
2017 2nd International Conference on Computer Science and Technology (CST 2017)
ISBN: 978-1-60595-461-5

NextUI Technique-Based Internet Financial Business Client

Liou YUANa*, Jin-yuan ZHANG and Gang YU

yuanliou@cmbc.com.cn, Beijing, China
zhangjinyuan@cmbc.com.cn, Beijing, China

yugang@cmbc.com.cn, Beijing, China
ayuanliou@cmbc.com.cn
*Corresponding author

Keywords: XML, NextUI, Declarative interface language, Internet financial business
client, UI

Abstract. This paper proposes a NextUI model through XML graphical interface
description language upon the basis of MyGUI open-source model, it achieves the
separation of user interface design and business logic, and solves the problem of
cross-platform problem as well, which dramatically improves the efficiency of
maintenance and update for financial application system. The practical project reveal
that our NextUI framework can make the complex financial business UI requirement
become simple and fast to complete, resulting in decline on the risk and cost of system
development. Also, it has good portability and reproducibility.

Introduction
With the innovation of financial business, the graphical user interface of financial

front-end business system must satisfy higher demand, it might be flexible and
on-demanded. During the entire process of development on online financial client, the
time taken by transaction interface development costs a larger proportion.
Traditionally, The development model based on a variety of instructional languages,
e.g. C++, Java, etc., not only requires developers to be familiar with the programming
language graphics library and focus on the process of interface generation, but also
makes the interface code and business logic code mixed, leading to difficulties in
system testing, maintenance, inadequateness of rapid changes in business[1,2].
Traditional C++ interface models, such that MFC is built on the Windows API, it can
make the programmer work easily, generate smaller program, bring higher
programming efficiency, as well as provide object-oriented programming.
Nevertheless, the generated interface looks ugly, the executable program requires MFC
runtime to run properly and does not support cross-platform; QT can support
cross-platform, object-oriented completely and expanding easily, allowing component
programming, however, its library is relatively strong and needs to cut off when
necessary, hence the compilation is slow and widget efficiency is small; GTk + is an
open-source framework model with the properties of good design, flexibility,
scalability and comfort international and local supporting, including supporting on
XML interface language description, however, GTK model is very sophisticated and
hard to employ. For traditional Java interface models, although AWT is fast and stable
with less resources, it is not extensible, failing to provide important components such as
tables and trees, also the buttons cannot support images; SWT has a wealth of
component types and component features, as well as responses fast with less memory

729

consumption, but it does not support cross-platform, portability and extensibility,
function cannot guarantee to be stable as well, non-windows platform performance is
poor; Swing has a wealth of component types, as well as good flexibility, scalability
and compatibility, it follows the MVC model, enabling the separation of business logic
and interface design, and supports cross-platform with adequate compatibility, but
Swing occupies more memory resources to degrade its performance[4].

In contrast, the declarative interface language only requires the programmer to
describe the interface as a separate document, then it makes the runtime engine
interpreting document into an interface. XML is a markup-based structured language
with good scalability, structuration and format consistency of data description[5,6]. As
a meta-language, it provides general syntax and structure to describe other
domain-related languages. Since XML has the neutrality of language and
implementation, it keeps in line with the cross-platform, and makes the interface
description statement adequately separate from the logic implementation code. In
recent years, XML-defined declarative interface language-XML UI technology has
become a hot issue, XML-based interface description languages (UIDL) have emerged
in a large number. The UIML proposed by the Virginia Human-Computer Interaction
Technology Center implements a cross-platform interface description mechanism. The
International Information Technology Standards Committee presents AAIML aiming
at equipment independence. Microsoft has proposed XAML and applied it to the Vista
interface and Silverlight development. Adobe's Flex technology also makes full use of
XML declarative interface description and development solution. Mozilla has
developed XUL and utilized by the fireFox browser[7].

At present the open source platform has emerged a lot of XML-based GUI model,
such that, CEGUI is powerful but too large, thus it is complicated to use. MYGUI [3] is
an efficient, lightweight, flexible model, but it is vulnerable to launch multiple
languages. To address the problems confronted with financial network transaction
client in development and maintenance, upon the basis of MYGUI open-source model,
we study the NextUI model and successfully apply it to the development of a bank's
online banking assistant client project. NextUI model realizes the separation between
interface and logic, and supports cross-platform simultaneously.

XML - Based Graphical User Interface Description
Graphical user interface, as a human-computer interaction mechanism, has become an
essential component of present software, and the development of graphical user
interface language can be divided into two categories: instructional language and
declarative language. The instructional language asks the programmer to explicitly
indicate how the interface is generated, such as C++ and Java interface code that
require the programmer to be familiar with the programming language's graphics
library, which often causes the interface code to be mixed with the business logic code,
as well as makes software maintenance difficult. The declarative language only
requires the programmer to specify what is generated on the interface and describes the
interface as a separate document, then it interprets the intermediate language as an
interface presented to the user by the parsing engine at runtime.[9] In such a way, the
interface code is independent of the business logic code and maintenance costs decline
validly.

XML is a markup-based structured language with good scalability, structuration and
format consistency of data description[10]. As a meta-language, it provides general
syntax and structure to describe other domain-related languages[8]. The interface

730

elements of the data structure and display are described by XML so that to separate the
data structure and display phase, this greatly improves the performance efficiency; The
use of XML to describe the interface elements also defines the self-description
interface of the interface elements, making it is possible to reuse the code and interface
and to construct the interface. Figure 1 shows the relationship among user interface,
business logic and controller in declarative interface description language. The user
interface only describes the interface elements, business logic is responsible for the
realization of background business, while the controller is responsible for responding to
user requests and mapping user action into business logic.

Figure 1. User interface, business logic, controller diagram.

Figure 2 states the implementation of graphical interface description model based on
XML, XML description of the interface elements and XML business data are parsed by
parser or rendering engine, and displayed in the interface.

Figure 2. Graphical interface description model.

XML Graphical User Interface Description Method Based NextUI model
The NextUI model is a graphical user interface based on the open-source UI model
MyGUI. It concludes following characteristics: i) interface and logic are separated,
layout is flexible and diverse; ii) built-in commonly used controls; iii) support container
properties and custom controls; iv) support png / gif / jpg / bmp and other image
formats; v) support for alpha blending and image transparency; vi) support the dynamic
hue transformation; vii) support plug-in system; viii) support a variety of animation
effects; ix) possess powerful layout, resources and other management system; x) have

request

update

notify

query

Controller

business
logic

user
interface

select

XML interface
description

XML
business data

rendering engine

display

731

powerful event handling mechanism; xi) support hardware acceleration and rectangle
Drawing technology; xii) support for dual engines (DirectX and OpenGL); xiii) support
cross-platform.

Some of the modeling elements and XML descriptions in NextUI are as follows:
(1) Layout: that UI interface elements of the typesetting information, XML is
described as follows:
<NEXTUI type="Layout">
<Widget type="StaticImage" skin="StaticImage" position="215 300 371 98"
align="Center" layer="Main">
<Property key="Image_Resource" value="pic_AccountsBack"/>
<Property key="Widget_NeedMouse" value="true"/>
</Widget>
......
</NEXTUI>
(2) Skin: Description of the graphical interface elements how to show, XML
description is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<NEXTUI type="Resource" version="1.1">
 <Resource type="ResourceSkin" name="CheckBoxSkin" size="23 21"
texture="NEXTUI_BlueWhiteSkins.png">
 <BasisSkin type="SubSkin" offset="0 0 21 21" align="Left Top">
 <State name="disabled" offset="2 2 21 21"/>
 <State name="normal" offset="2 24 21 21"/>
 <State name="highlighted" offset="2 46 21 21"/>
 <State name="pushed" offset="2 68 21 21"/>
 <State name="highlighted_checked" offset="2 134 21 21"/>
 <State name="pushed_checked" offset="2 156 21 21"/>
 </BasisSkin>
 ……
 </Resource>
 ……
</NEXTUI>
(3)Theme : used to set the theme of the use of the skin, XML is described below
 <?xml version="1.0" encoding="UTF-8"?>
 <NEXTUI>
 <Tag name="NEXTUI_Theme_Texture">core.png</Tag>
 <Tag name="NEXTUI_Theme_Button_ColourNormal">#000000</Tag>
 <Tag name="NEXTUI_Theme_Button_ColourPushed">#000000</Tag>
 </NEXTUI>
(4)Template: the essence is UI layout, it describes a set of control layout information.
The template abstracts the repetitive things, making the reuse more convenient.
<?xml version="1.0" encoding="UTF-8"?>
<NEXTUI type="Resource">
 <Resource type="ResourceLayout" name="CheckBox" version="3.2.0">
 <Widget type="Widget" skin="CheckBoxSkin" position="20 20 23 21"
name="Root">
 <Property key="TextAlign" value="Default"/>
 <Property key="FontName" value="Default"/>
 <UserString key="LE_TargetWidgetType" value="Button"/>

732

 </Widget>
 </Resource>
 <Resource type="ResourceLayout" name="RadioButton" version="3.2.0">
 <Widget type="Widget" skin="RadioButtonSkin" position="20 20 21 20"
name="Root">
 <Property key="TextAlign" value="Default"/>
 <Property key="FontName" value="Default"/>
 <UserString key="LE_TargetWidgetType" value="Button"/>
 </Widget>

</Resource>
……

</NEXTUI>
(5)Layer: Used to set the interface vertical layout information. The XML
representation of the layer is:
 <?xml version="1.0" encoding="UTF-8"?>
 <NEXTUI type="Layer" version="1.2">
 <Layer type="SharedLayer" name="Wallpaper">
 <Property key="Pick" value="false"/>
 </Layer>

<Layer type="OverlappedLayer" name="Overlapped">
<Property key="Pick" value="true"/>
</Layer>

(6)Font: Used to define the font used by the interface, the XML representation of the
font is as follows, describes the shared layer, the overlapping layer font type:
 <?xml version="1.0" encoding="UTF-8"?>
 <NEXTUI type="Resource" version="1.1">
 <Resource type="ResourceTrueTypeFont" name="font_simhei.14">
 <Property key="Source" value="simhei.ttf"/>
 <Property key="Size" value="16"/>
 <Property key="Resolution" value="50"/>
 <Property key="Antialias" value="false"/>
 <Property key="OffsetHeight" value="0"/>

<Codes>
 <Code range="33 126"/>
 <Code range="8216 8217"/>
<Code range="8230"/>
<Code range="12289 12290"/>
<Code hide="128"/>
<Code hide="1026 1039"/>
<Code hide="1104"/>
</Codes>
</Resource>
</NEXTUI>

Each interface element in the NextUI model is a container, and the container is
composed of a basic control or other container. The above key modeling elements can
be expressed as two independent modules, spatial information and visual information.
Layer, layout, template are representation of space information of the interface: Layer
is a vertical layout, the layout can use the template, the template can also contain layout,
templates and layouts are included; Themes and fonts provide material for the skin.

733

Skin control visual information, layout control spatial information, and the two together
form the final visual effects.

Figure 3. Interface modeling key elements of the relationship diagram.

NextUI Framework Adopted in Network Financial Transaction Client
Development
Most of the network financial clients utilize the traditional UI model. Currently, the
traditional UI model performs poorly with respect to security, interface flexibility and
stability. The interface designed by the model is user window hierarchy, Figure 4
describes the traditional UI design framework, This framework has many limitations:
UI library control depends on the system resources, resulting in cross-platform cannot
be achieved; Thanks to the scenario that interface and logic are not separated, when the
UI interface is adjusted, the application needs to be re-encoded, compiled, installed,
leading to high maintenance overhead; Interface display is not flexible enough, and
security is poor.

Figure 4. Traditional UI design model.

OS API

User Interface

Function m
odule 1

Function m
odule 2

Function m
odule 3

Function m
odule 4

Function m
odule 6

Function m
odule 5

Visual information

Spatial information

layout

skin

theme

template

font

layer

734

The NextUI model solves the problems in the traditional UI model above. First,
NextUI uses XML-based graphical interface description to completely separate the
interface from business logic; NextUI supports container features and custom UI
controls without relying on system resources, thus achieves cross-platform; While
adjusting the UI interface, without re-encoding and other steps, we just need update the
interface UI configuration file, and maintenance costs can also be reduced
correspondingly.

Figure 5 presents the design framework for financial network client based on
NextUI, which is a stable, powerful bottom built on the Windows system API and
NextUI engine; Multi-task manager is used in application layer to coordinate the
different work services to ensure the orderly and smooth operation of the program;
Resources manager is used to manage the GUI and other resources; Functional modules
are designed independently to reduce the coupling as much as possible, so as to ensure
the follow-up extension and scalability; The interface and logic are designed to separate
in GUI part, guaranteeing layout flexible and diverse, easy to modify and to expand;
This GUI interactive system can be ported to Mac, iOS, Android, Linux platform, and
achieve cross-platform features; The clients support all versions of Windows OSs from
XP to 10, and compatibility works well.

Figure 5. NextUI design framework.

The rendering engine-based UI model has undergone three generations of change.
The first generation of UI model uses browser kernel as render engine, it suffers from
vulnerability. The second-generation model adopts custom GUI kernel; however, it still
relies on system resources. The third generations of UI model customize controls and
engines, and achieves the separation of business and logic. Table 1 compares the three
generations of UI models, which assumes that the first-generation UI model maintains
one interface change as one cycle. If the first-generation UI model maintains one
interface change for two weeks, furthermore, the efficiency of the maintenance of the
second-generation UI model can be doubled, only 1 week, additionally, the NextUI
model can be doubled than the second-generation UI model, just 0.5 weeks.

GUI

Resource
Manager

Multi-Tas
kManager

Dual Render Device System

DirectX、OpenGL Platform

Function Kernel Layer

NextUI Windows API

Online
banking

environment

Certificate
management

Small
payment

Quick link

Security data
collection

Advertising
push

…

735

Table 1. UI model comparison.

Figure 6 is the main interface of an online banking assistant client using NextUI
model. The interface layout of this client is more flexible, and interface adjustment can
be conducted without modifying the main program. The usage of Modular interface
layout can present the most concerned information to user. It is easy to provide users
with Internet-like operating experience. A separate advertising module is provided to
facilitate the bank's business promotion; Interface layout can be flexibly expanded to
facilitate the follow-up new features; interface effect is more abundant, which includes
translucent display, state disk of various dynamic effects, Page, function blocks,
buttons and other progressive movement to show and hide the effects of animation, the
effect of transparency gradient and page transparency asymptotic hiddenness and
appearance, etc. Basic functions are fully upgraded. Maintenance of USBKey driver
and online banking control are comprehensively upgraded, control is more Flexible;
Client online banking environment and other strategies are configured and released by
server, which effectively reduces the maintenance costs.

Figure 6. main interface of online banking assistant client implemented with NextUI.

736

Conclusion

Taking into account XML is a self-explanatory and self-descriptive language, based
on the XML graphical user interface description, this paper developed the NextUI
model upon the basis of MyGUI open-source model, and achieved good application
effect in a bank online banking assistant client project. The practice scenario shows that
the NextUI model realizes the separation of transaction interface design and business
logic to support the parallel development fashion of interface and logic. The developed
user interface is independent on the system wherein it is located, and it is completely
free from the background system, correspondingly, the cross-platform problem is
solved as well. Therefore, rapid changes and sophisticated financial business UI
requirement can be simplified and fast for achievement, reducing the risk and cost of
system development, enabling good portability and reproducibility.

References

[1] QH Meng. 2009. Research on financial transaction client framework based on RCP
and XML UI technology [D]: [Master] Hefei: University of Science and Technology of
China.

[2] QH Meng. 2008. Transaction-based language and run-time engine based on XML
[J]. Journal of Computer Applications, (11): 57-61. http://MYGUI.info/

[3] H Huang, H Lin, B Wang. 2011. A Graphical User Interface XML Description
Method and Tool Development [J]. Journal of Computer Applications and Software, 28
(10): 198-202.

[4] W Wen, SJ Cao. 2008. A description of the expression of GUI - based user
interface GUI without coupling[J]. China Water Transport, 6 (1): 189-191.

[5] LK Wang. 2011. Design and Implementation of Dynamic Graphic Interface Based
on Automatic Generation of XML [D]: [Master]. Chengdu: University of Electronic
Science and Technology of China.

[6] YJ Qi, JL Li. 2007. Research on Application of Graphic Interface Development
Language XUL [J]. Computer Technology & Development, 17 (3): 233-235.

[7] T Channonthawat, Y Limpiyakorn. 2016. Model Driven Development of Android
Application Prototypes from Windows Navigation Diagrams[C]. International
Conference on Software Networking, 2016:1-4.

[8] NA Almonte, WR Stubbs. 2014. Multi-monitor, multi-JVM java GUI
infrastructure with layout via XML. Free Patents Online.

[9] N Souchon, J Vanderdonck. 2003. A Review of XML—Compliant User Interface
Description Languages[J], Lecture Notes In Computer Science,2844,39 1-40 1.

737

