
Reliable Granular References to
Changing Linked Data

Tobias Kuhn1, Egon Willighagen2, Chris Evelo2, Núria Queralt-Rosinach3,
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Abstract. Nanopublications are a concept to represent Linked Data in
a granular and provenance-aware manner, which has been successfully
applied to a number of scientific datasets. We demonstrated in previous
work how we can establish reliable and verifiable identifiers for nanopub-
lications and sets thereof. Further adoption of these techniques, however,
was probably hindered by the fact that nanopublications can lead to an
explosion in the number of triples due to auxiliary information about the
structure of each nanopublication and repetitive provenance and meta-
data. We demonstrate here that this significant overhead disappears once
we take the version history of nanopublication datasets into account,
calculate incremental updates, and allow users to deal with the specific
subsets they need. We show that the total size and overhead of evolving
scientific datasets is reduced, and typical subsets that researchers use for
their analyses can be referenced and retrieved efficiently with optimized
precision, persistence, and reliability.

1 Introduction

Datasets in general and Linked Data resources in particular play an increasingly
important role in data-driven research, as exemplified by the datasets provided
by WikiPathways [20] and DisGeNET [32], and overarching initiatives such as
Bio2RDF [3]. Reproducibility and persistence have been ongoing concerns in this
regard, as dataset identification and access has often been brittle and unreliable.
Datasets based on Linked Data, as most types of datasets, are typically quite
dynamic and change over time [36,9], and capturing the data’s provenance [24]
is crucial for their proper interpretation and reuse. Moreover, as we will show,
scientific data analyses typically use relatively small subsets of Linked Data
resources, but we currently lack reliable methods to refer to such subsets.

In the context of the recent initiatives to promote FAIR data publishing
[41], Linked Data can contribute to the requirement of interoperability across
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Fig. 1. Average triple counts of existing nanopublication datasets.

datasets. We argue that researchers should — in papers as well as the software
code for computational analyses — be able to exactly specify what dataset they
are using as input. Currently, the best researchers can do is to provide version
numbers and bibliographic references in papers, like “we used DisGeNET-RDF
version 4.0 [32]”, and to make the downloaded dataset explicit in the source code
of their computational analyses, like in the following line of a Unix script:

wget http://rdf.disgenet.org/download/v4.0.0/geneDiseaseAssociation.ttl.gz
# Run analysis here

We can therefore identify the following two problems with the current practice
of dataset references: (1) Researchers can only specify at the dataset level which
data they use as input. They cannot reliably point to the exact subset that is
needed for a given analysis. And (2) researchers cannot reliably refer to specific
versions of evolving datasets; even with version numbers included, researchers
cannot be sure that others can later retrieve exactly the same dataset to replicate
the results. We argue that we can address both problems with an approach of
incremental dataset definitions based on the technologies of nanopublications
and trusty URIs.

Nanopublications [23] are tiny packages of Linked Data that come with prove-
nance and metadata attached [12]. In previous work, we showed how identifers
based on cryptographic hashes, called trusty URIs [18,19], can be used in com-
bination with nanopublications to make them (and their entire reference trees)
immutable and verifiable, two important properties for scientific data. In con-
trast to other proposals for data citations [29], such a cryptography-empowered
approach can provide us with strong technical — rather than weaker organiza-
tional — guarantees with respect to the integrity and original state of datasets.

Fine-grained and provenance-aware approaches like nanopublications, how-
ever, come at a cost. The internal structure of each nanopublication has to be
defined, and the provenance and metadata has to be repeated even if it is vir-
tually identical for a large number of them. This effect can be seen in Figure
1 for a number of existing dataset that use the nanopublication format: LIDDI
[2], neXtProt [6], GeneRIF-AIDA [15], three versions of DisGeNET [31], and two
versions of a dataset extracted from OpenBEL5. We see that the nanopublication

5 https://github.com/tkuhn/bel2nanopub
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Table 1. Characteristics of existing nanopublication datasets.

triples decontext-
nanopub- total outside of ualized ratio

dataset lications triples head (t) triples (d) d/t

LIDDI 98085 2051959 1659619 1364314 0.8221
neXtProt 4025981 156263513 140159589 76722914 0.5474

GeneRIF-AIDA 156026 2340390 1716286 733208 0.4272
DisGeNET v4.0.0.0 1414902 48106668 38202354 5390141 0.1411
DisGeNET v3.0.0.0 1018735 34636990 27505845 3908268 0.1421
DisGeNET v2.1.0.0 940034 31961156 25380918 3667767 0.1445
OpenBEL 20131211 74173 2186874 1890182 1308625 0.6923

OpenBEL 1.0 50707 1502574 1299746 903066 0.6948

format implies a significant overhead in terms of number of triples. The main
content of a nanopublication in the assertion graph account for just a minority
of the total triples. While the provenance and publication info graphs provide
additional context for the assertion triples, the head graph’s sole purpose is to
link to the other graphs and thereby to hold the nanopublication together.

While the provenance and publication information contents are by no means
useless and therefore not purely an overhead, they tend to be quite repetitive.
This is at least partly caused by the fact that most existing nanopublication
datasets are extracted from “non-nano” datasets that do not capture granular
metadata, and therefore no granular metadata is available for export. The over-
head is in any case significant for existing datasets, as shown in Table 1. Even
when disregarding the triples of the head graph, the numbers of triples is sig-
nificantly larger than what we get if we “decontextualize” the triples to attach
provenance and metadata only to the entire dataset and remove all duplicates. A
decontexualized dataset, for example, would state that a given publication was
the source of some entries in the dataset, but not refer to these exact entries, as
enforced with nanopublications. We will use this method of decontextualization
also below for our analyses. DisGeNET is an extreme example here, with the
number of decontextualized triples making up only 14% of the number of nano-
publication triples, caused by the repetition of triples across nanopublications.

This significant overhead that comes with the nanopublication technology
might have been a hindrance in its further adoption. We show here, however,
that nanopublications together with an approach to represent and construct
incremental datasets and subsets thereof lead to a situation where the benefits
of the fine-grained nanopublication structure offset the costs, even for the most
extreme case of the DisGeNET dataset.

2 Background

Versioning and capturing the evolution of Linked Data has been a concern and
research area for many years. While the early work focused on capturing the



changes in ontologies [39,1], later work included approaches to combine RDF
versioning with web archiving [37], long-term observation of the dynamics of
Linked Data [13], and efficient archiving of dynamic Linked Data [9]. There
have also been a few approaches that deal with access and versions of subsets of
Linked Data resources [34,35].

Providing version indicators for datasets is considered common best prac-
tice6, but version numbers cannot guarantee that data providers do not violate
a dataset version’s immutability. To provide such kinds of strong technical guar-
antees, approaches inspired by the Git versioning system have been proposed
[38,11] that involve cryptographic hash values to enforce immutable versions.
Similar approaches to reliable incremental Linked Data versioning have been
developed by others [21,10], including applications to Big Data environments
[5]. Outside of the Linked Data world, approaches for cryptographically strong
data archiving have been proposed for decentralized systems like Bitcoin [22]
and BitTorrent [7].

In our own previous work, we showed how nanopublications with trusty URIs
can make data publishing verifiable and reliable, without depending on a central
server or trusted authority [16]. In the same work, we also proposed a method
to describe datasets as nanopublications themselves, thereby making references
to entire sets of nanopublications verifiable through recursive hashing.

While a number of approaches exist on each of (1) Linked Data versioning,
(2) cryptographically reliable dataset identifiers, and (3) references to subsets
of larger datasets, and while these aspects are covered by the data citation
recommendations of the Research Data Alliance [33], there are currently no
concrete solutions that combine them all. In other words, existing approaches
do not allow for cryptographically reliable references at high granularity in terms
of both, time (i.e. versions) and space (i.e. subsets). We will present and evaluate
such an approach below.

3 Approach

Our approach consists of the following three aspects: (1) We use the nanopublica-
tion concept to model datasets and their versions, (2) provide a method to create
incremental datasets, and (3) connect these components to allow for flexible and
reliable references to subsets of data resources.

3.1 Incremental Datasets with Nanopublications

Figure 2 schematically depicts the gist of our approach. It is based on our previ-
ous proposal to define sets of nanopublications as nanopublications themselves
[17]. We call these set-defining nanopublications index nanopublications, as they
consist of direct and indirect links to the nanopublications they contain as ele-
ments. An index nanopublication can directly link to elements via links of the

6 see e.g. [33] and https://www.w3.org/TR/dwbp/#dataVersioning
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Fig. 2. Schematic depiction of a dataset specified with nanopublication indexes (top),
the occurred content changes (middle), and their result as a new dataset version that
reuses as much as possible. The blue index shows a subset definition.

type has element (these elements are marked with lowercase letters in Figure
2), but can also point to subsets in the form of other indexes via links of the
type has sub-index. Sub-indexes can be used, for example, to partition a dataset
into different parts each containing a particular type of data. Finally, for nano-
publication sets that are large but have no such partitioning, we need a method
to ensure that all these index nanopublications remain small, as this is a core
feature of the nanopublication concept. For that reason, we introduce relations
of the type appends to that allows for more nanopublications being added in a
new index, once an index is full. The size limit of a nanopublication index is set
to 1000 entries (either elements or sub-indexes). All these links are established
via the trusty URIs of the referred nanopublication, and thereby the whole ref-
erence tree can be cryptographically verified from just the URI of the top index
nanopublication [19]. We will come back below to the issue of how to retrieve
such sets of nanopublications.

Because of its granularity, this approach provides excellent opportunities to
reuse parts of a dataset for a new version in an incremental manner. In general,
there are three kinds of changes that can happen: A nanopublication can be
removed from a dataset (such as b in Figure 2); a nanopublication can be added
(x); and a nanopublication can be changed and replaced by a new version (g
being replaced by g′). All remaining nanopublications remain unchanged and
can thereby be reused, i.e. linked from an index nanopublication belonging to



the new version of the dataset. Moreover, we might also be able to reuse some of
the nanopublication indexes, namely the ones representing subsets that didn’t
change. For both, content and index nanopublications, we can furthermore es-
tablish supersedes links to the respective previous versions, to allow users to
navigate back in time through the version history.

It is important to note that the previous version remains untouched: None
of the existing nanopublications are changed (trusty URIs in fact enforce this)
and by starting from the URI of the previous version and follow its links, the
existence of the new version is not even noticed. Turning this property around
implies that defining sets of nanopublications in this way does not require any
control over the contained elements. Everybody can define after the fact (i.e.
after the release of a dataset) arbitrary subsets by creating the appropriate
index nanopublications. These subsets are maximally flexible in the sense that
they can reuse any possible subset, be augmented with new nanopublications,
and even combine subsets of different datasets, as illustrated by the blue index
nanopublication in Figure 2. In such a case, one has to publish the new index
nanopublications to be able to publicly refer to the specified subset, but no part
of the content needs to be republished, and its original state is easy to verify.

We base our implementation and evaluation on the specific technologies and
formats underlying Linked Data and nanopublications, but our general approach
is portable to any type of knowledge representation with declarative monotonic
semantics, which by their nature allow for subdividing representations into small
independent pieces.

3.2 From Snapshots to Incremental Datasets

To actually generate an incremental dataset for a nanopublication-based re-
source, one has to ideally record all changes when they occur and build the
proper index structure accordingly. However, such a direct construction is often
non-trivial to integrate in existing data production pipelines, which is why first
producing a full new snapshot and then calculating an incremental update is of-
ten more practical, in particular for smaller datasets. We therefore present such
an approach here and apply it in the evaluations described below.

To calculate incremental updates of nanopublications, we apply the two con-
cepts of fingerprints and topics. These two concepts establish identity relations
that are weaker than the one that is enforced by trusty URIs. With trusty URIs,
any tiny change in a nanopublication, such as a new timestamp, leads to a new
URI and therefore to a new nanopublication. In contrast to trusty URIs, neither
fingerprints nor topics are visible to the users of the dataset, but are merely a
method to calculate incremental updates from dataset snapshots.

Fingerprints — like trusty URIs — correspond to a cryptographic hash value
that is based on the RDF content of nanopublication, but consider only a subset
of the triples and may apply preprocessing and normalization. In the simplest
case, a fingerprint ignores the content of the timestamp found in the publication
info graph. Other variants are possible, such as ignoring the entire publication
info graph, and this can be configured for a given dataset and the intended use of



its incremental versioning. The purpose of these fingerprints is to decide whether
a new nanopublication (i.e. a nanopublication that would get a new trusty URI)
is “new enough” to warrant an update, or whether a nanopublication from the
previous version of the dataset can be reused.

Topics are similar to fingerprints, but normally correspond to a URI instead
of a hash. A new nanopublication with an existing topic is included in the new
dataset version, but the new nanopublication will be marked as an update of the
old. The addition of supersedes-links as shown in Figure 2 thereby provides users
a access to the version history on the level of individual nanopublications. By
default, the topic is calculated to be the URI that has the highest occurrence in
the subject position of the assertion triples, but this can be configured to match
the characteristics of a given dataset.

It is worth noting that the matching of fingerprints and topics comes at a
cost, in particular the cost of keeping a mapping table during the process. For
large datasets, it can therefore pay off to record changes as they happen, which
eliminates the need to reconstruct changes with fingerprints or topics.

3.3 Granular and Reliable Retrieval

So far we have only described our approach from a conceptual level assuming a
reliable method to follow links. The most straight-forward approach to actually
do this is the “follow your nose” principle7 of URI dereferencing, which however
is in general not reliable and can be very slow, depending on web servers a
user has no control over. This problem is particularly grave for large datasets
and those spanning multiple web domains. We also need to provide convenient
methods for users to make their own subset definitions publicly available.

We address these problems by applying and using the decentralized server
network that we demonstrated in previous work, based on nanopublications and
trusty URIs [17]. With this network, we do not have to assume that URIs are
efficiently resolvable, but we can instead rely on the redundancy of the network
and the verifiability of trusty URIs. This nanopublication network has grown in
the last months and years, consisting now of 15 server instances on 10 distinct
physical servers in 8 countries.8 Our approach relies on this server network to let
data producers publish incremental datasets, and to allow researchers to publish
index nanopublications to precisely specify the subsets of existing Linked Data
resources they are using for their analyses.

4 Implementation and Methods

We implemented our approach in a command line tool, and evaluated it with
two studies. We performed a technical study covering the publishing aspect to
find out about the overall data volume for changing datasets with our approach

7 https://www.w3.org/wiki/FollowYourNose
8 http://purl.org/nanopub/monitor
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and to compare it to idealized alternative approaches of decontextualized triples.
We then performed a second study to investigate how our approach performs on
typical subsets of datasets that are used in scientific studies.

4.1 Nanopublication Operation Tool: npop

Based on our existing nanopub-java library9 [14], we implemented a command
line tool that we call npop (standing for nanopublication operations). The fol-
lowing commands are relevant to the work presented here:

– count can be used to count nanopublications and their triples from a file or
stream. It is therefore like a wc command for nanopublications.

– filter reads nanopublications from a file or stream and filters them by given
URIs or literals. It is therefore like a grep command for nanopublications.

– extract retrieves triples from the different nanopublication graphs.
– reuse takes a dataset snapshot and its previous version, and generates an

incremental update from it. Nanopublications from the previous version with
a matching fingerprint are reused, and for those with a matching topic (but
not a matching fingerprint) a supersedes-link is introduced.

– ireuse does the same as reuse but for index nanopublications.
– fingerprint calculates the fingerprints for nanopublications following a

specified configuration.
– topic calculates the topics according to a specified configuration.
– decontext produces decontextualized triples for given nanopublications, for

comparative studies such as the ones presented in this paper.

These commands, together with the commands from the underlying nanopub-
java library (such as get to retrieve nanopublications and publish to upload
them to the network), allowed us to perform the studies to be described below,
and they are available for other data producers to apply to their own datasets.

4.2 Evaluation on Data Publishing

The first evaluation was performed on WikiPathways, a community-curated open
database of biological pathways [20], with the aim to find out whether our ap-
proach is beneficial on the data producer side. Recently, the RDF export of the
WikiPathways database was established [40], making the content of the database
much easier to integrate. This RDF export contains information from the original
WikiPathways and Reactome pathways [8,4]. Using a number of SPARQL CON-
STRUCT queries, three types of nanopublications are generated:10 interactions,
complex participation, and pathway participation. Importantly, only nanopub-
lications are generated for statements if the fact is supported by a publication,
marked with a PubMed database identifier. Overall, the dataset currently con-
sists of a bit over 10 000 nanopublications.

9 https://github.com/Nanopublication/nanopub-java
10 https://github.com/wikipathways/nanopublications
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For this evaluation, we retroactively generated nanopublication snapshots
from old data dumps, corresponding to 11 monthly builds between June 2016 to
May 2017 (January 2017 is missing). For these we built an incremental dataset
using the npop tool. We can then compare the size of the resulting cumulative
dataset, growing over 11 months, with the size of the nanopublication snapshots
as well as decontextualized versions thereof, to evaluate whether incremental
versioning can indeed offset the increased space needs of nanopublications.

This is not a very fair comparison, of course, because nanopublications come
with valuable context-dependent information on the one hand and because in-
cremental versioning could just as well be applied to decontextualized data on
the other. We will keep the first point in mind when interpreting the results, and
to address the second point we calculate an incremental version for the decon-
textualized case too. Three general approaches exist for versioning of arbitrary
RDF data [36,9]: independent copies, change-based approach, and timestamp-
based approach. Independent copies correspond to what we called dataset snap-
shots, i.e. non-incremental versions. The change-based approach keeps separate
lists of added and removed triples for each version after the first, whereas the
timestamp-based approach keeps all triples in the same collection but attaches
timestamps of their addition or removal. While the latter two have different
advantages and shortcomings, they lead to the same overall triple count (if we
require a triple to be duplicated to acquire more than one timestamp). As a fur-
ther point of comparison for our study, we therefore use this overall triple count
for an incremental decontextualized dataset according to the change-based or
timestamp-based approach.

4.3 Evaluation on Data Analyses

With the second evaluation we wanted to find out whether our approach is bene-
ficial on the consumer end. It was performed on DisGeNET [30], one of the most
comprehensive databases on human diseases and their genes that is publicly
available. DisGeNET is available in RDF [32] and nanopublication [31] formats.
There are currently three releases of the DisGeNET nanopublication dataset
(version 2.1 with 940 034 nanopublications, version 3.0 with 1 018 735 nanopub-
lications, and version 4.0 with 1 414 902 nanopublications), which correspond to
three most recent releases of the database. The releases differ mainly in data
content due to the incremental update of the database, the incorporation of new
data sources for the gene-disease associations, and the incorporation of new data
attributes.

To find out about the use of this dataset by researchers, we looked at the pub-
lications that cited one of the DisGeNET papers during 2017 (31 publications
as of 5 May 2017). We were interested in studies that included the DisGeNET
dataset or subsets thereof in their analyses, but closer inspection revealed that
six of these publications did not actually use the data (but only mentioned Dis-
GeNET as related work) and another five of them used the data but did not
include them in any analyses (e.g. describing a tool that imported the data). For
the remaining 20 publications, we manually determined whether the authors



Table 2. Overview of the incremental dataset generated for WikiPathways.

nanopub-
version lications reused new update addition

20160610 9018 0 (0.0%) 9018 (100.0%) 0 (0.0%) 9018 (100.0%)
20160710 10173 1405 (13.8%) 8768 (86.2%) 3 (0.0%) 8765 (100.0%)
20160810 10123 3836 (37.9%) 6287 (62.1%) 0 (0.0%) 6287 (100.0%)
20160910 10124 9838 (97.2%) 286 (2.8%) 0 (0.0%) 286 (100.0%)
20161010 10127 9620 (95.0%) 507 (5.0%) 16 (3.2%) 491 (96.8%)
20161110 13958 10041 (71.9%) 3917 (28.1%) 18 (0.5%) 3899 (99.5%)
20161210 13975 13794 (98.7%) 181 (1.3%) 152 (84.0%) 29 (16.0%)
20170210 14323 13743 (96.0%) 580 (4.0%) 176 (30.3%) 404 (69.7%)
20170310 14319 13938 (97.3%) 381 (2.7%) 230 (60.4%) 151 (39.6%)
20170410 14323 13972 (97.5%) 351 (2.5%) 317 (90.3%) 34 (9.7%)
20170510 14323 13980 (97.6%) 343 (2.4%) 340 (99.1%) 3 (0.9%)

used the whole dataset or specific subsets. If the study used a specific subset, we
looked for information about how this selection was performed (e.g. based on a
particular disease or a family of genes, or using a pre-defined value of some of
the DisGeNET data attributes as such as the DisGeNET score, among others).
Finally, we matched these subsets to the corresponding subsets of our incremen-
tal nanopublication-based dataset to find out what set of nanopublications they
would have used if they had followed our proposed approach.

From this empirical collection of used subsets, we can then investigate the
typical size of such database subsets used for scientific analyses. We can also
compare the size of these subsets to the decontextualized version of DisGeNET
to find out whether the overhead of nanopublications is actually still an overhead
once we look at specific subsets. We can reliably refer to such subsets with nano-
publications, but we have to refer to (and therefore handle) the entire dataset
for data based on regular (decontextualized) triples.

Finally, to measure the practicality of retrieving subsets from the server net-
work, we also measure the time it takes to do so for a typical subset. To put
that into perspective, we also measure the time needed to download the entire
dataset from the disgenet.org website.

5 Results

Table 2 gives an overview of the structure of the incremental dataset for WikiPath-
ways, showing the number of nanopublications for each release, the number of
reused nanopublications from the previous version (by fingerprint matching), and
the number of new nanopublications. The right-hand side of the table shows how
many of the new ones were updates of nanopublications from the previous version
(by topic matching). We see that the datasets underwent fundamental changes
in the first two months, with a majority of nanopublications being replaced. Af-
terwards, the changes are much less drastic, in the sense that the majority of



Fig. 3. Overall size of the evolving WikiPathways version history.

nanopublications are reused and often a majority of the new ones can be linked
to previous nanopublications of the same topic.

Figure 3 shows the gains from the incremental approach to nanopublication-
based versioning (light blue line). After the first two tumultuous months, the
gain in number of triples to the cumulative nanopublication-based snapshots
(dark blue line) quickly widens. In the end, we only need 23% (0.78M/3.38M)
of the triples to express the same version history. Comparing the two to our
main reference point — cumulative snapshots of decontextualized triples (dark
red line) — we see that the overhead of the nanopublication snapshots is in the
end 54% (1 – 1.55M/3.38M), meaning that we could drop 54% of the triples if
we weren’t interested in the fine-grained context. With the incremental nano-
publication datasets, however, this overhead turns into a “negative overhead” of
98% (1 – 1.55M/0.78M), meaning that we needed 98% more triples if we were
to switch to decontextualized snapshots. We see that the overhead of nanopub-
lications has indeed turned into a gain.

As we noted above, this comparison is not perfectly fair on either side. Still
keeping in mind that decontextualized triples carry less information, we can com-
pare our incremental nanopublication-based approach to what could be ideally
achieved with a change-based or timestamp-based approach on decontextualized
triples (light red line). The overhead of our approach to this idealized setting is
41% (1 – 0.46M/0.78M). The fact that this is again an actual overhead is not
surprising, as it is always possible to handle less information more efficiently.
We will show below, however, that even this overhead is in fact turned into a
gain when we look at the side of data consumers and the typical subsets they
use.

Table 3 shows the result of the second empirical study on the subsets of
DisGeNET used and reported in scientific papers from 2017. Only three out of
the 20 papers used the entire dataset. The distribution of the subset sizes is also
shown in Figure 4 as a histogram. The two peaks indicate that researchers tend



Table 3. DisGeNET subsets used and reported in papers, sorted by ascending size.

nanopub- rel. size rel. size to
lication triple to full decontext.

DOI of paper count count dataset version

10.21873/cgp.20028 14 476 0.00001 0.00009
10.3892/ijmm.2017.2853 482 16388 0.00034 0.00304
10.1007/s12539-017-0213-z 533 18122 0.00038 0.00336
10.1038/srep46760 782 26588 0.00055 0.00493
10.1016/j.preteyeres.2017.02.001 1711 58174 0.00121 0.01079
10.1101/gr.210740.116 2014 68476 0.00142 0.01270
10.1186/s12920-017-0259-0 2158 73372 0.00153 0.01361
10.1016/j.jprot.2017.03.015 4859 165206 0.00343 0.03065
10.1016/j.neuron.2017.01.033 18098 615332 0.01279 0.11416 *
10.1021/acs.jcim.6b00725 21336 725424 0.01508 0.13458
10.1101/119099 31105 1057570 0.02198 0.19620
10.1002/jcb.25799 61198 2080732 0.04325 0.38603
10.3390/ncrna3020020 78742 2677228 0.05565 0.49669
10.1007/978-1-4939-6843-5 13 83771 2848214 0.05921 0.52841
10.1038/srep43632 101297 3444098 0.07159 0.63896
10.1016/j.dib.2017.04.001 196108 6667672 0.13860 1.23701
10.1186/s13148-017-0336-4 326472 11100048 0.23074 2.05932
10.1038/srep40154 1414902 48106668 1.00000 8.92494
10.1038/srep42638 1414902 48106668 1.00000 8.92494
10.1002/pmic.201700056 1414902 48106668 1.00000 8.92494

average: 258769 8798156 0.18289 1.63227
median: 26221 891497 0.01853 0.16539

average of proper subsets: 54746 1861360 0.03869 0.34533
median of proper subsets: 18098 615332 0.01279 0.11416

to use a dataset either entirely or only a very small subset of it. For 40% of
the papers we studied (8 out of 20), less than 1% of the dataset was used. The
largest proper subset used consisted of just 23% of the data.

We can again compare these numbers to the idealized setting without nano-
publications where triples are decontextualized and where reliable identifiers
only exist at the dataset level. In comparison to such a decontextualized snap-
shot, 15 out of the 20 studied subsets have a lower triple count (green). For a
typical subset, the overhead of nanopublications in terms of number of triples
is therefore again turned into a gain (in addition to the gains with respect to
precision, verifiability and fine-grained provenance and metadata). We should
also remember that DisGeNET is an extreme case in terms of triple overhead.

Finally, Figure 5 shows the results for the retrieval times of a typical subset
(the subset with the median size value of the proper subsets, marked with *
in Table 3). We see that the retrieval via the server network takes about the
same time as downloading the whole dataset from disgenet.org (both roughly
around 60 seconds). Instead of just downloading a single file, the subset retrieval
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Fig. 4. Histogram of the subset sizes (in triples) in relation to the entire dataset.
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Fig. 5. Download times for the full DisGeNET dataset (v4.0.0.0) and a typical subset
(marked with * in Table 3; n=10 in both cases; whiskers show +/– 1.5 IQR).

consists of requesting 18 098 individual nanopublications and verifying their con-
tent against their trusty URIs. Despite the resulting lower throughput in terms
of triples per second, we can efficiently retrieve the specific subset of data.

The code used for these studies and the resulting data can be found online.11

6 Discussion and Conclusions

Data providers and data consumers have to pay a price for granular and pre-
cise references to subsets of datasets, to make these references cryptographically
strong, and to verify the integrity of retrieved data. We showed, however, that
this price is offset by the benefits of incremental versioning and by being able to
refer to exactly the needed subset of a given dataset, on top of the gains from
cryptographically strong verifiability. Data providers should take into account
the gain in storage overhead and the benefits of reproducibility and verifiability
— and thus better FAIR publishing — of evolving datasets that our incremental
nanopublication approach provides. Also, it allows data publishers to reliably
check and record how their data evolves from version to version.

To come back to the examples of dataset references, we can now refer to our
datasets in papers with references that include the trusty URI of the nanopub-
lication index of the appropriate version and subset, such as the incremental
DisGeNET datasets [25,26,27] and the incremental WikiPathways dataset [28]

11 see https://doi.org/10.6084/m9.figshare.5230639 and https://bitbucket.org/t
kuhn/nanodiff-exp/

https://doi.org/10.6084/m9.figshare.5230639
https://bitbucket.org/tkuhn/nanodiff-exp/
https://bitbucket.org/tkuhn/nanodiff-exp/


we cite in this paper. For integration in the code to perform computational anal-
yses, we can now use the np command provided by the nanopub-java library to
reliably download a precisely specified set of nanopublications:

np get -c -o data.trig http://purl.org/np/RAxMyDRaM8RmKGNiEe7dQPRUTuz616iI-N2T-H3MPYmXk
# Run analysis here

We now get cryptographic guarantees on the retrieved content, and we can rely
on an entire network of nanopublication servers and therefore do not depend on
the uptime of individual servers.

As future work, we will keep providing incremental updates for the nanopub-
lication datasets we presented here. We will also investigate how we can reduce
the overhead present in DisGeNET nanopublications for future releases. The
most obvious improvement is the reduction of the number of head triples from 7
to the mandatory minimum of 4. This alone will reduce the overall triple count
by 9%. Further improvements can probably be achieved — without substan-
tial negative side effects — by reducing the redundancy in the provenance and
publication info graphs, and possibly also in the assertion graph.

To conclude, we demonstrated how our approach can contribute to the ver-
ifiability and granular accessibility of scientific Linked Data resources. As such,
we think that it can put many other Linked Data solutions that require precise
and reliable data publishing and consumption onto a solid technical basis.
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