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Abstract—Identification and extraction of singing voice from 

within musical mixtures is a key challenge in source separation 
and machine audition. Recently, deep neural networks (DNN) 
have been used to estimate 'ideal' binary masks for carefully 
controlled cocktail party speech separation problems. However, 
it is not yet known whether these methods are capable of 
generalizing to the discrimination of voice and non-voice in the 
context of musical mixtures. Here, we trained a convolutional 
DNN (of around a billion parameters) to provide probabilistic 
estimates of the ideal binary mask for separation of vocal sounds 
from real-world musical mixtures. We contrast our DNN results 
with more traditional linear methods. Our approach may be 
useful for automatic removal of vocal sounds from musical 
mixtures for 'karaoke' type applications. 
 

Index terms—Deep learning, supervised learning, convolution, 
source separation. 
 

I. INTRODUCTION 

Much work in audio source separation has been inspired by 
the ability of human listeners to maintain separate auditory 
neural and perceptual representations of competing speech in 
‘cocktail party’ listening scenarios [1]-[3]. A common 
engineering approach is to decompose a mixed audio signal, 
comprising two or more competing speech signals, into a 
spectrogram in order to assign each time-frequency element to 
the respective sources [4]-[6]. Hence, this form of source 
separation may be interpreted as a classification problem. 

A benchmark for this approach is known as the ‘ideal 
binary mask’ and represents a performance ceiling on the 
approach by providing a fully-informed separation based on 
the spectrograms for each of the component source signals. 
Using the source spectrograms, each time-frequency element 
of the mixture spectrogram may be attributed to the source 
with the largest magnitude in the respective source 
spectrogram. This ideal binary mask may then be used to 
establish reference separation performance. In a recent 
approach to binary-mask based separation, the ideal binary 

mask was used to train a deep neural network (DNN) to 
directly estimate binary masks for new mixtures [6]. However, 
this approach was limited to a single context of two known 
speakers and a sample rate of only 4 kHz. Therefore, it is not 
yet known whether the approach is capable of generalizing to 
less well controlled scenarios featuring unknown voices and 
unknown background sounds. In particular, it is not known 
whether such a DNN architecture is capable of generalizing to 
the more demanding task of extracting unknown vocal sounds 
from within unknown music [7]-[9]. 

In this paper, we employed a diverse collection of real-
world musical multi-track data produced and labelled (on a 
song-by-song basis) by music producers. We used 63 typical 
‘pop’ songs in total, each featuring vocals of various kinds. 
For each multi-track song/mix, comprising a set of component 
‘stems’ (vocals, bass, guitars, drums, etc), we pooled audio 
labeled as ‘vocal’ separately to all other audio (i.e., the 
accompanying instruments). We then obtained arbitrary 
mixtures for each song, simulating the process of mixing to 
produce ‘mixes’ for each song. Using the first 50 songs as 
training data, we trained a convolutional DNN to predict the 
ideal binary masks for separating the respective vocal and 
non-vocal signals for each song. For reference, we also trained 
an equivalent linear method (convolutional non-negative 
matrix factorization - NMF) of similar scale. We then tested 
the respective models on mixes of new songs featuring 
different musical arrangements, different singing and different 
production. From both models we obtained probabilistic 
estimates of the ideal binary mask and analyzed the resulting 
separation quality using objective source separation quality 
metrics. These results demonstrate that a convolutional DNN 
approach is capable of generalizing voice separation, learned 
in a musical context, to new musical contexts. We also 
illustrate the capability of the probabilistic convolutional 
approach [6] to be optimized for different priorities of 
separation quality according to the statistical interpretation 
employed. In particular, we highlight the differences in 



performance for the two respective architectures in the context 
of the trade-off between artefacts and separation. 

 

II. METHOD 

We consider a typical simulated ensemble musical 
performance scenario featuring a variety of musical contexts 
and a variety of vocal performances. In each context, which 
we refer to as ‘a song’, there are a multitude of musical 
accompaniment signals and at least one (often more) vocal 
signals. The various signals are mixed together (arbitrarily) 
and the resulting mixture is refered to as ‘a mix’. The 
engineering problem is to automatically separate all vocal 
signals from the concurrent accompaniment signals. We used 
63 fully produced songs, taken from the MedleyDB database 
[10]. The average duration of the songs was 3.7 minutes 
(standard deviation (STD): ±2.7 mins). The average number 
of accompanying sources (stems) was 7.2 (STD: ±6.6 sources) 
and the average number of vocal sources was 1.8 (STD: ±0.8 
sources). 

For each song, the source signals were classified as either 
vocal or non-vocal (according to the labels assigned by the 
music producers). Vocal sounds included both male and 
female singing voice and spoken voice (‘rap’). Non-vocal 
sounds included accompanying instruments (drums, bass, 
guitars, piano, etc). Source sounds were studio recorded and 
featured relatively little interference from other sources. All 
source sounds were then peak normalized before being 
linearly summed into either a vocal mixture or a non-vocal 
mixture respectively. The two separate (vocal / non-vocal) 
mixtures were then peak normalized and linearly summed to 
provide a complete mixture (i.e., a ‘final production mix’). 
This provided for a mixture that resembled a mix that might 
be produced by a human mixing engineer [11]. All sources 
and mixtures were monaural (i.e., we did not employ any 
stereo processing). 

All signals were sampled at a rate of 44.1 kHz. The 
respective source (vocal / non-vocal) and mixture signals were 
transformed into spectrograms using the short-time Fourier 
transform (STFT) with window size of 2048 samples, overlap 
interval of 512 samples and a Hanning window. This provided 
spectrograms with 1025 frequency bins. The phase component 
of each spectrogram was removed and retained for later use in 
inversion. From the source spectrograms a binary mask was 
computed where each element of the mask was determined by 
comparing the magnitudes of the corresponding elements of 
the source (vocal / non-vocal) spectrograms and assigning the 
mask a ‘1’ when the vocal spectrogram had greater magnitude 
and ‘0’ otherwise. 

The first 50 songs (taken in arbitrary order) were used as 
training data and the final 13 songs were used as test data. The 
magnitude-only mixture spectrograms computed from the first 
50 songs and the respective ideal binary masks were used as 
training data. Note, phase was not used in training the model. 

For the training data, the mixture spectrogram and the 
corresponding source spectrograms were cut up into 
corresponding windows of 20 samples (in time). The windows 

shifted at intervals of 60 samples (i.e., there was no overlap). 
Thus, for every 20-sample window, for training the models 
there was a mixture spectrogram matrix of size 1025x20 
(frequency bins x time) samples and an ideal binary mask 
matrix of the same size. From the 50 songs designated as 
training data, this gave approximately 15,000 training 
examples. For the testing stage, the spectrograms for the 
remaining 13 songs were cut up with overlap intervals of 1 
sample (which would ultimately be applied in an overlaping 
convolutional output stage). Prior to windowing, all 
spectrogram data was normalized to unit scale. 

Deep Neural Network. We used a feed-forward DNN of 
size 20500x20500x20500 units (1025 x 20 = 20500). Each 
spectrogram window of size 1025 x 20 was unpacked into a 
vector of length 20500. The DNN was configured such that 
the input layer was the mixture spectrogram (20500 samples). 
The DNN was trained to synthesize the ideal binary mask at 
its output layer. The DNN employed the biased-sigmoid 
activation function [12] throughout with zero bias for the 
output layer. The DNN was trained using 100 full iterations of 
stochastic gradient descent (SGD). Each iteration of SGD 
featured a full sweep of the training data. Dropout was not 
used in training. After training, the model was used as a feed-
forward probabilistic device. 

Probabilistic Binary Mask. In the testing stage, there was 
an overlap interval of 1 sample. This means that the test data 
described the mixture spectrogram in terms of a sliding 
window and the output of the model described predictions of 
the ideal binary mask in the same sliding window format. The 
output layer of the DNN was sigmoidal and hence we may 
interpret these predictions in terms of the logistic function. 
Therefore, because of the sliding window, this procedure 
resulted in a distribution (size 20) of predictions for each time-
frequency element of the mixture spectrogram [6]. We chose 
to summarize this distribution by taking the mean and we 
evaluate the result in terms of an empirical confidence 
estimate, separately for each source, as follows: For each 
time-frequency element, of each source, we computed the 
mean prediction and applied a confidence threshold (α); 
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where MV refers to the binary mask for the vocal source, T 
refers to the window size (20), t is the time index, i is the 
window index and f is the frequency (bin) index into the 
estimated mask (S). The corresponding (but independent) 
binary mask for the non-vocal source (MNV) is computed as 
follows;  
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Thus, by adjustment of α, masks at different levels of 
confidence could be constructed for both sources. 



 
 
Fig. 1. Separation of vocal sounds from musical mixtures using a 
probabilistic convolutional deep neural network. The upper pair 
of spectrograms plot a ~1.5-second excerpt from a typical song taken 
from the test data set, illustrating the original monaural audio for the 
voice and non-voice (i.e., accompaniment) sources respectively. The 
middle spectrogram plots the monaural mixture (i.e., the ensemble 
music). The lower pair of spectrograms plot the respective separated 
channels (α = 0.5). Note the frequency axis represents the range 0 – 
22 kHz on a logarithmic axis. 

 
Non-negative matrix factorization. For comparison to the 

DNN approach, an equivalent non-negative matrix 
factorization (NMF) based approach was implemented using 
the same training and test data (as described above). We used 
the same unpacking strategy, which has been tested before for 
NMF-based separation of speech and music [13].  The 
spectrograms of the training data were sampled and unpacked 
analogously to the DNN approach, resulting in a large 
(220500x15000) matrix that was then decomposed using the 
traditional multiplicative updates algorithm with KL 
divergence [14]. This means that for this training matrix V,  V 
= WH, where we set the number of basis vectors (columns of 
W) and the respective activations (rows of H) to 1500. We 
performed this training stage for both vocal and non-vocal 
mixtures, and kept the two basis vectors matrices Wv and Wnv. 
For the testing stage, we concatenated both matrices and 
initialized a corresponding Hu matrix randomly, so that for 
each unpacked spectrogram, Vu, of the set of test songs, Vu = 
[Wv Wnv] Hu. We then ran the same multiplicative updates 
algorithm but keeping the composite Wu matrix fixed [13], and 
updating Hu. The test spectrogram was then re-composed for 

either vocal (Vv = WvHv) or non-vocal (Vnv = WnvHnv) vectors, 
and used to define a soft mask via the element-wise division 
Sv = Vv / (Vv + Vnv).  The matrix was then packed back to the 
original spectrogram size by averaging the consecutive frames 
of the soft mask. This allowed us to define an equivalent α 
parameter (as used in the DNN approach) so that the binary 
mask Bv = 1 when Sv > α, 0 when Sv <= α and analogously for 
Bnv and Snv. 

Finally, the respective masks were resolved by 
multiplication with the original (complex) mixture 
spectrogram and the resulting masked spectrograms were 
inverted with a standard overlap-and-add procedure. 
Separation quality (for the test data) was measured using the 
BSS-EVAL toolbox [15] and is quantified in terms of signal-
to-distortion ratio (SDR), signal-to-artefact ratio (SAR) and 
signal-to-interference ratio (SIR). Separation quality was 
assessed at different confidence levels by setting different 
values of α. 
 

III.  RESULTS 

Fig. 1 plots spectrograms illustrating the stages of mixture 
and separation for a brief excerpt (~1.5 seconds) from a 
randomly chosen test song separated using the DNN (at α = 
0.5). The spectrograms for the source vocal and non-vocal 
signals are shown at the top. The middle panel plots the 
mixture spectrogram, illustrating the difficulty of the problem 
(even for an ideal binary mask). At the bottom of Fig. 1 are 
plotted spectrograms representing the separated audio for the 
vocal and non-vocal signals respectively (DNN, α = 0.5). 

The various objective source separation quality metrics 
(SDR/SIR/SAR) were computed for the separated sources, as 
estimated with each model, as a function of α. The same 
measures were also computed for the ideal binary mask. Fig 2 
plots a summary of the respective measures. For each measure, 
and for each separation context (DNN/ideal binary 
mask/NMF), Fig. 2a plots the mean across-song performance 
computed by first averaging the measures across vocal/non-
vocal sources. Fig. 2b plots the across-song average for the 
vocal sources only and Fig. 2c plots the same for the non-
vocal (accompaniment) sources only. Shaded areas and error 
bars represent 95% confidence intervals. The results for the 
DNN and NMF (as a function of α) feature similar functions 
illustrating the trade-off between the various parameters as 
statistical confidence is adjusted. Both models provide similar 
intersection points and there is some evidence of performance 
advantage for the DNN. However, the slopes and shapes of 
the functions are qualitatively different. In particular, the 
DNN functions for SAR and SIR more closely resemble ‘ideal’ 
sigmoid functions. In this context, SAR and SIR may be 
interpreted as energetic equivalents of positive hit rate (SIR) 
and false positive rate (SAR). Hence, if these slopes are 
interpreted as being analogous to cumulative density functions 
(indexed using α), then the DNN results might be interpreted 
as demonstrating a wider probability function that is closer to 
normally distributed. However, although these plots provide 
insight into the mapping of probability to performance, they 



do not provide a very interpretable comparison of the models. 
In particular, the plots do not allow us to interpret 
performance in like terms with respect to the critical trade-off 
between artefacts and separation. 

In order to provide a like-for-like comparison, Fig. 3a 
plots mean SAR as a function of mean SIR for both models 
(taken from Fig. 2a) for the useable range of 0.1 < α < 0.9. Fig. 
3b plots the same for the functions of Fig. 2b and Fig. 3c plots 
the same for the functions of Fig. 2c. Overall (Fig. 3a), the 
DNN provides ~3dB better SAR performance for a given SIR 
index. This advantage is mostly explained by the ~5dB 
advantage for the vocal sources (Fig. 3b) and only a small 
advantage is evident for the non-vocal signals (Fig. 3c).    
 

 

 
 
Fig. 2. Separation quality as a function of α: DNN versus NMF 
versus ideal binary mask. The left hand column plots results 
obtained with the convolutional DNN, the central column plots 
benchmark results obtained using the ideal binary mask and the right 
hand column plots results obtained using the convolutional NMF 
approach. Source separation quality is evaluated in terms of signal-
to-distortion ratio (SIR, red), signal-to-interference (SDR, green), 
signal-to-artefact ration (SAR, blue), computed from the entire 
duration of the 14 test songs using the BSS-EVAL toolkit [15]. a 
plots across-song mean, computed from across-source mean 
separation quality measures (i.e., computed across voice/non-voice 
sources). b plots mean quality measures for the vocal sources only 
and c plots the same for the non-vocal sources only. Shaded areas 
and error bars represent 95% confidence intervals.  

 
 

 
 
Fig. 3. Trade-off: interference versus artefacts. Illustrating the 
like-for-like performance of the respective models (DNN: red, NMF: 
blue); mean SAR as a function of mean SIR (taken from Fig. 2) for 
the useable range of 0.1 < α < 0.9. a plots the across-source, across-
song mean (Fig. 2a), b plots the across-song mean for vocals (Fig. 2b) 
and c plots the across-song mean for non-vocals (Fig. 2c). 
 

IV. DISCUSSION AND CONCLUSION 

We have demonstrated that a convolutional deep neural 
network is capable of separating vocal sounds from within 
typical musical mixtures. Our convolutional DNN is of nearly 
a billion parameters and was trained with relatively little data 
(and relatively few iterations of SGD). We have contrasted 
this performance with a like-for-like (suitably scaled) NMF 
approach, in the context of a trade-off between artefact and 
separation quality, indexed via confidence in the statistical 
predictions made. 

The main advantage of the DNN appears to be in its general 
learning of what ‘vocal’ sounds are (Fig. 3b). Since the NMF 
approach is limited to linear factorization, we may at least 
partly attribute the advantage of the (nonlinear) DNN to 
abstract learning via demodulation [12]. The DNN appears to 
have biased it’s learning towards making good predictions via 
correct positive identification of the vocal sounds. 

Both methods feature the largest known parameterizations 
for this particular problem and, to some extent, both methods 
may be considered ‘deep’ [6], [12], [16]; both featured 
demodulated (magnitude) spectrograms produced using STFT 
and re-synthesis via inverse STFT. We also note that the 
relatively small amount of data employed in training the DNN 
may have been offset by the fact that the spectrograms were 
sampled using a Hanning window, hence minimizing 
aliasing/distortion in the training data that may otherwise have 
resulted in over-fitting [17] (and see [18]). 
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