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Abstract—Identification and extraction of singing voice fran
within musical mixtures is a key challenge in soure separation
and machine audition. Recently, deep neural netwosk (DNN)
have been used to estimate ‘ideal' binary masks focarefully
controlled cocktail party speech separation problers. However,
it is not yet known whether these methods are capéb of
generalizing to the discrimination of voice and nosvoice in the
context of musical mixtures. Here, we trained a corolutional
DNN (of around a billion parameters) to provide prdabilistic
estimates of the ideal binary mask for separationforocal sounds
from real-world musical mixtures. We contrast our DNN results
with more traditional linear methods. Our approach may be
useful for automatic removal of vocal sounds from msical
mixtures for 'karaoke' type applications.

Index terms—Deep learning, supervised learning, convolution,
source separation.

I.  INTRODUCTION

Much work in audio source separation has beenredy
the ability of human listeners to maintain separateitory
neural and perceptual representations of compsiyegch in
‘cocktail party’ listening scenarios [1]-[3]. A canon
engineering approach is to decompose a mixed asigial,
comprising two or more competing speech signals i
spectrogram in order to assign each time-frequetayent to
the respective sources [4]-[6]. Hence, this formsolrce
separation may be interpreted as a classificatioblem.

A benchmark for this approach is known as the fide
binary mask’ and represents a performance ceilingthe
approach by providing a fully-informed separaticeséd on
the spectrograms for each of the component sougrels.
Using the source spectrograms, each time-frequeteyent
of the mixture spectrogram may be attributed to gbarce
with the largest magnitude in the respective sour
spectrogram. This ideal binary mask may then bal use
establish reference separation performance. In @ente
approach to binary-mask based separation, the itiealry

mask was used to train a deep neural network (DkN)
directly estimate binary masks for new mixtures fpwever,
this approach was limited to a single context ob tmown
speakers and a sample rate of only 4 kHz. Thergibi® not
yet known whether the approach is capable of géinemg to
less well controlled scenarios featuring unknowices and
unknown background sounds. In particular, it is kbwn
whether such a DNN architecture is capable of gdizarg to
the more demanding task of extracting unknown veoahds
from within unknown music [7]-[9].

In this paper, we employed a diverse collectionreil-
world musical multi-track data produced and lalzkl{en a
song-by-song basis) by music producers. We usetyiaal
‘pop’ songs in total, each featuring vocals of was kinds.
For each multi-track song/mix, comprising a seta@fponent
‘stems’ (vocals, bass, guitars, drums, etc), welgzb@udio
labeled as ‘vocal’ separately to all other audie.(i the
accompanying instruments). We then obtained arlitra
mixtures for each song, simulating the process idmm to
produce ‘mixes’ for each song. Using the first Shgs as
training data, we trained a convolutional DNN tegict the
ideal binary masks for separating the respectiveavand
non-vocal signals for each song. For referenceala@ trained
an equivalent linear method (convolutional non-nisga
matrix factorization - NMF) of similar scale. Weeth tested
the respective models on mixes of new songs fewfuri
different musical arrangements, different singing different

roduction. From both models we obtained probdhilis

stimates of the ideal binary mask and analyzedehelting
separation quality using objective source separatjoality
metrics. These results demonstrate that a convolaitiDNN
approach is capable of generalizing voice separatearned
in a musical context, to new musical contexts. Wso a
illustrate the capability of the probabilistic cahutional

%%proach [6] to be optimized for different price#i of

separation quality according to the statisticakrptetation
employed. In particular, we highlight the differescin



performance for the two respective architecturdaténcontext
of the trade-off between artefacts and separation.

Il. METHOD

We consider a typical
performance scenario featuring a variety of musocaitexts
and a variety of vocal performances. In each cdnteRrich
we refer to as ‘a song’, there are a multitude afsital
accompaniment signals and at least one (often marell
signals. The various signals are mixed togethdit(arily)
and the resulting mixture is refered to as ‘a miXhe
engineering problem is to automatically separatevatal
signals from the concurrent accompaniment signés.used
63 fully produced songs, taken from the MedleyDBallase
[10]. The average duration of the songs was 3.7utem
(standard deviation (STD): £2.7 mins). The averageber
of accompanying sources (stems) was 7.2 (STD: s6uBces)
and the average number of vocal sources was 1.B:(80.8
sources).

For each song, the source signals were classifegither
vocal or non-vocal (according to the labels asgighg the

simulated ensemble musidagining data,

shifted at intervals of 60 samples (i.e., there waverlap).
Thus, for every 20-sample window, for training tmedels
there was a mixture spectrogram matrix of size %R@5
(frequency bins x time) samples and an ideal birmagsk
matrix of the same size. From the 50 songs desdnat
this gave approximately 15,000 tregn
examples. For the testing stage, the spectrogramshi
remaining 13 songs were cut up with overlap intsnat 1
sample (which would ultimately be applied in an reging
convolutional output stage). Prior to windowing,| al
spectrogram data was normalized to unit scale.

Deep Neural Network. We used a feed-forward DNN of
size 20500x20500x20500 units (1025 x 20 = 2050@chE
spectrogram window of size 1025 x 20 was unpachkéal &
vector of length 20500. The DNN was configured sthudit
the input layer was the mixture spectrogram (20&0@ples).
The DNN was trained to synthesize the ideal bimaask at
its output layer. The DNN employed the biased-sigimo
activation function [12] throughout with zero bidsr the
output layer. The DNN was trained using 100 fudhétions of
stochastic gradient descent (SGD). Each iteratibrS@D
featured a full sweep of the training data. Dropmats not

music producers). Vocal sounds included both mald aused in training. After training, the model wasdises a feed-

female singing voice and spoken voice (‘rap’). Namal

forward probabilistic device.

sounds included accompanying instruments (drumss,ba Probabilistic Binary Mask. In the testing stage, there was

guitars, piano, etc). Source sounds were studiorded and
featured relatively little interference from othswurces. All

an overlap interval of 1 sample. This means thattést data
described the mixture spectrogram in terms of dirgli

source sounds were then peak normalized beforegbeivindow and the output of the model described ptetis of

linearly summed into either a vocal mixture or an+vocal
mixture respectively. The two separate (vocal /-wocal)
mixtures were then peak normalized and linearly reech to
provide a complete mixture (i.e., a ‘final prodocti mix’).
This provided for a mixture that resembled a miat tight
be produced by a human mixing engineer [11]. Allirses
and mixtures were monaural (i.e., we did not empdmy
stereo processing).

the ideal binary mask in the same sliding windowrfat. The
output layer of the DNN was sigmoidal and hence magy
interpret these predictions in terms of the logidtinction.
Therefore, because of the sliding window, this pthoe
resulted in a distribution (size 20) of predictidoseach time-
frequency element of the mixture spectrogram [6¢ WWiose
to summarize this distribution by taking the meard ave
evaluate the result in terms of an empirical caariice

All signals were sampled at a rate of 44.1 kHz. Thestimate, separately for each source, as folloves: dach

respective source (vocal / non-vocal) and mixtigaas were
transformed into spectrograms using the short-tFoerier
transform (STFT) with window size of 2048 samplegeriap
interval of 512 samples and a Hanning window. Tncsvided
spectrograms with 1025 frequency bins. The phasgoaent
of each spectrogram was removed and retainedtirige in
inversion. From the source spectrograms a binargkmeas
computed where each element of the mask was detedniiy
comparing the magnitudes of the corresponding eisnef
the source (vocal / non-vocal) spectrograms anigrsg the
mask a ‘1’ when the vocal spectrogram had greatamitude
and ‘0’ otherwise.

The first 50 songs (taken in arbitrary order) wased as
training data and the final 13 songs were usedsisiata. The
magnitude-only mixture spectrograms computed froenfirst
50 songs and the respective ideal binary masks uszd as
training data. Note, phase was not used in traitiiegnodel.

For the training data, the mixture spectrogram #mel
corresponding source spectrograms were cut up
corresponding windows of 20 samples (in time). Wredows

time-frequency element, of each source, we comptited
mean prediction and applied a confidence thresfald

1 for
0 for

1
;ZiTzo St+i,f >a

Mth = 1
;ZiTzo St+i,f <a

(1)

where MV refers to the binary mask for the vocal sourEe,
refers to the window size (20),is the time indexj is the
window index andf is the frequency (bin) index into the
estimated maskS. The corresponding (but independent)
binary mask for the non-vocal sourdd') is computed as
follows;

1 for
0 for

1
;ZiT=0 St+i,f <(l-a

(2
1
;Z?:o Serif = (1—a)

MNV tf —

iMtbus, by adjustment ofx, masks at different levels of

confidence could be constructed for both sources.



either vocal ¥, = W,H,) or non-vocal ¥,, = W, H,,) vectors,
and used to define a soft mask via the element-diigsion

S =W,/ (W, + V). The matrix was then packed back to the
original spectrogram size by averaging the consesfitames
e ey Of the soft mask. This allowed us to define an egjenta
parameter (as used in the DNN approach) so thabitiey
maskB, = 1 whenS, > a, 0 whenS, <= o and analogously for
B, ands,.

Finally, the respective masks were resolved by
multiplication with the original (complex) mixture
spectrogram and the resulting masked spectrograer® w
inverted with a standard overlap-and-add procedure.
. Separation quality (for the test data) was measusig the

SRR L BSS-EVAL toolbox [15] and is quantified in terms sifjnal-
TRF Yo to-distortion ratio (SDR), signal-to-artefact raiSAR) and
signal-to-interference ratio (SIR). Separation tgyalwas
assessed at different confidence levels by sedttiffgrent
values ofa.

Original Vocals Original Accompaniment

Frequency |Dins|

Time [samples] Time [samples]

Monaural mixture

Time [samples]

Separated Vocals Separated Accompaniment

1. RESULTS

Fig. 1 plots spectrograms illustrating the stagesiiature
and separation for a brief excerpt (~1.5 secondsinfa
randomly chosen test song separated using the XN £
0.5). The spectrograms for the source vocal andvoeal

Time (samples] Time (samples] signals are shown at the top. The middle panelsptbe
mixture spectrogram, illustrating the difficulty tife problem
Fig. 1. Separation of vocal sounds from musical miures using a (even for an ideal binary mask). At the bottom af. R are
probabilistic convolutional deep neural network.'_l'he upper pair plotted spectrograms representing the separateid furdthe
o sorai o et Voca and non-voca signes respeciively DM 0.5
voice and non-voice (’i.e., accompaniment) sourespactively. The The various objective source separation quality ricet
middle spectrogram plots the monaural mixture ,(tee ensemble (SDR/SIR/SAR) were computed for the separated ssyras
music). The lower pair of spectrograms plot theeesive separated €stimated with each model, as a functionaofThe same
channels ¢ = 0.5). Note the frequency axis represents thgadn— Mmeasures were also computed for the ideal binasknfag 2
22 kHz on a logarithmic axis. plots a summary of the respective measures. Fér maasure,
and for each separation context (DNN/ideal binary

Non-negative matrix factorization. For comparison to the mask/NMF), Fig. 2a plots the mean across-song paegoce
DNN approach, an equivalent non-negative matreomputed by first averaging the measures acrosal/vmon-
factorization (NMF) based approach was implemenisidg vocal sources. Fig. 2b plots the across-song agefaigthe
the same training and test data (as described pbdteeused vocal sources only and Fig. 2c plots the same Her rion-
the same unpacking strategy, which has been tesfiede for vocal (accompaniment) sources only. Shaded arehmar
NMF-based separation of speech and music [13]. Tbars represent 95% confidence intervals. The iedatt the
spectrograms of the training data were sampleduapdcked DNN and NMF (as a function af) feature similar functions
analogously to the DNN approach, resulting in agdarillustrating the trade-off between the various peeters as
(220500x15000) matrix that was then decomposedguia statistical confidence is adjusted. Both modelsjioi® similar
traditional multiplicative updates algorithm with LK intersection points and there is some evidenceedbpmance
divergence [14]. This means that for this trainingtrixV, V advantage for the DNN. However, the slopes and esha
= WH, where we set the number of basis vectors (columfinsthe functions are qualitatively different. In padiar, the
W) and the respective activations (rowsH) to 1500. We DNN functions for SAR and SIR more closely resenitneal’
performed this training stage for both vocal andh-wocal sigmoid functions. In this context, SAR and SIR iz
mixtures, and kept the two basis vectors matrfiteandW,,. interpreted as energetic equivalents of posititerdte (SIR)
For the testing stage, we concatenated both matréicel and false positive rate (SAR). Hence, if these edopre
initialized a correspondingd, matrix randomly, so that for interpreted as being analogous to cumulative dgfngitctions
each unpacked spectrogravfy, of the set of test songg, = (indexed usingx), then the DNN results might be interpreted
[W, Wn] Hu. We then ran the same multiplicative updatess demonstrating a wider probability function tisatloser to
algorithm but keeping the composWé matrix fixed [13], and normally distributed. However, although these plptsvide
updatingH,. The test spectrogram was then re-composed fasight into the mapping of probability to perfomca, they

Frequency [bins]

P TR R



do not provide a very interpretable comparisonhef thodels.

In particular, the plots do not allow us to intefr
performance in like terms with respect to the caititrade-off

between artefacts and separation.

In order to provide a like-for-like comparison, Figa
plots mean SAR as a function of mean SIR for botdefs
(taken from Fig. 2a) for the useable range of<Qd< 0.9 Fig.
3b plots the same for the functions of Fig. 2b &igd 3c plots
the same for the functions of Fig. 2c. Overall (Rg@), the
DNN provides ~3dB better SAR performance for a gi®R
index. This advantage is mostly explained by thalB-5
advantage for the vocal sources (Fig. 3b) and ansmall
advantage is evident for the non-vocal signals. ().
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Fig. 2. Separation quality as a function ofz: DNN versus NMF

versus ideal binary mask. The left hand column plots results

obtained with the convolutional DNN, the centralluzon plots

benchmark results obtained using the ideal binaagknand the right
hand column plots results obtained using the cartiarial NMF

approach. Source separation quality is evaluatedrms of signal-
to-distortion ratio (SIR, red), signal-to-interface (SDR, green),
signal-to-artefact ration (SAR, blue), computednfrdhe entire
duration of the 14 test songs using the BSS-EVAdlkib [15]. a

plots across-song mean, computed from across-sounean

separation quality measures (i.e., computed acrog®/non-voice
sources)b plots mean quality measures for the vocal souords

andc plots the same for the non-vocal sources onlyd&theareas
and error bars represent 95% confidence intervals.
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Fig. 3. Trade-off: interference versus artefacts.lllustrating the
like-for-like performance of the respective mod@H\N: red, NMF:
blue); mean SAR as a function of mean SIR (takemfFig. 2) for

the useable range of O<la < 0.9.a plots the across-source, across-
song mean (Fig. 2a, plots the across-song mean for vocals (Fig. 2b)

andc plots the across-song mean for non-vocals (Fig. 2c

IV. DISCUSSION ANDCONCLUSION

We have demonstrated that a convolutional deepaheur

network is capable of separating vocal sounds freithin
typical musical mixtures. Our convolutional DNNagnearly
a billion parameters and was trained with relativdtle data
(and relatively few iterations of SGD). We have trasted
this performance with a like-for-like (suitably $sed) NMF
approach, in the context of a trade-off betweeefact and
separation quality, indexed via confidence in thatistical
predictions made.

The main advantage of the DNN appears to be igeiteral
learning of what ‘vocal’ sounds are (Fig. 3b). Sirthe NMF
approach is limited to linear factorization, we maty least
partly attribute the advantage of the (nonlineaiND to
abstract learning via demodulation [12]. The DNNbegrs to
have biased it's learning towards making good ptestis via
correct positive identification of the vocal sounds

Both methods feature the largest known paramet@ima
for this particular problem and, to some extenthbmethods
may be considered ‘deep’ [6], [12], [16]; both feed
demodulated (magnitude) spectrograms produced &ifg
and re-synthesis via inverse STFT. We also noté¢ tinea
relatively small amount of data employed in tragnthe DNN
may have been offset by the fact that the spearogrwere

sampled using a Hanning window, hence minimizing

aliasing/distortion in the training data that malgeswise have
resulted in over-fitting [17] (and see [18]).
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