

Edinburgh Research Explorer

Talking bananas

Citation for published version:
Lindley, S & Morris, JG 2016, Talking bananas: Structural Recursion for Session Types. in ICFP 2016
Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming. ACM, pp.
437-447, 21st ACM SIGPLAN International Conference on Functional Programming, Nara, Japan, 18/09/16.
DOI: 10.1145/2951913.2951921

Digital Object Identifier (DOI):
10.1145/2951913.2951921

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ICFP 2016 Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Jul. 2018

https://doi.org/10.1145/2951913.2951921
https://www.research.ed.ac.uk/portal/en/publications/talking-bananas(a6d9c929-db27-4d5b-a5b6-8d654fafeae0).html

Talking Bananas
Structural Recursion for Session Types

Sam Lindley J. Garrett Morris
The University of Edinburgh, UK

{Sam.Lindley,Garrett.Morris}@ed.ac.uk

Abstract
Session types provide static guarantees that concurrent programs
respect communication protocols. We give a novel account of re-
cursive session types in the context of GV, a small concurrent ex-
tension of the linear λ-calculus. We extend GV with recursive types
and catamorphisms, following the initial algebra semantics of re-
cursion, and show that doing so naturally gives rise to recursive
session types. We show that this principled approach to recursion
resolves long-standing problems in the treatment of duality for re-
cursive session types.

We characterize the expressiveness of GV concurrency by giv-
ing a CPS translation to (non-concurrent) λ-calculus and proving
that reduction in GV is simulated by full reduction in λ-calculus.
This shows that GV remains terminating in the presence of positive
recursive types, and that such arguments extend to other extensions
of GV, such as polymorphism or non-linear types, by appeal to nor-
malization results for sequential λ-calculi. We also show that GV
remains deadlock free and deterministic in the presence of recur-
sive types.

Finally, we extend CP, a session-typed process calculus based
on linear logic, with recursive types, and show that doing so pre-
serves the connection between reduction in GV and cut elimination
in CP.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Concurrent, distributed, and parallel languages; D.3.3
[Language Constructs and Features]: Recursion

Keywords Session types, recursion

1. Introduction
Concurrency and communication have become central problems
in modern software design and engineering, from hand-held ap-
plications relying on remote services to provide key functionality,
through traditional applications now running on multi-core hard-
ware, to distributed applications running across data centers. As-
suring correct behavior for concurrent programs requires reasoning
not just about the type of data communicated, but about the order in
which communication takes place. For instance, the messages be-
tween an SMTP server and client are all strings representing SMTP

commands, but a client that sends the recipient’s address before the
sender’s address is in violation of the protocol despite having sent
well-formed SMTP commands.

Session types, originally proposed by Honda [22], are an ap-
proach to statically verifying communicating concurrent programs.
A session type specifies the expected communication along a chan-
nel. For example, consider a simplification of the client’s view of
the SMTP protocol. After being authenticated, a client has the op-
tion of sending one or more messages, each consisting of a sender’s
address, recipient’s address, and message, in that order. We could
express this with the following session type:

Client def
= !FromAddress.!ToAddress.!Message.Client⊕!

!Quit.end

where type constants FromAddress, ToAddress, Message, and Quit
denote the corresponding SMTP commands. This definition makes
use of several session type constructors. The type !T.S denotes
sending a value of type T before continuing with behavior S, S⊕!S′

denotes communicating a choice between behaviors S and S′, end
denotes the end of a session, and finally we make use of recursive
definition to specify repetition in the protocol. A key aspect of
session typing is duality. The session type of an SMTP server is
dual to that of the client:

Server def
= ?FromAddress.?ToAddress.?Message.Server⊕?

?Quit.end

This type definition uses dual features to those in the client’s type:
?T.S denotes receiving a value of type T before continuing as S and
S⊕? S′ denotes receiving a choice between S and S.

We present a novel account of recursive and corecursive session
types. Following initial algebra semantics, we characterize recur-
sive computation by catamorphisms (folds) rather than by an ar-
bitrary fixed-point operator. Similarly, we characterize corecursive
computation by anamorphisms (unfolds). This formulation differs
from traditional presentations of recursive session types in three
ways. First, we identify dual notions of recursion, corresponding
to producers and consumers, rather than having a single self-dual
notion of recursion in session types. Second, as they are based on
well-founded recursive data types, our recursive session types guar-
antee termination and freedom from deadlock and livelock. Third,
following algebraic ideas of recursion and duality leads to a sound
syntactic characterization of duality for recursive session types.
Many previous syntactic formulations of session type duality ei-
ther incorrectly identify non-dual processes as dual [6, 7] or rely on
corecursive expansion of session types [8].

We present our formulation of recursive and corecursive ses-
sion types as an extension, called µGV [26], to a core concur-
rent λ-calculus called GV. We extend GV with (co)recursive types,
(co)recursive session types, and (un)folds over both (co)recursive
types and (co)recursive session types, and show that these are suf-

ficient to write non-trivial programs using (co)recursive session
types. Previous work on GV has minimized the core calculus by
encoding session-typed features in terms of functional features and
simple input and output primitives. We continue this thread, show-
ing that recursive session types can be encoded in terms of recursive
data types. This result simplifies the concurrent semantics of µGV;
for example, it allows us to apply previous results on deadlock free-
dom and determinism of GV to µGV unchanged. By identifying
least and greatest fixed points in the resulting calculus, we obtain a
system that admits non-terminating communication, but still guar-
antees deadlock freedom and productivity.

We also seek to characterize the expressiveness of µGV’s con-
currency. To do so, we give a CPS translation from GV into lin-
ear λ-calculus (without concurrency), and show that full reduction
in the latter simulates reduction in the former. This also allows us
to extend standard results on termination in sequential λ-calculi
to results for termination of extensions of GV. Most immediately,
we can conclude that µGV is terminating. The approach applies
equally well to other extensions of GV, such as with polymorphism
or non-linear types.

Recent work of Caires and Pfenning [13] and Wadler [34]
develops a correspondence between reduction in process calculi
and cut elimination in linear logic. GV is closely connected to
Wadler’s logic-based process calculus CP: in prior work [26] we
give translations between GV and CP such that reduction in each
simulates reduction in the other. We extend this observation to
(co)recursive session types. We define an extension of CP to in-
clude (co)recursive types, following Baelde’s formulation of fixed
points in classical linear logic [3], and then extend the semantics-
preserving translation between CP and GV to include recursive
types.

Recent work by Toninho et al [32] explores corecursive ses-
sion types from a propositions-as-types perspective. Despite having
similar aims, our approach differs from theirs in three significant
ways. First, we identify parallels between concurrent and sequen-
tial abstractions, in this case between recursive and corecursive data
types and recursive session types. Toninho et al., in contrast, de-
velop corecursive session types directly from the corresponding
proof theory. This simplifies our concurrent semantics, as we do
not have to account for recursive communication directly. Second,
we identify two forms of recursive session types—corresponding to
encodings based on recursive and corecursive data types—and that
their composition can provide unbounded computation. Toninho et
al. identify one of these forms, but not the other. Third, as illustrated
by the equivalence with µCP, our session types are fundamentally
classical, while Toninho et al. build on intuitionistic proof theory.
Thus, for example, our results on the duality of recursive session
types do not arise from their approach. We see the coincidence of
our typing rules with theirs, despite the significant differences in
methodology and foundations, as reinforcing the relevance of both
lines of inquiry.

The paper proceeds as follows. We begin with our session-
typed functional language, µGV. We present µGV’s functional
fragment (§2), extending a core linear λ-calculus with both recur-
sive and corecursive types, and discuss the connection between
µGV and languages with non-termination. We present the con-
current fragment of the language (§3), including both recursive
and corecursive session types, and compare our approach to tra-
ditional characterizations of duality for session types. We give en-
codings for the concurrent features of µGV in terms of simpler con-
structs and give a concurrent small-step operational semantics for
µGV (§4). We characterize the expressivity of GV concurrency by
a CPS translation to a non-concurrent λ-calculus (§5). In doing so,
we show that µGV is terminating, and thus (in combination with
existing work on GV) free from livelock and deadlock. To estab-

lish a strong connection between µGV and linear logic, we present
an extension of CP, called µCP, which includes least and great-
est fixed points and corresponding recursive and corecursive proof
terms, and show semantics-preserving translations from µGV to
µCP and vice versa (§6). We conclude by discussing related (§7)
and future (§8) work.

2. Functional µGV
We now describe Functional µGV, the functional fragment of
µGV. We begin with Functional GV (§2.1), a linear λ-calculus
without any form of recursion or iteration. We then discuss two
extensions of GV. First, we extend Functional GV with recursive
types and catamorphisms (§2.2). Second, we add corecursive types
and anamorphisms (§2.3), and discusses the relationship with non-
terminating recursion.

2.1 Functional GV
Functional GV is based on the multiplicative-additive fragment

of intuitionistic linear logic. The syntax of Functional GV’s terms
and types is given at the top of Figure 1. Types include linear
implication (T (U), binary and nullary multiplicative products
(T ⊗U and 1), additive sums (T ⊕U and 0), and additive products
(T & U and >). We write M; N for let () = M in N. The syntax
of terms includes (fully applied) constants K M, used to introduce
concurrency; we give the constants and their typing rules in §3.

The typing rules for Functional GV are given in the center of
Figure 1; most are standard for linear λ-calculus. The variable
rule insists on a singleton environment. Rules for the multiplicative
combinators (T (U and T⊗U) split their hypotheses, while rules
for the additive combinators (T & U and T ⊕ U) duplicate them.
In line with its interpretation as falsity, there is no introduction rule
for 0, nor elimination rule for its dual >.

A small-step operational semantics for Functional GV is given
at the bottom of Figure 1. To maintain a close connection with
cut-elimination, we define term reduction using weak explicit sub-
stitutions [25]. In this approach, we capture substitutions at λ-
abstractions instead of applying them directly to the body of the
abstraction. Our values thus include closures λσx.M, which pair a
function abstraction λx.M with a captured environment σ. We ex-
tend the typing judgment to include closures by

Γ, x : T ` Mσ : U dom(σ) = fv(M) \ {x}
Γ ` λσx.M : T (U

where we write fv(M) to denote the free variables of M. The
free variables of a closure are the free variables of the range of
σ; capture-avoiding substitution Mσ is defined on the free vari-
ables of M. We implicitly treat plain abstractions λx.M as closures
λσx.(Mσ′) where σ maps each free variable xi of M to a fresh vari-
able x′i , and σ′ is the inverse of σ.

2.2 Recursion
Next, we extend Functional GV with recursive types and their
terms. Our treatment of recursive types is based on the initial al-
gebra semantics of recursion [21]. We extend our language with
positive type functors F and their least fixed points µF. We intro-
duce two new term forms: the operator in captures that µF is itself
the carrier of an F-algebra, while the fold operator L − M captures
that µF is initial. This presentation of recursive types has a long
history in the functional programming community, dating at least
from the treatment of lists in Squiggol [9], and generalized by Mei-
jer et al. [29].

The syntax and typing for recursive types are given at the top
of Figure 2. We extend the language of types with type variables X
and least fixed points µF, and terms as discussed before. We omit

Syntax

Types T,U ::= T (U | T ⊗ U | 1 | T ⊕ U | 0
| T & U | >

Terms L,M,N ::= x | K M | λx.M | M N
| (M,N) | let (x, y) = M in N
| () | let () = M in N
| inl M | inr M
| case L {inl x 7→ M; inr x 7→ N}
| absurd M
| 〈M,N〉 | fst M | snd M | 〈〉

Typing

x : T ` x : T
K : T (U Γ ` M : T

Γ ` K M : U

Γ, x : T ` M : U
Γ ` λx.M : T (U

Γ ` M : T (U Γ′ ` N : T
Γ,Γ′ ` M N : U

Γ ` M : T Γ′ ` N : U
Γ,Γ′ ` (M,N) : T ⊗ U

Γ ` M : T ⊗ T ′

Γ′, x : T, y : T ′ ` N : U
Γ,Γ′ ` let (x, y) = M in N : U

` () : 1
Γ ` M : 1 Γ′ ` N : T

Γ,Γ′ ` let () = M in N : T

Γ ` M : T
Γ ` inl M : T ⊕ U

Γ ` M : U
Γ ` inr M : T ⊕ U

Γ ` M : T ⊕ T ′ Γ′, x : T ` N : U Γ′, x : T ′ ` N′ : U
Γ,Γ′ ` case M {inl x 7→ N; inr x 7→ N′} : U

Γ ` M : 0
Γ,Γ′ ` absurd M : T

Γ ` M : T Γ ` N : U
Γ ` 〈M,N〉 : T & U

Γ ` M : T & U
Γ ` fst M : T

Γ ` M : T & U
Γ ` snd M : U Γ ` 〈〉 : >

Values and Contexts
V,W ::= x | λσx.M | (V,W) | () | inl V | inr V | 〈V,W〉 | 〈〉

σ ::= {V1/x1, . . . ,Vn/xn}
where the xi are pairwise distinct

E ::= [] | K E | E M | V E
| (E,M) | (V,E) | let (x, y) = E in M
| let () = E in M
| inl E | inr E
| case E {inl x 7→ N; inr x 7→ N′}
| absurd E
| 〈E,M〉 | 〈V,E〉 | fst E | snd E

Reduction

(λσx.M) V −→V M{V/x] σ}
let (x, y) = (V,W) in M −→V M{V/x,W/y}

let () = () in M −→V M

case (inl V)

{
inl x 7→ N;

inr y 7→ N′

}
−→V N{V/x}

fst 〈V,W〉 −→V V
snd 〈V,W〉 −→V W

E[M] −→V E[M′] if M −→V M′

Figure 1: Functional GV Syntax and Semantics.

the (entirely standard) definition of positivity and well-formedness
conditions for types and type operators. As Functional GV is a lin-
ear calculus, the typing rule for LMM mandates an empty environ-
ment: the evaluation of LMM may require arbitrarily many copies
of the expression M, and duplicating M would require duplicat-
ing its assumptions. Functional GV contains only linear assump-
tions; adding the exponential modality would introduce non-linear
assumptions, which could be used in the bodies of catamorphisms.

The semantics of folds is given at the bottom of Figure 2. The
extension of values and contexts is unsurprising. Each reduction of
a fold LMM amounts to one unrolling of the body M, and depends
on the action of F on terms. With the exception of identity, each
type constructor gives rise to both covariant (F) and contravariant
functors (F−). We have the expected typings that if M : T (U
then F(M) : F(T) (F(U) and F−(M) : F(U) (F(T).
We use point-free notation for building functors over binary type
constructors: for binary type constructor ∗, we write F ∗ G as
shorthand for X.F(X) ∗ G(X).

Example. We turn to natural numbers as a characteristic example
of recursive types. The definition of the type of naturals parallels
the standard (intuitionistic) definition:

N(X) = 1⊕ X Nat = µN

and we can give familiar definitions of the constructors:

zero = in (inl ()) succ = λz.in (inr z)

Now consider a standard recursive definition of addition:

0 + y = y (S x) + y = S (x + y)

We can rewrite this definition as a curried function of one argument

plus 0 = id plus (S x) = S ◦ plus x

where id is the identity function and ◦ is function composition.
Finally, this version can be expressed using a fold:

plus = Lλx.case x {inl () 7→ id; inr f 7→ succ ◦ f}M
The body of the fold has type N(Nat (Nat) ((Nat (Nat),
so plus has type Nat (Nat (Nat. The product of x and y,
unlike their sum, cannot be computed without duplicating (in some
way) either x or y. In an intuitionistic setting, we might accomplish
this by capturing x in the body of the fold, and using it in each
iteration. We cannot do the same in the linear setting. Instead,
we will begin by demonstrating terms that duplicate and discard
naturals. That is, we show that contraction and weakening are
derivable for proposition Nat. This is an instance of a general result,
due to Filinski [18], that contraction and weakening are derivable
for the positive combinators in intuitionistic linear logic. In our
setting this result is extended to include least fixed points µF.

dup = Lλx.case x {inl () 7→ (zero, zero)
inr (y, z) 7→ (succ y, succ z)}M

drop = Lλx.case x {inl () 7→ ()
inr () 7→ ()}M

We have that dup : Nat (Nat × Nat, where the output naturals
are equal to the input natural, and drop : Nat (1, where we
can then trivially eliminate the unit value. We can now implement
multiplication:

body = λx.λy.case y {inl () 7→ (x, 0)
inr (x, y) 7→ let (x, x′) = dup x in

(x′, plus x y);
}

times = λx.λy.let (x′, z) = Lbody xM y in drop x′; z

The body of the fold has type N(Nat × Nat)(Nat × Nat; in the
inductive case, the input pair will be (x, x(y− 1)), and the result is
then (x, xy). We duplicate x at each step: one copy is added to the

Syntax

Types T,U ::= · · · | X | µF
Operators F,G ::= X.T
Terms L,M,N ::= · · · | in M | LMM

Typing

Γ ` M : F(µF)

Γ ` in M : µF
` M : F(T)(T
` LMM : µF (T

Values and Contexts
V,W ::= · · · | LMM

E ::= · · · | in E

Covariant Functors

(X.T)(M) = λx.x X not free in T
(X.X)(M) = M

(F ⊗ G)(M) = λx.let (y, z) = x in (F(M) y,G(M) z)
(F (G)(M) = λf .G(M) ◦ f ◦ F−(M)
(F ⊕ G)(M) = λx.case x {inl x 7→ F(M) x; inr x 7→ G(M) x}
(F & G)(M) = λx.〈F(M) (fst x),G(M) (snd x)〉
(X.µF)(M) = Lλx.in ((X.F(µF))(M) x)M

Contravariant Functors

(X.T)−(M) = λx.x X not free in T
(F × G)−(M) = λx.let (y, z) = x in (F−(M) y,G−(M) z)

(F (G)−(M) = λf .G−(M) ◦ f ◦ F(M)

(F ⊕ G)−(M) = λx.case x {inl x 7→ F−(M) x; inr x 7→ G−(M) x}
(F & G)−(M) = λx.〈F−(M) (fst x),G−(M) (snd x)〉
(X.µF)−(M) = Lλx.in ((X.F(µF))−(M) x)M

Reduction

LMM (in V) −→V M (F(LMM) V) if M : F(A)(A for some A

Figure 2: Extending Functional GV with Recursion.

product, while the other copy appears in the result. The result of the
Lbody xM y is the pair (x, xy); we call drop to discard the last copy
of x, and return xy.

2.3 Corecursion and Nontermination
This section describes a further extension of Functional GV with
corecursive data types (νF), the greatest fixed point of the functor
F. Our treatment is dual to that of recursive types: we introduce
a type operator for νF for the greatest fixed point of positive
functor F, and terms out, witnessing that it is an F-coalgebra,
and the anamorphism M , witnessing its finality. The full syntax
and semantics of corecursive types are given in Figure 3. The
typing rules and interpretation of corecursive types are dual to
those for recursive types: where recursive types provide an iterated
fold operation and a finite number of folding steps, corecursive
types provide an iterated unfold operation and a finite number of
unfolding steps. We restrict the type environment in unfolding to
avoid duplicating linear resources. We extend the syntax of values
with unfolds M both unapplied (of type A (νF) and applied
(of type νF). The treatment of greatest fixed points as functors
is unsurprising; the reduction rule for anamorphisms unrolls the
term M relying on the action of F as expected. Functional µGV is
Functional GV extended with recursive and corecursive data types.

Example. As a canonical example of corecursive types, we con-
sider streams of naturals.

S(X) = 1 & (Nat ⊗ X) Stream = νS

Syntax
Types T ::= · · · | νF
Terms M ::= · · · | out M | M

Typing

Γ ` M : νF
Γ ` out M : F(νF)

` M : A(F(A)

` M : A(νF

Values and Contexts
V,W ::= M | M V | . . .

E ::= out E | . . .
Covariant Functor

(X.νF)(M) = λx.(X.F(νF))(M) (out x)

Contravariant Functor

(X.νF)−(M) = λx.(X.F(νF))−(M) (out x)

Reduction
out (M V) −→V F(M) (M V)

Figure 3: Extending GV with Corecursion

The definition here differs from the typical intuitionistic definition:
as our streams are linear, we need to include some provision for
terminating the stream. Nevertheless, the choice of the length of the
sum lies with the consumer of the stream, precisely dual to the case
with recursive types, in which the choice lies with the producer. We
can demonstrate this by showing a term of type νS, enumerating all
the natural numbers:

upFrom = λx.〈drop x, let (y, z) = dup x in (y, succ z)〉

Here the body of nats has type Nat (S(Nat), and so upFrom has
type Nat (Stream. A consumer of the stream can choose how
many elements it reads; for example, here is a term that reads the
first two naturals from a given stream:

firstTwo s = let (x, s) = snd (out s) in
let (y, s) = snd (out s) in
fst (out s); (x, y)

Nontermination. Freyd [19] observed that: a) the greatest and
least fixed points of functors coincide in many denotational models
of functional languages, and b) recognizing this coincidence gives
an interpretation to many non-terminating recursive programs. One
can apply this observation to Functional µGV by identifying the
types µF and νF. Doing so has several consequences for the term
language. Observe that out and in now compose (in either order),
giving the identity. This gives rise to two new reduction rules to
account for these compositions:

out (in V) −→V V in (out V) −→V V

It is now possible to compose folds and unfolds to define recursive
computations. Such compositions are sometimes called hylomor-
phisms [29]. Hylomorphisms are accounted for by the following
reduction:

LNM (M V) −→V N (F(LNM) (F(M) (M V))).

Intuitively, each evaluation of a hylomorphism corresponds to one
folding step and one unfolding step. Such an extension would break
the logical interpretation of Functional GV, as all types are inhab-
ited by the trivial hylomorphism. However, it does show a direct
and intuitive connection between the (admittedly austere) setting
of Functional GV and more practical programming languages.

3. Concurrent µGV
3.1 Communication and Concurrency
We now consider the concurrent fragment of µGV. The additional
syntax of the concurrent fragment is listed at the top of Figure 4.
Our primitive session types include input (?T.S), output (!T.S), and
closed channels (end?, end!). Unlike many session type systems,
but in keeping with logically-founded approaches, we have dual
types for closed channels rather than a single, self-dual type end.
(In our prior work [26] we discuss the semantic and logical con-
sequences of providing a self-dual closed channel.) The remaining
features of concurrent µGV can be encoded in terms of the primi-
tive concurrent features, and the features of Functional µGV. These
include selection (S ⊕! S′), branching (S ⊕? S′) and recursive ses-
sion types (µ!F , µ?F). In traditional session typing notation, ⊕!

is written as ⊕, ⊕? as &, inl! as select inl, and case? as offer.
To avoid conflicting with the base features of Functional µGV and
to emphasize the uniformity of our extensions, we adopt notation
which makes explicit the direction of communication. For example,
the ! denotes that inl! sends a left injection along a channel. Note
that fork is the only term that introduces new session-typed chan-
nels; the remaining session-typed constructs all consume channels.
Thus, for example, the typing of inl! is inverted from the typing of
inl, eliminating the session type S⊕! S′.

Our treatment of recursive session types is also guided by initial
algebra semantics. We introduce session type variables X and ses-
sion functors F . The argument and result of a session functor are
both session types. We extend the standard notion of positivity to
session functors and ordinary functors of session type (Figure 4).
Just as we distinguished between consuming (L− M) and producing
(in) values of recursive types, we distinguish between consuming
and producing recursive communication. Thus, we have two dual
constructors for recursive session types, µ?F for consuming recur-
sive communication and µ!F for producing it. The terms inhabiting
recursive session types are similar to those for recursive data types:
in!M unfolds one iteration of a recursive session type, while LMM?

consumes a recursive session type; the production and consump-
tion roles are indicated by direction of communication. The typing
of in!M reflects its role as an eliminator of session types, parallel to
the typing of inl! and inr! .

As for recursive session types, we have corecursive session
types ν!F and ν?F . The typing rule for out?M is a direct reflection
of the rule for out M. As the communication primitives all consume
terms of session type, − ! consumes a channel of type ν!F , and
returns the remaining (empty) expectations of the channel. The
differences between recursive and corecursive session types are
apparent both in the term formation rules and in the direction
of communication: folds LMM? consume recursive communication,
while unfolds M ! produce corecursive communication. Though
their typing rules appear similar, the directions of communication
in in!M and out?M are opposite.

The notion of duality is central to session types: if the process
holding one end of a channel expects to send a value of some type
along that channel, the process holding the other end should expect
to receive a value of the same type. The dual S of session type
S is defined in Figure 4. The dual of recursive (µ!F , µ?F) and
corecursive (ν!F , ν?F) session types is defined in terms of the
dualized session functor F . In the definition of F , note that we not
only dualize the body of F , but also the variable; this accounts for
the duality between the two forms of recursion. We contrast this
approach with standard approaches to duality for recursive session
types in §3.2.

Promises. While aesthetically appealing, our formation of recur-
sive session types seems somewhat awkward to use. The typing of

Syntax

Session types S ::= !T.S | ?T.S | end! | end?

| S⊕! S′ | 0! | S⊕? S′ | 0?

| X | X | µ!F | µ?F | ν!F | ν?F
Types T,U::= · · · | S
Session functors F ::= X .S
Terms L,M,N::= · · · | inl! M | inr! M

| case? L {inl x 7→ M; inl y 7→ N}
| LMM? | in!M | out?M | M !

Constants K ::= send | receive | fork | wait | link

Duality

!T.S = ?T.S
?T.S = !T.S

S⊕! S′ = S⊕? S
′

S⊕? S′ = S⊕! S
′

S = S

end! = end?

end? = end!

0! = 0?

0? = 0!

X.S = X.S

µ!F = µ?F
µ?F = µ!F
ν!F = ν?F
ν?F = ν!F
X .S = X .S{X/X}

Positivity

ξ ∈ {X,X}
p(ξ.?T.S) = p(ξ.T) ∧ p(ξ.S), where p ∈ {neg, pos}
pos(ξ.!T.S) = neg(ξ.T) ∧ pos(ξ.S)
neg(ξ.!T.S) = pos(ξ.T) ∧ neg(ξ.S)

Typing

Γ ` M : S⊕! S′

Γ ` inl! M : S

Γ ` M : S⊕! S′

Γ ` inr! M : S′

send : T ⊗ !T.S(S
receive : ?T.S(T ⊗ S

fork : (S(end!)(S
wait : end? (1
link : S⊗ S(end!

Γ ` L : S⊕? S′ Γ, x : S ` M : T Γ, x : S′ ` N : T

Γ ` case? L {inl x 7→ M; inr x 7→ N} : T

Γ ` L : 0?

Γ ` case? L {} : T

Γ ` M : µ!F
Γ ` in! M : F(µ!F)

` M : F(S)(S

` LMM? : µ?F (S
Γ ` M : ν?F

Γ ` out?M : F(ν?F)

` L : S(F(S)(end!

` L !
: S(ν!F (end!

(Shaded terms and types, and their typing and duality, can be
encoded in terms of the remaining terms and types.)

Figure 4: Concurrent µGV Terms and Typing

LMM? requires that M transformF(S) (a session) into S (itself a ses-
sion); that is, it flattens nested sessions into single sessions. In con-
trast, most uses of recursive session types transform the data values
carried by the session into a result value, only incidentally relying
on the nesting of sessions. We can relate these views by observing
that µGV provides a natural notion of promise, and that promises
allow us to treat arbitrary types as session types. Promises [28] in-
troduce asynchrony between the computation of a value and its use;
a promise of type T denotes a value of type T which may not yet
have been computed. A promise of type T arises naturally in our
setting as a channel of type ?T.end?. We write ?T to abbreviate
?T.end?, and define mappings between promises and values:

un? : ?T (T
un? M = let (z, c) = receive M in

wait c; z
en? : T (?T
en? M = fork (λx.send (M, x))

The operation un?M retrieves a value from promise M (blocking
until it is available), while en?M constructs a new promise, already
containing the value of M. Note that un? ◦ en? and en? ◦ un? are
both observationally equivalent to the identity function (the second
is a trivial example of channel forwarding). The dual of the type ?T
is the type !T.end!, which we will abbreviate !T . We can also define
an operation to introduce and eliminate channels of type !T (that is,
to provide results to unfulfilled promises):

un! : ((S(T)⊗ !T)(S
un!(L,M) = fork (λx.send (L x,M))
en! : S(!S
en!(M) = fork (λz.let (c, z) = receive z in

wait z; link (M, c))

The appearance of the continuation type S may be surprising; this is
a consequence of the different treatment of the continuation in send
and receive. As µGV lacks polymorphism, we will write un? M
to denote the substitution of M into the definition of un?, rather
than to denote an application in µGV, and similarly for the other
definitions in this section.

Example: Recursive Sessions. We now present several examples
of channels of naturals, building on our earlier representation of
naturals numbers. We introduce type abbreviations for such chan-
nels:

NC(X) = end? ⊕? ?Nat.X Nats = µ?NC

We begin with a term that sends two naturals along a given channel:

twoNats : Nats(end!

twoNats = λc.let c = send (zero, inr! (in! c)) in
let c = send (succ zero, inr! (in! c)) in
inl! (in! c)

Now we present a slightly more interesting example. Given some
starting natural n, we send the sequence n, n − 1, . . . , 0 along a
channel. We rely on Nat itself being defined recursively.

downFrom : Nats(end!

downFrom n = let (n′, k) = LbodyM n in drop n′; k

body : N(Nat ⊗ (Nats(end!))((Nat ⊗ (Nats(end!))
body z = case z {inl () 7→ zc;

inr (y, k) 7→ sc y k}
zc : Nat ⊗ (Nats(end!)
zc = (zero, λc.let c = send (zero, inr! (in!c)) in

inl! (in!c))
sc : Nat((Nats(end!)((Nat ⊗ (Nats(end!))
sc y k = let (y, y′) = dup y in

(succ y, λc.k (send (y′, inr! (in!c))))

We have a similar challenge in defining body as we did in defining
times: at each step of the recursion, we must both send a value along
the channel and produce the same value for the next step. Observe
that body has type N(Nat ⊗ (Nats (end!)) (Nat ⊗ (Nats (
end!), computing both the next natural in the sequence and the
function that sends it along a channel.

We can also write functions that consume channels of naturals.
For a simple example, we could compute the sum of the naturals
received along a channel.

sum : Nats(Nat
sum = Lλc.case? c {

inl c 7→ wait c; en? zero
inr c 7→ let (x, c) = receive c in

let y = un? c in
en? (plus x y)}M?

We wrap the running sum in a promise to lift it to session type;
the body of the fold has type NC(?Nat) (?Nat, so sum has type
µ?NC (?Nat. We could compose this with one of the producers
above to compute a value, such as:

un? (sum (fork (downFrom 4)))

where we write n to indicate the representation of natural n. This
term will evaluate to 10.

We can also define channel transformers. For example, we could
compute the running total of the stream, inserting the total (to that
point) after each element.

running : Nats(Nats(end!

running c = un? (Lλc.case? c {inl c 7→ done c;
inr c 7→ more c}M? c) 0

done c = en? (λz.λd.drop z; link (c, inl! (in!d)))
more c = let (y, c) = receive c in

let k = un? c in
let (y, y′) = dup y in
en? (λz.λd.let (w,w′) = dup (plus y′ z) in

let d = send (y, inr! (in!d)) in
let d = send (w, inr! (in!d)) in
k w′ d)

Note that the body of the fold has type NC(?(Nat (Nats (
end!)) (?(Nat (Nats (end!); the Nat argument stores the
running sum, and so is initialized to zero by running.

Example: Corecursive Sessions. The treatment of corecursive
session types is similar to that of recursive session types. Never-
theless, we give a short example of their use. The previous example
showed a term downFrom that sent all the naturals below a start-
ing value along a channel. With corecursive session types, we can
give a term that (potentially) sends all the naturals above a starting
value along a channel. We begin with the types; unlike the previous
version, it is now the side sending naturals that offers to choice to
continue:

NC′(X) = end! ⊕? !Nat.X Nats′ = ν!NC′

We can now define a process that sends an increasing stream of
naturals:

body = λm.λc.case? c {inl c 7→ drop m; c;
inr c 7→ let (m,m′) = dup m in

let c = send (m, c) in
send (succ m′, c)

upFrom = body !

As before, we rely on duplication and discard being defined for
natural numbers. We have that body : Nat (NC′!(Nat) (end!,
and so upFrom : Nat (Nats′ (end!. A simple consumer of
such a channel might compute the sum of the first two values on
the channel:

firstTwo c = let (x, c) = receive (inr! (out?c)) in
let (y, c) = receive (inr! (out?c)) in
wait (inl! (out?c)); x + y

3.2 Recursion, Duality, and Session Types
We relate our statement of duality to previous accounts of recursive
session types. Most existing approaches use equirecursive, self-
dual recursive session types, and do not include dualized type vari-
ables. Our system lacks self-dual constructs, and so cannot encode
self-dual recursive types. However, we can imagine extending our
language with a construct µSF such that µSF = µSF .

Honda et al. [23] originally proposed recursive session types
for a system of first order session types in which messages did not

include channel names. Duality was given by µSX.T = µSX.T ,
where X = X. To distinguish this notion from ours, we write
naive(T) instead of T . In contrast, our approach gives µ?X.T =
µ?X.T{X/X}. It is not hard to see that logical duality coincides
with naive duality for first-order session types. Intuitively, if µSX.T
is first-order, then if we compute µSX.T{X/X} each instance of X
in T will first be dualised by T and then again by the substitution
{X/X}.

Independently, Bono and Padovani [10] and Bernardi and Hen-
nessy [6] observe that naive duality is not enough for higher-
order session types, that is, session types with support for del-
egation. Consider S = µSX.?X.X. The logical dual of S is
µSX.!(µSX.?X.X).X, whereas the naive dual of S is µSX.!X.X,
which is (equirecursively) equivalent to µSX.!(µSX.!X.X).X. It is
not difficult to show that the logical dual yields the correct be-
haviour, whereas the naive dual does not. They (each) proposed a
new definition of duality for recursive session types, using a selec-
tive form of substitution which applies only inside carried types.
Later, Bernardi and Hennessy [7] observed that even this approach
fails on examples such as µSX.µSY.?Y.X. They propose converting
each recursive session type into a so-called m-closed recursive ses-
sion type before applying native duality. A recursive session type
µSX.T is m-closed if X does not occur free inside a carried type in
T . It is straightforward to show that every recursive session type is
(equirecursively) equivalent to an m-closed one, and that, as they
they are essentially first-order, naive duality and logical duality
coincide on m-closed recursive session types.

Duality for recursive session types clearly needs to be treated
carefully. We are encouraged that our definition coincides with
the state of the art for equirecursive self-dual session types. We
believe that this also shows the value of our deconstruction of
recursive session types into well-understood primitives: we are
guided immediately to a correct, compact, and general definition
of duality.

Remark. Dualized session type variables are redundant in equire-
cursive session types, as every session type µSX.T is equivalent to
µSX.T{µSY.T{X/Y}/X}, where Y is a fresh type variable. How-
ever, dualized session type variables do yield a cleaner composi-
tional definition of duality.

4. Communication with Concurrency
4.1 Encoding Concurrent Features
Our prior work on GV [26] focuses on keeping the core language
as simple as possible. For example, rather than include branching
and choice in the concurrent semantics directly, a choice can be
encoded as the promise of a (data type) sum. Kobayashi et al [24]
and Dardha et al. [17] make similar use of linear promises to relate
data types and session types in π-calculi. We extend this view to
include recursive session types. There are two challenges in doing
so: a) we must encode session functors and their use of session type
variables, and b) we must encode their fixed points.

Our translation is given by the homomorphic extension of the
rules in Figure 5. We underline those portions of the translation
that introduce purely administrative reduction. The session functor
F is translated to the ordinary functionF?, using promises to lift an
ordinary type variable to session type. This approach naturally ac-
counts for the use of dualized session type variables; for example, if
F(X) = !X .X , then we have that F?(X) = !(?X).?X = !(!X).?X.
Recursive and corecursive session types are interpreted as promises
of recursive and corecursive data types, and the interpretation of
their terms is directed by the interpretation of their types. The defi-
nitions of LMM? and M ! may seem surprisingly complicated. In
fact, we can present a different form of session-typed catamor-

Session functors

F? = X.QJF(?X)K F! = X.QJF(!X)K

Session types

QJS⊕! S′K = !(QJSK⊕QJS′K)
QJS⊕? S′K = ?(QJSK⊕QJS′K)

QJ0?K = ?0
QJ0!K = !0

QJµ?FK = ?µF?

QJµ!FK = !µF?

QJν!FK = !νF!

QJν?FK = ?νF !

Terms
QJ`! MK = un!(λx.` x,QJMK)

Q
s

case? L
{

inl x 7→ M;
inr x 7→ N

}{
= case(un?QJLK)

{
inl x 7→ QJMK
inr x 7→ QJNK

}
QJin! MK = un! (λx.in x,QJMK)
QJLMM? NK = Lλy.en? (QJMK (QJFK(un?) y))M

(un?QJNK)
QJout?MK = out (un?QJMK)
QJ L ! M NK = λy.QJFK(en!)

(un! (λc.fork (λd.QJLK d c),
y))

QJMK (en!QJNK)

Figure 5: Translation of µGV concurrency features into core µGV

phisms and anamorphisms, directly encoded in terms of recursive
types:

LMMS N = LMM (un?M)

L S M N = send (λx.fork (λc.L x c) M,N)

with the following typing rule, which exchanges the restriction to
session functors for a direct use of their encoding:

` M : F?(T)(T

` LMMS : µ?F (T

` M : S(F!(S)(end!

` M S
: S(ν?F (end!

We can see that the encoding of L− M? is an instance of L− MS, that
the encoding of − ! is an instance of − S, and that our examples
can be written directly using the alternative forms (removing calls
to en? as necessary). Nevertheless, we have preferred L − M? and
− ! as they do not rely on details of our encoding and are closer

to the algebraic intuition.

4.2 Concurrent Semantics
We give a concurrent semantics of µGV, building on the small-
step operational semantics for Functional µGV given in the last
section. As recursive session types and their terms can be encoded
in terms of the core concurrency features, our semantics is mostly
unchanged from that of our prior work [26]. Figures 6 and 7 give the
syntax and typing of configurations and configuration contexts; we
will write Γ ` C : T to denote that there is some φ such that Γ `φ
C : T . Figure 8 gives reductions and configuration equivalence.
Because of the importance of promises in our interpretation of
µGV’s concurrent features, we give special cases of the functor
map for the promise functor. These have the same behavior as
that given in the general case, but expose potentially administrative
reductions sooner. Our treatment of link repairs a defect in our
prior account of GV and restores the diamond property for GV’s
concurrent semantics.

The concurrent semantics of µGV is defined by a reduction re-
lation on collections of parallel threads, called configurations. The
syntax of µGV configurations is given in Figure 6, and includes
threads, name restriction and composition of configurations. Be-

Configurations C ::= φM | (new x)C
| z = x↔ y | C ‖ C′

Flags φ ::= ◦ | •
Configuration contexts D ::= [] | (new x)D | C ‖ D
Thread evaluation contexts H ::= φE

Figure 6: Configurations and Contexts.

Γ ` M : T
Γ `• •M : T

Γ ` M : end!

Γ `◦ ◦M : end!

Γ, x : S] `φ C : T

Γ `φ (new x)C : T

x : S, y : S, z : end? `◦ z = x↔ y : end!

Γ, x : S `φ C : T Γ′, x : S `◦ C′ : end!

Γ,Γ′, x : S] `φ C ‖ C′ : T

Figure 7: Configuration Typing.

cause µGV is a functional language, we distinguish the “main”
thread •M, which we expect to compute the result of the computa-
tion, from the child threads ◦M. We give a typing judgment for con-
figurations, based on the type system for the linear π-calculus [24]
but with two significant differences. First, we ensure that there is
at most one main thread. This constraint is enforced by the flags (◦
and •) on the derivations: a derivation Γ `• C : T indicates that
configuration C contains the main thread (returning a value of type
T), while Γ `◦ C : end! indicates that C does not. Second, we
require that exactly one channel is shared at each composition of
processes. This latter constraint is sufficient to guarantee deadlock
freedom and progress, as we show in §5.

Theorem 1 (Diamond property). If Γ ` C : T, C ≡−→≡ C1, and
C ≡−→≡ C2, then either C1 ≡ C2 or there exists C3 such that
C1 ≡−→≡ C3, and C2 ≡−→≡ C3.

This proof extends to any deterministic extension of the core func-
tional calculus, such as the addition of the exponential modality or
polymorphism. The reader may be concerned that the WAIT rule
does not apply in the case that x is returned from the main thread,
and similarly for z in the LINK1 rule. However, these cases can
never occur in a closed, well-typed configuration.

The other metatheoretic properties established by in our prior
work hold here as well. In particular, reduction in µGV preserves
typing.

Theorem 2. If Γ `φ C : T and C −→ C′ then Γ `φ C′ : T.

While typing is not preserved by configuration equivalence, reduc-
tion never produces or relies on ill-typed states.

Theorem 3. If Γ ` C1 : T, C1 ≡ C2, and C2 −→ C′2, then there
is some C′1 such that C′2 ≡ C′1, C1 −→ C′1 and Γ ` C′1 : T.

We have encoded recursive session types using features of Func-
tional µGV, and so they do not appear in the concurrent semantics
directly. We would like to confirm that their encoding matches the
intuition of the original, unencoded forms. That is, we hope that a
configuration H[LMM? x] ‖ H′[in!x] reduces to H[M (F(LMM?)x)] ‖
H′[x]. This reduction is blocked by the administrative steps intro-
duced in the encoding of L − M?. However, we can show that it
holds if we can suitably ignore administrative reductions. To do so,
we adapt a notion of weak bisimulation to our setting. Unlike stan-
dard presentations of concurrency, all µGV reductions are internal.

Therefore, ignoring all internal reductions would trivially identify
all processes that compute the same results. We intend a finer char-
acterization, in which we ignore only administrative reductions.
We have already identified (by underlining) the relevant sources
of administrative reductions. We say that a reduction is adminis-
trative (−→) if all the reduced subexpressions are underlined. For
example, the reduction of H[send (V, x)] ‖ H′[receive x] to H[x] ‖
H′[(V, x)] is administrative, but the reduction of H[send (M, x)] to
H[send (M′, x)] is not (unless M is itself identified as administra-
tive). We write −→? for the reflexive, transitive closure of −→,
and write C =⇒ C′ to denote C −→?−→−→? C′. Finally, we can
adapt the standard notion of weak bisimulation to our setting.

Definition 4. A relation R on configurations is an administrative
weak bisimulation if, for each C1RC2, whenever C1 =⇒ C′1, then
there is a C′2 such that C2 =⇒ C′2 and C′1RC′2, and similarly for
reduction from C2. We define administrative weak bisimiliarity ≈
to be the union of all administrative weak bisimulations.

We can now relate the encoding of recursive session types to their
expected semantics:

Theorem 5.

1. If ` M : F(S)(S, then

(new x)(H[LMM? x] ‖ H′[in! x]) −→+≈
(new x)(H[M (F(LMM?) x)] ‖ H′[x])

2. If ` M : S(F(S), then

(new x)(H[M ! V x] ‖ H′[out? x]) −→+≈
(new x)(H[F(M !

(M V)) x] ‖ H′[x])

The key observations to establishing this result are that un? and en?

introduce only incidental additional concurrency.

Lemma 6.

1. (new x)(H[un? x] ‖ H′[un! (λx.M, x)]) ≈
(new x)(H[M] ‖ H′[x])

2. E[F(un?) (F(λx.en? (M x)) N)] ≈ E[F(M) N]

3. E[F(λx.un! (λx.M, x)) (F(en!) N)] ≈ E[F(M) N]

The first is entirely straightforward, the second and third can be
shown by induction on the structure of F . The theorem follows
directly from the lemmas and the definition of reduction.

5. Communication without Concurrency
We now show, via a CPS translation, that reduction in µGV can be
simulated by reduction in Functional µGV. We begin with a stan-
dard left-to-right call-by-value CPS translation from the core calcu-
lus into itself (Figures 9 and 10), where R is a fixed return type. In
the rest of this subsection, we extend the CPS translation to session
types and show that the CPS translation preserves reduction. As a
corollary, we obtain that µGV is strongly normalising.

Following Danvy and Nielson [15], we can mechanically trans-
form the naive CPS translationN J−K of Figure 10 into a composi-
tional first-order one-pass CPS transformation KJ−K. By carefully
distinguishing between values and non-values, the one-pass trans-
lation ensures that (most) administrative redexes are contracted by
the translation itself. Contracting these redexes enables a tight sim-
ulation result (Theorem 10). Due to lack of space, we omit the (en-
tirely standard) details of the one-pass variant of the translation.

Figure 11 gives the CPS translation of concurrent µGV. The
translations of send, fork, and link depend on the polarities (input
or output) of their arguments and results. We use subscripts to
distinguish output and input session types. To give a compositional

Covariant Functors

(!F.G)(M) = λc.fork (λd.let (z, d) = receive d in

let c = send (F−(M) z, c) in

link (G(M) d,G(M) c))
(?F.G)(M) = λc.fork (λd.let (z, c) = receive c in

let d = send (F(M) z, d) in

link (G(M) d,G(M) c))

(?F.end?)(M) = λc.en? (F(M) (un? c))

Contravariant Functors

(!F.G)−(M) = λc.fork (λd.let (z, d) = receive d in
let c = send (F(M) z, c) in

link (G
−
(M) d,G−(M) c))

(?F.G)−(M) = λc.fork (λd.let (z, c) = receive c in

let d = send (F−(M) z, d) in

link (G
−
(M) d,G−(M) c))

(?F.end?)−(M) = λc.en? (F−(M) (un? c))

Configuration Equivalence

H[link (x, y)] ≡ H[link (y, x)]
z = x↔ y ≡ z = y↔ x

C ‖ C′ ≡ C′ ‖ C
C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C3

C ‖ (new x)C′ ≡ (new x)(C ‖ C′), if x 6∈ fv(C)
D[C] ≡ D[C′], if C ≡ C′

Configuration Reduction

SEND (new x)(H[receive x] ‖ H′[send (V, x)]) −→ (new x)(H[(V, x)] ‖ H′[x])
FORK H[fork (λσy.M)] −→ (new x)(H[x] ‖ ◦M({x/y}] σ)), x fresh
WAIT (new x)(H[wait x] ‖ ◦ x) −→ H[()]
LINK0 H[link (x, y)] −→ (new z)(z = x↔ y ‖ H[z]), z fresh
LINK1 (new z x)((z = x↔ y ‖ ◦ z) ‖ φM) −→ φM{y/x}

LIFTV
M −→V M′

φM −→ φM′

LIFT
C −→ C′

D[C] −→ D[C′]

Figure 8: Concurrent Semantics of µGV: Functors, Equivalences, and Reductions.

translation of configurations, we restrict attention to a canonical
class of configurations. We write C1 ‖x C2 to denote a parallel
composition in which channel x has input session type in C1 and
the dual output session type in C2. We say that a configuration C
is well-oriented (WO(C)) if all of the parallel compositions in C
are of this form, and in any link configuration z = x ↔ y in C,
x has input session type. Without loss of generality, we need only
consider reduction on well-oriented configurations.

Lemma 7. If Γ ` C : T, then there exists well-oriented C′ ≡ C.

The translation of the main thread is the only place the continuation
is actually used. The translation of a child thread supplies the iden-
tity continuation, which is well-typed as child threads always have
type end!. Name restrictions themselves are ignored, but names are
used in the translation of well-oriented parallel composition. It is
straightforward to verify that the CPS translation preserves typing.

Theorem 8 (Type soundness).

1. If Γ ` M : T, then KJΓK ` KJMK : (KJTK(R)(R.
2. If Γ ` C : T and C is well-oriented, then KJΓK ` KJCK :

(KJTK(R)(R.

To reason by induction over the reduction rules, which are
defined in terms of evaluation contexts and configuration contexts,
we extend the CPS translation to contexts (Figure 12). Evaluation
contexts are interpreted as functions. The CPS translation of a
configuration context takes two arguments. The first argument is a
meta-level function, which we instantiate with the CPS translation
of an appropriate configuration. The second is a continuation. The
CPS translation respects decomposition of contexts.

Lemma 9.

1. If E 6= [] and Γ ` E[I] : T, then KJE[I]Kk = IJIK(λx.EJEKk).
2. If Γ ` D[C] and D[C] is well-oriented, then KJD[C]Kk =
DJDK KJCK k.

To simulate all reduction paths in µGV by reduction in Func-
tional µGV, we must allow reduction under lambda abstractions.

Otherwise, we would be limited to a single schedule in which order
of communication is determined by the outermost input communi-
cation. For an intuition of this schedule, consider the translation of
C ‖x C′. Reduction in C′ cannot proceed until C is ready to receive
a result along x, even if C′ could perform some internal commu-
nication. Allowing reduction under lambda abstractions allows all
valid schedules to be simulated. We define M N by:

M −→V N
M N

M N
λσx.M λσx.N

The following theorem states that the CPS translation simulates
µGV reduction.

Theorem 10 (Simulation).

1. If Γ ` M : T and M −→ N, then KJMKk + KJNKk.
2. If Γ ` C : T and C −→ C′, then there exist well-oriented

C′′,C′′′ with C′′ ≡ C and C′′′ ≡ C′ such that KJC′′Kk +

KJC′′′Kk.

Thus we can simulate concurrent communication using only Func-
tional µGV. As a corollary, we obtain that µGV is strongly normal-
ising.

Theorem 11 (Strong normalization). If Γ ` C : T, then there are
no infinite ≡−→≡ sequences starting from C.

The proof follows immediately from Theorem 10 and the quite
standard result that Functional µGV (linear λ-calculus with pos-
itive (co)recursive data types) is strongly normalising. (To show
the latter, map functional µGV into System F, forgetting linearity,
and encoding the positive (co)recursive data types using polymor-
phism.) An immediate consequence is that our calculus is free from
livelock; that is, that there are no oscillating sequences of configu-
rations that diverge.

The strong normalization result straightforwardly extends to
the extension of µGV with the exponential modality [26], and to
the setting where we allow reduction under lambdas in the source
calculus.

KJT (UK = KJTK((KJUK(R)(R

KJT ⊗ UK = KJTK⊗KJUK
KJT ⊕ UK = KJTK⊕KJUK
KJT & UK = KJTK &KJUK

KJ1K = 1
KJ0K = 0
KJ>K = >

KJµX.TK = µX.KJTK
KJνX.TK = νX.KJTK KJXK = X

Figure 9: CPS Translation for Core Types

N JxKk = k x
N JK MKk =N JMK(λx.N JKK x k)

N Jλ{~V/~z}x.MKk = k (λx k.N J~VK(λ~z.N JMKk))
N JM NKk =N JMK(λx.N JNK(λy.x y k))
N J(M,N)Kk =N JMK(λx.N JNK(λy.k (x, y)))

N Jlet (x, y) = M in NKk =N JMK(λz.let (x, y) = z in N JNKk)
N J()Kk = k ()

N Jlet () = M in NKk =N JMK(λz.let () = z in N JNKk)
N Jinl MKk =N JMK(λx.k (inl x))
N Jinr MKk =N JMK(λx.k (inr x))

N

u

v
case M {

inl x 7→N;
inr y 7→N′}

}

~ k =N JMK

λz.
case z {

inl x 7→N JNKk;
inr y 7→N JN′Kk}

N Jabsurd MKk =N JMK(λz.absurd z)
N J〈M,N〉Kk =N JMK(λx.N JNK(λy.k 〈x, y〉))
N Jfst MKk =N JMK(λx.k (fst x))
N Jsnd MKk =N JMK(λx.k (snd x))
N J〈〉Kk = k 〈〉
N Jin MKk =N JMK(λx.k (in x))
N JLMMKk =N JMK(λx.k (LxM))
N Jout MKk =N JMK(λx.k (out x))
N J M Kk =N JMK(λx.k (x))

Figure 10: Naive CPS Translation for Core Terms

As well as providing a means to prove termination, the CPS
transformation is interesting in its own right as it provides insights
into the restricted nature of the concurrency provided by µGV.
Furthermore, by composing the CPS translation with the translation
from µCP to µGV (§6.3), we obtain a translation from µCP into a
typed lambda calculus. This shows that the concurrency of µCP is
equivalent to that provided by full reduction in the λ-calculus.

We can make the translation more uniform by factoring it
through a polarization phase. In particular, polarization allows us
to give a single translation for each of the send, fork, and link cases.
Polarization provides a way of encoding output session types as in-
put session types and vice-versa. It also leads to a clean way of
handling polymorphic session types by uniformly choosing either
a positive (output) or a negative (input) representation for session
type variables.

6. The µCP Language
In this section, we present the syntax (§6.1) and semantics (§6.2)
of µCP, an extension of Wadler’s CP calculus with recursive and
corecursive types following Baelde’s approach to recursion and
corecursion in classical linear logic [3]. We then argue that µCP and
µGV are equally expressive via semantics-preserving translations
from µCP into µGV and vice versa.

Types

KJend!K = R
KJend?K = R(R

KJ!T.SK = KJTK(KJSK(R
KJ?T.SK = (KJTK(KJSK(R)(R

Constants
KJsend!Kp k = let (x, c) = p in (c x) k
KJsend?Kp k = let (x, c) = p in k (c x)

KJreceiveKc k = c (λx c.k (x, c))

KJfork!Kf k = k (λx.f x id)
KJfork?Kf k = (λx.f x id) k

KJwaitKc k = c (k ())

KJlink!Kp k = let (c, d) = p in k (c d)
KJlink?Kp k = let (c, d) = p in k (d c)

Shallow Polarization

S! := !T.S | end! S? ::= ?T.S | end?

send! : T ⊗ !T.S! (S!

fork! : (S! (end!)(S!

link! : S! ⊗ S! (end!

send? : T ⊗ !T.S? (S?

fork? : (S? (end!)(S?

link? : S? ⊗ S? (end!

Configurations

KJ•MKk = KJMKk KJ(new x)CKk = KJCKk
KJ◦MKk = KJMKid KJz = x↔ yKk = z (x y)

KJC ‖x C′Kk = (KJCKk){(λx.KJC′Kk)/x}

Figure 11: CPS Translation for Concurrent µGV and Contexts.

Evaluation Contexts

EJEKk = λx.KJE[e]Kk

Configuration Contexts

DJ[]Kf k = f k
DJ(new x)DKf k = KJDKf k
DJC ‖x DKf k = (KJCKk){λx.DJDKf k/x}
DJD ‖x CKf k = (DJDKf k){λx.KJCKk/x}

Figure 12: CPS Translation of µGV Contexts.

6.1 Syntax
Figure 13 gives the terms and typing of µCP, an extension of
Wadler’s process calculus CP with recursive and corecursive types.
The syntax of types is that of the propositions of linear logic, ex-
tended with least (µF) and greatest (νF) fixed points. As in µGV,
we have omitted polymorphism and the exponential modality; their
reintroduction is entirely orthogonal to our development. The def-
inition of duality includes the duality of least and greatest fixed
points; the dual of an operator is defined by F⊥(X) = (F(X⊥))⊥,
as for µGV. The terms of µCP are restricted compared to π-
calculus in several ways. Most significantly, composition and name
restriction are combined in a single syntactic form, and the com-
posed processes are limited to share only the newly introduced
name. The forwarding construct x ↔ y corresponds to the axiom
rule in linear logic; it is necessary for the treatment of recursion and
for the extension of µCP to include polymorphism.

A Simpler Send. The µCP rule for output is appealing because
it corresponds exactly to the linear logic proof rule for ⊗. Its
correspondence to π-calculus is less direct: the term for output
includes name restriction (introducing new name y), output of y
along x, and finally a restricted composition (of P and Q). This

Syntax

Types A,B ::= A⊗ B | A ` B | A⊕ B | A & B
| 1 | ⊥ | > | 0 | X | X⊥ | µF | νF

Operators F,G ::= X.A
Labels ` ∈ inl, inr
Processes P,Q,R ::= x[y].(P | Q) | x(y).P | x[].0 | x().P

| x[`].P | case x {P; Q} | case x {}
| x↔ y | new x (P | Q)
| rec x.P | corec x[y](P | Q)

Typing

x↔ y ` x : A, y : A⊥
P ` Ψ, x : A Q ` Ψ′, x : A⊥

new x (P | Q) ` Ψ,Ψ′

P ` Ψ, y : A Q ` Ψ′, x : B
x[y].(P|Q) ` Ψ,∆′, x : A⊗ B x[].0 ` x : 1

P ` Ψ, x : B, y : A
x(y).P ` Ψ, x : A ` B

P ` Ψ

x().P ` Ψ, x : ⊥

P ` Ψ, x : A
x[inl].P ` Ψ, x : A⊕ B

P ` Ψ, x : A Q ` Ψ, x : B
case x {P; Q} ` Ψ, x : A & B

case x {} ` Ψ, x : >
P ` Ψ, x : F(µF)

rec x.P ` Ψ, x : µF

P ` Ψ, y : A Q ` y : A⊥, x : F(A)

corec x[y](P | Q) ` Ψ, x : νF

Duality

(A⊗ B)⊥ = A⊥ ` B⊥

(A ` B)⊥ = A⊥ ⊗ B⊥

(A⊕ B)⊥ = A⊥ & B⊥

(A & B)⊥ = A⊥ ⊕ B⊥

1⊥ = ⊥
0⊥ = >

(µF)⊥ = ν(F⊥)
(νF)⊥ = µ(F⊥)

⊥⊥ = 1
>⊥ = 0

(X⊥)⊥ = X
F⊥(X) = (F(X⊥))⊥

Figure 13: µCP Typing Rules

complicates the reduction relation for µCP (which must account
for all three behaviors) and the correspondence to µGV (where the
rule for send is simpler).

An alternative presentation (following Boreale [12]) avoids the
name restriction and composition, as follows:

P ` Ψ, x; B, y : A

x〈y〉.P ` Ψ, x : A⊗ B, y : A⊥

While no longer identical to the ⊗ rule, this is closer to the formu-
lation of output in π-calculus. As in our prior work [26], we write
x〈y〉.P as syntactic sugar for x[z].(y↔ z | P).

Recursion and Corecursion. In µCP, recursion and corecursion
follow Baelde’s extension of classical linear logic to include induc-
tion and coinduction [3]. We begin by considering sequent calculus
presentations of introduction and elimination rules for induction
and coinduction, as follows:

Ψ ` F(µF)

Ψ ` µF
F(A) ` A
µF ` A

Ψ, νF ` A
Ψ,F(νF) ` A

A ` F(A)

A ` νF

Note that the hypotheses of the right rule for ν and left rule for µ are
restricted to account for linearity. Baelde observes that, when using
duality to convert these two-sided sequents to one-sided sequents,
the left rule for µ and the right rule for ν collapse, and similarly the

right rule for µ and the left rule for ν. This leaves us with only two
rules, with term assignments as follows:

P ` y⊥ : A, x : F(A)

corec x(y).P ` y : A⊥, x : νF

P ` Ψ, x : F(µF)

rec x.P ` Ψ : x : µF

However, there is a problem with this formulation. Suppose that we
have some term Q ` A. We then have the composition new y (Q |
corec x(y).P) ` x : νF. However, we have no hope of reducing this
cut, as we have no rule which can prove νF in isolation. We can
address this problem by suspending the cut in question, moving
it into the ν rule and giving the rule in Figure 13. In our prior
work [26] we observe a similar pattern in comparing the ⊗ rule
to the typical process calculus rule for output. As in that case,
the version without the suspended cut may expose reductions not
present in the suspended version. Nevertheless, we can still define
the simpler term as syntactic sugar:

corec x(y).P = corec x[y](y↔ z | P)

Examples. We return to the example of natural numbers to give
some flavor of the use of recursion and corecursion in µCP. We can
define the type of natural numbers much as before

N(X) = 1⊕ X Nat = µN

and we can give very similar definitions of the constructors

zerox = rec x.x[inl].x[].0
succxy = rec x.x[inr].x↔ y

with the expected typings zerox ` x : Nat and succxy ` x : Nat, y :
Nat⊥. We can define the addition operation as follows:

plusxyz = corec z[w].(w〈x〉.w↔ y;
w(x).case z {z().w↔ x;

rec x.x[inr].z〈x〉.z↔ w})

where the recursive body of the corec has type w : Nat ` Nat⊥, z :
N(Nat⊥ ⊗ Nat) and so the term has typing plusxyz ` x : Nat, y :
Nat⊥, z : Nat⊥. Writing nz to denote the encoding of the natural
number n along channel z, we have that

new z (2z | new y (2y | plusxyz))

will reduce to 4x

6.2 Semantics
The semantics of µCP are given by the cut reduction rules in classi-
cal linear logic, extended to account for recursion and corecursion,
as shown in Figure 14. We write fv(P) for the free names of process
P. Terms are identified up to congruence ≡. Many of the principle
cut reductions (−→C) correspond to process calculus reductions.
The reduction of input against output is complicated by the im-
plicit name restriction and composition inherent in the term struc-
ture for output. The new rule for µCP is for rec against corec, and
amounts to one unfolding of the corec term. In defining the unfold-
ing, we rely on functoriality for the operators; if P ` x : A⊥, y : B,
then mapF

x,y(P) ` x : F⊥(A⊥), y : F(B). (We show functoriality
for the positive combinators; the remaining cases can be obtained
by switching the channels in the given cases.) We write −→ for
−→?

C−→?
CC. The following theorem is due to Baelde [3]:

Theorem 12 (Cut elimination). If P ` Ψ, then there is some P′

such that P −→ P′ and P′ is not of the form new x (Q | Q′) for any
x,Q,Q′.

This result corresponds to the termination and deadlock freedom
results for µGV: any well-typed process reduces to one that is
blocked on external communication. The commuting conversions
(−→CC) do not correspond to computational steps (and thus, do not

Structural Congruence

x↔ y ≡ y↔ x
new x (P | Q) ≡ new x (Q | P)

new y (P | new x (Q | R)) ≡ new x (new y (P | Q) | R) if y 6∈ fv(R)
new x (P1 | Q) ≡ new x (P2 | Q) if P1 ≡ P2

Functoriality (positive cases)

mapX.A
x,y (P) = x↔ y, X /∈ FTV(A)

mapX.X
x,y (P) = P

mapF⊗G
x,y (P) = x(x′).y[y′].(mapF

x′,y′(P{x′/x, y′/y}) | mapG
x,y(P))

mapF⊕G
x,y (P) = case x {y[inl].mapF

x,y(P); y[inr].mapG
x,y(P)}

mapX.µF
x,y (P) = corecF⊥

x(y).rec y.mapX.F(µF)
x,y (P)

Primary Cut Reductions

new x (x↔ y | P) −→C P{y/x}
new x (x[y].(P|Q) | x(y).R) −→C new x (Q | new y (P | R))

new x (p[inl].P | case x {Q; R}) −→C new x (P | Q)

new x (corecFx[y](P | Q) | rec x.R) −→C new y (P | new z (Q{z/x} | new x (mapF
x,z(corecFx[y](z↔ y | Q)) | R)))

Commuting Conversions

new z (x[y].(P | Q) | R) −→CC x[y].(new z (P | R) | Q)
new z (x[y].(P | Q) | R) −→CC x[y].(P | new z (Q | R))

new z (x(y).P | Q) −→CC x(y).new z (P | Q)
new z (x().P | Q) −→CC x().new z (P | Q)

new z (x[inl].P | Q) −→CC x[inl].new z (P | Q)

new z (case x {P; Q} | R) −→CC case x {new z (P | R); new z (Q | R)}
new z (case x {} | P) −→CC case x {}

new z (rec x.P | Q) −→CC rec x.new z (P | Q)
new z (corec x[y](P | Q) | R) −→CC corec x[y](new z (P | R) | Q)

Figure 14: µCP Reduction Rules

correspond to reductions in process calculi), but play a crucial role
in cut elimination by moving remaining internal communication
behind any external communication.

6.3 Translations between µCP and µGV
We conclude our discussion of µCP by discussing its relationship
with µGV. Our previous work [26] considers a functional calculus
GV and a process calculus CP, similar to µGV and µCP but lacking
recursion and corecursion. In that setting we give translations CJ−K
and GJ−K from GV configurations to CP terms and vice versa and
show that these translations preserve both typing and semantics.

We have devised similar translations between µGV and µCP.
We omit the details of the translations here. This is not only for
reasons of space; the details of the translations are identical but
for the treatment of recursion, and the recursive forms in µGV and
µCP are already quite similar. As in the case of the non-recursive
calculi, these translations preserve both typing and semantics.

Theorem 13. If P ` Ψ, then GJΨK `◦ GJPK : end!.

Theorem 14. If P ` Ψ and P −→C Q then GCJPK −→+≈
GCJQK.

Theorem 15. If Γ ` C : T, then CJCKz ` CJΓK, z : CJTK⊥.

We write =⇒ for (≡−→≡)+.

Theorem 16. If Γ ` C : T and C −→ C′, then CJCKz =⇒ CJC′Kz.

The simulation of µGV evaluation by µCP evaluation is straight-
forward. The simulation of µCP evaluation by µGV evaluation re-
lies on the same administrative weak bisimulation results needed
to show that the core µGV calculus simulates its extension with
recursive session types, but introduces no other difficulties.

7. Related Work
Session Types and Linear Logic. Session types were originally
introduced by Honda [22] as a typing discipline for a CCS-like
process calculus. Takeuchi et al [30] and Honda et al. [23] ex-
tended the original approach to include delegation and recursion.

Honda’s system relied on a substructural type system, and bor-
rowed some syntax from linear logic, but did not draw a direct con-
nection between the systems nor suggest the connection between
the input and output session types and the ⊗ and ` connectives.
Abramsky [1] and Bellin and Scott [5] give interpretations of lin-
ear logic proofs as π-calculus processes, and of cut elimination as
π-calculus reduction. Their interpretations of⊗ and ` are very dif-
ferent from the interpretations of input and output in session types.
Caires and Pfenning [13] give the first formal correspondence be-
tween session types and linear logic, interpreting the propositions
of intuitionistic linear logic as session types, and showing that
π-calculus reduction corresponds with cut reduction. As a conse-
quence of the latter correspondence, they show that cut elimination
in linear logic proves deadlock freedom for session-typed π calcu-
lus terms. Vasconcelos et al. [33] and Gay and Vasconcelos [20]
consider functional languages extended with session-typed con-
currency. The functional fragments of their calculi are generally
less fully featured than ours (for example, they omit sums) while
their concurrent fragments include non-determinism and deadlock.
Wadler [34] presents a process calculus, called CP, similar to that of
Caires and Pfenning, but based on classical rather than intuitionis-
tic linear logic. He also gives a functional calculus, called GV, and
similar to that of Gay and Vasconcelos. He shows a type-preserving
translation from GV to CP; however, his GV is less expressive than
CP. Our prior work [26] introduces a more expressive variant of GV,
based on Wadler’s, and gives both a direct semantics and semantics-
preserving translations to and from Wadler’s CP.

Recursive and Corecursive Definition. The interpretation of re-
cursive data types, and their connection to recursive functions, has
been studied extensively; we highlight the direct precursors of our
approach. Goguen et al [21] proposed initial algebras and their cor-
responding folds as a means for understanding recursive data types
and their use. Meijer et al. [29] characterized the use of both folds
and unfolds, among other patterns, in the definition of recursive
functional programs. The coincidence of least and greatest fixed
points for data type constructors in many models was first observed
by Freyd [19]; he argues that this observation justifies the use of
such fixed points for recursive data types. Baelde and Miller [4]

first described an extension of linear logic with induction and coin-
duction, encoded using the exponential modality and second-order
quantification. Baelde [3] treats induction and coinduction without
encoding; in particular, he gives a cut reduction rule for recursive
and corecursive terms, and shows cut elimination directly.

Recursive Session Types. There have been several recent devel-
opments of recursive session types and their relationship with linear
logic. We highlight three closely related to our development.

Toninho et al [32] present a system with recursive session types
based on intuitionistic linear logic extended with corecursion. They
arrive at a similar (albeit intuitionistic) typing discipline for core-
cursive session types to ours (§2.3), and give a direct proof of termi-
nation for the resulting system (without encoding). However, their
approach differs from ours in several significant ways. First, they
treat recursive processes as primitive, and so do not expose the con-
nection with recursive data types. In contrast, we believe that the
parallels with data types (and thus, our ability to present a simple
core calculus) is one of the principal benefits of our approach. One
consequence is that they have only corecursive processes (ν!, ν? in
our notation), but not recursive processes (µ?, µ!) nor the possibil-
ity of identifying greatest and least fixed points. Finally, our session
types are classical, while theirs are intuitionistic. One consequence
of our approach is that we are explicit about the role of duality, and
thus identify a new notion of duality for recursive session types,
while their notion of duality is implicit in the type system. We see
the similarities, despite theoretical and methodological differences,
as indicative of the strength of both approaches.

Dardha [16] gives an encoding of recursive session-typed π-
calculus into recursive (non-linear) π-calculus, and shows that this
encoding preserves both typing and semantics. Her encoding is
based on self-referential replicated processes, and thus supports ar-
bitrary non-termination, while not attempting to guarantee dead-
lock or livelock freedom. She adopts a coinductive definition of
duality from Bernardi et al. [8], which relies on partially unfolding
recursive types at each computation of their duals.

Bono and Padovani [10] and Bernardi and Hennessy [6] inde-
pendently observed that the standard definition of duality for re-
cursive session types fails when recursion occurs in a carried type.
Bono et al [11] present a session-typed functional language with
self-dual recursion. They do not attempt to enforce termination or
distinguish recursion and corecursion, but do present a definition
of duality similar to the one that we propose for self-dual recursive
session types (§3.2). Bernardi et al [8] systematically study several
duality relations, and propose a notion of session typing indepen-
dent of the particular duality relation. They also give a coinductive
characterization of duality, and suggest a syntactic instance of their
characterization. A particular concern of their work, absent from
ours, is subtyping: a process may offer more choices than those
from which its partner selects. However, their definitions are more
complex than ours even without considering subtyping; in particu-
lar, they rely on partially unfolding recursive types in each compu-
tation of their duals.

8. Future Work
We have presented a core concurrent linear λ-calculus with recur-
sive and corecursive data types, and shown how to encode recursive
and corecursive session types and processes in this calculus. We
have shown that our type system guarantees termination and lock
freedom, giving modular proofs which can easily be extended to en-
compass additional features. We have given a natural, semantically
justified approach to extending our system to non-terminating (but
still productive) computation. Finally, we have related our calculus
to a process calculus based on classical linear logic with induction
and coinduction, giving strong logical foundations to our work.

The model of concurrency in µGV (like much of the work on
logically founded session types) is somewhat limited. By ruling
out deadlock, livelock, and in particular data races, it also rules
out interesting forms of concurrency. For instance, there is no way
of modeling a non-deterministic stateful service such as an online
book store in which it should be possible for one customer to ob-
serve that a different customer bought the last copy of a book. This
raises the question: can the logically founded approach be extended
to encompass more realistic forms of concurrency? Recently, Atkey
et al. [2] demonstrated that conflating dual propositions in a process
calculus based on classical linear logic captures non-determinism,
shared state, and more expressive concurrency patterns. On the one
hand we would like to transfer these results to GV. On the other
hand we would we would like to transfer ideas for the current pa-
per to extend the work of Atkey et al. to incorporate conflated fixed
points.

While the development of µGV in this paper is largely theo-
retical, we believe it can also inform practical implementations of
session types, including our implementation of session types for
the Links web programming language [31]. Indeed, the Links im-
plementation of session types is based on a core calculus FST (Sys-
tem F with Session Types), a polymorphic variant of GV [27]. We
would like to investigate the relationship between µGV with FST,
while also taking into account practical considerations.

In this paper we have focused on binary session types. Carbone
et al. [14] give a logical account of multiparty session types based
on CP. It would be interesting to adapt this work to the µGV setting
by following our general approach to relating variants of CP and
GV.

Acknowledgments. Thanks to Giovanni Bernardi, Ornela Dardha,
Simon Fowler, Philip Wadler, and the anonymous referees for
helpful feedback. This work was funded by EPSRC grant num-
ber EP/K034413/1.

References
[1] S. Abramsky. Proofs as processes. Theor. Comput. Sci., 135(1):5–9,

1994.

[2] R. Atkey, S. Lindley, and J. G. Morris. Conflation confers concurrency.
In S. Lindley, C. McBride, P. W. Trinder, and D. Sannella, editors, A
List of Successes That Can Change the World - Essays Dedicated to
Philip Wadler on the Occasion of His 60th Birthday, volume 9600 of
Lecture Notes in Computer Science, pages 32–55. Springer, 2016.

[3] D. Baelde. Least and greatest fixed points in linear logic. ACM Trans.
Comput. Logic, 13(1):2:1–2:44, Jan. 2012.

[4] D. Baelde and D. Miller. Least and greatest fixed points in linear logic.
In N. Dershowitz and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, 14th International Conference,
LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Proceedings,
volume 4790 of Lecture Notes in Computer Science, pages 92–106.
Springer, 2007.

[5] G. Bellin and P. J. Scott. On the π-Calculus and linear logic. Theoret-
ical Computer Science, 135(1):11–65, 1994.

[6] G. Bernardi and M. Hennessy. Using higher-order contracts to model
session types (extended abstract). In P. Baldan and D. Gorla, editors,
CONCUR 2014, volume 8704 of Lecture Notes in Computer Science,
pages 387–401. Springer, 2014.

[7] G. Bernardi and M. Hennessy. Using higher-order contracts to model
session types. CoRR, abs/1310.6176v4, 2015.

[8] G. Bernardi, O. Dardha, S. J. Gay, and D. Kouzapas. On duality
relations for session types. In Trustworthy Global Computing - 9th
International Symposium, TGC 2014, Rome, Italy, September 5-6,
2014. Revised Selected Papers, pages 51–66, 2014.

[9] R. S. Bird and O. de Moor. Algebra of programming. Prentice Hall
International series in computer science. Prentice Hall, 1997.

[10] V. Bono and L. Padovani. Typing copyless message passing. Logical
Methods in Computer Science, 8(1), 2012.

[11] V. Bono, L. Padovani, and A. Tosatto. Polymorphic types for leak
detection in a session-oriented functional language. In D. Beyer and
M. Boreale, editors, Formal Techniques for Distributed Systems - Joint
IFIP WG 6.1 International Conference, FMOODS/FORTE 2013, Held
as Part of the 8th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2013, Florence, Italy, June 3-5,
2013. Proceedings, volume 7892 of Lecture Notes in Computer Sci-
ence, pages 83–98. Springer, 2013.

[12] M. Boreale. On the expressiveness of internal mobility in name-
passing calculi. In U. Montanari and V. Sassone, editors, CONCUR
’96, Concurrency Theory, 7th International Conference, Pisa, Italy,
August 26-29, 1996, Proceedings, volume 1119 of Lecture Notes in
Computer Science, pages 163–178. Springer, 1996.

[13] L. Caires and F. Pfenning. Session types as intuitionistic linear propo-
sitions. In P. Gastin and F. Laroussinie, editors, CONCUR 2010 -
Concurrency Theory, 21th International Conference, CONCUR 2010,
Paris, France, August 31-September 3, 2010. Proceedings, volume
6269 of Lecture Notes in Computer Science, pages 222–236. Springer,
2010.

[14] M. Carbone, S. Lindley, F. Montesi, C. Shürmann, and P. Wadler.
Coherence generalises duality: a logical explanation of multiparty
session types. In CONCUR. LIPICS, 2016. To appear.

[15] O. Danvy and L. R. Nielsen. A first-order one-pass CPS transfor-
mation. In M. Nielsen and U. Engberg, editors, Foundations of Soft-
ware Science and Computation Structures, 5th International Confer-
ence, FOSSACS 2002. Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2002 Grenoble, France,
April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes in Com-
puter Science, pages 98–113. Springer, 2002.

[16] O. Dardha. Recursive session types revisited. In Proceedings Third
Workshop on Behavioural Types, BEAT 2014, Rome, Italy, 1st Septem-
ber 2014., pages 27–34, 2014.

[17] O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited.
In D. D. Schreye, G. Janssens, and A. King, editors, Principles and
Practice of Declarative Programming, PPDP’12, Leuven, Belgium -
September 19 - 21, 2012, pages 139–150. ACM, 2012.

[18] A. Filinski. Linear continuations. In R. Sethi, editor, Conference
Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Albuquerque, New Mexico,
USA, January 19-22, 1992, pages 27–38. ACM Press, 1992.

[19] P. Freyd. Algebraically complete categories. In G. R. Aurelio Carboni,
Maria Cristina Pedicchio, editor, Category Theory - Proceedings of
the International Conference held in Como, Italy, July 22–28, 1990.
Springer, 1990.

[20] S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(01):19–50,
2010.

[21] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial
algebra semantics and continuous algebras. J. ACM, 24(1):68–95,

1977.

[22] K. Honda. Types for dyadic interaction. In E. Best, editor, CON-
CUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings, volume 715
of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.

[23] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
C. Hankin, editor, ESOP, volume 1381 of Lecture Notes in Computer
Science, pages 122–138. Springer, 1998.

[24] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-
calculus. ACM Trans. Program. Lang. Syst., 21(5):914–947, 1999.

[25] J. Lévy and L. Maranget. Explicit substitutions and programming
languages. In Foundations of Software Technology and Theoretical
Computer Science, 1999, volume 1738 of LNCS. Springer, 1999.

[26] S. Lindley and J. G. Morris. A semantics for propositions as ses-
sions. In Programming Languages and Systems - 24th European Sym-
posium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, pages 560–584, 2015.

[27] S. Lindley and J. G. Morris. Lightweight functional session types,
2015. Draft http://homepages.inf.ed.ac.uk/slindley/
papers/fst-draft-february2015.pdf.

[28] B. Liskov and L. Shrira. Promises: Linguistic support for efficient
asynchronous procedure calls in distributed systems. In Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Language
Design and Implementation, PLDI ’88, pages 260–267, New York,
NY, USA, 1988. ACM.

[29] E. Meijer, M. M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In J. Hughes, editor,
Functional Programming Languages and Computer Architecture, 5th
ACM Conference, Cambridge, MA, USA, August 26-30, 1991, Pro-
ceedings, volume 523 of Lecture Notes in Computer Science, pages
124–144. Springer, 1991.

[30] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In C. Halatsis, D. G. Maritsas, G. Philokyprou,
and S. Theodoridis, editors, PARLE ’94: Parallel Architectures and
Languages Europe, 6th International PARLE Conference, Athens,
Greece, July 4-8, 1994, Proceedings, volume 817 of Lecture Notes
in Computer Science, pages 398–413. Springer, 1994.

[31] The Links Team. Links, 2016. http://groups.inf.ed.ac.uk/
links.

[32] B. Toninho, L. Caires, and F. Pfenning. Corecursion and non-
divergence in session-typed processes. In Trustworthy Global Com-
puting - 9th International Symposium, TGC 2014, Rome, Italy,
September 5-6, 2014. Revised Selected Papers, pages 159–175, 2014.

[33] V. T. Vasconcelos, S. J. Gay, and A. Ravara. Type checking a multi-
threaded functional language with session types. Theor. Comput. Sci.,
368(1-2):64–87, 2006.

[34] P. Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–
418, 2014.

http://homepages.inf.ed.ac.uk/slindley/papers/fst-draft-february2015.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/fst-draft-february2015.pdf
http://groups.inf.ed.ac.uk/links
http://groups.inf.ed.ac.uk/links

	Introduction
	Functional GV
	Functional GV
	Recursion
	Corecursion and Nontermination

	Concurrent GV
	Communication and Concurrency
	Recursion, Duality, and Session Types

	Communication with Concurrency
	Encoding Concurrent Features
	Concurrent Semantics

	Communication without Concurrency
	The CP Language
	Syntax
	Semantics
	Translations between CP and GV

	Related Work
	Future Work

