epochs
are merged into one point cloud before being clustered, to optimise the overall fit of this
pre-classification for the entire time series. Subsequently, this point cloud is again split

Fig. 2. Point cloud segmentation method.
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into the nine epochs and the assigned feature-space clusters are used to constrain the
segmentation of each point cloud (separately) in the spatial domain. This aims at creating
segments with unique object associations which are semantically consistent for all point
cloud epochs.

To keep the segments small and compact, the x and y coordinates additionally constrain
the region growing, with a tolerance maximum of �0�6 m from the seed point allowed. This
criterion follows the concept of an initial over-segmentation (Lim and Suter, 2009; Ramiya
et al., 2016) as a basis for classification and prevents excessive generalisation of point cloud
features.

Moreover, the cloud-to-cloud distances (distanceC2C) of each point cloud to its
predecessor and to its successor point cloud in the time series are calculated (the
applied closest point criterion and the resulting distance are influenced by the local
point density of each epoch). These distances are used to discriminate areas of change
(distanceC2C > 0�15 m) and stable areas (distanceC2C < 0�15 m). This criterion prevents
the region growing from including both areas of change and stable areas in the same
segment.

Segment Features. For the subsequent object-based analysis (classification of each
segment) the 18 local neighbourhood features are aggregated to their mean and
standard deviation per segment (resulting in 36 segment features). In addition to the
local neighbourhood features, the same principles for feature calculation are applied on
a segment basis, where the set of neighbouring points is defined by the set of segment
points (this results in seven additional features, yielding 43 in total). As described for
the local neighbourhood features, a PCA is performed for the segment points. The
three eigenvalues (k1, k2, k3) directly derived by PCA are used as individual segment
features. The slope and standard deviation from plane features are computed as
described above. The Sneed–Folk form indices (SFFI; Sneed and Folk, 1958) are
defined by:

SFFIx ¼ ðk1 � k2Þ=ðk1 � k3Þ ð5Þ
and

SFFIy ¼ k3=k1: ð6Þ

Supervised Classification of Point Cloud Segments

The classification approach developed for point clouds integrates: (i) a supervised
machine-learning classification; and (ii) a classification with topological rules in an object-
based analysis framework. The first classification step is a supervised classification using the
43 segment features as predictors (see previous section). Two different machine-learning
algorithms are tested, support vector machines (SVMs) and random forests (RF). This step
is implemented using scikit-learn, a machine-learning package for Python (Pedregosa et al.,
2011). The segments represent the samples for training a classifier to predict the class labels
in all point clouds. The segment features are standardised by fitting a function to the
training data, scaling each feature to a zero mean and unit variance. The same function is
used for feature scaling of all other epochs in the time series. To account for heterogeneous
class sizes, the class weights are balanced in the training phase by adjusting the weights
inversely proportional to the class frequencies in the input data.
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One point cloud epoch (PC_07) is manually classified into the seven target classes
(landslide scarp, eroded area, deposit, medium and high vegetation, low grass, high
grass, rock outcrop). Some parts of the scene are difficult to classify with unique labels,
both in the 3D point cloud and in the field or on photographs. This concerns, for
example, the depositional zone, but also parts of the scarp where no recent erosion has
occurred. Accordingly, potential inaccuracies or ambiguities, and a certain degree of
subjectivity, in the reference data must be considered for interpretation of the accuracy
analyses.

This set of labelled reference segments is split (spatially) into training data (the section
containing the larger landslide) and validation data (containing the smaller landslide; Fig. 3).
For both machine-learning classifiers used, a few hyper-parameters (parameters not trained
in the model) must be specified by the user or by a search procedure. To optimise the
classifier and its hyper-parameters, the training data is randomly split into a development set
and an evaluation set (random 50% subset for SVM and out-of-bag samples for RF). Using
only the development set, a grid search of the parameter space (see Tables I and II) selects
the combination of parameter values with the highest score (fraction of correctly classified
samples) in a five-fold cross-validation (Olson and Delen, 2008).

Support Vector Classification. Support vector machines (SVMs; Cortes and Vapnik,
1995) are non-parametric statistical learning techniques that are increasingly used for
classification tasks, including remote-sensing applications (Ivanciuc, 2007; Mountrakis et al.,
2011; van den Eeckhaut et al., 2012). SVM algorithms search for a hyperplane that
separates two data classes with the maximum margin around that hyperplane, in other words
with the largest possible distance to the instances on both sides. Only the data points that
are required to define this margin (support vectors) are used to set up the model. Thus,
SVMs can deal with a large number of features and a limited number of training samples.
Moreover, the algorithms are relatively tolerant towards irrelevant or redundant features
(Kotsiantis, 2007; Mountrakis et al., 2011). A penalty parameter (slack variable) C controls

Fig. 3. Manually classified reference point cloud, split (along the black line) into training data and validation
data (planimetric view). White areas represent no data, either because of occlusions during scanning or because

segments were not classified unambiguously as one specific class.
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the tolerance of the hyperplane and its margin towards training errors. For classification
problems where the data is not linearly separable, a kernel function (for example, a radial
basis function controlled by the coefficient c) can map the data to a higher dimensional
space (where it is linearly separable). Details and empirically based recommendations on
parameter ranges to test can be found in Hsu et al. (2003).

Random Forest Classification. Random forest (RF) is a non-parametric ensemble
learner which can efficiently model non-linear relationships, handle a large number of
(potentially redundant) features and prevent overfitting (Breiman, 2001; Belgiu and Dr�agut,
2016). It aggregates the results of many randomised decision trees by a majority vote for
the final results. Each tree is built based on a bootstrap sample of the training instances
(subsampling with replacement) and each tree node is split using a user-defined number of
randomly selected features (max_features; if “sqrt”, then max_features = sqrt(n_features); if
“none”, then max_features = n_features). Max_depth is the maximum depth of the tree (if
“none”, then nodes are expanded until all leaves are pure or until all leaves contain less
than “min. samples split” samples). Min_samples_split is the minimum number of samples
required to split an internal node. Min_samples_leaf is the minimum number of samples
required to be at a leaf node. See scikit-learn documentation (http://scikit-learn.org/stable/
index.html) for details and suggested parameter ranges to test.

The data excluded from building a specific tree represent approximately one third of
the original data and refer to the out-of-bag (OOB) sample. Passing the OOB data through
the specific trees, and aggregating the proportion of misclassifications across all trees, results
in an unbiased error estimate of the RF model (Breiman, 2001). This can be used to define
an adequate number of trees for the RF classifier. The OOB error rate initially decreases
with an increasing number of trees. In this case, it stabilises with the number of trees
nestimators = 700. With this number of trees other hyper-parameters are optimised (Table II).

Classifier Fitting and Evaluation. The performance of the selected hyper-parameters
and the trained classifier is assessed on the evaluation set (random 50% of the training data)
that was not used during grid searching and model fitting. Moreover, the overall classifier
accuracy (fraction of correctly classified samples) is calculated for the validation dataset

Table I. SVM hyper-parameter optimisation on a random 50% subset of the training data (development set).

Parameter Parameter values tested Parameter combination selected

Kernel Linear, RBF (radial basis function) RBF
C 1, 10, 100, 1000 100
c 0�00001, 0�0001, 0�001, 0�01, 0�1 0�01

Table II. RF hyper-parameter optimisation on a random 50% subset of the training data (development set).

Parameter Parameter values tested Parameter combination selected

max_depth 3, none None
max_features sqrt, none None
min_samples_split 1, 3, 10 3
min_samples_leaf 1, 3, 10 3
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(containing the smaller landslide). Additionally, the accuracy metrics precision (correctness),
recall (completeness) and the F1 score (Olson and Delen, 2008), per class and overall, are
calculated from the true positive (TP), false positive (FP) and false negative (FN) counts as:

precision ¼ TP
TPþ FP

ð7Þ

recall ¼ TP
TPþ FN

ð8Þ

and

F1 score ¼ 2 precision � recallð Þ
precisionþ recall

: ð9Þ

Based on the results of this evaluation (see the Results section), the machine-learning
classifiers with optimised hyper-parameters are trained on the entire training dataset
(containing the larger landslide). Subsequently, the performance of the trained classifiers is
evaluated with the validation data (the smaller landslide). Based on this performance, one of
the two classifiers is selected to classify all point clouds of the time series (the RF classifier,
see Results section).

Landslide Shapes and Rule-based Reclassification of Point Cloud Segments

To correct errors from the supervised classification, topological relationships between
landslides and their surroundings are established. Landslide processes are gravitational mass
movements and have a clear tendency to move in a downslope direction. The highest part
of the resulting landslide form is at the scarp. This logic is used to automatically construct a
landslide model from the classified point cloud segments. The number of landslides per
scene (nLS) and their approximate minimum separation distance (distLS) must be provided by
the user. The landslide models establish a spatial context for the segments within the scene
(inside/outside the landslide) and help to employ rules for reclassification.

Extraction of Landslide Shapes. First, all segments labelled as scarp are extracted and
small and isolated scarp segments are removed (as false positives –FPs) from the
supervised classification. The remaining scarp segments are grown to main scarp candidates
if they are spatially contiguous. This is a recursive procedure which also considers the
segments’ elevation relative to the current main scarp candidate. This is based on the
assumption that, due to their recurrent geomorphic activity, the top sections of the scarp
tend to be the most prominent and least diffuse ones, and thus are recognised more easily
than some other parts located lower down. Consequently, the relative elevation criterion
allows the scarp-growing procedure to prefer lower segments over higher segments. This
proved beneficial because it resulted in more complete main scarp models while rejecting
FPs above the main scarps which resisted the previous filtering. Such FPs result, for
instance, from terracettes in the terrain created by livestock trampling. These can have
similar morphometric characteristics as parts of the scarp. Finally, only the nLS largest main
scarp candidates are extracted. This excludes any remaining FPs, such as small rock cliffs
misclassified as scarp.
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In the next step, the downslope area from these main scarps is defined by a raster-
based hydrological flow routing (deterministic 8 (D8) algorithm by O’Callaghan and Mark
(1984)). The point sets that represent the main scarps and the flow paths are used to
construct the approximated landslide polygon outlines as alpha shapes (Edelsbrunner et al.,
1983; Figs. 4 and 8). The parameter distLS is used to discriminate the individual landslides
for treatment as separate objects.

Rule-based Reclassification of Point Cloud Segments. Based on simple topological
relationships between the labelled point cloud segments and the landslide shapes,
misclassified segments are reclassified according to a rule-set (Fig. 5). The rules are inferred
from the assumption that eroded area and deposit do not exist outside the landslide and
(undisturbed, low or high) grass does not typically occur inside the landslide. The
respective misclassified segments are relabelled as the class considered the most likely
alternative, also with respect to a visual control of the classification results in all epochs and
to the confusion matrix (Fig. 6) which highlights the most severe misclassification types (for
the validation data).

Fig. 4. Two-step classification strategy with supervised classification and rule-based reclassification.
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Extraction of Geomorphological Objects and Change Analysis

Finally, a connected component analysis grows adjacent segments of the same class to
discrete scene objects and labels them with a common object identifier (ID). This creates the
possibility of analysing changes to specific object classes or to identify changes to
individual objects. For example, the cloud-to-cloud distance (distanceC2C) can be aggregated
as a mean and/or standard deviation per object or per class. Moreover, the volume of eroded
material can be calculated and, for example, restricted to the scarp (Fig. 9).

Results

Segmentation and Supervised Classification

The segmentation procedure results in a few tens of thousands of segments per epoch,
representing the instances to be classified. Around 100 000 points for each point cloud are
not grown into any segment and are excluded from further analysis. These points do not
meet the criteria for region growing (not enough neighbours (with similar properties) within
the search radius) and are almost exclusively points in the vegetation. They can either be
classified as such in post-processing or omitted, depending on the application requirements.

Table III shows the per-class accuracy metrics obtained for the training dataset with an
SVM and an RF classifier. The model was trained on the development set (random 50% of
the training data). The scores are computed on the evaluation set (the other 50% of the
training data). In this respect, the overall performance of the two machine-learning
classifiers is similar, with RF slightly outperforming SVM for the class landslide scarp in
terms of precision.

RF also obtained only a slightly higher mean accuracy score for the validation data
than SVM (78% versus 76% of correctly classified segments). Fig. 6 compares the results of
the two classifiers for the validation data (with the smaller landslide). They accurately
recognise medium and high vegetation but other classes are prone to errors. Scarp is partly
misclassified as deposit. Eroded area tends to be misclassified as deposit, low grass or high
grass. Deposit is sometimes recognised as low grass or high grass.

Similar patterns of misclassification are evident from visual inspection of the other
epochs. Fig. 7 visualises the results for both classification steps for three different

Fig. 5. Topological rules for reclassification.
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epochs. One of the epochs (PC_04) was acquired with the Optech laser scanner
(Fig. 7(a) and (b)), the other two epochs (PC_07 and PC_08) with the Riegl scanner.
With respect to the transferability of the trained classifier, the accuracy of the supervised
classification is better for the unseen part of the same epoch as where the training data
is from (PC_07; Fig. 7(c) and (d)). For other epochs, the classification tends to perform
worse but still recognises major parts of the scene correctly. The instrument used for
acquisition tends to influence the classification as well (depending on which data was
used for training).

Fig. 6. Confusion matrices for the manually labelled validation data (containing the smaller landslide),
normalised by the number of samples in each class. The diagonal elements represent the number of segments
for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabelled

by the classifier. Rock outcrop (class 7) does not exist in the validation dataset.

Table III. SVM and RF classification accuracy metrics (unseen 50% of the training data). See also equations
(7) to (9).

Class Precision Recall F1 score Segments

SVM RF SVM RF SVM RF 7397 (total)

1 – Landslide scarp 0�54 0�74 0�69 0�69 0�60 0�71 216
2 – Eroded area 0�59 0�77 0�74 0�60 0�66 0�68 701
3 – Deposit 0�72 0�70 0�79 0�79 0�75 0�74 1106
4 – Medium and high vegetation 0�94 0�92 0�93 0�96 0�93 0�94 2269
5 – Low grass 0�90 0�86 0�76 0�85 0�82 0�85 2325
6 – High grass 0�65 0�73 0�70 0�64 0�68 0�68 734
7 – Rock outcrop 0�71 0�56 0�52 0�83 0�60 0�67 46

Average 0�82 0�82 0�80 0�82 0�81 0�82
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Rule-based Reclassification

Figs. 7 and 8 show point clouds classified with the RF classifier and the same
point cloud reclassified with the topological rule-set and the extracted landslide shapes.

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Planimetric view of three different point cloud epochs (04, 07 and 08) after supervised (RF)
classification ((a), (c), (e)) and after rule-based reclassification ((b), (d), (f)).
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The differences between epochs are reduced by the second classification step (rule-
based reclassification), leading to a more consistent classification of point cloud objects
through the time series. Basically, the landslide shapes are reconstructed correctly in all

Fig. 8. 3D view of epoch PC_08 after supervised (RF) classification (a) and after rule-based reclassification (b)
with the approximated landslide shapes (c) (not to scale).

Fig. 9. Scarp erosion between epochs PC_07 and PC_08 (green and red points) represented as 3D alpha shape.
(a) Oblique view. (b) Transect through the scarp along the black line.
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epochs. In the depositional zones, however, the shapes partly differ. Moreover, the
results after the rule-based reclassification tend to overestimate the class deposit at the
cost of eroded area because all segments classified as grass are reclassified as deposit
if they are anywhere within the landslide. On the other hand, the reclassification
improves the accuracy score (fraction of correctly classified segments) for certain
classes considerably. For the validation data (left, unseen part of epoch PC_07), scores
for deposit and high grass increase from 63% to 77% and from 59% to 71%,
respectively.

Object-based Changes

An example of change analysis at the level of landslide objects is presented in Fig. 9.
This shows the 3D alpha shapes constructed from the scarp points of two successive point
clouds. This can be used to visualise and estimate the volume of eroded material that was
lost at the scarp between the two scans (approximately 1�7 m³).

Discussion

The previous sections have presented a point cloud classification and object-extraction
approach for landslide monitoring, as well as examples from testing this approach with a
time series of nine point clouds from a test site. The results of the accuracy analysis
indicate that the two different machine-learning classifiers can perform similarly well for a
supervised classification of the scene with morphometric features (overall accuracy metrics
differing by a maximum of 2%). Thus, it can be concluded that, in practice, either of the
two algorithms – SVM and RF – is suited to accomplishing this first part of the proposed
approach, provided that the hyper-parameters are tuned properly and enough training data is
available.

For this machine-learning classification on a standard desktop computer, the object-
based approach is an advantage because it reduces the number of objects (instances) to be
classified by two orders of magnitude (from several million points in the raw point clouds
to tens of thousands of segments per epoch). This reduces memory consumption
considerably, in particular during the training phase, making a proper grid search for
optimisation of hyper-parameters feasible.

Nevertheless, such a supervised classification, restricted to geometric features, has
limitations (see the description of common errors above). Some classes of a natural scene
are difficult to separate because: (i) their patterns in a morphometric feature space are
similar; and (ii) the morphometric signature can be variable within a class. Therefore, the
rule-based reclassification, integrating topological relations between objects of a scene, is an
important component of the proposed classification approach. This improves the
classification accuracy considerably. In particular, errors that are not tolerable from a
geomorphological point of view (such as segments outside the landslide misclassified as
eroded area) can be eliminated.

On the other hand, some classes are overlapping. Most landslide deposits at the test
site, for example, are grass-covered, either because clods of turf and soil were displaced and
deposited or because of vegetation regrowth already taking place in the less active parts of
the landslide. Hence, it depends upon the definition if these parts of the scene should be
classified as grass or deposit.

Reclassifying all initial grass segments inside the landslide as deposit, results in an
overestimation of deposit at the cost of eroded area. One reason can be that rougher parts
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of the eroded area (with relatively large particles at the surface) tend to be misclassified as
grass. Another reason can be that vegetation succession is already occurring in some parts
of the eroded area. Again, this results in an actual overlap of classes and a conflict of
definitions, which is also a question of scale. In this respect, the applied topological rules
are not capable of accommodating the complexity of the scene in all cases. Improving the
rule-set accordingly would require a method to subdivide the landslide shapes into eroded
area and depositional zone. This is challenging due to their rather diffuse transition. A soft
classification strategy could be an appropriate approach to accommodate the vagueness of
these natural objects, also considering constraints to multitemporal object-matching and
change analyses.

Inaccuracies of the final classification appear in the lower part of the depositional zones
due to incomplete landslide shapes (Fig. 8). Here, the diffuse appearance of the depositional
zone, in reality, is limiting both automated and manual delineation. Moreover, limitation of the
flow routing at the border of the data’s extent can influence landslide shape reconstruction.
This can be tolerated, with respect to landslide monitoring, because of the reduced activity in
these parts of the scene. The more active parts (which are more prominent in terms of
morphology, such as the scarp) are recognised more consistently (Fig. 7).

With regard to its transferability, the supervised classification is validated on an
independent dataset (unseen, left part of the scene, containing the smaller landslide).
Additionally, the final results from the epoch containing the training data are compared with
those from other epochs. Moreover, the presented methods have been tested with point
clouds from two different TLS devices. Limitations for transferring the classifier that was
trained on one point cloud to other point clouds of the test site can result from:
(i) variability in vegetation properties and morphology (phenological state); and
(ii) differences in point cloud properties (cf. Fig. 7). The latter are related to the use of two
different laser scanners and to different point densities due to inconsistent scan settings.
However, in the series of nine point clouds the scarp is recognised and the landslide shapes
are constructed correctly. Integration of these key objects with simple topological rules
(inferred from basic geomorphological knowledge) is shown to enhance the final
classification and object extraction considerably, in particular regarding its consistency
through the time series.

Conclusions

This paper has presented an approach to extract geomorphological objects from a
time series of TLS point clouds. The experimental results show that the point clouds
contain valuable information about the complex morphological characteristics of
landslides and their surroundings. Discrete geomorphological objects can be identified
and readily used for geomorphological interpretation and process analysis in a
multitemporal framework. Thereby, the detailed, 3D geometric information of the point
cloud can be jointly used with semantic information. This work demonstrates that this
information can be exploited to extract geomorphological objects: (i) automatically; (ii) in
a point-cloud-based workflow; and (iii) exclusively using the geometric data. This has
several advantages. The high degree of automation makes the analysis reproducible,
objective and efficient. This is an important prerequisite for landslide monitoring (with
repeated measurements of a scene) on the basis of geomorphologically meaningful and
consistent objects. Constraining the analysis to point cloud data representation (no raster
conversion) conserves the high level of geometric accuracy and the 3D information
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inherent in the original point cloud. An example has demonstrated that this is beneficial
for subsequent change analysis to support detailed geomorphological process
investigation.

From a methodological point of view, it can be concluded that the combination of a
supervised classification with a rule-based reclassification (using simple topological
relationships between objects) can yield good results. A machine-learning algorithm (SVM
or RF) pre-classified point cloud segments into geomorphologically meaningful object
classes. This classification, however, contains certain types of errors, due to ambiguities of
certain classes in a purely morphometric feature space. The reclassification step can correct
the majority of errors from a machine-learning pre-classification. This increases the fraction
of correctly classified segments per class by up to 14%.

The results indicate that the automated classification procedure can be transferred to
other landslide scenes with similar morphology and point cloud characteristics (such as
point density). Future work should test the transferability to other monitoring sites where
landslides occur in a similar natural environment (in terms of morphology and vegetation).
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R�esum�e

Le laser terrestre �a balayage est souvent utilis�e pour surveiller des glissements de terrain et autres
mouvements gravitaires avec des niveaux de d�etails et des pr�ecisions tr�es pouss�es. Cependant, les nuages de
points laser non structur�es ne sont pas porteurs de l’information s�emantique qui est requise pour
l’interpr�etation g�eomorphologique des changements mesur�es. L’extraction d’objets significatifs dans un
environnement complexe et dynamique constitue un d�efi en raison du manque de nettet�e des objets dans le
monde r�eel, ainsi que de la variabilit�e et de l’ambig€uit�e de leur repr�esentation dans un espace morphom�etrique.
Ce travail pr�esente une approche bas�ee sur les nuages de points pour la classification de sc�enes
multitemporelles sur un versant affect�e par des glissements de surface. Les nuages de points 3D sont segment�es
en parties morphologiquement homog�enes et spatialement connect�ees. Les segments sont classifi�es en sept
classes de cibles (escarpement, surface �erod�ee, d�epôt, affleurement rocheux et diff�erentes classes de v�eg�etation)
selon une proc�edure �a deux �etapes: une �etape de classification supervis�ee par apprentissage automatique
utilisant des caract�eristiques morphom�etriques, suivie d’une �etape de correction bas�ee sur des r�egles
topologiques. L’extraction finale d’objets s’en trouve consid�erablement al�elior�ee.
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Zusammenfassung

Terrestrisches Laserscanning (TLS) wird h€aufig f€ur ein geometrisch hochgenaues und detailliertes
Monitoring von Rutschungen und anderen gravitativen Massenbewegungen verwendet. Die unstrukturierten TLS
Punktwolken enthalten allerdings nicht die semantische Information, die f€ur die geomorphologische
Interpretation von gemessenen €Anderungen ben€otigt wird. Schwierigkeiten bei der Extraktion von sinnhaften
Objekten in einer komplexen und ver€anderlichen Umgebung ergeben sich durch die Unsch€arfe der Objekte in
der Realit€at sowie durch ihre teils mehrdeutigen Muster in einem morphometrischen Merkmalsraum. In diesem
Artikel wird ein punktwolken-basierter Ansatz zur Klassifizierung multi-temporaler Szenen vorgestellt. Die
Szenen bilden einen von flachgr€undigen Rutschungen betroffenen Hang ab. Die 3D Punktwolken werden in
morphologisch homogene, r€aumlich zusammenh€angende Bereiche segmentiert. Diese Segmente werden in einem
zweistufigen Verfahren sieben Zielklassen (Anrisskante, Abtragsfl€ache, Ablagerungsbereich, Felswand sowie
verschiedene Vegetationsklassen) zugeordnet: auf eine €uberwachte Klassifizierung anhand morphometrischer
Merkmale folgt eine Korrektur mittels topologischer Regeln. Diese Korrektur verbessert die abschließende
Objektextraktion deutlich.

Resumen

El escaneo l�aser terrestre (TLS) se usa a menudo para monitorear deslizamientos de tierra y otros
movimientos de masa gravitacional con gran detalle geom�etrico y precisi�on. Sin embargo, las nubes de puntos
TLS no estructuradas carecen de la informaci�on sem�antica que se requiere para interpretar
geomorfol�ogicamente los cambios medidos. La extracci�on de objetos en un entorno complejo y din�amico es un
reto debido ambig€uedad de los objetos, a la variabilidad y ambig€uedad de sus patrones en un espacio de
caracter�ısticas morfom�etricas. Este trabajo presenta un enfoque basado en la nube de puntos para clasificar
escenas multi-temporales de una ladera afectada por deslizamientos superficiales. Las nubes de puntos 3D se
segmentan en partes morfol�ogicamente homog�eneas y espacialmente conectadas. Estos segmentos se clasifican
en siete clases objetivo (�area escarpada, �area erosionada, dep�osito, afloramiento rocoso y diferentes clases de
vegetaci�on) en un procedimiento de dos etapas: una etapa de clasificaci�on supervisada con un clasificador de
aprendizaje autom�atico utilizando caracter�ısticas morfom�etricas, seguida de un paso de correcci�on basado en
reglas topol�ogicas. Esto mejora considerablemente la extracci�on final del objeto.

摘要

地面激光扫描仪 (TLS)经常应用于监测滑坡和其他地表形变 ,可以提供高精度丰富的几何细节。然而,
非结构化的TLS点云缺乏语义信息 ,而这是在对测量所得变化进行地貌学解译时所必需的。在复杂且动态

的环境中提取有意义的目标物体是具有挑战性的 ,因为目标在真实世界中具有模糊性 ,而且在形态特征空

间中的模式亦多变和模棱两可。本研究提出了一种基于点云的方法 ,将由浅层滑坡所影响的山坡进行多时

态的场景分类。将三维点云分割成形态上同质且空间连续的区块。这些区块包含七个目标类(陡坡、侵蚀

区、沉积区、岩石露头、以及不同类型的植被) ,过程分为两阶段:监督式分类 ,及使用形态特征的机器学习

分类 ,并继以基于拓扑关系的改正步骤。本方法显著地改善了对最终目标物体的提取。
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