
2017 2nd International Conference on Computer Science and Technology (CST 2017)

ISBN: 978-1-60595-461-5

Thin Hypervisor-Based User Authentication
Mechanism for Linux Security Modules

Bin YAN1,2, Pei ZHAO1, Heng-tai MA1,a* and Jian ZHAI1
1Institute of Software Chinese Academy of Sciences, Beijing, China

2University of Chinese Academy of Sciences, Beijing, China
ahengtai@iscas.ac.cn
*Corresponding author

Keywords: User authentication, RTA, Thin hypervisor, Bit visor, LSM.

Abstract. LSM (Linux Security Modules) has been developed as a lightweight,
general purpose, access control framework for the mainstream Linux kernel, many
tools employ LSM to implement mandatory access control of processes. However,
when administrators intend to employ LSM to control a user’s behavior instead of just
a process’s, things become more complicated. Since a user’s behavior is reflected by a
variety of processes, the control of a user turns into the control of processes associated
with the user, which needs the ability to match up a process’s identity to a particular
user. Unfortunately, without a strong user authentication mechanism, malicious users
can easily bypass the behavior control framework by juggling the identity of a
process. In this paper, a practical, efficient, secure mechanism, namely RTA
(Real-Time Authentication) is proposed to add real-time user authentication support
for traditional LSM. The proposed mechanism employs the ID management
framework in a thin hypervisor, BitVisor. At last, a new security module called EWL
(Executable White List) is designed and implemented based on RTA and LSM, the
experimental results show that EWL ensures security and has small system overhead.

Introduction
LSM [1] framework provides lots of security hooks all over Linux kernel, which

enable the security modules to do access control in an elegant way with very fine
granularity. After the birth of LSM, many well-designed security modules have been
developed based on it. There are four standard Linux Security Modules: Security
Enhanced Linux (SELinux) [2], AppArmor [3], SMACK and TOMOYO, all of them
focus on controlling processes’ behavior to achieve better security. In contrast, we
decided to provide administrators a tool to control users’ behavior for the following
reasons:

(1) Users with different privileges run an application in different ways. It’s not wise
to apply the same restriction of a process to all users. For example, a developer may
require higher Internet bandwidth and more memory than an ordinary user when using
the same web browser.

(2) A particular user may not be allowed to run some particular applications under
special circumstances. For instance, children are not allowed to play computer games
when they are supposed to study online.

In a word, it is insufficient to control processes’ behavior without attaching users’
identity to them. Current tools like AppArmor and SELinux are not able to ensure an
ideal run time environment when administrators want to treat each user individually.

265

To implement such a tool, we need to attach a user to a particular process, that is, we
have to authenticate the user and get the identity of the process.

Linux authentication was traditionally dependent on the passwd and shadow files.
Applications like login and su run with root privilege in order to access authentication
information, and set or alter the uids of a process. There are currently three uids in a
process’s task_struct: (1) the real user ID (taken from the entry in the passwd file
when users log in), (2) the effective user ID (determines users’ file access
permissions), (3) the saved set-user-ID (used for restoring privileges). When a user
enters his name and password after system boots up, the login application creates a
shell process for the user and sets all three uids to the uid it gets from passwd file.

Applications like login and su are called setuid-to-root binaries, which indicate
such applications belong to the root user and their setuid bit is set. Once such
applications are executed by ordinary users, the processes’ effective user ID will be
set to root so that processes can run with root privilege. Malicious users can turn
themselves into super user as long as they exploit any kind of security flaw in
setuid-to-root binaries. Trusted, setuid-to-root binaries have been a substantial,
long-lived source of privilege escalation vulnerabilities on UNIX systems. Chen et al.
[4] show thatmany privilege escalation attacks go through setuid-to-root binaries,
even on SELinux or AppArmor. Once a malicious user obtains the root privilege, he
can easily change the identity of a process through setuid functions. As a result, the
real user ID we get from task_struct can never be trusted and the policy rules we made
in Linux security modules will be invalid.

In this paper, a novel mechanism to add user authentication for Linux security
modules is introduced, supported by the ID management framework of a thin
hypervisor, BitVisor [5]. Also, the implementation of a new security module called
EWL is briefly presented. In this new module, administrators make policy rules to
restrict users to execute programs. By employing the user information provided by
BitVisor, EWL can ensure better enforcement of the security policy with just little
impact to Linux kernel.

The remainder of this paper is organized as follows. In the 2nd section, the existing
solutions to the problem of authentication mentioned earlier are discussed. Then in the
3rd section, the proposed authentication mechanism namely RTA is introduced.
Section 4 shows the implementation of RTA and the prototype of EWL. Section
5presents the experimental results and security analyses of our designed architecture.
Some future works is mentioned in section 6. Section 7 presents the conclusions.

Related Works
Privilege escalation problem associated with setuid-to-root binaries is also called
setuid problem. Actually, with proper usage and careful programming, the risk of
setuid-to-root binaries can be contained. For example, programmers can use
uid-setting system calls (system calls that modify user IDs) to drop and restore
privilege to avoid privilege escalation. However, uid-setting system calls such as
setuid function are poorly designed, insufficiently documented, and widely
misunderstood and misused, which has caused many security vulnerabilities in
application programs.

There have been some solutions to the setuid problem, one of which is Linux
capability system [6]. Linux capability system was introduced to subdivide the actions
typically associated with the super user to limit the security risk of applications which
required a particular privileged operation. However, this approach does not reduce the

266

risk for applications such as login and su which require the capability to change the
user identity of a process. The existing capability system does not govern which user a
process may change its identity to. In other words, the same vulnerability described
earlier exists for all applications involved with authentication such as login and su. By
the way, the same problem exists in project Protego [7], which spares no effort to
deprivilege privileged codes.

Hao Chen, David Wagneret al. [8] provided some advices for programmers to
avoid the setuid problem when they are using uid-setting system calls. They also came
up with an improved API for privilege management. The API was implemented as
wrapper functions to the uid-setting system calls and offered the ability to perform
each of privilege management tasks directly and easily, programs with such API
should have a secure usage of uid-setting system calls. But to use this implementation,
an application must meet some requirements, one of which is that the process does not
make any uid-setting system calls that change any of the three user IDs. This
limitation makes the API incompatible with applications like login and su that need
the ability to change user IDs of a process, which means the API cannot solve the
setuid problem mentioned earlier.

Plan 9 [9] is a distributed operating system designed at Bell Labs to be a next
generation improvement over UNIX. It provides the ability to pass a setuid capability
- a token which may be used by a task owned by one userid to switch to a particular
new userid only once - through the /dev/caphash and /dev/capuse files. Thus,
applications like login and su need not run as the super user. Also, capabilities to
change identity are restricted to specific authenticated identities by the authentication
system. However, the complexity is high because there are various components need
to be implemented before using the authentication mechanism of Plan 9. Also, the
security of the authentication server is not guaranteed.

Proposed Authentication Mechanism
We propose a strong user authentication mechanism for Linux security modules, so
that the user identity problem mentioned earlier will not cause danger to the enforcing
security. This mechanism depends on the ID management framework of BitVisor. The
EWL module we developed employs this mechanism to achieve a better security of
operating system.

BitVisor is designed to enhance the security of computing systems by providing
some transparent security functions. As a Virtual Machine Monitor (VMM), the
lightweight BitVisor can provide protection from unintentional circulation of
information with minimal overhead. Besides the secure data services, BitVisor also
has a complete ID management framework [10,11,12,13], providing strong user
authentication between a VMM and its users by employing smart cards. The
framework mainly employs X.509 public key certificates (PKC) to manage an
employee’s identity of an organization.

267

Figure 1. Comparison between two ways of getting user info for LSM hooks.

Fig. 1 illustrates the comparison between two ways of getting user info for LSM
hooks. There are high risks of getting uid from task_struct for LSM hooks because of
the setuid problem we mentioned earlier. Instead of logging in directly into guest OS
user space, we let users login into BitVisor firstly and store their user info in VMM
address space. After a second boot up, users log in the guest OS with identities
recorded in passwd file. The EWL we implemented will always take the user as the
user logging in BitVisor regardless of the changing of identities in OS user space.
This means in RTA authentication mechanism, LSM hooks can always get trusted
user info every time in need of the identity of current process.

We call the proposed authentication mechanism Real-Time Authentication, because
we don’t cache the user identity info in any place of guest OS address space, which
means there are no way to juggle the user identity after a user logged in. Since EWL
can always get the true identity of the invoker of target process, the proper execution
of our policy can be ensured.

Prototype Implementation
A prototype of EWL based on proposed RTA is implemented. This prototype has the
ability to restrict the execution of programs invoking by some particular users,
according to policy rules made by system administrators. The experiment was taken
on Ubuntu 14.04 with the kernel version of 4.3.3, the latest stable version BitVisor 1.4
is chosen for user authentication. The result shows that EWL in the guest OS works
fine with the user info from BitVisor.
Implementation of RTA
Fig. 2 shows the procedure of user authentication in BitVisor and the usage of RTA
by guest OS. The process of user authentication is a simple challenge and response
authentication procedure. A user inputs a PIN number, and an IC card authenticates
the user. An authentication handshake is executed between the IC card and the ID
management system of BitVisor. BitVisor sends a challenge as R, and the IC card

268

then returns the user’s Public Key Certificate (PKCUSER) and a signature of R((R)USER)
generated by the user’s private key(PrivateKeyUSER). The ID management system
validates the certificate chain using a trust anchor certificate for BitVisor (PKCTTRUST

ANCHOR (VMM)). In addition, the ID management system checks certificate revocation
status by a Certificate Revocation List (CRL). Once authentication is successful, the
user info is stored in BitVisor address space and waits for the call from guest OS.

Figure 2. Implementation of RTA.

Intel VT-X technology is employed to make BitVisor and guest OS talk to each
other. More concretely, we use vmmcall instruction from VMX instruction set to
implement a hypercall. A hypercall to a VMM is like a syscall to Linux kernel. In this
way, guest OS can call a hypercall to get trusted user info stored in BitVisor.
Architecture of EWL
Fig. 3 shows the architecture of EWL. There are three main parts of EWL: (1) an ID
management framework in BitVisor, (2) the behavior control system in guest OS, (3)
the external service modules. The ID management framework in BitVisor provides
trusted user info for EWL. The behavior control system includes a EWL application
(for administrators to make policy rules), a start/stop module (starts the enforced
security or shut it down), and a Linux security module (intercepts and verifies the
behavior according to policy rules). The external service modules include a CA (signs
ELF files), a Time Server (provides trusted time), and a User Manage Server
(manages users).

In EWL project, all users’ names registered in User Manage Server are collected
for administrators of guest operating system to make policy rules of enforced security.
When a user executes a program, the LSM hook in fork function would catch the
action. At this time, the current user’s information stored in BitVisor should be called
and verification according to the policy rules would be executed. In this way,
administrators can control the behavior of an ordinary user.

269

Figure 3. Architecture of EWL.

Experiment and Analysis
Some experiments are done after the implementation of EWL, the results show that
the RTA mechanism can ensure proper execution of policy rules made in EWL with
just small system overhead. Also, the security of RTA is analyzed from different
perspectives.
Experimental Results
There are some typical policy rules made to verify the function of RTA and EWL.
Also, some common applications are executed to test the system overhead when
running over BitVisor. Table 1 shows details of the policy rules.

Table 1. Policy rules made to verify the function of RTA and EWL.

Rule ID Target User Target Program Action

1 Susan Gedit allow to execute

2 Susan Firefox forbid to execute

3 Tim Gedit forbid to execute

4 Tim Firefox allow to execute

In Table 1, each row contains the information of a single rule. The rule ID is the
number of a rule, target user represents the user logged in BitVisor, target program is
what a user tries to execute on the operating system, and the action indicates the
intention of a rule. For example, the rule represented in the first row allows Susan to

270

execute program Gedit, but the rule in the second row forbids Susan to execute
Firefox.

Table 2. The execution results of policy rules

Program BitVisor User OS User Execution Status

Gedit Susan Lily success

Gedit Susan root success

Gedit Tim Lily fail

Gedit Tim root fail

Firefox Susan Lily fail

Firefox Susan root fail

Firefox Tim Lily success

Firefox Tim root success

The execution results of the above policy rules are listed in Table 2. For user Susan,
after she logs in BitVisor, she can always execute Gedit, this is because the policy rule
1 allows her to. But Susan can never execute Firefox according to policy rule 2, even
if she logs in OS as root user. Because of employing user info in BitVisor, the policy
rule won’t be invalid due to the identity tampering in OS, which means the setuid
problem mentioned earlier cannot affect the execution results of policy rules. As for
user Tim, he can always execute Firefox but can never execute Gedit according to
policy rules.

Table 3. Average system overhead when running over BitVisor.

Program Without BitVisor[μs] With BitVisor[μs] Overhead[μs]

Gedit 362.7 3549.3 3186.6

Firefox 229.7 2818.7 2589

VLC 288.2 2704.8 2416.6

gzip 319.7 3089.9 2770.2

Avg. - - 2740.6

A program starts up by fork function to get a process from its parent process and
employs do_execve function to execute the program. To control the start of an
application, we employ the LSM hook hidden in do_execvefunction, in which a
hypercall is used to get user info from BitVisor and make decisions according to
policy rules about whether the application can be run by a particular user. The time
cost of do_execve function is tested in order to show the overhead cost caused by
employing RTA mechanism.

The statistical data obtained is listed in Table 3. Some common applications such as
Gedit and Firefox are chosen to do the experiment. To avoid the influence from
temporary factors, we ran each application ten times and recorded the average time
costs. The result shows that RTA mechanism costs an average value of 2740.6
microseconds system overhead when running applications, which is very small and
acceptable.
Security Analysis
In this section, we focus on the enhanced security about our proposed user
authentication mechanism RTA, which is reflected in the following aspects:

271

Lightweight VMM. The VMM we choose to use is the lightweight BitVisor, also
called parapass-through hypervisor. By using device drivers of the guest OS to handle
devices and eliminating the components for sharing and protecting system resources
among VMs [14], BitVisor is able to minimize the code size of itself. Compared to
traditional hypervisors, BitVisor is at a lower risk of being attacked and has a smaller
system overhead.

Secure Authentication. BitVisor employs smart cards to authenticate users, the
challenge and response authentication procedure is hard for malicious users to crack
into. Also, with the unreadable users’ private key stored in the smart card, it is safer to
use compared to the traditional password way.

Isolated Storage. The user information is stored securely in the safe zone of
BitVisor address space, which is unreachable from guest OS. The hooks employ
hypercall to directly get user information in real time, leaving no room for malicious
users to subvert the user identity.

Safe from OS Attack. BitVisor is in the VMM layer under guest OS, a guest OS
cannot even notice the existence of BitVisor, which means the attacks on guest
operating system are in vain.

Future Work
We focused on providing a trusted user authentication mechanism for Linux security
modules. Based on our proposed authentication mechanism RTA and LSM
framework, an access control project namely EWL was implemented for
administrators so that policy can be put on ordinary users to limit their authority when
execute an ELF file. However, we currently employ just the fork hook in LSM
framework to achieve basic access control, additional hooks applied in EWL project
could make it more functional and helpful.

Conclusion
In this paper, a novel user authentication mechanism for Linux security modules has
been proposed, which is supported by BitVisor ID management framework. By
employing user info from VMM layer in real time, it can be ensured that the security
module get trusted user identity to enforce policy.

We have completed a prototype of access control tool called EWL. Administrators
can configure policy rules through EWL application and put limits on an ordinary
user’s authority to execute an ELF file.

We believe that with more improvements added to the EWL project, it can be better
used by administrators to provide enforcement security to the computer system.

Acknowledgement
The authors would like to thank the reviewers, Kai Li and Gangru Xuefor insightful
comments on earlier drafts of this paper, Jianping Wang for helping the
implementation of RTA mechanism, and Huan Liu for discussing the design of the
architecture of EWL.

This work was supported by National Science and Technology Major Projects of
China (Grant No.2014ZX01029101-002).

272

References

[1] C. Wright, C. Cowan, S. Smalley, J. Morris, et al. Linux Security Modules:
General Security Support for the Linux Kernel, in: USENIX Security Symposium,
2002, pp. 1-14.

[2] S. Smalley, C. Vance, and W. Salamon Implementing SELinux as a Linux
security module, NAI Labs Report. 1 (2001) 139.

[3] M. Bauer. Paranoid penguin: AppArmor in Ubuntu 9, Linux Journal. 2009 (2009)
9.

[4] H. Chen, N. Li, and Z. Mao Analyzing and Comparing the Protection Quality of
Security Enhanced Operating Systems, in: NDSS, 2009, pp. 11-16.

[5] Information on http://www.bitvisor.org/

[6] S. E. Hallyn and A. G. Morgan. Linux capabilities: Making them work, in: Linux
Symposium, 2008.

[7] B. Jain, C.-C. Tsai, J. John, and D. E. Porter Practical techniques to obviate
setuid-to-root binaries, in: Proceedings of the Ninth European Conference on
Computer Systems, 2014, p. 8.

[8] H. Chen, D. Wagner, and D. Dean. Setuid Demystified, in: USENIX Security
Symposium, 2002, pp. 171-190.

[9] A. Ganti. Plan 9 authentication in Linux, ACM SIGOPS Operating Systems
Review. 42 (2008) 27-33.

[10] M. Hirano, T. Okuda, E. Kawai, and S. Yamaguchi. Design and Implementation
of a Portable ID Management Framework for a Secure Virtual Machine Monitor,
Journal of Information Assurance and Security (JIAS), Dynamic Publishers. 2 (2007)
211-216.

[11] M. Hirano, T. Shinagawa, H. Eiraku, S. Hasegawa, et al. Introducing role-based
access control to a secure virtual machine monitor: security policy enforcement
mechanism for distributed computers, in: Asia-Pacific Services Computing
Conference, 2008. APSCC'08. IEEE, 2008, pp. 1225-1230.

[12] M. Hirano, E. Kawai, H. Eiraku, K. Kato, et al. Portable ID Management
Framework for Security Enhancement of Virtual Machine Monitors, INTECH Open
Access Publisher, 2009.

[13] M. Hirano, D. W. Chadwick, and S. Yamaguchi. Use of role based access control
for security-purpose hypervisors, in: 2013 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, 2013, pp. 1613-1619.

[14] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, et al. Bitvisor: a thin
hypervisor for enforcing i/o device security, in: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments,
2009, pp. 121-130.

273

