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[  579 ]

XVII Algebraical Researches, containing a disquisition on N ew ton’s Rule for the Discovery 
o f Imaginary R o o t s , and an allied Rule applicable to a particular class o f Equations, 
together with a complete invariantive determination o f the character o f the Roots of 
the General Equation o f the fifth  Degree, By J. J. S y lv este r , M.A., 
Correspondent o f the Institute o f France, Foreign Member o f the Royal Society o f 
Naples, etc. etc., Professor o f Mathematics at the Royal Military Academy, Woolwich.

Eeceived April 6,— Eead April 7, 1864.

Turns them to shapes and gives to airy nothing 
A local habitation and a name.

(1 )  T h is  memoir in its present form is of the nature of a trilogy; it is divided into 
three parts, of which each has its action complete within itself, but the same general 
cycle of ideas pervades all three, and weaves them into a sort of complex unity. In 
the first is established the validity of N ew to n ’s rule for finding an inferior limit to the 
number of imaginary roots of algebraical equations as far as the fifth degree inclusive. 
In the second is obtained a rule for assigning a like limit applicable to equations of the 
form '%(ax-\-b)m=  0, m being any positive integer, and the coefficients a, b real. In the
third are determined the absolute invariantive criteria for fixing unequivocally the 
character of the roots of an equation of the fifth degree, that is to say, for ascertaining 
the exact number of real and imaginary roots which it contains. This last part has 
been added since the original paper was presented to the Society. I t has grown out 
of a foot-note appended to the second, itself an independent offshoot from the first part, 
hut may be studied in a great measure independently of what precedes, and constitutes, 
in the author’s opinion, by far the most valuable portion of the memoir, containing as it 
does a complete solution of one of the most interesting and fruitful algebraical questions 
which has ever yet engaged the attention of mathematicians (1). I propose in a subse
quent addition to the memoir to resume and extend some of the investigations which 
incidentally arise in this part. The foot-notes are numbered and lettered for facility of 
reference, and will be found in many instances of equal value with the matter in the 
text, to which they serve as a kind of free running accompaniment and commentary.

(*) I  owe my thanks to my eminent friend Professor De M organ for bringing under m y notice, in a marked 
manner, the original question from which all the rest has proceeded. As all roads are said to lead to Eome, so 
I  find, in my own case at least, that all algebraical inquiries sooner or later end at that Capitol of Modern 
Algebra over whose shining portal is inscribed “ Theory of Invariants.”

MDCCCLXIV. 4 I

 on July 19, 2018http://rstl.royalsocietypublishing.org/Downloaded from 

http://rstl.royalsocietypublishing.org/


580 PROFESSOR SYLVESTER ON THE EEAL

P art I .— ON NEWTON’S RULE FOR THE DISCOVERY OF IMAGINARY ROOTS.

(2) In the ‘ Arithmetica Universalis,’ in the first chapter on equations, N ewton has given 
a rule for discovering an inferior limit to the number of imaginary roots in an equation 
of any degree, without proof or indication of the method by which he arrived at it, or the 
evidence upon which it rests(2). Maclaurin, in vol. xxxiv. p. 104, and vol. xxxvi. p. 59 
of the Philosophical Transactions, Campbell(3) in vol. xxxviii. p. 515 of the same, and 
other authors of reputation have sought in vain for a demonstration of this marvellous 
and mysterious rule(4). Unwilling to rest my belief in it on mere empirical evidence, I

(2) It appears to be the prevalent belief among mathematicians who have considered the question, that 
N ewton was not in possession of other than empirical evidence in support of his rule.

(3) Campbell’s memoir is rather on an analogous rule to N ewton’s than on the rule itself, to which he refers 
only by way of comparison with his own. In it the same singular error of reasoning is committed as in the 
notes of the French edition of the * Arithmetiea,’ viz. of assuming, without a shadow of proof, that if each of a 
set of criteria indicates the existence of some imaginary roots, a succession of sets of such criteria must indicate 
the existence of at least as many distinct imaginary pairs of roots as there are such sets (see par. at foot of 
p. 528, Phil. Trans., vol. xxxv.)— much as if, supposing a number of dogs to be making a point in the same 
field, the existence could be assumed of as many birds as pointers.

(4) Mr. A rchibald Smith has obligingly called my attention to W aking’s treatment of the question of N ew

ton’s rule in the ‘ Meditationes Analyticae.’ On superficial examination the reader might be induced to suppose 
that in part 9, p. 68, ed. 1782, W aring had deduced a proof of the rule from the preceding propositions; but on 
looking into the case will find that there is not the slightest vestige of proof, the rule being stated, but without 
any demonstration whatever being either adduced or alleged. In fact, on turning to the preface of this (the 
last) edition of the ‘ Meditationes,’ the reader will find at p. 11 an explicit avowal of the demonstration being 
wanting. After referring in order to Campbell’s, M aclatjrin’s, and N ewton’s rules, as well as his own, for 
discovering the existence of impossible roots, he adds these words:

“ At omnes hse regulse praedictse perraro invenerunt verum numerum impossibilium radicum in sequationibus 
multarum dimensionum et adhuc demonstratione egent; vulgares enim demonstrationes solummodo probant impos- 
sibiles radices in data sequatione contineri, non vero quod saltern tot sunt invenit .”

“ Vera resolutio problematis est perdifficilis et valde laboriosa; cognitum est radices ex possibilitate per 
sequalitatem transire ad impossibilitatem; ergo in generali resolutione hujusce problematis necesse est in venire 
casum in quo radices datae aequationis evadunt aequales; resolutio autem hujus casus valde laboriosa est; et 
consequenter resolutio generalis praedicti problematis magis laboriosa.”

Written in Latin, and when the proper language of algebra was yet unformed, it is frequently a work of 
much labour to follow W aking’s demonstrations and deductions, and to distinguish his assertions from his 
proofs. I  find he agrees with the opinion expressed by myself, that N ewton’s rule will not pene,” as stated 
by N ewton, but only “ perraro,” give the true number of imaginary roots. Like myself, too, in the body of the 
memoir W aring has given theorems of probability in connexion with rules of this kind, but without any clue 
to his method of arriving at them. Their correctness may legitimately be doubted.

[Since the above was sent to press, I have been enabled to ascertain that the great name of E uler is to be 
added to the long list of those who have fallen into error in their treatment of this question: see Institutiones 
Calculi Differentialis, vol. ii. cap. xiii. He says (p. 555, edition of Prony), “ videndum est utrum hsec duo 
criteria (meaning N ewton’s criteria of imaginariness) sint contigua necne; priori casu numerus radicum 
imaginarium non augebitur; posteriori vero quia criteria litteras diversas unumquodque
binas radices imaginarias monstrabit.”

The force of the supposed argument is contained in the words in italics. It is sufficiently met by the ques
tion, why or how the conclusion follows from them? Moreover the letters of two non-contiguous criteria are not 
necessarily prorsus diverse; for two criteria with but a single other intervening between them will contain 
one letter in common.]
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581AND IMAGINARY BOOTS OF EQUATIONS.

have investigated and obtained a demonstration of its truth as far as the fifth degree 
inclusive, which, although presenting only a small instalment of the desired result, I am 
induced to offer for insertion in the Transactions in the hope of exciting renewed atten
tion to a subject so intimately bound up with the fundamental principles of algebra.

Before commencing the inquiry I ought to state that, in addition to the rule for 
detecting the existence of a certain number of imaginary roots, N ewton has given a 
remarkable subsidiary method for dividing this number into two parts, representing 
respectively how many of the positive and how many of the negative roots indicated by 
Descartes’s rule are, so to say, absorbed, and thereby obtains two distinct limits to the 
number of positive and the number of negative roots separately: of the grounds of this 
method, as far as I am aware, no one has even attempted an explanation, nor do I pro
pose here to enter upon i t ; the rule, as I  treat it, may be stated, not in Newton’s own 
words, but most simply as follows:—

I f  the literal parts o f the coefficients o f an equation affected with the usual binomial 
coefficients be a, b, c, d, e . . .  h, k, 1, and i f  we form the successive criteria b2—*ac; c2—b d ; 
d2—ce; . . . ;  k2—hi, or, which is the same thing differently , i f  we write down
the determinants (f) o f all the successive quadratic derivatives o f the given , then
as many sequences as there are o f  negative signs in the arithmetical values o f these ,
so many pairs o f imaginary roots at least there will be in the given equation. If  we
choose to consider a2 and l2, also as criteria, appearing at the beginning and end of the 
series, then we may vary the expression of the rule by saying that there will be at least 
as many imaginary roots as there are variations of sign in the complete series so formed.

I t will, however, be found more convenient for our present purpose to confine the 
designation of criteria to the determinants above alluded to.

(3) I shall deal with the homogeneous equation /(# , 0 so that the question of the
reality of the roots is that of the reality of the ratios -  or I t is obvious, from known

y x
principles, that/* cannot have fewer imaginary roots than exist in ^ f  or ^ / ( 6), or, more

generally, than in Iy ) f*  r̂orn wtiieh it immediately follows (7) that if /  have all its
roots real, and the quadratic derivatives o f /b e  called Q i, Q2, .... Qw_i, and the coeffi-

(5) To avoid the possibility of misapprehension, I  state here once for all, that in the discriminant of a form of 
any degree I suppose the sign to he so taken as to reader positive the term which is a power of the product of 
the first and last coefficients; and it may he well to remember that with this definition the number of real roots 
in any equation = 0  or 1 to modulus 4 when the discriminant is positive, and = 2  or 3 when the discriminant 
is negative; whereas the Determinant of a Quadratic form is to he taken in the same sense as that in which 
it is used by Gauss, and is the same for such form as the Discriminant with the sign changed.

(6) This rule I find merges in the folio-wing more general and symmetrical one. Let / ,  <p be any two quan-
tics in x, y;call the Jacobian of / ,  <pJ; then the difference between the number of real roots in /a n d  the like 
number in <p, taken positively and augmented by unity, cannot exceed the number of real roots in J. When <p 
is made equal to y, this theorem recurs to the familiar one alluded to in the text.  ̂ ^

(7) By operating upon /  successively with any ( n—2) distinct factors each of the form +  ^‘d f )  *

4 I 2
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582 PROFESSOR SYLVESTER ON THE REAL

cients of any function F of two degrees lower th an /, whose roots are also real, be
fi2,_the quadratic function J91Q1+ ĵ 2Q2+  ... +i?w_iQw_i must have its roots

real, i. e. its discriminant must be positive: a particular consequence of this is, that by 
causing F to consist successively of the single terms 2, xn~3y, .... xyn~3, yn~2, we see 
that the determinants of Qx, Q2, ... Qm_i must each of them be positive; or, in other 
words, if any of the Newtonian criteria of an equation are negative, it must have 
imaginary roots, which is all that Maclaukin, Campbell, and others have succeeded in 
proving.

(4) The labour of proof of the cases hereinafter considered will he much lightened by 
the following rule of induction, viz., granting N ewton’s rule to be true for the degree 

1, it must be true for all those cases appertaining to the degree n in which the series
of the signs of the criteria does not commence w ith ----1- and end with -1----: to prove
this, we have only to remember that f  must have at least as many imaginary roots as

%- or i f ,  and that the criterion-series corresponding to and to ^ f  will be found by
dx dy  r  & J

cutting off from the series o f /o n e  term to the right and left respectively (8). If, now,
the series for/begins with -j- +  o r ----- or -j— , the number of negative sequences is
the same as when the left-hand sign is removed; so that it is only necessary to prove that 
the number of imaginary roots in / i s  not less than the number of negative sequences in

—; but this, by hypothesis, is not greater than the number of pairs of imaginary roots 

in J~, and, a fortiori, not greater than the number of such in / .  In like manner, if

the two last criteria o f /a re  not -j----, it may be shown that the truth of the rule for

such form o f / i s  implied in what is supposed to be known to be true for

We may therefore limit our attention, as we ascend in the scale of proof, to those 
forms of /  in which the criterion-series begins w ith ----and ends with -|-------. Accord
ingly, since the rule is a truism for n — 2, it is at once proved, by virtue of the above 
considerations, for n— 3(9).

^  (a, 6, . . .  Jc, T fx , y )n— f x ,  y )n

d

(8) For 

and

dy (a> h> • • • Jc’ l\ x > y )n = n ( TJx, y )n~ l.

(9) The theorem for the case of cubic equations may he also proved directly as follows:
Writing the equation ax3 -\-3bx2y -\-3cxy2 dy3—0, the two criteria are L = 6 2—etc, M = c2— and the

discriminant is a2d2 4ae3 +  4db3—3 6 V — 6abcd=A.
1. Let L and M he of opposite signs, so that one and only one of them is negative. Then

A —(ad— 6c)2 -  4(62— ac)(c2-  bd)= ( a d - b c f  -  4LM,
and is therefore positive.

2. Let L and M he both negative. The equation may evidently, by writing x  and y  for aix, dhy, be brought
under the form „ „

x 3 +  3 sx2y  +  3rjxy2+ y 3 =  0,

with the conditions e2<  tj,i/sc s  ; from which we may deduce that s and y are both positive, and e r j d  and > 0 .
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If all the criteria are zero, it is evident that, whatever n may be, all the roots are real. 
In every other case we shall find that zero may be made positive or negative at will. 
Thus in the case before us, if the two criteria are 0 +  or 0 — , there will be a pair of 
imaginary roots, as the first may be read a s ----f- and the second as -J----.

To prove this, we have only to observe that in either case will have two equal roots;

so that fwill be of the form (aoc-\-byY-\-cyz, which obviously, for any real values of 
a, b, c, has only one real root.

(5) We may now pass to the case of n =  4, and excluding for the moment the con
sideration of zeros, limit our attention to the criterion series--- j— .

Let ax^-J-4&r3y -}- 6cx2y2+ Adxy*-\-eyA=.Q be the equation for which the signs of the
criteria b2—ac, e2—bd, d2—ce a r e --1— . Call these criteria L, M, N respectively. It
has to be proved that all four roots are imaginary, since there are two distinct negative 
sequences, each sequence consisting of a single —. Let x  become y(10), where s is 
an infinitesimal quantity, and transformed into one between u and y ; then we have 
obviously,

0, ^b=as, }>c=2bs, ̂ = 4  
£L =  2bl b — abc= 0 , &M= 2 dhb—{be—ad)z,
&2M= (bbc -f- chb—aM)z—2{b2— = 2Ls2;

so that c>2M is essentially negative, since L is so.
Hence, by continually augmenting x  by an infinitesimal variation, we may, leaving L 

unaltered, so choose the sign of s as to decrease M : nor can this process stop when be—ad 
becomes zero, by reason that S2M is negative. Hence we may reduce M to zero. Now,

AND IMAGINAKY EOOTS OF EQUATIONS. « 583

Also we have
A = 1 + 4(s3+ ij3) — —3e2ij2

+  ®srl—3e2ij2 
> 1 —6si) +  8(sij)f—3f2ij2;

or, writing A>  1 —6^2+ S c /S q * ,
> ( l - ^ ) 3( l  +  3 q);

but l> g > 0 .  Hence A is positive.
Hence in either case two of the roots of the cubic are impossible. Or the same thing may be shown more 

immediately from the identities
a2A= {a?d+ 25“- 3  abef +  4 
d 2t \ = (ad2+ 2c3—3 +  4 — c2)3,

so that A must be positive, and therefore two roots imaginary, if either bd>~c? or ca>b2. It may be noticed 
that the square and cube in these identities are semi-invariants, being in the first of them unaffected by the 
ehange of x  into x + h y ,  and in the second by the change of y  into y + h x .

(10) This method of infinitesimal substitution is that which I applied in my memoir “ On the Theory of Forms,” 
in the Cambridge and Dublin Mathematical Journal, to obtain the partial differential equations to every possible 
species of invariants (including covariants and contravariants) of forms, or systems of forms, with a single set or 
various sets of variables, proceeding upon the pregnant principle that every finite linear substitution may be 
regarded as the result of an indefinite number of simple and separate infinitesimal variations impressed upon 
the variables. M. Aronholb has erroneously ascribed to others the priority of the publication ol these equations.
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584 PROFESSOR SYLVESTER ON THE REAL

in the course of this reduction, either N retains its sign or changes i t ; and if the latter 
is the case, N must have passed through zero. I f  when M becomes zero N is still nega
tive, the criteria of the linearly transformed equation become —0— ; and it may be 
noticed that its first, middle, and last coefficients must have the same sign, by virtue 
of the negativity of the two last criteria, and the second and fourth the same signs, by 
virtue of the zero middle criterion; consequently the equation will take the form

which obviously has all its roots impossible. This being true of the transformed equa
tion, will also, on the suppositions made, be equally so of the original equation.

Let us next suppose that N changes its sign either at the instant when, or before M 
becomes zero. If M and N both become zero together, so that the criteria of the

will have all its roots equal, and F will therefore be of the form with
the condition (a3b f— (a4-\-k)(a2b2)<0.

Hence Jc is positive, and consequently F = 0  has all its roots imaginary; and the same, 
as before, must hold good of the original equation 0.

I t remains then only to consider the case when N becomes zero before M vanishes. 
When this is the case, as soon as N is reduced to zero, in lieu of the substitution of 
x-\-zy for x, we must leave x  unaltered, and continue substituting y-\-zx for y. We
thus start from the sequence----f-0; N will then always remain zero, and we must
either come to the series — 0 0, which we know, from what has been shown above, cor
responds to four imaginary roots, or to the sequence 0+ 0 , which I shall proceed to 
consider.

Since the first and last coefficients must have the same sign, we may, by giving 
either variable a proper multiple (n), make these two coefficients alike, and with the first,

(U) ^  The form (1, e, e2, e, 1 + ? , y )4 may be regarded as a new and, for many purposes, useful canonical 
form of a binary quartic. It may be made to comprise witbin its sphere of representation all forms correspond
ing to two or four imaginary factors, but excludes the case of four real factors. The ordinary canonical form 
(1 ,0 , 6m, 0, y )4 comprises within its spheres of representation those forms for which the factors are all
real or all imaginary, but, so far as real transformations are concerned, excludes the case of two real and two 
imaginary factors [[that case is met by the form 1, 0, 6 m0, 2/)4] ,  as may easily be established either 
by decomposing the form first named into its factors, or by the consideration that its discriminant A is 
(1 —9m2)2, and is therefore always positive; whereas if a form which it is used to represent have two real 
and two unreal factors, its discriminant is negative. I f  now the determinant of transformation be D, and the 
discriminant corresponding thereto be called A', we have A '= D 6A, showing that D2 is negative, and the trans
formation therefore unreal.

(b) The reality of m for each of these cases (usually assumed without proof) may be demonstrated as follows: 
Calling the cubic invariant and the discriminant of any cubic form T, D, we shall have, using the ordinary canonical

or
(X2 -j- e4)x4+ Ae3zx3y + be2z2x y  +  keixy3 -j- +  =  0,

X2x4-j-p Y + {e® +  sy)4=  0,

form, ('1 _ 9my - I)
(m—m3)2 T2

, showing that when D is positive, which is the case of four real or unreal factors, there will
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second, and third, as well as the third, fourth, and fifth coefficients form geometrical 
series; hence it is obvious that the transformed equation may be reduced to one or the 
other of the two following forms, viz.

x4 +  iexzy +  6^Vy2—4&r^34-y4= 0 , . . . 
x4-f-^ex3y  -f Qe2x2y2-f-^exy4 -\-y4=Q, . . .

with the condition in the latter case that e4—e2 is positive, i. e. e2 >  1.

. (a)
.

be one real value of m, and when D is negative, a real value of im. The former case possesses over the latter a 
striking distinction, which is that all the roots of m will be real; for, as I  have shown elsewhere, if m is one root

the complete system of roots will be ± m , ™: in the latter case the reality of the two values

± im  does not seem necessarily to imply the reality of the other 4 values of the system.
(c) Analogy suggests the establishment of an analogous canonical form or forms for ternary cubics, of which, 

as is well known and is even dimly foreshadowed in N ewton’s Enumeration of Lines of the Third Order, the 
theory runs closely parallel to that of binary quartics. This will be effected by assuming the form

F(.r, y, z ) =  2 x 3+ Sel.x^y -j- Qgxyz, 
and assuming gso as to make the discriminants of

cZF cZF cZF
d x  dy dz

all zero. This gives rise to a quadratic equation in g, of which the roots are g —e, g-=2e“—e. When g —e, I find 

S = < l - e ) 3, T= ( 1 —e)4( l  +  4e—8e2), A = T 2+ 6 4 S 3= ( l  +  8 « ) ( l- e )8.
When g — 2e2—e, I find A = ( l  — e)i(l—4e)j(l-{-2e)k, where k are integers to be determined. These forms
will, I think, be found important in the future perspective discussion of curves of the third degree. Whilst I 
yield to no one in admiration of the surpassing genius with which N ewton has handled these curves, I  cannot 
withhold the expression of my opinion that every theory of forms in which invariants are ignored must labour 
under an inherent imperfection, and that N ewton, from want of acquaintance with the indelible characters which 
their invariants stamp upon curves, has in the parallel which he has drawn between the generation by shadows 
of all conics from a common type, and of all cubic curves from a limited number of forms, either himself fallen 
into error of conception, or at least used language which could scarcely fail to lead others into such error. For 
no species whatever of cubic curve can be formed for which an infinite number of individuals cannot be found 
which defy linear or perspective transformation into each other; whereas all conics proper may be propagated 
as shadows from a single individual. It should be noticed in connexion with this subject, that the indelible

characters of quartic binary, and cubic ternary forms are two in number, viz. the value of -  (where s, t are thet
two fundamental invariants in either case) and the sign of t. The indelibility of the sign of s being implied in

Q3the invariability of the value of - ,  does not constitute a distinct character. Of course all symmetrical invariants
t

have an invariable sign; but this is not the case with skew invariants, as ex. gr. M. Hekmite’s octodecimal inva
riant of a binary quintic, which will change its sign with that of the determinant of transformation.

(d) Whilst upon this subject of invariants, I may allow myself to make a remark bearing upon what will be 
noticed further on in  the text about a case of equality between roots not necessarily being a mark of transition 
from real to imaginary roots. I f  a, b, c, d  being the roots of a binary quartic we form a'secondary cubic, of 
which the roots are (a—b)(c—d), ( a —c)(d—b), ( a— d)(b—), it may be easily shown that two of these quan
tities become equal, or, in other words, the roots of the original equation mark out a harmonic group of points 
when t (the cubinvariant) is zero. Notwithstanding which a change of sign in t will not command a change of 
character in the above three roots of the secondary (nor consequently of the original equation), because it is not 
an odd but an even power of t, viz. f, which enters into the discriminant of the secondary.
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It must be remembered that we know, from the form of the criteria-series to the 
derivatives in respect to either xor y(indifferently), that the equation must have 
imaginary roots; and the question therefore lies between its having two or four. If the 
discriminant is negative, the former will be the case, if positive, the latter. 1 shall show 
that in each equation the discriminant is positive.

Let s,t represent in general the quartic invariants, then we have to show that s3—27f 
is positive.

In case (a),s = l  -j-4e2-\-3e4 =
= ( 1 + 0 ( 1 + 3 0

l e e 2 
e e2
e2—e 1

—e2—ei— e4—e2—e&—e2 
=  —e2~2ei—e6

so that
s3-27£2= (1-03{(1+303- 2M 1+0}=(1+ 0 3(1+ 90>

and is positive.
In case (£),

s= ( 1 -  4e2 +  3 0 = ( 1  -O C 1 ~  30

and

l e e 2
f== e e2 e = e2+e4+ e4-

e 2 e 1 = —e2+2e4—e6= —e2( l - e 2)2,

s3-  2 7 f= ( l  -  0 3((1 -  3 0 3-  2701  -  O )

= ( l - e 2)3( l - 9 e 2).

The above can only be negative when e2 lies between 1 and ^ ; but in the case supposed 
e > l.  Hence the discriminant is positive, and the roots are all imaginary(13). Thus, 
then, the theorem is established for n = 4 ,as well as for the cases where the criteria 
are zero (as will have been observed in the course of the demonstration), as for those 
where they are plus or minus; and it should be observed that the demonstration proceeds 
upon our being able to show that the quartic, in the case where it resists reduction to 
the case of the cubic, viz. where the criteria are negative at the two extremes and positive 
in the middle, may by real linear transformations be changed into a form where either 
the middle criterion is zero and the two extremes negative, or the two extremes zero, 
and the middle one positive.

(12) The reader conversant only with ordinary algebra may easily verify this result. For writing - + ' - = z ,
y x

the equation becomes z2+4ez +  6e2—2 = 0 ,  and this will have its roots impossible unless 4 or 2e2—2
negative, which it cannot be, since e2> l ,  and consequently : has all its roots impossible. Moreover
the same conclusion would (as before shown) hold good unless 2 lay between 1 and i ;  for on making z —2, 
the function above written in z becomes 2 + 8e +  6e2,or 2 ( l  +  e)(l +  3 e); and making z = — 2, it becomes 
2 — 8e+6e2,or 2( l —e ) ( l—3e),which two quantities evidently have both positive signs unless e lies between
1 and 1, or between —1 and — | ; so that the first and third Sturmian functions are (except on that supposition) 
respectively positive and negative for z —2, and also for z = —2, showing that no root of z can he between
2 and —2, and consequently that all the roots of x: yremain impossible.
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Observation.—To make the foregoing demonstration quite exact, it should be noticed
that when the criteria L, M, N have been brought to the form ----}-0, and the series
of substitutions of y-\-z xfor yhas set in, we have

N = 0 , SN=0, m=(cd-be)e, m= N s = 0 ,  S3M =0.
Consequently if cd—be should become zero, we can no longer go on decreasing M. But 
as soon as cd—be=0, since we have also d2—ce, , c, , e come to be in geometrical pro
gression, and the transformed equation takes the form

iux3y-\-6<yVy+4<y3̂ 3+ ^ 4= 0,
with the condition oo2~a<¥ negative, or a>  1. Hence we have 0, which
obviously has all its roots impossible (13).

(6) We may now pass on to equations of the fifth degree, in which the case resisting 
induction will be that where the criterion-series bears the signs

— +  H-----•
Let the criteria be called L, M, N, P, so that writing the equation

ax5+ 5  bx4y-\- 10 cx3y2 + 10  +  5 5= 0 ,
L = J 2— ac,M = c2—bdi,

and writing for x, x-\-zy, we have, as before,
SL=0, m=(bc-ad)s,m==Lg2, 

so that M may be continually diminished.
If  M becomes zero before either N or P changes its sign, the criterion-series for the

transformed equation becomes — 0 ---- , and for its derivative in respect to the series
is 0 -f- —, which proves the existence of four imaginary roots in the transformed, and 
consequently also in the given equation. In like manner, if N becomes zero before M 
or P have changed their signs, the criterion-series becomes — +  0 —, which obviously 
leads to the same result. So likewise the same inference may be drawn if L and M, or 
M and N, or L, M, N become zeros all at the same time, and we have only to consider 
the case when, L and M retaining their signs, N becomes zero. At this moment the order 
of the substitutions must be reversed, and for y must be written y-\-zx; we shall then have

P = 0 , SP=0, &N =...... ;

(13) From the first and third criteria it follows that in the form (a, b, c, d, e jjc , y y ,  a, c, e have the same sign
¥ 2

and may be regarded as all positive; so that writing a -----= h 2, e------—1c2, the form becomes A V + F + P y 2,c c
where

¥  d?
F = — x*+  4 ba?y-f~ bca?y2 - j- Adxy3 y*,

and consequently the given form will have all its roots imaginary when this is true for F, so that we might 
have proceeded at once to deal with the forms marked (a), ( ) at p. 585; but as the method of homographic 
transformation by infinitesimal substitutions appears to be necessary in passing to the corresponding forms 
in the case of the fifth degree, and as in treating that case reference is made to what appears above, I have 
thought that no object would be gained by altering the text.

MDCCCLXIV. 4 K
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and reasoning as in the preceding case for 4 (with the sole difference, that if &N 
vanishes by virtue of de—c f  vanishing, we should have P = 0 , N —0, and the criterion-
series -----1- 0 0, which at once indicates the existence of four imaginary roots), we see
that there remains only to consider the case where the criterion-series takes the form 
0 _|— [- 0. It is scarcely necessary to observe that all the criteria can never vanish 
simultaneously; for that would indicate the equality of all the roots in the transformed, 
and therefore in the given equation, whose own criteria, contrary to hypothesis, would 
also be all zero. The zero values of the two extreme criteria indicates that the three first 
and the three last literal parts of the coefficients are in geometrical progression, from 
which it will immediately be seen that the equation to be considered may be thrown (by 
substituting in lieu of x  and y suitable multiples of x  and , which will not affect the 
characters of the criteria) into the convenient form

x5+ 5  sx4y-j-1 Os ?ot?y2 -j-10 +  5pj = 0 ,

with the two conditions s4—ŝ 2 positive, n4—rii2 p
The form of the criterion-series, apocopated from either end, shows that two of the 

roots must be imaginary; and consequently, in order to establish the existence of two 
imaginary pairs of roots, it is only necessary to show that the discriminant of the above 
equation, subject to the above conditions, must remain always positive. That discrimi
nant I proceed to determine; but as a guide to the form under which it is to be 
expressed, the following observation is important. Let us take the more general form

ax5+ bx4y -J- cx3y2+ dx?y3+ exy4 -\-fyh—0,
where

a=  1, b=Xs, d=[M^, e='kyj, / =  1,

X, [/jbeing any numerical quantities.
The discriminant will evidently be a symmetrical function of e and s.
Let avbqcrdset be the literal part of any term in the discriminant. By the law o f weight

we must have
<7+ 2r +  3s+4£=5 x  4=20.

But in the equation before us, aphqerdset (to a numerical factor pres) is sq+2rtfs+t, and

(q+ 2r)—(2s -f t )= (q -}- 2r-f- 3s+ —5 (s+ 1)
= 5 (4 - s + Q .

Hence the difference between the indices of s and r\ in each term is a multiple of 5, 
and consequently, since the discriminant is a symmetrical function in e and it will be 
a rational integral function of s and s y\.Moreover, as no such term as c4d* can figure 
in the discriminant, which, as we know, must in all cases contain one or the other of the 
two final and of the two initial coefficients, we see that no term can be of higher than 
the 14th degree in s, y, nor yet so high, for the only terms that could be of that degree 
would be be3d3e ;but making a andy  each zero in the original form, it becomes obvious
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that all the terms free from a and fcontain Z>V as a factor (u). Hence, in fact, the 
discriminant will be only of the twelfth degree in s, ?j, and being therefore of only the 
second degree in e5+ ^5, will admit of comparatively easy treatment.

(7) Before proceeding to the calculation of this discriminant, it will be useful to 
investigate, as a Lemma ancillary to the subsequent discussion, under what conditions 
four of the roots of the supposed equation will become imaginary when

CC 'llIn this case writing ~-\-“=2, the equation

^ ( 1 ,  e, s2) 6, lX-r, y f =  0
bcconiGS

^ _ 2 - 2 + 1  +  5s(^~ 1 )+ 1 0 s2= 22+ (5 s- 1 > + 1 0 £2- 5 s- 1 = 0 ,
or say/is= 0 .

The determinant of f ( z )is thus (5s—l) 2—40s2+20s+^, i. e. 5(1—s)(l +  3s); and all 
the roots of 3, and consequently of (#, y \  will be impossible, unless 2 lies between 
1 and —

Now /(2 )= l+ 5 s + 1 0 s 2,
f {  2)=S+5e;

so that when z has any real roots, i. e. when s lies between 1 and —J, 2), 2) are
both positive, and the Sturmian functions are of the signs +  +  + .

Again,
/ ( - 2)==5—15s-bl0s2= 5 ( l - s ) ( l - 2 s ) ,
/ ( - 2 ) = - 5 + 5 6;

so that, on the same supposition as before, the Sturmian functions are + — b? viz.
_j----- 1_ when i > s >  —J,
-------b when l > s > | .

In the former case two real roots, in the latter one real root of z lies between 2, —2. 
Hence in the former case no real roots of z lie between the limits 00, 2, and the limits 
—2, — 00, and in the latter case one real root lies between those limits. Hence , y 
will have four imaginary roots, unless s lies between 1 and -J, and two such roots in 
every other case.

Thus the discriminant of (1, s, s2, ??2, ??, ] yjx, y)h, when s=^, is negative when s lies be
tween 1 and but for every other value of s is positive, save that it vanishes when

s = l ,  or s = l ( 15), or s = — J.
(8) I  now proceed to calculate the discriminant of the form

x5+ 5s x*y +  10s + 1  + 5  -\-y5

(14) For the discriminant of xy<p(oc, 7/)=thc discriminant of y)  multiplied by the square of the product of 
the resultant of (pc, <p) and of (y, <p).

(15) When £ = |  the discriminant of f(z)  does not vanish, but z = —2 satisfies the equation in z, and con

sequently — has two equal roots — 1, so that the discriminant of the original equation vanishes.

y 4 x 2
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for general values of g, r\. This will be accomplished most expeditiously by taking the 
resultant of the two derivatives of the above form, say U and V, where

U = + 4s x*y +  6 s2# y + 4  tfxy* +  ny4,
V=ex*+  4s 2x3y +  6??V ^2 +  4 -\-y4;

so that
s U - y  =6(s3- ^ > y + 4 ( s ^ 2- ^ 3+ ( s ^ - i y = ^ 2p,
- U + ^ y = ( s ^ - l > 4+ 4 ^ s2- s > 3y+6(^3- s > y = ^ 2Q.

Hence
Resultant of (U, V ) = ^ " y X  Resultant of P, of (P, Q);

where
P —6(s3— q2)x2+ 4(s?72—ri)xy -f- — ,
Q=(g;?—l)#2+ 4(^s2 — e)xy +  6(^3—s2y .

Hence, calling A the discriminant of the original form, we obtain by the well-known 
formula for the resultant of two binary quadratics, writing for the moment

P=(B , 4^A, AJoc, y)2, Q =(A , 4sA, B'X#, 
A = (4 sA2-  4^AB')(4^ A2—4s AB)+ (A2—BB')2

= (1 — 16s??) A4+ 16(s2B + ?j2B') A3—16g?jBB A 2—2BB A.2+ B2B'2.

Hence writing s^=^, s5+??5=S,

A = ( l - 1 6 ^ - l ) 4+ 9 6 ( S - 2 ^ ) f e - l ) 3- 7 2 ( 8 ^ + l ) y + f ~ S ) f e - l ) 2 
+  362(£3+ 2 2- S ) 2.

Let S— —g3—<7, l= jp , so that
S - ^ = < r - q 2+ f= < r+ (p  + l f p .

I hen
A = 36V  +  7 2 (8 ^+ 9 )j)V + 9 6 p V + 9 6 (^+ l)y -(1 6 i)+ 1 5 )p

=129672+ (6 4 8 /+ 6 7 2 /> + 9 6 /+ 1 7 6 j >5+ 8 1 / ,
=i{108<r+27j)2+ 2 8 /J)2+729p4+1584i/+ 8 6 4 y 6- (2 7 /+ 2 8 j)3)2},

or
9A =  (108(7 +  27y+28p3)2+72p5+ 8 0 /.

(9) Hence we see at once that A can be negative only when jy lies between 0 and 
— -io,i- when s q(which is ^  +  1) lies between 1 and Accordingly when A is
negative, s and jj must be both positive or both negative. The latter supposition may 
easily be disproved as follows: treating the equation A = 0  as a quadratic equation in<r, 
in order that A may be capable of becoming negative, its discriminant in respect to a 
must be negative, and its value when a— — oo is positive. Now

S=s5-H 5, i ? + l = gJ?, <r=S—CpH-l)2—0 ? + l) 3;
so that when s and n are real we have

S > 2 (^  +  1)!(16), i. e. (r> —(^-f-l)2 +  2 (^ + l)^ —(i>+ l)3
(16) It is of course understood that (p +1)^ is to be taken positive.
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when s, r\ are both positive, and
S < - 2 0  +  l) f (16bi’), i. e. < r< (p + l)2-(i>  +  l ) 3- 2 ( i )-|-l)! 

when g, 7] are both negative.
If  now we substitute -f-1)2 +  (p-j-1)3 — 2(^>+l)^ for <r in A, I say that the resulting

value will be positive whatever positive value be given to in fact, if we write
rp - v l—‘ 1, and make <r=—i/4+ 2 j/5—v6, so that A becomes a function of the twelfth degree 
in v, this function is what the discriminant of the equation in #, y becomes when we 
have z—Tj—v; but in the antecedent Lemma it has been shown that this discriminant is 
only negative when the two equal quantities g or tj, or, which is the same thing, when v 
lies between 1 and \ ; hence A is positive when is negative, and consequently when

G—( V + 1  )2 +  ( P + 1 J5—2 ( + 1 ) * .
Thus A, a quadratic function in <r, and its discriminant are respectively +  and — for 
this value of <r, as well as for <r=—oo . Hence no real root of <r lies between such value 
of g and —oq , and consequently A must be always positive when g and v\ are both negative. 
Hence, if A is negative, we must have 1 > s?j> y^; g > 0 ; 7j>0. But our criteria give

s4— 0, rf—tjs2>0,
which, when s>0, 0, imply s3>??2, pj3>e2, and consequently e??>l, which is in con
tradiction to the inequality 1 >  stj. Hence when these criteria are satisfied the determi
nant is necessarily 'positive, and all the roots are imaginary, which completes the proof 
of Newton’s rule for equations of the fifth degree.

(10) It follows as a corollary to the Lemma employed in the preceding investigation, 
that if in A we write o-= -—(v2— 3̂)2 and j>=v2—1, and distinguish this particular value by 
the symbol (A), then (A) ought to break up into the product of odd powers of 1, -J 
of some even power of and of a factor incapable of changing its sign, and remain
ing always positive. This may be easily verified; for dividing (A) by l ) 4, we obtain

1296r8(648(r+l)2+24(r2- l ) ( r + l ) 2)r4+96(i<2- l ) 2( r+ l) 4+176(j<2- lX > '+ l)4+ 8 1 (r+ l)4;
and collecting the terms 1296v8—648/(t'+ l)2+81(i^+l)4 whose sum contains the factor 
(v—1), we have

648(rJ+ r 6+ r 5+.<4+.'3+ r2+ . '+ l )
—1296( x6+>’5+ x4+ i<8+*,+»' +  1)
— 648( >,5+>,<H->,s+ i's+ i '+ l )
+  81( r,+ 5 / + l b + 1 5 )
— 24(k?+ 3 k6+ 3 ks +  >'4)
+  96(»7+ 5 /  +  9^ +  ,V -  5k3— 9x2- 5 » - 1 )
+  176( »!+5i-4+10f3 +  10i-2+ 5 » + l)

= 720^—240k6—328»5+4(V  +  65i'3+5*2—6»—1.
Hence

(A )= (v - l)5(2 v - l)3{90f4 +  105v3 +  49i.2 +  lli- +  l}
=(1*—l) s(2n—1)3(3»+1)2{1(V+5i'+1} ;

(i6bis j i t  0f  course understood that ( y +  1)^ is to be taken positive.
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showing, agreeably with what was seen in the Lemma, that the discriminant of
(l, s, A IX*, y f

vanishes then, and then only, when
s = l ,  or s= J , or s = — J,

but does not change its sign, except as 2 passes through the limits 1 and J, and only 
within those limits can become negative (17).

(11) Although the theory of the possibility of the roots of (1,2, 22,^2, 77, lX#,y)5=0 
has now been completely investigated, so far as is necessary for the proof of Newton’s 
theorem applied to equations of the fifth degree, it will be found that the labour will not 
be ill spent of considering more closely the real nature of the criteria which separate 
the case of one pair from that of two pairs of impossible roots in the above equation. 
Newton’s criteria being constructed so as to cover every possible case for equations of 
every degree, will always be found to fit loosely, so to speak, upon each case treated 
per se; so that more precise conditions can be assigned in each particular case than those 
which are furnished by his rule. So, ex. gr., it may be remembered that in the equation 
(1, e, e2, e, IX#? y)4= 0 , N ewton’s rule implies only that when , the roots are all
impossible; but we have found further that unless 1 > c >  J  (a much closer condition), 
the same thing takes place.

I t is obvious from what has been demonstrated above, that if we treat and <r, which 
are respectively 2?j—1 and 25+ tj5— sV — as the abscissa and ordinate of a variable 
point in a plane, the curve A =  0, i. e. (108<r+27^24-28jp3)2-f-72^5-f-80p6==() will be 
the line of demarcation between those values of 2, 77 which correspond to one pair, and 
those which correspond to two pairs of imaginary roots.

For all values of 2, 77 corresponding to internal points of the curve A there will be two 
imaginary and three distinct real roots; for all such as correspond to external points 
there will be four imaginary roots, and for points on the curve two imaginary and two 
equal roots.

The curve A is a curve of the 6th degree whose form will presently be discussed. 
But there is an important remark to be made in the first instance. Not all the points

(17) t n general the case of equal roots of an equation is the state of transition of two real roots into imaginary, 
or vice versa. But we see by the above instance that this is not necessarily the case always, for A vanishes on 
making e=  —r, and two roots become equal without any change in the nature of the roots when s passes 
from being greater to being less than —r. In such case, however, there is a sort of unstable equilibrium in 
the form of the equation, by which I mean that the effect of any general infinitesimal change performed upon 
the coefficients of the equation would he either to cause the real roots in the neighbourhood of e=  —-i to dis
appear by the factor (e -f l ) 2 becoming superseded by a quadratic function of e with impossible roots, or else a 
region in the neighbourhood of g = —I would reappear, for which the equation would acquire two real roots, 
owing to (e +  i ) 2 becoming superseded by a quadratic fimction of s with real roots, in which case there would 
be two values in the neighbourhood of s— — for each of which there would be a pair of equal roots in the equa
tion. The above is probably the first instance distinctly noticed of this singular obliteration of the usual effect 
upon real and imaginary roots of a passage through equality, owing to the appearance of a square factor in the 
discriminant.
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within the curve A will correspond to real values of s, r\. In order that these quantities 
may be real, we must have

g5+ ^6> 2  («?)%
i. e. where 1,

or
<r2 +  2 (q2+ q3) <r+ — 4#5+ >  0.

Writing this inequality under the form R >0, we see that the curve R = 0  will repre
sent a second sextic curve intersecting the former. A may be called the curve of 
the discriminant or discriminatrix, and will be a close curve, and R the curve of equal 
parameters or equatrix, and will consist of a single infinite branch. All points on the 
latter correspond to equal values of g, jy, those on one side of it to real values of g, 77, 
and those on the other side of it to conjugate values of the form \-\-ipj, respectively. 
Thus the area confined within the curve A will be divided into two portions by the 
equatrix, and it is impossible to shut one’s eyes to the inquiry as to the meaning of the 
variable point lying in that portion which gives conjugate values to g, r\. It becomes 
clear by analogy that some kind of distinction must be capable of being drawn between 
the nature of the roots of the equation (1, g, g2, ?j2, ??, 1J# , 0 wheng, rj are conjugate,
in some sense similar or parallel to that which we know to exist between them when g, 77 
are real; and obviously this inference cannot be confined to equations of the particular 
form and degree of that above written; in a word, equations whose coefficients are not real 
but conjugate, must have roots of two kinds, one analogous to the real, the other to the 
imaginary roots of equations with real coefficients. This inference will be justified 
in the sequel; but in the meanwhile it will be desirable to complete the investigation 
of the special equation under consideration, by a discussion of the forms and relations 
of the two curves A and R. These curves we know a , from what has been already 
demonstrated, can only meet in the three points corresponding to

2 =  7J=1, g =  2 =  77=— i ;

and since jp—g y\—1, the abscissae of these three points will be 0, —J, —f.
Moreover the 3rd point will be distinguished from the other two by the circumstance 

that A does not change its sign as p  passes through the value —f. Consequently 
the two curves must touch each other at this point.

Since when A =  0 plies between 0 and — the curve A is confined to the negative 
side of the axis of <r. It is also confined to the negative side of the axis of p.

For between the limits p = 0 , p =  —To>

648p2-j-672jf', i. e. 24(27p2+28j?3) is obviously positive,
and

96p6+176p5 +  81p4=  ^-{(24p+22)2 +  2} is always positive.

Hence the two values of <r are both negative throughout the extent of the curve A.
Thus g5+*?5—eV—gV being negative, g3—t?2 and i f—g2 have the same signs when g, t;
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are real, as should be the case; for in order that A may be capable of vanishing, 
and y ( f —s2)must, by Newton’s rule, be both negative, which could not be the case if 
either e or  ̂were negative; so that s3—if ^nd g2 must have the same signs, in fact 
each must be negative.

The curve A under consideration has a multiple point of the 4th order of multiplicity 
at the origin, where it is touched by the axis of Its distance from the axis for the 
extreme value of p,viz. p — — 3%, is -2Mo*

It has three real maxima and minima, two belonging to its upper portion and one to 
the lower portion at the points, for which p  has the approximate values -—ins', —If, 
and - | ( 18).

The curve R, i. e. <r=((j?-l-l)+(j>+l)2)2, has the values 0 and —4 at the origin, a 
cusp at its extremity corresponding to p ——1, where both of its branches meet and 
touch the axis of p, and a negative maximum in its upper branch at the point where
V— “ I*

At all points within the curve R, g and n are conjugate, and for the points outside real. 
Its lower branch will meet and touch the lower portion of A at the point where p = —-§, 
and its upper branch will intersect and pass out of the upper branch of A at the point 
where p = —f. The only part of the area A therefore which corresponds to real values 
of g, ?7, is that which is included between the upper segment of A and the upper branch 
of R, and extends only from p=0to p =  — f, i. e. from g?j=l to g?j=f. Hence we may 
easily find an inferior limit to the values of g and  ̂when the equation (g, has two real 
roots; for we have in that case g, 77, f — g3, f — all positive. Hence

if > fyf > q3,> < g y < f .

Consequently g, r\ must each of them always lie between ; and since the least value 
of q is f , g, n must each be always greater than ( i f , i. e. than *33499 (19).

(18) The large numbers which enter into A may he usefully reduced, and the equation A = 0 made more

manageable, by aid of the simple substitutions <r= — — -p  The equation A = 0  then becomes

(v—3m2 +  7 w3)2 =  2us—5w6,
whose maxima and minima will he given by the equation

(y— 3m2 +  7m3)(—6w4-21m2) = 5 w4—15m5;
which, making 1 — 3 u = w , b e c o m e s

270w3-  46w2-  9cw +  l = 0 ,
whose roots are all real, and are one just a little greater than —i-, another a little less than £, and the third 
a very little less than TXT respectively; whence p =  will have the approximate values given in the text.

(19) s  : ij will have a maximum value, which can he found by writing :: ; and consequently, remem
bering that q = p  +  l ,  S = e 5 +  ij5, <r=S— q2 —q3,

£S : : : 5S : 2q,
and therefore

8<r : 5 p::5<r+c/-q3: 2 q :: 5<r+pQ? + 1 )2: 2 (p  + V).

Substituting the values of Sir: $jq in £A=0, and combining the result with the equation A = 0, p  and cr may be 
found by the solution of a numerical equation of the 5th degree, and then s and i) may be found by the solution
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There is a third curve not undeserving of notice, of only the 3rd degree, which 
embodies the joint effect of the two middle criteria (the two extremes being supposed 
to  be each zero) in the two cases where N ew t o n ’s rule will prove all the roots of the 
equation under consideration to be impossible. These criteria are cx= g4—g?j3, c2=?j4— ŝ3.

^ Ut c tf  +  c2s4=q(2q3—S)=q(2q3—q3—q2—(r)— —£2—<r),

which for all values of q on the positive side of the line —1 (i. e. ^= 0) will have the 
same sign as q3—q2—<r, which we may call K (20); and K positive will evidently imply 
that c2 are one or both of them positive. The whole plane will be divided by the 
curve K into an upper region (commencing at <r= oo), for which K is negative, and a 
lower region, in which K is positive. For any point of the curve K, —^2, which 
within the limits of q with which we are concerned, viz. those within which A lies, 
is negative; for any point of the curve R, the smaller absolute value of <r is

—q3—(f-\-2 q i= q3—q2Jr 2(qi—q3),
which <q3—q2 within the limits in question. So that, remembering that each of these
values of <r is negative, we see that the portion of the area A corresponding to real values 
of g, rj will be completely above the curve K, i. e. in the negative region of K, and that 
accordingly A for real values of g, n can never vanish when K is positive, as should be 
the case. This remark does not, however, apply to the conjugate region of A ; for the 
curve K will^ass through(21) the lower or conjugate portion of the area A.

(12) I  may now say a few words on the signification of that portion of A in which s 
and Yi are conjugate imaginary quantities.

of a quadratic and the extraction of 5th roots. To find the maxima and minima values of s and y themselves 
exactly would lead to the solution of an equation of a degree quite unmanageable.

But we may first find the greatest maximum and least minimum values of S, i. e. g5+ i  by making 
$<r= (2q +  3q2) Sqin £A =0, which leads to an equation (I forget whether) of the 3rd or 5th degree (it is one of 

the tw o): calling this maximum and minimum m, jx respectively, and naming (which of course must exceed
£ y\

unity) the greatest quotient of -  or we shall have

. a / ; I  I +?'*•
These limits will be tolerably near to the absolute maximum and minimum values of s or rj. It may be noticed

that we know, from what has gone before, that § can never exceed 5; and consequently 5̂ cannot exceed 4, 

since q is always > i .
(20) I call K the Indicatrix, as exhibiting the joint effect of the indicia or criteria of the Rule.
(21) This may easily be verified; for at the point p  =  —£ it will be found that the ordinate in K  and the lower 

ordinate in A are equal, and at the point p  — ~the lower ordinate in A is — an  ̂ in K ~  2iroTr > 
which shows that the curve K entering the area A when at the lower half of the curve, at a point where —f , 
must pass through its upper contour in order to cut the line as it does above the point where A 
is touched by that line.

The curve K has its negative maximum at the point q —\ ,  i. e. — It passes through the origin, and 
begins with sweeping under the curve A, which it enters exactly under the point where R quits A, and passes

MDCCCLXIV. 4  L
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In general, let
(a+ia, b+ifi, c + iy ,    c— 3, 0

be an equation in which all the coefficients, reckoning simultaneously from the two ends, 
are conjugate to one another, and the central coefficient, if there is one, which can only 
be when n is even, real.

1 /
Let -=p-\-iysatisfy this equation. Then evidently will also satisfy it; or,

which is the same thing, satisfy it.

Now either this root will be identical with the former one, or a distinct root; in the 
former case we must have^?2-f-#2= l ,  and tile root will be of the form cos sin a; in 
the second case p/-\-q2 will differ from unity, and there will be a pair of imaginary roots

of the form £>(cos a-j-isin a), ^(cos a -{-isin a), in which the real parts f,  ̂ are reciprocal

to one another, and the directive parts e~ia identical. Moreover, if we write the given 
equation under the form U + iV = 0 , and suppose, as can always be done, that U and V 
have been divested of any algebraical common factor, it may easily be shown that the 
equation so prepared, and which may be called a Conjugate Equation proper, can have 
no real roots and no pairs o f imaginary roots in the sense in which that term is employed 
in the theory of equations with real coefficients; but the distinction between simple or 
solitary and twin or associated roots reappears in the theory of conjugate equations, 
under a different form. It will of course be understood that the class of simple roots 
for which the modulus is unity is quite as general as that of twin roofs, for each of 
which the modulus may be anything different from unity, just as in the ordinary theory 
the case of real is quite as general as that of imaginary roots, although the former may 
be represented by points on a fixed straight line, whilst the points representing the 
latter may be anywhere in the plane, this liberty of displacement being balanced, so to 
say, by the constraint of coupling. The general geometrical representation of the roots 
of a real equation is a system of points in a line, and a system of pairs of points at equal 
distances on opposite sides of the line. So the general geometrical representation of the 
roots of a conjugate equation will be system of points in the circumference of a circle to

through A at a point very close indeed to the horizontal extremity of A. It may he noticed that when 
J?= ~f > tlie smaller ordinates of E  and A are each — the ordinate of K and the larger ordinate of A being 
each

I have found the points of contact of K with A by actually substituting —p, i. e. + 1)' for a in A = 0 . 
This gives the equation

2064// +  735%/ +  9823j>2+ 5832y> + 1 2 9 6 = 0 ,  

one factor of which is 4y>+3, dividing out which we have

516y>3 +  1451p2+ 1368y>+ 4 3 2 = 0 .
The Newtonian criterion applied to the three first coefficients of the above gives —1362f, showing that two of 
the roots are impossible; the remaining real root I find to be -8946, &c. It does not appear to be a rational 
number.
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radius unity, and of points situated in pairs in the same radii at reciprocal distances from 
the centre. In a word, in each case we may say that the roots can be geometrically 
represented by points on a circle, and pairs of points electrical images of each other in 
respect to the circle, but the radius of the circle in the one case will be infinity, in the 
other unity. Conjugate like real equations will have all their invariants of an even 
degree real, and those of an odd degree will be pure imaginaries, or real quantities 
affected with the multiplier i.Their morphological derivatives (covariants, contra- 
variants, &c.) will be also conjugate forms. The whole doctrine of equations, as regards 
the separation of real from imaginary roots, and the determination of the limits within 
which the former lie, will reproduce itself with suitable modifications in the theory of 
conjugate equations, in which simple, on the one hand, and coupled or twin roots, on 
the other, will correspond respectively as analogues to the real and imaginary roots of 
the ordinary theory. Thus the following theorem may be demonstrated without diffi
culty, viz., in any conjugate equation the number of coupled roots is congruent to 0 in 
respect to the modulus 4 when the discriminant is positive, and to 2 in respect to the 
same modulus when the discriminant is negative (22). We see now how to interpret the

(22) (a) veIy  simple linear transformation shows the immediate connexion between the solitary and asso
ciated roots of conjugate with the real and paired imaginary roots of ordinary equations. Ror if 0 be
a conjugate equation, writing

y = v + i u ,  x = v —iu,

f(x , y )  becomes R(w, v), a real form in u, v. 
When w, v are real, we have

v v 4- iu [ tan-1 -)-[-* sin [tan-1 -—— *—COS|x v—m V UJ \ u
Vwhen -=c+iy, the two values correspond to

y

•<s>

+N•co1

x '
Thus

(ay c—iy—i

# : (x) ' ‘ c2'h(y+02:
also

y v fy\ 1 (?—1 + y 2-f-2ci- X  - X \x)
of which the modulus is obviously unity.

1 c2—1 +y2—2iCi’

(b) Now it is known that if  t be the number of real, and r of imaginary roots in the real form, (w, v)n, its dis-

criminant, bears the sign ( —) 2 . Hence the sign of the discriminant of the conjugate form (x, y )n (since the 
determinant of v + iu, v —iu is 2i) will be ( —)?, where

Hence since t  and t(t— 1) are both even, ( —) ? = ( —) 2 , and the sign of the discriminant of a conjugate
form is +  or — according as the number of imaginary roots does or does not contain 4 as a factor.

It must be remembered that the sign of the discriminant is not in general the same as that of the or 
squared product of differences of the roots. The sign of the zeta for real equations follows precisely the same 
law as the sign of the discriminant for conjugate ones.

4 l 2
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effect of the variable point whose coordinates are e5-j-q5 and lying within the area A, 
in that portion of it for which s, q became imaginary; viz. it is that in such case the 
equation (s, *7), which then becomes of a conjugate form, will have three simple and two 
twin roots; and thus the unity of the interpretation is restored if we choose, as we very 
well may, to extend the use of these terms to the real roots and the paired imaginary 
roots of ordinary equations. We may neglect the curve of reality R altogether, and 
affirm that all over the area A, g, n will have such values as will give rise to three simple 
and two coupled roots.

(13) That part of the theorem of Newton which had received a demonstration from 
M aclaurin and C a m pb e l l  in the generalized form in which I  have enunciated it in this 
paper, may be easily extended to the case of conjugate equations. It will, as applied 
to them, read thus: If the {n—1) quadratic derivatives of a conjugate form of the wth 
degree, all whose roots are simple, be multiplied respectively by the coefficients of any 
other conjugate form, all whose roots are also simple, of the degree 2), and the sum 
of these products be taken as a new quadratic form, the discriminant of this latter must 
be positive, or, which is the same thing, its determinant must be negative.

(14) So much for the case ofn=5.  If  we were to proceed to the consideration of equa
tions of the 6th degree, two cases of resistance would present themselves in the demon
stration of N ew to n ’s rule, viz. one in which the signs of the criteria a r e ----f- +  H— >
the other — |-----1— . In the latter it would only he necessary to show that the
discriminant is necessarily negative, since we know from the derivatives that the equa
tion must have four imaginary roots, and the choice would lie between the alternatives 
of there being four or six. In the former case the derivatives only indicate the neces
sary existence of two real roots, and it would become requisite to prove that there must 
be four or six—an alternative which depends not on the sign of one function of the 
coefficients, but on the nature of the signs of two such functions given by S tu r m ’s or 
any equivalent theorem. I t would thus become requisite to prove that two functions 
of the coefficients, say L, M, could not both be negative; and this might be shown by 
demonstrating the existence of two quantities, L', M', other functions of the coefficients 
incapable of assuming any but the positive sign such that L 'L-f M'M would be necessarily 
positive.

P art II.— ON THE LIMIT TO THE NUMBER OF REAL ROOTS IN  EQUATIONS
OF THE FORM Z(ax +  b)n.

(15) I shall now proceed to the consideration of a theorem relating to a particular 
class of ordinary equations, which occurred to me in the course of and in connexion 
with the preceding investigations. The theorem itself, but unaccompanied by proof, has 
appeared in the ‘ Comptes Rendus’ of the Academy for the month of March 1864.

Both as regards its nature and the processes involved in the proof, it stands in close 
relation to N ew to n ’s rule, my study of which in fact led me to its discovery. It will 
therefore take its place most appropriately in this paper.
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Certain preliminary properties of circulation introducing some new notions of polarity 
must be first established, by way of Lemmas to the proof in question.

By a type let us understand a succession of symbols of any subject matter whatever 
susceptible of receiving the signs -|— , or any suchlike indications of opposite polarity.

Let a,b,c , . . .  k, l be any such type, where the elements . . .  may be regarded
either as points in a line or rays in a pencil affected respectively with the signs of +  
and —.

Then by a per-rotatorycirculation of such type, I mean the act of passing from the
first element to the second, from the second to the third, &c., from the last but one to 
the last, and from the last to the first.

By a trans-rotatory circulation of the same, I mean the act of passing from the first 
to the second, the second to the third, &c., from the last but one to the last, and from 
the last to the first, with its sign reversed.

A type considered subject to per-rotatory circulation may be termed a Per-rotatory 
Type; one subject to the other sort of circulation, a Trans-rotatory Type.

If #, b, c, d, ebe a per-rotatory type, its direct phases are

a, b, c, , ,
b, c, d, , ,
c, d, e, , ,
d, e, « , , c,

e, a, 5, c,
and its retrograde phases

0, d, tf,
#, d, £, #,
d, c, 6, e,
c, e>, #, 0,

#, e, , c.

If, on the other hand, a, 6, c, d, e be a trans-rotatory type, its direct phases will be

a, <?, 0,
£/, d, c?,

C, 5̂ £,
(ji, 6/, 5, c,
tf, £, c, ,

and its retrograde phases
«, cZ, <?, i,
0, 0, «,
d, <?, a, #,
c, a, 0, ,

a, 6*, , c,

AND IMAGINARY ROOTS OR EQUATIONS. 599
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where the sign (—) is, for greater convenience of writing, placed over instead of before 
the elements which it affects; and so on in general a type of n elements, whether per- 
rotatory or trans-rotatory, will admit of n direct and retrograde phases.

If we count the number of variations of sign in the circulations of any phase of a 
per-rotatory type, this number will be the same for all the phases, and will be an even 
number; this even number may be termed the variation-index of the type.

So, again, if whatever be the original signs of the element in a trans-rotatory type, we 
count the number of variations in the circulation of any of its phases, this number also 
wall be constant and will be odd, and this odd number may then be termed the variation- 
index of the type.

(16) Let any phase be taken of a per-rotatory type, and out of such phase let any 
element be suppressed; then we obtain a type one degree lower in the elements, which, 
if we please, we may consider as a trans-rotatory type, and such trans-rotatory type 
may be termed a derivative of the original per-rotatory one.

In like manner any phase being taken of a trans-rotatory type, one element may be 
suppressed, and the reduced type treated as a per-rotatory one, and termed a derivative 
of the original trans-rotatory one.

We may now enunciate the following important general proposition, viz.
Any trans-rotatory type or any per-rotatory type whose variation-index is different 

from zero being given, a per-rotatory derivative of the one and a trans-rotatory deri
vative of the other may be found such that the variation-index of the derived types in 
either case shall be less by a unit than the variation-index of the types from which they 
are derived.

Case (1). Let the given type be per-rotatory. Then by hypothesis, since it has some 
variations, we may find a phase of it beginning with +  and ending with —, by which 
I mean beginning with an element that is positive and ending with one that is negative. 
This gives rise to two sub-cases.

T, the phase in question, will be -f-....... —
©, the phase in question, will be + ................ .

In either sub-case let the last sign be suppressed, and the result treated as a trans-rotatory 
type; then T, 0  become respectively T', 0 r, where

1 T' is + ..........+
and

0  is + ......... —
and evidently the variation-index of T — variation-index of T '=  number of changes of
sign in -\-J- less changes of sign in -|----= 2 —1 = 1 ; and again variation-index of
0 — variation-index of 0 =  number of changes of sign in —----f- less changes of sign in
-----= 1 — 0=1. Hence the theorem is proved for the case where the given type is
per-rotatory.

Case (2). Let the given type be trans-rotatory.
Then, again, there must either be a phase of the form P, or one of the form <J>, where

 on July 19, 2018http://rstl.royalsocietypublishing.org/Downloaded from 

http://rstl.royalsocietypublishing.org/


P represents a continual succession of signs of the same name as 4- 4- . . .  4- o r----- . . .  —,
and O represents a succession beginning with one sign as +  and ending with one or 
more signs —, or else beginning with — and ending with a succession of signs + . 
Essentially, then, as a change of signs throughout a whole succession does not affect 
the variation-index, we may suppose

P = + ...... + +,
0= - . . . - + . . . + ,

the signs intervening between the two expressed signs — in being filled up in any 
manner whatever, and those between the two signs +  with signs exclusively +•

Let now that phase of <E> be taken which commences with the first sign of the final 
succession of + . Then becomes

(<̂>)=  + ,
which is of the form

+ ..........++,
so that P is only a particular case of (<E>). If  the last sign in (O) be suppressed and

AND IMAGINARY ROOTS OF EQUATIONS. 601

the result treated as a per-rotatory type be called (O)', so that (0)' =  + .......... + ,  we
have variation-index in (<D) — variation-index in (T>)'= changes of sign in — b less 
changes of sign in -|- +  =  1 —0 =  1.

Hence the proposition is established for both cases.
(IT) The theorem to which this Lemma-proposition is to be applied concerns equa

tions of the form
hK“b &2U l l -f - 0 . . . 4“ SnU n —  0 5

where un u2, . . . ,  unare any linear functions of y; m is any positive integer, and
Si, s2, . . .  zn are each respectively and separately, either plus unity or minus unity.

Such an equation for convenience of reference may be termed a superlinear equation, 
and the function equated to zero a superlinear function.

Every superlinear function may be conceived as having attached to it a pencil of rays 
constructed in a manner about to be explained.

1. We may conceive the function to be prepared in such a manner, that supposing 
ax-\-by to be any one of the n linear elements , every b shall be positive. If  m is even, 

this can be effected by writing when required for ax-{-by, —ax—by without further 
change. If  m is odd, we may write when required —ax—by in place of ax-{-by, 
changing at the same time the factor g, which appertains to {ax—by)"1 from 4-1 1° —1> 
or vice versd, from —1 to 4-1*

Now take in a plane any two axes of coordinates 0 |,  O/j, and consider a, b as the £ 
and 7} coordinates of a point. All the n points thus obtained, on account of every b being 
positive, will lie on the same side of the axis O and thus the entire n linear functions 
will be represented by a pencil of n rays, the two extreme rays of which make an angle 
less than two right angles with each other; but each term of the superlinear function 
contains, besides ( ax-\-by)n,a definite multiple 4-1, or —1, and we must accordingly, to
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completely express such term, conceive every ray affected with a distinct sign -f- or —. 
A pencil thus drawn with its rays so polarized will give a complete representation of 
any given superlinear function, and may be called its type-pencil (23).

I am now able to state the following proposition:
(18) The number o f real roots in a superlinear equation cannot exceed the variation- 

index o f its type pencil, regarded as a per-rotatory , i f  the degree o f the equation be
even, and as a trans-rotatory type i f  the degree o f the equation be odd. I prove this 

inductively as follows.
1. Suppose the theorem to be true when the variation-index of the type-pencil is 

not greater than the even number v, and consider an equation of the odd degree (2i-f-l), 
for which the type-pencil viewed as trans-rotatory has the variation-index p-j-1.

Let a phase of this type be taken, say corresponding to the rays gn_1.. .  g>n such 
that the per-rotatory type obtained by striking out the term ^ has the variation-index v 
(as we know may be done by virtue of the Lemma).

Take for new axes OS, Orf, when OS coincides with ^ ; then it is clear that the 
pencil gB, £>„_i. . .  g>2, will still serve as a type-pencil to the given function, the only 
change being that some of the rays, namely those that did lie on one side of £„ have 
been inverted in direction and changed in sign (corresponding to a change in the coeffi
cient a, b, accompanied with a change in the sign of the corresponding g), whilst the 
rays on the other side of have been left unaltered.

The points (al9 bx), ( a2, b2). . .  ( an, bn) corresponding to the rays f2, . . .  gn will, with
respect to the new axes, change their values, becoming converted into (an 0), (a2, /32), 
(a3> A)> • •. (a„, /3J, where A? A> • • • A  will still all be positive, the angle between ^ 
and gn being the same as between the two extreme rays in the original figure of the type- 
pencil, and the superlinear equation may now be written in the form

F(u,v)=e1(cc1u)2i+1+s2(c£2u+(32v)2i+1~}-e3(cc3u+(33v)2i+1-}-srl,(ccnu+(3nv)2i+1=0, 

where uf v are real linear functions of x, y.

(23) Let a circle be imagined pierced by a pencil containing any number of rays protracted in both directions, 
say in the opposite points a, a,; b, (3; c, y ; d, $;and let these points, taken in order of natural succession from 
left to right, or right to left, be a, b, c, d, a, (3, y, Then, commencing with any point c, a complete circulation
will be represented by the succession of transits

d o  d, d to a, a to /3, /3 to y , y to $ to a, a to b ,  b to c.

But whether a, /l, y , 8 bear respectively the same signs or signs contrary to those of , by c, d% the transit be
tween any two points (3to y  will be of the same nature, as regards continuance or change of sign, as the transit 
from b to c, and thus we see that the complete cycle or total revolution above indicated is only a reduplication 
of, and may be fully designated by the hemieyelic succession c to d, d to a, ex, to /3, (3 to y, for which the num
ber of variations therefore will be the same as for any similar succession obtained by commencing with any other 
element in the original system of points instead of c.If the opposite points bear like signs, the above succession 
of transits may be indicated by the order c, d, a ,b ,c ;  if they bear contrary signs by the order c, d, a, b, c, and thus 
it is that the idea arises of the two kinds of so-called circulation, but which are in fact only more or less dis
guised species of semicirculation.
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L et th e  derivative of th is function be taken  in  regard  to v, and we have

2L+T1 'l(u>v)= P M <%w+ & # > ) * + . .  +  /3„en( - f - finv f\  
where 02s2, p3e3. .. (3nsn have th e  same signs as s2, s3, . . .  sn respectively.

Now th e  pencil-type o f F  (u,v) w ill be the  per-ro tatory  type gn_J9. . .  g29 of which
by construction the  variation-index is v. H ence by hypothesis F  v) has not m ore 
than  v rea l roots, i. e. a t least 2 i —vim aginary roots. H ence F(w, has a t least th a t 
num ber of im aginary roots, i. e. a t m ost ( 2 £ + l ) —(2 i. e. j>+ 1 real roots. H ence if  
the  theorem  is tru e  for v an  even num ber, it  is true  for v-f-1.

In  like  m anner le t us proceed to show th a t w hen i t  is tru e  for v an odd num ber, i t  
would rem ain  tru e  for v-f-1.

T he reasoning w ill be precisely sim ilar to th a t followed in  the  antecedent case. W e m ust 
find a phase o f the per-rotatory type fn, gn_l9 . . .  g>2, gx having th e  variation-index v such
th a t th e  trans-ro tatory  reduced  type . . .  2 shall have th e  variation-index v—l ;
the  new pencil w ill s till continue to be a type-pencil of the  given superlinear function, 
th e  change of d irection  in  the  bunch  of rays one on side o f ^  being  now unaccom panied 
w ith  change o f sign, such change corresponding to  becom ing changed into
s( ax — by)2i w ithou t s undergoing  a change of sign.

A s before, the  axes o f coordinates are transform ed from  q in to  | r, q\ and we obtain

F (^ , v)—s1(a,1uyi-j-s2(a,2u-\-(32vy i-{-.. . + sr.(05«w+ (3M,y)2w+1,

7Ti F '(>, v) =  p2e2(a.2u + p2v f - 1+ . .  .-jr(3nsn(ccnu-\-Pnv)2i.

for w hich the  type-pencil is th e  trans-ro tatory  type gn, fw_n . . .  f2, of w hich by construction 
the  variation-index is v— 1, so th a t its num ber o f im aginary roots is —(v—1), and con
sequently the  num ber o f rea l roots o f F  (u,v) will be v + 1 .

Thus, then, i f  the  theorem  be tru e  for v,whether v be even or odd, i t  will be true for
v-\-1.

B u t w hen ^ = 0 , the  superlinear function becomes a sum of even powers of linear func
tions o f x, y, all tak en  w ith  the  same sign, of w hich the  num ber o f roots is evidently 0. 
H ence, being tru e  for th is  case, the  proposition is true  universally.

I t  will be noticed th a t th e  algebraical p a rt (as distinguished from  the  purely polar- 
tactic p a rt of th e  above dem onstration) depends on the  same principle of which such 
abundant use has been  m ade in  the  form er p a rt o f this dissertation, viz. th a t the  num 
ber of im aginary roots in  any ordinary algebraical equation in  x  cannot be increased 
when we operate any hom ographic substitu tion  upon , and take the  derivative of the 
equation th u s  transform ed in  lieu  o f the  orig inal(“1).

(24) For greater clearness I present in an inverted order of arrangement a summary of the foregoing argu
ment.

By an tth derivative of/(a-, y) is meant any derived form

4  MMDCCCLXIV.
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(19) The proposition above established leads immediately to the theorem and corollary 
following, viz.

T h eo r em . If cx, <?2, . . .  cn be a series of ascending or descending magnitudes, and m 
any positive integer, the equation

•+^»(#+£n)M= 0
cannot have more real roots than there are changes of sign in the sequence X,, X2, . . .

K , { - T K
For obviously (1, ex), (1, c2),. . .  (1, cn) will be points corresponding to rays within a 

semirevolution, and therefore forming a type-pencil.
Corollary. If  the above equation be transformed by any real homographic substitu

tion into the form , ,
^i(y+7i)w+ //'2(j/+72)“+  • • • + ^ ( ^ + y w)"!=o?

where y1 , y2, . . .  yn are taken in ascending or descending order, the number of changes 
of sign in the series y 2, . . .  (jjn, (— )” ujis for the effect of any such 
formation will be to leave the type-pencil unaltered except in its phase.

(20) If we look to the undeveloped form of the superlinear function
S =  SyU™-j- T“ .. . +  MC5

and are supposed to possess no knowledge of the coefficients which enter into the linear 
elements u, we may still draw some general inferences as to the limit of the number of 
real roots in S=0. Thus if the number of positive units g is^‘, and of the negative 
units k, and j  is not greater than k, it is obvious that, whatever may be the form of 
the type-pencil to S, its variation-index cannot be more than 2/ when m is even, nor 
more than 2 j-{-1 when m is odd; for the arrangement the most favourable to the large
ness of the number of the real roots is that where every two rays with the signs belong- * 1 2 3

the X, n quantities being any real quantities whatever. Then I say—
1. If T is the type-pencil (per-rotatory or trans-rotatory) of any superlinear form E, every derivative of T of 

the contrary name is the type-pencil of some first derivative of E, as shown in art. (18).
2. A derivative of T of contrary name may be found such that its variation-index shall be less by a unit 

than that of T itself, as shown in art. (16).
3. Hence if iis the variation-index of the type-pencil of E, an tth derivative of E may be found such that 

its variation-index shall be zero, and consequently having no real roots.
Hence, finally, since the number of real roots of any rational integral homogeneous function in y  cannot 

exceed by more than i the number of the real roots in any of its ith derivatives, F cannot have more real roots 
than there are units in the variation-index of its type-pencil.

The subtle point of the argument, it will be noticed, lies in forming the conception of the variation-index to 
a trans-rotatory pencil, in which the singular phenomenon occurs of a reversal of relative polarity in passing 
from the last ray to the first, whereas in a per-rotatory pencil any ray indifferently may be regarded as the 
initial ray, no such reversal in that case taking place.

(2S) It may be noticed that, contrariwise, the limit to the number of real roots given by N ewton’s criteria 
is not an invariant; it fluctuates with the homographic transformations operated upon the equation; and a 
question suggests itself as to the maximum value the number of imaginaries indicated by the rule can attain. I 
presume this maximum is not in all cases necessarily the actual number of the imaginary roots possessed by 
the equation.
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ing to the j  group of s are separated by one or more of the rays with a contrary sign to 
themselves. Thus it appears that when only the units s1} s2, . . .  are given, we may 
impose a maximum upon the number of real roots in the superlinear equation; this 
limit may be called the absolute maximum, being the double of the inferior number 
of like signs in the series e19 s2,. . .  snwhen the degree is even, and one more than such 
double wThen the degree is odd(26).

The specific maximum, on the other hand, will depend on the form of the type-pencil, 
and cannot be ascertained until the coefficients of the linear elements are given. It can 
never exceed, but may be less than the absolute maximum. It may, indeed, be easily 
proved that in general the specific maximum will be less than the absolute maximum. 
Thus, by way of example, suppose the degree to be even, and the inferior number of 
like signs to be 2 ; the absolute maximum number of real roots will be four, but the 
specific maximum will more generally be only two. For let the number of linear terms 
in the superlinear function be 2-f -n,n being 2 or any greater number; and first, to fix 
the ideas, suppose n=  2. The type-pencil, which is to be read per-rotatorily, consists of 
four rays, say a, b, c, d, following each other in uninterrupted circular order, of which 
two are to bear positive and two negative signs. If  the two negative signs fall on , c 
or on b, d, the variation-index will be 4, but in the other four cases of incidence such 
index will be only 2. Consequently the chance is 2 to 1(27) that the specific maximum, 
which may be 4, is not greater than 2; and consequently the chance that there will be 
four real roots in the equation will be only a chance (too difficult to be calculated, but 
which is a function of the degree of the equation) o f the chance J  that there will be as 
many as four real roots in the equation unx-\-u\—u \—w”= 0 , where ux, u2, u3, are

(26) (a) I f a super linear form of an odd degree contains an odd number of terms, say 2&+1, the greatest value 
of the inferior number of like signs is Tc, and the extreme limit to the number of real roots will be 2&+1.

If it contain an even number of terms, say 21c, the greatest value of the inferior index is but for this par
ticular case it will readily be seen that a limit may be assigned to the variation-index closer than that given by 
the rule in the text; in fact the variation-index cannot in that case exceed 21c—1, which will therefore be the 
extreme limit to the number of real roots. Now suppose the canonizant of an odd-degreed function of to 
have all its roots real, then it may be expressed by a superlinear form of which the number of terms will be 
2 i + l  or 2%, according as the degree is 4 i + 1 or 4 i— 1. In the one case the number of real roots cannot exceed 
2 i + l ,  in the other 2 i— 1. Hence the following somewhat curious theorem:

(b) I f  the canonizant of an odd-degreed quantic in x, y, of the degree 4i +  l ,  has no imaginary roots, the 
tic itself must have at leasti pairs of imaginary roots. From the fact that when the roots of the canonizant of a 
quintie are all real there must be one pair at least of imaginary roots, we can infer that when the discriminant 
of a quintic is positive and that of its canonizant is negative, the equation has one real and four imaginary roots. 
This observation has led to a long train of reflections, which will be found embodied in the 3rd part of the 
memoir.

(27) This, in fact, is identical in substance with the noted problem of determining the chance that two straight 
fines drawn on a black board will cross. Mr. Cayley, of whom it may be so truly said, whether the matter 
he takes in hand be great or small, “ nihil tetigit quod non ornavit,” suggests the following independent proof 
of this. Taking unity as the length of the contour, fixing the extremity of one of the lines, and calling s the 
distance of its other end from it measured on the contour, the chance of the second line crossing this is- easily 
seen to be 2 s ( l—s), which, integrated between s = 0 , s = l ,  gives -i, as before obtained.

4 M 2
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unknow n linear functions o f x th u s  we are en titled  to say th a t general the  num ber 
o f real roots in  such an equation is not th e  m axim um  four, b u t a less num ber. This 
rem ark  is o f im portance, as showing th a t on th is  sub ject i t  is possible to  speak w ith 
scientific certain ty , and  on o ther th an  em pirical grounds, o f w h a t m ay general be 
expected to take place. T hus we find N ew t o n  declaring  tw ice over in  th e  chapter 
quoted, th a t in general his ru le  will give n o t m erely  th e  m axim um , b u t th e  actual 
num ber o f th e  im aginary  roots in  an equation. I  am  strongly  inclined  to doub t the 
tru th  of th is  assertion ; b u t i t  is im p o rtan t to be satisfied by analogy th a t such an 
assertion m ay rest on a scientific and  dem onstrative basis, and  n o t on th e  u tte rly  falla
cious foundation  o f a rithm etical em piricism  (2S).

(28) A few additional words on this question of probability may not be unacceptable. In order to meet the case 
of the degree of the superlinear form or equation being odd as well as even, let it be supposed known under the form

the values of the quantities cx being supposed to be left wholly indeterminate, and only the signs of the quanti
ties X to be given. Let w be the inferior number of like signs in the series, meaning thereby that the num
ber of signs of one sort is u>, and of the other sort w, or more than a>.

Let the probability o'f the specific maximum of real roots being 21c when m is even, be represented b y p 2*> 
and of its being 21c+ 1  when m is odd by Tr2k + i; also let i represent the number of cases when w and n
are given which correspond to the specific maximum being , 1 respectively. Suppose w = l ,  then obvi
ously, when m is even, we have s2—n ,p 2— 1. But when n is odd (for when either extreme element alone 
is negative the trans-rotatory cycle has the variation-index unity), and <r3= n —2, so that

2 n —2
71-1 n* 71-3 n

Again, suppose w = 2, m being even; then obviously s2 is the number of contiguous duads in a cycle of n 
elements, and si is the remaining number of duads; hence

n —1 n —3
s2—n, s4= n —^ ^ —*

so that
2 n —3

-̂ 2 n —1’ n —\

2nd. Suppose w = 2, m being odd, so that av <r3, a. will have to be separately estimated. To fix the ideas, 
let the X series be termed a, b, c, cl, e, f ,  g, in which two of the elements are supposed of one sign, say negative, 
and the rest of the opposite sign, say positive; then the only dispositions of sign which correspond to the specific 
maximum being 1 are those in which a, b or e lse /, g are both negative. Hence <^=2. Again, the dispositions 
of sign which make the specific maximum equal to 3 are those in which g are both negative, those in which 
a and c, d, e, or /  are negative, those in which g and e, cl, c, or b are negative, and, finally, those in which 
any two contiguous elements except the a and g are negative. Hence <r3= l  +  2(n—3) +  (n—3 )= 3 n —8; and 
it should be observed that this result cannot be prejudiced in its generality by the supposition of any of the 
components of <r3 becoming negative, since w = 2  implies that n is at least 4. Hence, finally,

_ n 2- n  ■ 7n +  12 _ ( n —3 ) ( n - 4 ) .
cr5— 2  —( o n — 8 ) —2 — -------- ------------- -g, >

so that
4 _6n—20 n2—7 n + 1 6

1 n2— n71-3 v?—n ’ 71-5 —n
This example serves to show how much more difficult is the computation of the respective probabilities when m 
is odd than when m is even, owing to the break of continuity in the cycle of readings on passing from the last 
to the first term.
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NOTES TO SECTION II.

Received May 7, 1864.

On the probability o f the specific superior to the number of real roots in a
superlinear equation equalling any assigned integer.

(21) The question comes to that of determining the probability of a per-rotatory or 
trans-rotatory pencil with a definite number of rays of each kind possessing a given 
variation-index.

Since the foot note below w’as written, a method has occurred to me of obtaining the 
probability in question in general terms, as follows.

1. For a per-rotatory pencil of [h positive and v negative rays. Let y, g~\ be the
probability of the rays being so disposed as to give rise to 2 variations of sign in 
making a complete revolution. Then there will be g distinct groups of positive, and g 
of negative rays. The number of partitions with permutations of the parcels inter se
of gj elements in g parcels is ' ̂  y^ +
(y - l ) (y  — 2). . fv—f f + V )

i •̂••{gi)

and of v elements into g parcels is

If we combine each parcel with each in every possible way, and then imagine the 
combined parcels let into a circle containing places and shifted round in the circle
through a complete revolution, we shall obtain

^  + ) X  1.2..(*-1) 1.2..CJJF —1)
arrangements; but on examination it will be found that every arrangement so produced 
will be repeated g times; moreover it is obvious that no other arrangement giving rise 
to g groups of each sort can be found. Hence the true number of distinct groupings 
of the sort in question is

(  ̂+  v) (ft— —2). . (fr—ff +  l ) (y—1) (y—2)..(y—ff-f 1)
9 * 1 . 2 . . ( y - l )

It seems hardly worth while to pursue this subject in greater detail. I will only notice that when m is even 
the chance of the specific maximum attaining the absolute maximum, i. e. becoming 2w, will depend on the pro
portion of the ways in which in a cycle of n elements to of them may be marked with a distinctive sign in such 
a way that no two of such signs shall come together. Accordingly I find by a computation of no great difficulty 
(understanding nx to mean 1 .2 .3 ...  a1),

mr(n—to — 1)
. S2“= 71W(rc-2w) ’

and hence, since the total number of combinations of n elements to and to together is ---- — -, I deduce7ru)7r(n — (o)
7T (n — lii) 7T (ll it) 1)
7r(w — 1)tt(w— *

Thus when n has its minimum value, viz. 2to, y>2w= ,  and becomes very small as w increases. When7T ((U-1)
again n increases towards infinity p 2w approaches indefinitely near to unity, and the chance approaches near to 
certainty of the specific not beoming less than the absolute maximum of real roots.
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And the total number of arrangements, which is the number of ways in which p things 

can be distributed over (/*+*) places, is Hence we obtain

l>. "g\-
7TjU.7rv f(jx — 1 ) ( p  —  2 )  . . ( p  f f + 1 )  X (y — l) (v  2) • «(v~ ,£ r~ H ) \

tt̂  + v- I ) !  1.2. (^ - l ) (1.2..y) j

TTfJL,7r([X,— l)7rV7r(y— 1)________

'vg*{ff—i)»(f* —g)*^ — y)7r(^+ v ~ x)

[Throughout these investigations ^{x) is used in the same sense as IXr, to signify the 
factorial 1 .2 . 3 . . . # . ]

If there should appear any obscurity in the statement of the method by which has 
been obtained the number of distinct distributions of the v elements into g groups 
of each, the reader is referred to the equation in differences obtained further on in this 
Note, by which all doubt of the correctness of the result will be removed.

(22) For a trans-rotatory pencil of rays, to ascertain the probability of the variation- 
index being 2y + l .

Imagine a circular arrangement of (Jj positive elements and v negative elements con
taining 2y variations.

Let this circle be supposed opened out at any point and the variations of the open 
pencil so formed to be reckoned according to the trans-rotatory law, which is that in 
passing from one extremity to the other a change is to be seen as a variation, and a 
variation as a change. If  the break is made between two negative or between two 
positive elements, the number of variations obviously becomes by one unit; but
if between a positive and a negative element, that number becomes decreased by one 
unit. The number of these latter intervals is 2y, and of the former

Hence the probability of the index becoming 2y-j-l is + y anq 0f its becoming
fj* | v

2y—1 is

If, then, we denote the probability to be calculated by [p, it is obvious that
we shall have

g+h~\— f t  +  y — 2 y

F- +  v 1>> ",g]+ |W. +  V 0 >  9 ! ] •

But by the formula previously obtained it will easily be seen that

Hence
&*» g +  13=  - y f f i r  !>■ ’>& 

]!> ,»,'?] . . . .=  ( - * * *  _ i
\ g { p + v)

(*)

= 2 •X[A7T (jm. — l)7rV7r(v— 1)
n { g  — +  1)7t(jw. - | -v)7r(yx— — 0)  +  v — 1 ) ^ ^  ff)
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When g=0  the above expression fails; but reverting to the equation from which it is 
derived, we obtain

(23) These combined results admit of an easy corroboration, for

9+ i) = l »  and v, .
Hence the equation marked * gives

Hence we ought to have
Tgurv . J * v _ y  1 > ,  v,g ]  v

*(* + , ) + u.+,Z g +
7TjU.7TV 7r(/X +  v) .

(/*—g)'*gAv—g)'K9~~

which is true, since the left-hand side of the equation is —Lj . . . ?
2 2

which is obviously the coefficient of of in (1+#)**(#+ 1 i. e. in (1-f
(24) If we wish to find the chance of the specific superior limit becoming equal to the 

absolute superior limit, we must write g in the above formulae equal to that one of the 
two quantities p, v which is not greater than the other, and we shall obtain

r -i ____ 7T[X7r([A 1)
Ll̂ ? 5̂ 'J 7T(jU> -j- V— 1 )tt(|U. — v)’

r .  , n _  1)
ifb) vi “̂r  2 J 7r(a +  v)9r(jU,—v— 1) *

so that, in fact, [ p ,  ps v - f v + 1, 1], which relation may also be obtained by
a priori considerations.

(25) With reference to the remark made concerning the mode of obtaining the value 
of [jU/, v, g~],I proceed to show how it may be obtained directly by the integration of an 
equation in differences, and by a method analogous in idea to that by which []&&, v, 
was made to depend on [p, v, g~\. Tor as in that case we conceived an open pencil to 
be closed and then reopened, so we may imagine one of the rays to be withdrawn and 
then reinserted. In this way, observing that the effect of introducing a negative sign 
into a circle of ^ positive and n negative signs consisting of v distinct groups of each is 
to produce no change in the number of the groups if inserted between two negative 
signs, but to increase that number by unity if inserted between two positive signs, we 
may infer that the probability of v becoming v-j-1, in consequence of such insertion, is

, and of vremaining unaltered, is • 

Hence we obtain the equation in differences,

i>> »>s,]= P +  v — 1 0 .  »— !> 9 ]
ft— ff+ 1
jU. +V— 1 I> ,  v— l ,  1 ] ,

in which may be considered constant, and v and g to vary.
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The integral must satisfy the further condition that \jl, 1, g] shall be unity when g is 
1, and zero for all values of g greater than 1.

Assume the value of \jju, 1, g] obtained by the method given in art. (21). This 
obviously satisfies the initial conditions corresponding to g=zl. Moreover we may easily 
deduce from it the equalities

O, * -i, <7- i ] = 5 ^ t [>. ’,- 1> 9land [>. »> y]= ^ +l,r i1))(L^) l>> ' - 1. A

Hence the equation in differences will be satisfied if it be true that

( » - ! ) »
V- g (v—l-\-g) + v - g

which is obviously the case, since v1—v—g2— — —!)•
Since, then, the assumed value of [(&, v,g~\ is correctly determined when *=1, it is 

obvious, from the form of the equation, that it holds good] for all other values of », as 
was to be shown.

(26) From the equation
[>, v, ,y + i ] _ >-ff)(y— g)

9i9 + 1)

making (9J~~9){v~~9)—9{9Jr 1) 01 p  we may readily infer that the value of g

for which the probability [ j v,g~\ is greatest is the integer part of if that quan

tity is non-integer, or the quantity itself and the number next below it (indifferently) if 
it is an integer.

(27) If we apply a similar method to [a, v, +  we obtain by aid of the formula 
above given,

1A? v_> g  +  2] _  _  2 ay — ( f i  +  y)y   _ (ja-f-1)—y(y+1 —y) .
[p>v) 9 — 2] 2^v +  jw. +  v— (jA-f v)y y2

and equating this ratio to unity, we obtain
2/X.V — (jtfc -f y)y y2
+  g  +  V — (a -f y)y (ft -f 1) (v +  1) — (jM, +  v +  2)y

or writing ^ +  v =jp, p =£,

CP2 -fp )y 2—( 3 ^ + 4  # + ^ 2 + i> )y+ 2^(5+j9 + 1 ) = 0 .

The roots of this equation will be both of them real, for its determinant is

f t + 1 % 2+ 16^2 -b (i>2 +i»3)(^2+ *2),
which is necessarily positive. Hence it follows that there are two positive roots of the 
equation. Whether there will exist values of g which give actual maxima or minima 
values, or one and the other to [p, v, depends on the further condition being
satisfied that the values of g in the above equation shall come out. one or both of them, 
not greater than either of the two numbers v. The inquiry connected with the satis
faction of this condition may be conducted by means of repeated applications of the
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processes of Sturm’s theorem; but I shall not enter upon it, as it appears to lead to 
calculations of complexity disproportionate to the interest of the result.

(28) I t may be noticed that the average value of v, g~\ can be calculated without 
any difficulty. This will he », g]), or

_  ^  P, , ( f t - l ) ( v - l )  , (— 2)(v l)(v—2) , !  
+ 1 1 . 22 

__ 7T/X7TV 7r(jtt +  V —2)  
7r(fi +  V—1) 7r([X— l)7r(v— 1) (fX + 1)*

so that the average number of variations of sign in a per-rotatory pencil with positive 

and v negative signs is -  \? or a little more than the harmonic mean between v.

In like manner, for a trans-rotatory pencil this number will be

+ 1)0*, v, =  V,i]  +  2 ^ (2 y + l) — l )  [^, »,

which, observing that 2[ja, v,y] = l ,  and (p, v, 2 ^  — = 2 , gives as the average 

number of variations of sign —— — — ---- j-L
& [X +  V (X +  V— I

Received May 10, 1864.

AND IMAGINARY ROOTS OF EQUATIONS.

(29) The simplest mode of calculating the value of \ja, is the following:
Let \jjj, v, g), jjfc, p, (g—J)j denote the probability that an arrangement in open line (in 

which, as is the case in applying D es Cartes’s rule of signs, no account is taken of the rela
tion of the extreme signs to each other) shall contain respectively 2 and 2 —1 variations. 
Conceive a circular arrangement of y groups of positive and y groups of negative signs. If 
this circle be opened out into a line at an interval between a positive and negative sign (of 
which there are 2y), one variation will be lost; but if at any of the remaining p-f-y—y 
intervals, the number of variations remains unaltered. Hence we derive immediately

and [>> '.d -
But we may find [jm», v, g— by counting the arrangements which give 2 —1 
variations of sign. These may be all obtained, and without repetition, by intercalating 
every distribution of gj into g groups with every distribution of v into the same; and the 
intercalation may be performed in two ways, according as the parcels of the p  signs, or 
those of the v signs, are taken first in order. Hence we have

r t\ — l)(ffc—2) ... Qt—ff+1) (v— l)(v — 2)... (v— g + 1 )  »/**»
l 2)— 1.2 ... (g-  1) 1.2 ... 1) 7r{[x + v)

and thus

2 tI[X7t {[X— l)7TV7r(v — 1)
7T (fx +  v) 7T (g  -  I  )x  (g — 1) Trjfx —g)  tt

r __ffc +  Vp 1 1___________ fr[xyr(fx — l)vvT(v  — l  ________
2 g J9 y2J tt(|U, +  v4- — l)wC*-—g)n{y—g ) )

as previously found; also
r (p. +  v—2g)ir[Mr(jx — l ) i r m ( v — l )  ^
Lr* >y) x(jt + K)w5r*(̂  —1)7
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(30) Moreover, we thus see that the average number of variations in an open line 
with f t  positive and v  negative signs, which is

2(2^—1)|>, J)+22^(>, , g \

will be equal to
2 2 y ( [ > ,», £) + 0 . » , y ) ) - 2 [ > , x .  j r - D )

2 2 ^ ,  ,, g ] ~ 2 ^ , , ,  d = e£ b - 122*(>) V, y ]= ^  + ' 1 2j«.v 2/xv
,̂ +  v *;L' jX +  V jX +  V— 1 /x +  v

The total number of variations and continuations together is 1. Hence the

difference between the two is —(j ub-\-v—1), or so that the average

number of variations is greater than, equal to, or less than that of the continuations, 
according as the difference between the numbers of the two sets is less than, equal to, or 
greater than the square root of the entire number of signs. Obviously the average 
should be the same for the variations as for the continuations if the number of signs, 
say % +l, is given, and each is supposed equally likely to be positive or negative. This 
is easily verified; for multiplying the probable value of each distribution of signs by the 
probable value of the number of variations corresponding thereto, we obtain the series

n{n +  \)  2r‘^ ^ { l . n . ( n + l ) + 2 ( W- l X n + l ) |+ 8 ( n - 2 ) (" t 1J ± L». (n + 1)2,

This is the final average of the number of variations of sign, and will be equal to that 
of the continuations, since the entire number of the two together is n.

Eeceived October 27, 1864.

P ast III.— ON THE NATUEE OF THE EOOTS OF THE GENEEAL EQUATION OF THE
FIFTH DEGEEE.

(31) In a foot-note, Part II. of this memoir, I have shown that when the discriminant 
of the canonizant (constituting an invariant of the twelfth order) of an equation of 
the fifth degree bears a particular sign, the character of the roots becomes completely 
determined by the sign of the discriminant of that equation.

This has naturally led me to investigate de novo the whole question of the character 
of the roots of an equation of that degree; and I have succeeded in obtaining under a 
form of striking and unexpected simplicity the invariantive criteria which serve to 
ascertain in all cases the nature of the equation as regards the number of real and 
imaginary roots which it contains; then passing to the expression for these criteria in 
terms of the roots themselves, I obtain expressions which exhibit the intimate connexion 
between this subject and a former theory of my own relative to the construction of the 
conditions for the existence of a given number and grouping of equal roots, which can 
hardly fail to lead eventually to the extension of the results herein obtained to equations 
of any odd degree whatever. It is the more needful that these results in a question of 
so high moment to the advancement of algebraical science should be made public, inas
m uch as they do not seem to accord with those obtained by my eminent friend M .H ermite, 
who has preceded me in this inquiry in a classic memoir, published in the year 1854 in
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the ninth volume of the Cambridge and Dublin Mathematical Journal, since which time 
I am not aware that the subject has been resumed by any other writer. The discrepancy 
between our conclusions may be only apparent; but there can be no doubt of the supe
riority of the form in which they are herein presented, inasmuch as only three functions 
of the coefficients are required by my method, and five by M. H ermite’s. The solution 
offered by M. H ermite is confessedly incomplete, but to this great analyst none the less 
will always belong the honour, not only of having initiated the inquiry, but of having 
emitted the fundamental conceptions through which it would seem best to admit of suc
cessful treatment. The arrow from my hand may have been the first to hit the mark, 
but it was his hand which had previously shaped, bent, and strung the bow.

Our methods of procedure, however, are widely dissimilar, and by employing my well- 
known canonical form for odd-degreed binary quantics, long since given to the world, I 
have succeeded in evading all necessity for the colossal labours of computation required 
in M. H ermite’s method, and am able to impart to my conclusions the clearness and 
certainty of any elementary proposition in geometry, not scrupling to avail myself for 
such purpose of that copious and inexhaustible well-spring of notions of continuity which 
is contained in our conception of space, and which renders it so valuable an auxiliary to 
Mathematic, whose sole proper business seems to me to be the development of the three 
germinal ideas—of which continuity is one and order and number the other two*.

Section I .— Preparation o f the General Binary Quantic o f the Fifth Degree.
(32) Let ( a, b, c, d, 0,

a cubic covariant of F is the canonizant C, where C represents the determinant
a b c d
b c d e
c de i
f —tfx yx2 —x3

Let us first suppose that this form does not vanish identically, and has at least two 
distinct factors £, tj linear functions of x, , where of course g, 77 are each of them 
determinate to a constant factor pres;giving any value to the constant factor for either 
of them, we may write F(#, 77)=(a, (3, s, tfjz, 77)°, and the canonizant of d>
with respect to 2j, 77 becomes the determinant T, where T represents

a (3 y
(3 y d  s
y  d s

* Herein I think one clearly discerns the internal grounds of the coincidence or parallelism, which observa
tion has long made familiar, between the mathematical and musical edos. May not Music be described as the 
Mathematic of sense, Mathematic as Music of the reason ? the soul of each the same ! Thus the musician feels 
Mathematic, the mathematician thinks Music,-—Music the dream, Mathematic the working life—each to receive 
its consummation from the other when the human intelligence, elevated to its perfect type, shall shine forth 
glorified in some future M ozart-D irichlet or Beetiioven-G auss—a union already not indistinctly foreshadowed 
in the genius and labours of a Helmholtz !

4 n 2
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Hence since T to a constant factor pres is identical with C, the coefficients of ?j3and g3 in 
the above determinant must vanish in order that In may be contained in T.

Hence the two determinants

cc I3 y (3
f3 y  b and y £ g 

y d g & g
both vanish.

Hence either ce, [3, y, or otherwise y, b, g, or else the first minors of

(3 y
y &
(5 g

are each zero.
The first two suppositions must be excluded, since either of them would lead to the 

conclusion of T, and therefore C, being a perfect cube, contrary to hypothesis. The last 
supposition implies either that (3, y, or otherwise that y, g, or else that (3h—<y2 and
yg — are each zero.

If  (3, y, & are each zero, T becomes a multiple of ; if y, d, g are each zero, T becomes 
a multiple of n%2; that is to say, T, and consequently C, contains a square factor; and 
obviously the converse is true, so that when C contains a square factor F is reducible to

72 S2 T3the form au5-\-5euv4-\~fv5' When this is not the case -j Hence

which is of the form ^5+®5+4/5, <p, being linear functions of y.
(33) We have supposed C not to be a perfect cube. When it is a perfect cube, say 

| 3, we may assume n any second linear function of ; and expressing F in the same 
manner as before in terms of g, n, it is clear that all the first minors of

cc (3 y  &

(3 y  d g
y  & g /,

except the one obtained by cancelling the last column in the above matrix, must vanish, 
consequently ft, g, i must all vanish, so that <L, and consequently F, must contain a cube 
factor identical with the canonizant itself.

Lastly, if the canonizant vanish entirely, every first minor in the above matrix, when 
we write again a, b, c, d, e, i in lieu of «, /3, y, \  g, /, will be zero. Hence either
a, b, e, d, or b, c, d, e, or c, d,e, i must each vanish, or else that must be the case with
the first minors of

a b e d  
b c d
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or of

or of

b c d e
c d e i,

a b e d  
c d e i.

Under the first or third supposition F must contain four equal factors; under the 
second O becomes ; under the fourth or fifth it is readily seen that the form
becomes

a ( * + 7 )  °r

respectively, so that the second, fourth, and fifth suppositions conduct alike to the form 
<y5+<p5, a particular case of the preceding one.

It remains only to consider the sixth supposition, viz. that the first minors of
a b e d  
c d e i

are all zero.
In this case if we write

\ /  ax-\-\/
\ /  ax—'s/ ,

a + b = 5 ’

A —B = fl2Ĉ

and if neither a nor c is zero, it will readily be seen that F(#, y) becomes A^5-j-B?;5 by 
virtue of the relations

If a=0  or c=0, the preceding transformation fails.
But unless also i— 0 or e=0 at the same time as a = 0  or c=0, a legitimate transforma

tion similar to the above may be performed by interchanging , with , y, x.
If now 

Similarly, if 

Again, if 

and if

a—0, it will easily be seen that a, b, e, d or else a, , e are each zero. 

^=0, it will easily be seen that i, , , e or else i, d, b are each zero.

c=  0, it will easily be seen that a, , c, d or else c, e are each zero;

d=  0, it will easily be seen that c, d, e, i or else d, b are each zero.

(29) Thus we see that the equation axh +  Gbx4 +  lOaca;2 +  lObcx2+ oac~x -f bc1=  0 belongs to the class ol soluble 
forms.
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Thus, then, if tf=0 and i — 0, all the coefficients, or else all except one, viz. or , are
zero;

if a=  0 and d=  0, all the coefficients, or else only not e and or only not b
or only not i are zero ;

so if i= 0  and c— 0, all must be zero except b and « o r e o r a ;
if c= 0  and d— 0, only e and i or else and b or else and will differ

from zero.

Hence, then, in any case there will be at least four equal roots, or else F is of the form
ax5-\-iy5.

Thus, then, for the first time has been here rigorously demonstrated, free from all 
doubt and subject to no exceptions, the following important proposition:

Every binary quantic function not containing thvee or more roots is reducible to 
one or the other of the two following forms,

u5 +  v5-j- w5, or au5+ 5  euv4 5.

The former is the case when the discriminant of the canonizant is different from zero, 
the latter when it is equal to zero; for it will be observed that, whether the canonizant 
has equal roots or totally disappears, its discriminant in both cases alike is zero.

(34) It has been seen that when the quintic has three equal roots the canonizant becomes 
a perfect cube; and it may not be out of place here to point out what the conditions 
(necessary and sufficient) are to ensure the quintic having four equal roots. These are 
all comprised in that of the quadratic covariant vanishing. To prove this, let be a factor 
of F(#, y \  so that

F(#, *?)=(«, /3, 7, $, s, OJyr, v\)\
\

Then, since the similar covariant quoad x, y must also vanish, we have

as— 4j3£+y2= 0 , —3j3s+27^=0, —47s-J-3^2= 0 .

If s =  0, then &=0, 7 = 0  by virtue of the two extreme equations, and O, and therefore 
F, contains four equal factors. If s is not zero,

7 = ^ 7 ’ 0 = ^ 2 ’ a —Th?’ and O becomes^

so that, as before, there are four equal factors. Conversely, it is obvious that if there 
are four equal factors u, so that <&=au5-\-5bu\ the quadratic covariant of O disappears.

(35) The quadratic covariant also it was which led me to perceive the transformation 
applied in the antecedent article. For when the first minors of

a b e d  
c d e f
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are all zeros, the quadratic covariant becomes

4(c2—bd)x3 -j-4(^2—ce))f.

Supposing neither of those coefficients to vanish, and calling its two factors and v, and 
making

y)<I>(w, v)=(oc, y, &, s, i ju ,  v \

it is clear that the minors of
a (3 y &
y ' b s i

can no longer all be zero, since in that case we should have

4(y2—(3h)u2-{- 4(&2—ys)u2

containing u, v as factors. Consequently the canonizant of O must vanish under one 
or the other of those remaining suppositions which had been previously shown to con
duct to the form au5-\-bv\ or else to the case of three or more equal roots. When the 
quadratic covariant vanishes, we know that there must be four equal roots; and when 
it becomes a perfect square but does not vanish, it will be found on examination that 
the equation has three equal roots.

U V w(36) Returning to the general case, where 0 = w 5+?;5+ w 5, and making
U V widentically zero, and writing u\ v\ w1 for 5 ^  respectively, O becomes

or, if we please, ru5-\-sv3-3-tw\ with the condition u Jr v-\-w=\).
Moreover u, v, w will all three be factors of the canonizant of F. For taking the 

canonizant of F with respect to u, v, it becomes

r —t - t - t - t r 1 0 0 0 ’
- t - t — t —t

or rX  H
- 1 - 1 - 1 - 1

—t - t - t C
o 1 <5* - 1 —1 - 1 1

Vs —vhi vu2 —us, V3 — V3U vu2 —u3 /
or rs£(w2+ m 2), i. e. —rst(uvw).

Hence iix-\-ey, x+ fy , x-\-gy are three distinct factors of the canonizant of F with 
respect to x, y, if we choose the ratios X: g>: vso that j—v = 0, we
may make u=-\(x-\-ey); v=p(x-\-fy); w=v(x-\and shall then have

F(#, y)—ru^-\-svh-\-tw5, with the condition

where r, s, t may be found from three equations obtained by identifying any three oi 
the six terms in F with the corresponding terms expressed as a function
of x, y. These equations being linear, it follows that 5, svb, twb form a single and 
unique system of functions of x, y.
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«

So when the canonizant has two equal roots and is of the form C{x+py)(x-\-qy)2; in 
which case the’ reduced form is au5+5etiv4-\-fv\ The canonizant in respect to u, v 
becomes

a 0 0 0
0 0 0 «
0 0 « f

v3 —ifu
i. e. ae2uv2. Hence, writing

u= x+ py, v= x+ qy,

a, e,fmay be obtained, ns before, by means of three linear equations, and the terms
au5, 5euv4, f v 5 form a single and unique system.

Finally, when the canonizant vanishes entirely, so that the form becomes au3-\-fv\ 
the quadratic covariant will take the form C(x-\-ey)(x-\-fy) ; and making 
v~x-\-qy, a,fbecome determined by means of two linear equations, so that 
form a single and unique system, as in the preceding cases.

(37) When the canonizant has three distinct roots, they may be all real, or one real and 
the other two imaginary. In the former case, in the expression ru5-\-sv5-\-tw\ , , w may 
be considered as all real functions of x, y, and r, , t will then also all of them be real. 
In the latter case w may be taken as a real function of x, y, , v as conjugate imaginary 
functions; and consequently it is easy to see that, except when r, s are equal to each 
other, they will constitute a pair of conjugate imaginary quantities: in this case we may 
take for our canonizant form

or, if we please,
rtf+svj-j-tw5

understanding by upv, —~u~—  respectively. And it should be noticed that

the determinant of up vtin respect to u, v will be

2 2

_1 —i
2IT

which is i.
(38) Let us proceed briefly to express the invariants of 5, which call O,

with respect to u,v; the corresponding ones of m 3-{-sv3-\-tw5, which call Oy, in respect 
to the same variables u, v will be found by attaching to these suitable powers of

<X>=(r— t, —t, —t, —t, —t, s—iju , v)5.
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Hence its quadratic covariant is the quadratic invariant of

((r—t)u—tv, —tu— tv, — tu—tv, —tu—tv, —tu-\-(s—t)v\u!, t/)4, 
which is obviously

—rtu2 — stv2+ (—r t—st)uv.

Of this the quadratic invariant is

r t . s t—^(rs—rt—st)2;

or writing g=st, a—tr, r=rs, and calling this invariant (I),

(I) =  — l(e*+<r*+**—2f<r—2<jt—2rg).
Again, the cubic covariant or canonizant has been already shown to be rst(u2v+uv2). 

Calling the discriminant of this (L), we have
( L ) = - A f ^ f ) = - ^ W .

%
Again, to find the discriminant (D) in respect to u, v.
When ru5-\-sv5-\-tw5=  0 has two equal roots, and 0, it is easy to see that

we have n t4-|~?i=0, su4+?i= 0 , tfw4-f-A=0.
Hence to a constant factor pres(D) will be the Norm of

(s£)*+ ( tr)*+(/•«)*, i. e. of

To find the value of this norm, suppose g*+<7*+r*=0, then 

§+ < r+ r= 2  (gM+ffV + rV ) ,
and

§2+<r2+ r 2—2§<r—2gr~2(rr= 8gW (§i + ^ + r i ).
Hence

(^2+ <t2-j-r2—2g<r—2 gr— 2 err)2 =  6 4§<77 { (§ -J- <7 -f- r) +  2(g V* +  o'M-j-r*g *)} = 1 2 8 gor(g +  *T )•

Hence (D) must contain (J)2—128go'7(g-{-o'+<r) as a factor; and since when 0, g=0, 
<7=0, and (D )= r4= (J )2, it is clear that (D) =  (J)a—128(K), where

(K) =  g<7r(g+<7-fr).

(39) Although in the investigation in view (K) will only figure as an abbreviation of

g ) J J ) , it may not be amiss to indicate a direct process for finding it. Let us for this 128
purpose act upon the Hessian of O, treated as a function of v twice with the canoni

zant of converted into an operator by substituting —— in place of u and v.

(3°) p or this is (0 , v j \  and tlie discriminant of (a, c, v j 1 is

a2c£2+  4ac3- f 4 clb3 — 362c2—Qabcd.

(31) It is worthy of observation that (J) is also a Norm, viz, of ps-fcri +  rh  so that (J) is the discriminant of 
rv? + sv3 -(- tws. I  have not been able to perceive the morphological significancy of this relation.

MDCCCLXIV. 4  0
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The Hessian of O may be obtained without difficulty under the form

rsu3v3+ stv3w3+ trnf'y? or ru3v3-|-%vhv3-f-<tw3u3 (32).

Operating upon this with

we obtain gcrfAr +  Bg +  Cff), where

and as we know that this quantity must be of the form X(K)+j^(J)2, we have ^ = 0 , 
72; so that, denoting the operator corresponding to the canonizant by T, and the 

Hessian by H, we have ( K ) = -y ^ T T O  f 3). This gives a ready practical method for 
finding the discriminant of a general quintic by means of the identity D = J 2+ -^ T 2H, 
where D is the discriminant, H the Hessian, T the canonizantive operator, and J  the 
quadratic invariant of F in respect to its own variables. «

(40) If  now we suppose the determinant of u9 v in respect to a?, y  to be ^  where p 
is by hypothesis a real quantity, and if we call the

Quadratic invariant in respect to a?, y . 
Discriminant of primitive „ „
Discriminant of the canonizant „

we have obviously
J  =(Aw(f-\-<j2-{-—2 —2gr—2(77"),

K=f(,2y r ( ? +  (r-|-r), D = J 2-1 2 8 K ,
L = (4®jVr’,

- H ,
D,
1 T 

2 7

>invariants of O.

This applies to the case where the reduced form is O, i. e. where the roots of the cano
nizant are all real, and consequently where —L is negative, i. e. L positive.

When L is negative and the reduced form is <E>;, then, since the determinant of un v, 
in respect to v is i, we have

J  = - it>o10(?2+(72+ r 2- 2 §<r - 2 ?r - 2 (7r), 
K =  f**2 <rr(q+tr+ r), D = J 2-1 2 8 K ,
L

invariants of <E>y.

By means of the ratios it is obvious that in either case alike the ratios of g,

(32) It will be the quadratic invariant of ru3%2+ sv 3r)2-\-tw31? with respect to £, rj, ? +  oj+? being zero; just as 
the quadratic covariant of 4> is the quadratic invariant of ru ^ + sv ^  +  twl? with regard to the same variables. 
This latter is in fact rsuv + stvw -f tnuu.

(33) The intervening covariantie form of degree 3 in the variables and 5 in the coefficients, viz. TH<I>, will 
easily be seen to be

rs t\u 2v—wv2) -f- str2(v2w—viv2) +  trs2(w2u—tint2) .
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become determinable by means of the same cubic equations, viz.

03_K02+ 5!= IL (3_ i /= O  ;
1 4

g, <r, t will be to each other as the roots of this equation (34).
(41) Since ru5 -\-sv5-\~tu5 represents a function in with real coefficients, it follows 

that when L is positive, u, v as well as w being real, : are ratios of real quantities,
and the roots of the preceding cubic will be real; when L is negative, v becoming 
conjugate imaginary functions of a?, y, whilst w remains real, unless they are equal, 
must become conjugate imaginary constants. When r, t are all real, g, <r, r  will be so 
too; and when r, s are imaginary and t real, g, <r will be imaginary and r  real. Thus 
according as L is positive or negative the roots of & are or are not all real. Hence 
understanding by A the discriminant of the preceding equation with respect to and 1,

must be always either zero or negative. We see a priori that must be integer, 

because when L = 0  the cubic has two equal roots, To compute its value more con

veniently, write K = 6£ , J  =  1 2 \j.Then the equation becomes
(1, 27c, W - j L ,  I/£d , ~ 1 ) 3,

of which the discriminant is
L4 +  4 (3^- ; L ) 3 +  32&3L2-  12&2(3£2-J L )2-  12£L2(3£2--/L).

Hence
^ = L 3- 108/^'+  36£!/ L - 4 /L2+32£3L

+ T lV j- lW fL  — 36A3L+12/^L2 
= L 3— m y + M k y h - 4 /L 2-  4£3L+12/£Lj.

Accordingly, multiplying the above equation by —3T22 in order to avoid fractions, 

replacing 7c, jby their values in terms of K, J, and naming G the quantity — 432

(34) For since the absolute values of g>, <r, t  are not in question, we may consider £, as the roots of 
d3— KQ2+qQ —r, so that g +  <r+r=~K. We have then

which gives r =  L2. Again, 

Do-rK2 K2

(f„ / (? + <r+r)5 - p ’ or K3—K3’

> or

f4cr4r4 
'3(f +

(K2- 4 ^ ) 2
(K2- 4 2)2“  J2 

As regards the sign to be given to JL in q, since

K2XIL
= J 2, or (K2~ 4 ^ )2=  L2J2, or J -----

we have (K2—4g)3= J 3L3. Hence

Consequently

jb (K2—42)3_(K 2- 4 ?)3
L“  r2 ~  L4 ’

K2—1*JL 
2=----4-----

K2—JL , . K2+ J La —---- j---- , and n o t-----  -----.^ 4  4
4 o 2
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positive, or to speak more strictly non-negative, we have
G = J K 4+ 8L K 3—2J2LK2—72JL2K — 432L3+ J 3L2(35).

It is evident that G must be identical to a positive numerical factor p s  with the 
function which M. H er m ite  denotes by I2(36).

(35) It will be observed that wrhen J = 0  and L = 0 , G vanishes. This is easily verifiable a priori;  for when 
J = 0  and L = 0 , the reduced form has been seen to be ax‘+ 5 ex y4, of which the canonizant is

a 0 0 0
0 0 0 e
0 0 e 0

y3 —y'x yx<2 —x'3
which equals aexy2.

Hence the form and its canonizant have a common factor and consequently their resultant vanishes; 
hence 1 = 0  and G = I 2= 0 .  G also vanishes when K = 0  and L = 0 , which is also easily verifiable; for then 
the reduced form becomes uh +  v5, of which the canonizant vanishes, and consequently the resultant of the form 
and its canonizant becomes intensely zero; which accounts for the high power of R  in (JR4), the sole term of 
G in which L does not appear.

(36) (a) Compare expression for 16I2, Cambridge and Dublin Journal, p. 203. This will be found to contain 
nine terms, and to rise as high as the fifth power in A (which to a constant factor pres is identical with my J);

whereas in there are only six terms, and no power of J beyond the third. This seems to indicate that the 

R and L are more fortunately chosen than M. H ermite’s J2, J3, which are invariants of the like degrees 8 and 
12. It is of course evident that the following relations exist between M. H ermite’s A1} J2, J3 and the J, R, L 
of this paper,

A — ?J,
J2= m J 2 +  wR,
J3 =pJ3 +  qJR -j- rL,

where l, m, n, p ,  q, r  are certain numerical quantities. Until these are ascertained, it is impossible to con
front M. H ermite’s results with m y own, to ascertain whether or not they are identical in substance, and, if  
not, wherein the difference consists. I  therefore subjoin the necessary calculations for effecting this important 
object.

Let us first take the form x 5 +  5exy4- \ - y 5.The quadratic covariant of this is x(ex-\-y).
Accordingly, to obtain M. H ermite’s A, B, C, C', B', A' (Cambridge and Dublin Journal, vol. ix. p. 179), we 

must make
x —X ; Y,

which gives (vide C. and D. J. p. 180)
F = X s +  —eX)4 +  (Y —eX)5

=  (A, B, C, C', B', A'YX, T / ,
•where

A = l  +  4e5, B = - 3 r i ,  C = 2e3, C '= —c2, B '= 0 , A '= l .  
Accordingly (vide C. and D. J. p. 184),

A A '-3 B B '+  2C C '=l +  4 r i -  4e5= l  =  V a ,

A A '+ BB'— 2C C '=l +  4e5+

AA' +  5BB' +  10CC'= 1  +  4es—20es= 1 —16 e5= ^ 7 1  •
Hence VAA = l ,  ^ = 2  +  16^, I2= 2 —32e5.
Again (vide C. and D. J. p. 186. § vii.),

8J1= I 1- A 2= l  +  16e5, 24J2= I 2—2 I1A +  A3= - l - 6 4 e s ;
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(42) In fact M. H e r m ite’s octodecimal invariant is most simply obtained as the result
ant of the primitive quartic and its canonizant. Using the reduced forms for these two

but Jx, J2 aro subsequently without warning (compare expressions for AAf, BB', CC\ pp. 186, 192) renamed 

J3; so that 8J2=  1 + 1 6 A, 24J3=  - 1  -6 4 e 5.

The corresponding values of J, K, L have been already calculated, and we have found

1=1, K=-2e5, L=0.
Hence

Thus
A = l ,  i  +  2«‘= B - 2 C e5, 2T - | | « s= D - 2 I : A

A =  l ,  B: e4w ^ ----- ®----------24’
To find F, take another form convenient for the purpose, as

Taking the emanant of this (a?, 0, cly, dx,yl[x', yfj 4, the quadratic covariant is obviouslv xy -f 2>dhf, so that
J = l .

Also its discriminant is
1 0  0 d
0 0 d0
0 d  0 1

of which the discriminant is

—y2x yx1 —xz

viz. d?y3— d( — dx3+ y2x) =  —dy2x  -f cPx3,

cP +  4d2\ =dw-^dK

L = e - ^ d 10+ d 5.Hence by definition — 4

Again, to find A, B, C, Cf, B', A', we must write

x  +  3d2y = X ,

y=Y,
and we have then

(X —3d2Y)5 +  10cZ(X — 3d2Y )2Y 3 + Y5=  (A, B, C, C', B', A 'J X , Y )5.

Since J = 1  and K is of the eighth order only in the coefficients, it is obvious that neither J3 nor JK can contain 
a term involving d 10. In order therefore to find F, it will be sufficient to compare the coefficient of d lu in J3
and in L.

Now A = l ,  B = —3 d2,C = 9  d\C'=27ds+ d ,  A '=243cP -f 90d5+ l .

Also A = J = 1 . Hence neglecting all but the terms which bring in cP, 24J3 (p. 186, Memoir) is tantamount 
to I2, and I2 (p. 186) is tantamount to

2(243cP—5 . 3 . 81eP +  1 0 . 9 . 27cP),

12x243cP .
which is

Hence in J3 the term containing cP is 
Hence — A lF = A il, or F =  —18.
Hence we have, finally,

A = J ,

J3= - 1 8 L + |J E
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functions,
ru5+sv5—t(ti+v)5;

and conversely,
J —

Iv 2 + 8
1a2A2

;_ £ 3 -4 aJ2 + Ja3.
18 27 2 8

Unhappily a further step is wanting to bring M. H ermite’s results to the final test of comparison; for the 
value of AA' (p. 192) does not agree with that given for AA' (p. 186) by simply changing J2 into J2, J3 
respectively; a further change of A into 2A becomes necessary to make the ratios of AA', BB', CC' (p. 192) 
accord with the ratios of the same quantities at p. 186. Finally, even after making this change the expression 
for 16I2 (p. 203) does not accord (even to a constant coefficient pres) with that with which it is meant to be 
identical, viz. 16I2 (p. 187); so that after great labour I am still baffled in my attempt to ascertain the agree
ment or discrepancy of my conclusions with those of my precursor in the inquiry. As will appear hereafter, 
the two sets of conclusions are undoubtedly discrepant in form; but whether they are so in substance or not, or 
rather whether they are or not in contradiction to each other, requires a close examination to discover, the more 
especially because, as will hereafter be shown, there is a certain necessary element of indeterminateness in the 
scheme of invariantive conditions which serve to fix the character of the roots. It is greatly to be lamented that 
so valuable a paper as M. H ermite’s should be to some extent marred, in respect of the important end it would 
serve as a term of comparison, by the existence of these numerical and notational inaccuracies. I have spent 
hours upon hours in endeavouring to reconcile these several texts of the same memoir, and, after all my labour, 
the work is left unperformed without which the truth as between the two methods cannot be elicited. I  feel, 
however, as confident of the correctness of my own conclusions as of the truth of any proposition in Euclid.

(b) It is worthy of notice that there is a failing case in M. H ermite’s process for finding I2 in terms of A, J2,
J3, just as there is one in mine for finding G in terms of I , K, L,— the failure of the process, however, in neither 
case entailing any corresponding defect in the results obtained. The process employed in this memoir fails 
when L = 0 :  for then the general form ru5 +  svi-f- tw'°is superseded by the supplementary one, aid +  + fv b.
M. H ermite’s fails when J (the J of this memoir) = 0 ;  for then the quadratic invariant becomes a perfect square, 
and the substitution of its factors in place of the original variables becomes inadmissible, since the two former 
coincide.

(c) It may be as well here to notice the form which M. H ermite’s two linear covariants assume when 
referred to the canonical form above written. The quadratic covariant being rsuv +  stvw-\- trivu, if we operate

d d cl d • •with the correlative of this obtained bv writing in it — > —— > — —— in lieu of u, v, iv, viz.
dv du du dv

d _d  /
lu dv /  dv

upon the primitive, we obtain to a factor pres the canonizant rstuvw, which has been already obtained; repeating 
the process, it is easy to see that the first linear covariant of the fifth degree in the coefficient assumes the simple 
form rst(stu trv +  rsw), or rst(gu + a v  +  riv). Taking again the correlative of this, viz.

c l d . /------—s t— (
du dv clu\

rst d d ,
? * _<rs +T|

,/^7_ d \\  
\d u  d

and operating with it upon rsuv -f stvw +  trwu,it will be found without difficulty that the second linear covariant 
of the seventh degree in the coefficients becomes

r s t \ ( < r — r)(<r +  r —^)M-f (T—f)(r  +  f — <r)v +  (f — cr)(f> +  cr—r ) w } ,  

which is distinguishable in species from the former one by its symmetry being only of the hemihedral kind.
(a) It may not be out of place to notice here that the Hessian of the canonical form will be found to be

2 v3w3-f < r i i >3u +
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their resultant in respect to u, v is obviously
(rst)5(r—s)(s — t)(t—r) (37),

(e) Again, if we write
rst(gu +  (rv +  tw ) =  £
rst(w —r)(<r +  r — p)w +  (r — p)(r +  p — <r) v +  (p — <r)(p +  <r— —

u + v  +  w =  0,
and from these equations deduce the values of u, v,w , and substitute them in ra5 -f sv5 -f- tux', we shall obtain 
M. H ermite’s “ forme-type ” expressed in terms of the parameters of the reduced form, and every coefficient 
therein will be invariantive.

The resultant of the equations above written (on making £ = 0 , £ = 0 ) will appear in the denominator of each 
such coefficient. Hence it appears, from M. H ermite’s expressions (Camb. and Dubl. Math. Journal, vol. ix. 
p. 193), where J3 will be seen to enter into the denominator of A, B, C, C', B', A', that this resultant to a factor 
pres is his J3. Its value may easily be calculated, and will be found to be

p£rr(p +  ct-{ -t ) 3—4(p +cr-bT'Xpcr-j-p'r-f- a'r) +  9p£rr=JK-|-9L.

Accordingly as L (to use Dr. Salmon’s convenient elliptical expression) is the condition of the failure of my 
general reduced form, so is 9L + JK the condition of the failure of M. H ermite’s “ forme-type.” As particular 
cases of this last failure, wo may suppose J = 0 , L = 0 , or K = 0 , L = 0 . In the former case the reduced form is 
ax5 +  5ex4y, of which the simplest quadratic and cubic covariants are respectively ae2y 2x. Thus to find

/  d VL, the first linear covariant, we have to operate upon aehfx with which gives a2e3x; and to find L2, we

have to operate on (aex2)2 with or, if we please (according to M. H ermite’s method), with

on aex2, showing that L2 vanishes, but Lj continues to subsist. When, secondly, K = 0 , L = 0 , the reduced form
is ax' +  e\f, and the canonizant disappears entirely, so that the first, and consequently also the second, linear 
covariants, each of them becomes a null.

(37) By aid of the reduced forms of the invariants J, K, L, I given in the text, it is easy to prove that every 
other invariant, say 12 of a quintic, is a rational integral function of these four. In what follows, let a paren
thesis enclosing the symbol of any invariant signify its value when any two of the quantities u, v, w in the 
reduced form viv‘ -j- svr‘ -(- tw5; ^u-\-v are taken as the independent variables. We have then

(J)=p2+<r2+ r 2— 2p<r—2pr—2<rr, (K)=pav(p + cr-fr), (L )= fV V , ( ! )= p W (p —<r)(<r—r)(r— p),

p, <r, f  meaning st, tr, st.
The degree of £2 must be of the degree 4m or 4m+  2. 1. Let it be of the form 4m. Then, since the in

terchange of any two of the variables u, v, w must leave (12) unaltered, (12) will be unaltered by the interchange 
of any two of the letters r, s, t, and is consequently a symmetric function of p, tr, r, the roots of the equation

+ g ) 2-  0 .0 _ (I/) = Q.
(L)* (L)

Hence
F((J), (K), (L))

F denoting a rational integral function-form of the quantities it affects. Consequently
F(J, K, L)

L2m

Hence since 12 cannot become infinite when L = 0 , which merely implies that the general form reduces to
(CL) 9, 0, 0, e, ijfcjv, ) ,

12=$(J, K, L), a rational integral function of J, K, L.
2. If the degree 12 is of the form 4m +  2, (12) will be a function of s, t, which changes its sign when u and v
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and consequently, if we call I the resultant in respect to , we have

± 1
and

I2= p90gVV(ir—§ — °02(§ — Tf

= p 30(<r-§)2(r  “  «)*(% ~  r )2L2-
(43) Thus we see that the two quantities G, I2, which are both rational integral 

functions of the degree 36 in the coefficients of F(x, cannot one vanish without the 
other, at all events when L is not equal to zero. This is sufficient to show that they are 
identical to a numerical factor pres, whatever L may be, zero or not zero (38), and con
sequently that the quantity called G, proved to be positive upon the supposition of L 
not being zero, must also remain positive when L is zero, because it is in fact the square 
of a rational function of the coefficients. But we may also prove this independently 
by virtue of the supplementary reduced form applicable to the case of
L zero.

For when L = 0 , G becomes JK 4; so that the condition “ G not negative ” implies 
simply that J  is positive unless K vanishes.

Now the canonizant, when it does not vanish, i. e. when e is not zero, contains vho as 
a factor, and, its coefficients being real, u, v are both of them necessarily real functions 
of x, y. Consequently J, which by definition is — 4 x  discriminant of quadratic cova
riant, becomes — 4^10x  discriminant of au(eu-\-fin respect to , v, which (i
being real. Consequently J  is positive, since the reality of , v implies that of , , f ,  
when e is not zero. When e is zero u, v may be either real or imaginary; for t̂5-f-̂ ,5may 
be real whether u, v be real or conjugate imaginary functions of x, y  but in that case 
K, which is found by operating twice upon the Hessian with a canonizant turned into an 
operator, vanishes, since then all the coefficients of the canonizant vanish (39). Hence 
the rule that G cannot be negative is seen to be true, whatever L may be.

or any two of its quantities u, v, tv, are interchanged, such interchange having the effect of introducing as a 
multiplier the 5 (2 m + l)th  power of the determinant of substitution ( —1). Hence (fl) is of the form

(£ -e r )(< r -T )(r -?)E(£, cr, r), i. e.
(L)*

which again is of the form
(I).F((,T), (K), (L))

(L )2 m —8

so that i l  is of the form
I.F (J , K, I )

Hence since, as before, i l  cannot become infinite when L = 0 , and since, furthermore, I  does not vanish (for if 
so then G, which is I2, would vanish) when L = 0 , Q must be of the form K, L). Q. E. D.

(’*') For if Q:=  KI“ for an indefinite number of systems of values of a, b, c, d, of which Q, I  are rational 
integral functions, Qr and K I2 must he absolutely identical; this of course is the case when Q,2 and KI2, as proved 

in the text, are known to be identical for all values of a,b, c, d, e, f  which do not make L zero. 
C9) (a) In the more general form aid +  oeuv4 +fu% taking y  =  l .  The canonizant is aehiv2; this squared and
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It may be said that the case of three or more equal roots existing in F (#, y) has been

turned into an operator becomes (re4 ( ~
\d v

d_
duj which, applied to the Hessian, viz. +  aftdv3—e2y6, after

multiplying by - f a ,  gives K  =  - 2 a V ,  so that D = J 2- 1 2 8 K = a 4/ 4 +  256aV , which is capable of easy verifi
cation. In fact D becomes the resultant of an4 +  ev4 and v\4eu-\-fv); introduces the factor a3 into D ; and 
further, making u :v : :  —f:4e and substituting in au4 +  e v 4,  we obtain the other factor a / 4 +  256e5.

I f we adopt u3 +  oeuv3 +  v4 as the reduced form for the failing case (a form analogous to the well-known one,

w4-j-6cwV-j-v4, for the general quartic), to find e we have J = iu10, K = —2^20e5. Hence ; thus when

K = 0 , e = 0 .
(b) By a linear transformation we may always take away any two (except the two first or last) coefficients of 

a given quintic, but the vanishing of more than two coefficients always corresponds to some invariantive con
dition. Thus, ex. gr., in the form

ax5 +  5exy4 - 5 oIIKl

ax6 OII K = 0
ax? +  5  exif OIIHi OII

axd -\-\0dx2y 3 II O

oIIM

ax? -j- 5bx4y  -j-10 L = 0 II O
(c) The condition for the existence of four equal roots in a quintic is the vanishing of the quadratic covariant; 

that is to say, we must have

ae— 4 b d +  3c2= 0 ,  a f— She -f- 2cd=  0, bf—4ce +  3c?2= 0 .

The three quantities equated to zero are not separately invariants, but constitute in their ensemble an invarian
tive plexus.

(d) [It may here be noticed incidentally that the conditions for equal roots in the biquadratic form are 
as follows. For two equal roots, of course, the discriminant is zero, for three equal roots the two lowest in
variants are each zero, and for two pairs of equal roots the Hessian (A, B, C, D, EJjjr, y ) 4 becomes to a factor 
p rts  identical with the primitive (a, b, c, d, e ^ x , y } 4, so that all the first minors of the matrix

c l ,  b f c f e } f

A, B, C, D, E, F

vanish. Qucere, whether the character of the five-rayed pencil (centre at origin), in which A ; B ; 
d ,  D ; e ,  E mark points, may not serve to distinguish between the case of four real and four imaginary roots.]

(e) When J = 0  and K = 0 , but not L = 0 , it is obvious that g : or: r :: 1: i : r , i being any imaginary cube root of 
unity, and the reduced form is id +  iv5 +  ihv5, with the relation u + v +  = 0 .

J and K being zero, D will be so too, and accordingly the equation will have two equal
roots. It will easily be found that these equal roots correspond to the system of ratios 1, v —.2, w —i. 
In fact, if we write u = l  + § , t /= t2+q>, iu = i +  d§, the equation becomes id +  +  d a d f2(30^ +  3^3) = 0.

Hence, understanding by e either of the two prime sixth roots of unity, the complete system of ratios of u, v, w 
may be expressed as follows:—

U =  1 V —  i2 IV — l
U =  1 v —d W =  l

u =  1 — v^lO v = d -  Wlo w = i - r  V 1 0

u =  1 +  ^ lO e v —s4— v^lO w = d  +

w = l  +  be5 '■y=£4-|- W =  £2-  ^ i o .

Thus, when J = 0  and-K =0, u, v, w (with the relation w-f v-f w = 0 )  may first be found, in terms of x, y, by 

MDOCCLXIV. 4 P
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lost sight of; but we know, and it is capable of immediate verification by taking as the

solving the cubic equation, obtained by equating to zero the canonizant of (a, 6, c, d, y'j, and then y
will be known from the above system of values for any two of the quantities w, v, w.

(f) It is obvious that the form ax' +  dxh f  gives J =  0  and K = 0  ; but it seems desirable to prove t h e  c o n v e r s e  

viz. that when J = 0  and K = 0 ,  but not L = 0 ,  the form is always reducible t o  axd +  1 0 £ mV ,  which m a y b e  d o n e  

as follows. Since J = 0  and 1 7 = 0  the discriminant is zero, and we may assume

E = ax5 +  5bx4y  -j- 10cx3y 2-\-10
and we have J =  discriminant of

( - 4  bd+  3 c2)£2 +  2cdfr +  3
Hence

3 d \3 c2- 4 b d ) - c 2d 2= Q ;

d  cannot be zero, for then we should have J = 0 , 17=0, L =  0, contrary to hypothesis. Hence 8c2 — \2 b d — 0.
O *2

If 6 = 0  and c = 0 , F is already reduced to the desired form; but if  not, d = — , and F becomes
36

axb +  ~  x 2̂  Qxy  + ^ ^ 2 +  | i  y^j
or, making

u—^ = a ,  ^=2(5', x  +  ̂ . = v ,
F = x 5 +  10 x 3v3, as was to be shown.

The corresponding converses for the case of J =  0, L = 0 ,.an d  of 17=0, L = 0  have been already established. 
(°) It will be observed that under a certain point of view L for binary quintics is the analogue of A the discri

minant for binary quartics, the condition of failure in the general reduced form in the two cases being L =  0 
and A =  0 respectively. The mere vanishing of the discriminant in the case of the quintic function, unattended 
by any other condition, does not affect the nature of the reduced form.

( ) It has been shown previously in the text that when L = 0  the primitive is reducible to the form

(a, 0, 0, 0, e, y ) s.
Hence if  I 12 is any duodecimal invariant which vanishes when 6 = 0 , c = 0 , 0, I ]2 must vanish whenever L
vanishes, and consequently, since L is of as high a degree as I 12, I 12 must be a numerical multiple of L. In 
Mr. Cayleys Third Memoir on Quintics, “ No. 2 9 ” represents a duodecimal invariant calculated by M .F a!  

de B runo, and characterized morphologically by Mr. Cayley as being that duodecimal invariant in which “ the 
leading coefficient a does not rise above the fourth degree.” On examining No. 29 it will be found to contain 
no term in which 6, c, d are all simultaneously absent. Hence it is, by virtue of the above observation, a mul
tiple of my L : to determine the numerical factor, let all the coefficients in the primitive except a, d  be supposed 
zero ; then the canonizant becomes

a 0 0

0 0 cl

0 d0

y3 — y2x  y x 2 — x3
Hence L becomes —27 a2d10,but “ No. 2 9 ” becomes 27 Hence we have the important relation
“ N o.2 9 ’ = —L, so that No. 29 is a discriminant, an intrinsic property of the calculated invariant, which, I 
believe, was not suspected.

0) If will at once be recognized that “ No. 19 ” given in Mr. Cayley’s Second Memoir upon Quantics is iden
tical with the J of this memoir, whence it follows from Mr. Cayley’s equation (No. 2 6 ) = (No. 19)2—1152 
ho. 26, that 17=9 (No. 25). Thus abstraction made of a mere numerical factor, Mr. Cayley and myself agree 
upon perfectly distinct grounds in recognizing 17 and L as the true simplest invariants of their respective 
degrees, an accordance as satisfactory as it was unexpected, and which must be considered as setting at rest the 
question of what should be deemed the, so to say, staple invariants of the Binary Quintic.

d

0
0

•d3y 3+ .
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reduced form ^ 5+5£%%-f-10cwV, that on such hypothesis all the invariants J, K, L 
must vanish, so that JK 4 is still non-negative (40).

(44) It is most important to notice that G can only become zero by virtue of two of 
the quantities §, <r, r, and therefore of r, s , t  becoming equal. When v are imaginary,
it is the coefficients r, s which must become equal, as otherwise the reduced form would 
not be a real function of x, y. By equating r to s, and using as an auxiliary variable

T S
the ratio y or y ,  we shall be able to study the composition and inward nature of G with 
the utmost clearness and facility.

AND IMAGINARY ROOTS OF EQUATIONS.

S ection  II.— On the Criteria which decide the Number o f Beal and Imaginary Boots.

(45) Since in the preceding section we have supposed that v are always real linear 
functions of x, y, it is obvious that the character of the roots of the given quintic in y 
is completely identical with that of the roots in the reduced form, and it has been shown 
that only one reduced form corresponds to a given system of values of J, D, L(41).

Let us suppose J, D, L to be taken as coordinates of a point in space; when J, D, L 
are so related that the condition G non-negative is satisfied, the point will correspond 
to an equation with real coefficients, and may be termed a facultative point. But 
when G is negative it will correspond to an equation of the kind alluded to in the 
recent section of this paper, and there called conjugate: such a point may be termed 
non-facultative. Thus the whole of space will be divided into two parts, separated by 
the surface G = 0 , which may be termed respectively facultative and non-facultative (as 
being made up of facultative or non-facultative points (42) ). I t is clear that these two 
portions will be exactly equal, similar, and symmetrical with regard to the axis of D ; 
by which I mean that, if two points be taken in any line perpendicular to the axis of D 
at equal distances from that axis, one will be facultative and the other non-facultative, 
as is evident from the fact that when J, L become —- J, —L (K, and therefore D or 
J 2—128K, remaining unaltered), G is converted into —G. Thus by a semirevolution

(4°) When the form is aid -f oeuv4 + fu 5 so that L = 0 , the canonizant, as has been seen before, is ae:vho; the
resultant of these two is a W / = « V 0/ .  Again, J=arf2, K =  — 2aV ; thus the square of the resultant — yLJIv4; 
so that if we call this resultant, which we may take as the definition of the Octodecimal Invariant I, we have
Gr=16I2.

D Ii(41) It should be well noticed that the mere ratios B ,i f  do not suffice to determine the character of the roots.J- J
When these ratios are given, it is true that the ratios r, t in the reduced form are given, but according as L 
is positive or negative, the arguments u, v in ru5 -f- svh -f- tw5 (supposing w to be the real linear function of 
will be real or imaginary. When J, L, D are all given absolutely, then the character of the roots is completely

determined. The indelible marks of a quintic function are three in number, viz. the ratios — , p ,  and the sign

of L or J, as for a quartic function they are two in number, viz. s3 and the sign of

(42) It will also be convenient to call the coordinates J, D, L corresponding to any facultative point a facul

tative system of invariants, and ^  ~  corresponding to the same (for a given sign of J) a facultative system of 

invariantive ratios.
4 p 2
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round the axis of D the facultative and non-facultative portions may be made to exchange 
places.

(46) The axis of D itself lies on the surface of G, and like every other portion of this
surface is facultative, for there is no reason for disallowing G to become zero. Con
versely, if, instead of a real equation, we take one of the conjugate class (described in 
the second section), the whole of the facultative portion of space (except the separating 
surface G) becomes non-facultative, and the non-facultative part becomes facultative, 
but G itself remains facultative. When the invariants, or any of them, become imagi
nary, we are put out of space altogether, and the system can belong neither to a real 
nor to a conjugate family, but to one with coefficients at the same time imaginary and 
non-conjugate. G = 0 (43), it may be remarked, will in all cases be the condition of 
an equation capable of linear transformation into one of recurrent (44) form; for the 
reduced form then in general becomes ru5-\-rv5—t(u-\-vy. The case when G becomes 
zero by virtue of J —0 and L =0, that is to say lvhen the function is reducible by real 
or imaginary linear substitutions (see footnote (S9) (f)) to the form is the
one which might for a moment be supposed to offer an exception to the rule; but only 
the exception is only apparent, since u(u4—v4), on writing {-fl> becomes

(47) To every point in space, it has been remarked, will correspond one particular 
family of equations all of the same character as regards the number they contain of 
real or imaginary roots, because capable of being derived from one another by real 
linear substitutions, such family consisting of an infinite number of ordinary or con
jugate equations according as the point is facultative or non-facultative; but it may be 
well to notice that, conversely, every point does not correspond to a distinct family. In 
fact every point in the curves D =j9j2, lt= qJ3(q>, being constants) will denote a curve 
divided into two branches by the origin of coordinates, one of which will be facultative 
and the other non-facultative; but in each separate branch every point will represent 
the very same family. Any such separate branch may be termed an isomorphic line; 
and we see that the whole of space may be conceived as permeated by and made up of 
such lines radiating out from the origin in all directions.

(48) The origin at which J =  0, D =  0, L =0, as already noticed, corresponds to the 
case ot three equal roots. The theorem that, when more than half as many roots are 
equal to each other as there are units in the degree of any binary form, all the inva
riants vanish, was remarked by myself originally in the very infancy of the subject, 
before Mr. Cayley’s paper, alluded to by M. H ermite, appeared in Crelle. The method 
of proof which then occurred to me is the simplest that can be given. For instance, in

(43) I shall hereafter allude to the surface denoted by G = 0  under the name of the Amphigenous Surface, 
as being the locus of the points which give birth to real and conjugate forms indifferently.

(44) The roots of recurring equations, geometrically represented, in general go in quadruplets, A, B, If, 
where A and B, as also A*, IV, are mutual optical images of each other in respect to a fixed line, and A, A', as 
also B, B', are electrical images of each other in respect to a circle of which the fixed line is a diameter—with 
liberty, of course, for the images taken in either mode of combination to coalesce so as to reduce the quadruplet 
to a simple pair.
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the case before us, if the quintic have three equal roots, we may reduce it to the form
ax5 -f 5 bx4y -j-10

Suppose now, it possible, an invariant of the degree m ; the weight of each term therein, 

say arbsc\in respect to x  or y would be the same (viz. so that we should have

5r+4s+3£=^w=s-}-2£, or 5s_j_

and therefore r=  0, 5=0, t — 0, m — 0. So for a sextic with three equal roots reduced
to the form (<z, b, c, 0, 0, 0Jyr, y f .  Supposing any term in one of its invariants to be
arbsc\ we should have

§ r + 5 s ^ k t= ^ Z —s-\-2t, or 6r-f-4s-|-2£=0,

which is absurd, unless r=  0, 5 =  0, t= 0 , m = 0, and so in general for a binary form of
any degree. If in the above example for the degree m only three roots were equal 
inter se (the form assumed being («, h, <?, d, 0, 0, 0J(x, y f ,  any term in a supposed inva
riant being where r-\-s-\-t-\-u=m, we should have

and, as before,
Qr os —4ĵ  -p on— —5-j- 2 ̂  —|—

6r-{-4s+2£=0, r= 0, s= 0 , £= 0;
no longer, however, m —0, but m=u, which is left undetermined.

(49) Before proceeding further it will be proper to consider under what circumstances 
a variation (in the coefficients of any equation) arbitrary, except that the coefficients are 
to remain real, can affect the character of the roots.

Let F(#)=0 be any algebraical equation with real coefficients, and let c)(Rr) be the 
variation of F due to the variation of the coefficients, dF(x) the variation due to the 
change of x  into x-\-dx. If, now, rbe a root of F#=0, and r-\-dr the corresponding
root of F(.r)4-c$F(#)=0, we have

F r= 0 , F (r+ d r)+ 5 F (r)= 0 , or SF(r)+ ^F(r)(?r+ r1- ( ^ )  Fr(rfr)!+ & c.= 0 .
/7TTHence, unless =  0, i. e. unless there are two equal roots we shall have 
dr

dr — — -J^'^  _  a real quantity; so that the character of the root will be the

same as that of r. 
But if

^ = 0  ^ - 0
dr dr* ’

d
dr

i-1
F = 0 ,

so that there are i roots r, i being any integer greater than zero, then to find dr we 
have the equation .

w ; + z i v  =Q-

Thus dr will have i distinct values; of these, if i is odd, all but one will be imaginary, 
but if i is even they will be all imaginary, or only all but two imaginary and the remain

 on July 19, 2018http://rstl.royalsocietypublishing.org/Downloaded from 

http://rstl.royalsocietypublishing.org/


632 PROFESSOR SYLVESTER ON THE REAL

ing two real, according as the sign of h¥(r) is the same as or the contrary to that of

Accordingly, if r is real (45) and i even, the nature of the ensemble of the i

roots r+ dr  will not be the same when SF(r) is positive as when £F(r) is negative.
(50) So, further, if F #= 0  have 2m equal roots r, 2 equal roots s, and so on, the deduced

corresponding groups of roots in F(#)-{-^F(#)=0 will, or may at least each of them, 
undergo a change of character to the extent of one pair of the r group changing their 
nature with the sign of &F(r), one pair of the 5 group changing their nature with the 
sign of t$F(s), and so on; but in no case, except possess some equal roots ( . e.
unless its discriminant be zero), can an infinitesimal variation in the constants affect the 
character of the roots (46).

(51) To every facultative point corresponds a certain set of values of J, D, L; and when
these are given, it has been shown that the equation (■, , c, , e , f \ x ,  is reducible to 
the form ruhJr svhJr t,w\ where to-^v+W—0, or to the form where

, n 1 — —w —ivand ut—— x— » — 5— 5

or to the form auh-\-5euv*-\-fv5,u, v, w being always real linear functions of y, with
the sole exception that when J = 0 , K = 0 , L = 0 , the reduced form is

au5+ 5bu4v -j-10
When these three invariants are not all zero, the coefficients in the reduced form , t 

or $, e, f  are known functions of J, D, L, and the character of the roots is perfectly deter
minate; so that to every facultative point corresponds an infinite family of equations 
with real linear coefficients all deducible from each other by real linear substitutions. 
Thus then, with the sole exception of the origin, every facultative point corresponds to 
a determinate character of equation, viz. to an equation with four, or two, or no imagi
nary roots; so that by a bold figure of speech we may be permitted to speak of every 
point but one in facultative space having a determinate quality, as masculine, feminine, 
or neuter. The origin alone is exempt from this law, and may be considered to be of 
epicene gender, since the factor au2-\-5buv-\-10v2 may have its roots real or imaginary. 
As we travel continuously from point to point in the facultative portion of space we 
pass from family to family, or, if we please, from an individual of one family to an indi
vidual of another family, differing from the former individual by an infinitesimal varia
tion of the constants.

(45) r, although supposed to be one of a group of equal roots, is not necessarily real, for it may belong to a 
factor (ar +  2e cos 0 +  erf .

(46) Compare this statement with the corresponding one given by M. Heumite, Camh. and Dub. Journal, vol. ix. 
p. 204, where only one parameter is supposed to undergo a change. I  think that greater breadth and at the 
same time greater precision and clearness are gained by the mode of exposition employed in the text above. It 
will he observed that for a change of character to he possible when the function passes through a phase of equal 
roots, it is not enough that there shall exist a group of equal roots r, hut there must he an even number of 
such roots in the group, and, furthermore, the equal roots must he real; when this last supposition is not 
satisfied, no change in the character of dr will affect the character of r + d r :  an instructive exemplification of 
this remark will occur in the sequel.

 on July 19, 2018http://rstl.royalsocietypublishing.org/Downloaded from 

http://rstl.royalsocietypublishing.org/


AND IMAGINARY ROOTS OR EQUATIONS. 633

(52) If, then, we insulate any portion of facultative space, and in the block so insulated 
it is possible to pass from one point to any other—that is to say, if we can draw a con
tinuous curve ol any sort from one point to another without passing out of the block, and 
without cutting or touching the plane D = 0, then by virtue of the principle just laid 
down, we see that all the points in such block have the same character, and the nature 
of the roots will be the same in the infinite number of families, each containing an 
infinite number of individuals which the points in that block severally represent. Now 
imagine a block taken so extensive as to admit of no further augmentation, except 
accompanied with a violation of the condition of the capability of free communication 
between point and point without cutting or touching the surface D ; such a block may 
be termed a region, and the whole of facultative space will be capable of subdivision 
into a certain number of these regions. This being supposed effected, the character of 
each region will be known when we know the character of a single point in i t ; that is 
to say, every region will have a determinate character of positive, negative, or neuter. 
I t will presently be shown that the number of such regions is only three (47) (the least 
number it could be to meet the three cases of four, two, or no imaginary roots), one 
masculine, one feminine, one neuter; and consequently there will be but three cases to 
consider when the invariantive coordinates J, D, L are given; according as J, D, L 
belong to one or the other of these three regions, the equation to which they belong 
will have all its roots real, or only one real, or three real and two imaginary. The 
origin, it need hardly be added, constitutes a region per , in which, so to say, the 
characters of masculine and feminine are blended.

(53) Let it be observed that we can see a priori that, were it not for the distinction 
between facultative and non-facultative portions of space, it would be impossible for 
each point corresponding to a given system of invariants to possess an unequivocal 
character; for in such case there would necessarily be free continuous communication 
possible between all the points on each side of D se, and consequently we should 
be landed in the absurdity of conceiving the general equation of the fifth degree not 
to admit of division into cases of four, two, or no imaginary roots; D being negative, 
we know, would imply two roots, and not more than two, being imaginary; and accord
ingly D positive would imply either that four roots are imaginary or none—not sometimes 
one and sometimes the other, but in all cases alike four imaginary, to the exclusion of the 
supposition of the roots being all real, or else of all the roots being real and never four 
imaginary. Thus we see that the mere fact of a given system of invariants communi
cating a definite character to the roots, implies the necessity of the invariants exercising 
a restraining action over each other’s limits, and that where this restraint does not exist 
it is impossible that the character of the roots can be determined by the values of the 
invariants.

(47) It is clear from the definition, that a region can only he bounded by G the amphigenous surface, and T) 
the plane of the discriminant: and granted (as will he shown hereafter) that G and I) touch each other in only 
one continuous line, it becomes obvious a priori that there can he hut two regions on one side of D and a single 
region on the other.
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(54) This is precisely what happens in biquadratic equations. In such we know the 
fundamental invariants £, s, or, if we please, , A (where A = s3+27£2), are perfectly inde
pendent and subject to no equation of condition; so that if we consider , A as the 
coordinates of points in a plane, the whole of the plane will be made up of facultative 
points. When A is negative, i. e. for representative points lying on one side of the line 
A, it is true we know that there is just one pair of imaginary roots constituting what 
may be termed the neuter case; but when the representative points lie on the other side 
of this plane, they cannot be said to be either masculine or feminine, but will every one 
of them possess that epicene character which is peculiar to the origin alone in the case 
of quintic forms. A single example will make this clear.

Take the two reduced forms
u* +  6 (1+ s )w V  -f- 4,

<y4- i - 6 ( i - s  y o 2+ e\

where u, v are real linear functions of x, y, and , & conjugate imaginary ones of the
same; and suppose s, the quadrinvariant in respect to , , to be the same for both forms. 
For greater convenience of computation consider s to be infinitesimal.

Then in the one case the t is of the same sign as

(l4 "0 (l —0-"J"03)» i* e- —2s,

and in the other the t is of the contrary sign to

(1 — s)(l — (1—s)2), i. e. 2s,

so that t is of the same sign (viz. negative) in each case.
Again, in the two cases respectively

p  4 s2 
? = l + 3 ( l ~ ± s j *  =

Hence t as well as s, and consequently t and A are alike for both forms.
But in the one first written the roots are of the same nature as those of ?f4 +  6?£V-f-?;4, 

i. e. are all impossible, and in the other of the same nature as in

where u, v are real linear functions of x, y and —1, in which case the roots are
all possible. Thus we see that the very same values of , A may correspond either to 
the case of four real or four imaginary roots, showing that the point , A is what we 
have termed epicene. If we choose to take s, t as the coordinates, the same remarks 
would apply, except that A instead of a straight line would become a semicubical para
bola. All the points on one side of this curve would have a definite neuter character, 
but those on the opposite side would be neither masculine nor feminine, but epicene.

(55) With a view to its subsequent distribution into regions, I now proceed to ascertain 
the form of that moiety of space which I have termed facultative.
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Let P = #K , J3=*L.
G

Then
432 and ” = 1 - ^ 8.v2q v2

We may for the moment make abstraction of the section of G made by the plane of L; 
that being done, and J, K, L being referred to the form or rtf-^-sv^tw5,
calling p10, M, and, as before, using g, <r, r  to denote , we have

+  J =M (§2-J-o'2+ r 2—2§<r—2§r—2<7r),
K = M2§<rr(§ -j- -j- r),

+  L==M3gVr2.
Now when G =0, 
We have then

and consequently

we may suppose g=<r, - = -
§ <r $-}“ 4, $ being a new auxiliary variable.

+  J =  M(r2— 4 qr)  =Mgr0, 
K=M -gM2»+r)=M?lv ( l + fA ) ,

+  L = M 8§V

» = - f = 3 4+4fls,
XJ

„ _ J 2_ J 2(0 + 4) 
 ̂ K 0 + 6

(56) In general we have 04-{-403— j/=0.
By a well-known corollary to D escartes’s rule this equation can never have more 

than two real roots; when v is positive there will always be two real roots of opposite 
signs; but when v is negative and inferior to a certain negative limit, all the roots become 
imaginary. When v lies between zero and that limit, two roots of $ will be real and 
both negative. To find that limit we may make 403-f-1202=O, or 0 = — 3, which gives 
> = 8 1 -1 0 8 =  — 27.

(57) W henD =0, 2= ^ = 1 2 8 , i. e. 0s+402-1 2 80-768  =  O, or (3+8)2(S-12) =  0 ;
so that the roots of 0, when D =0, are —-8, —8, 12, and the corresponding values of v 
are 2n, 2U, 21027.

If now we make 04-|-403= 2 n, one of the real values of 0 we know is —8, and the 
other will be the real root of the cubic equation 03 — 402+320—256=0.
When 0 =  5, the left-hand side of the equation =125-f-160 —100—256= — 71.
When 0 =  6, the left-hand side of the equation =216-}-192—144— 256= 8.
Hence the real root lies between 5 and 6, and g lies between and Thus11 4 w

^<30 and 5 —1—1?® is negative.

Again, if we take 04-}-403= 2 7 ,210, and take out the root 0=12, the resulting cubic 
becomes

034-1602-f-1920+2304=0,
where it will easily be seen the real root lies between —12 and —16. 

mdccclxiv. 4 Q
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When S— —12,

and when 0 = —16,
2 = « l - r l = 144xI = 192>

^ = 2 5 6 x ^ = 3 0 7 ^ .

Moreover, when qis a maximum or minimum, it will readily be found that 
3̂-|-11^4-24 =  0; s o  that #= — 3, or 6 ~ — 8. Hence for the value of 6 found from the

D  128
above cubic ^<192 and j2 = l  — -—-ispositive.

(58) When J= 0 , v=0; and when L —0, v—oo .
For these two cases it will be more simple to dispense with the auxiliary variable 0, and 
to revert to the original equation between J, K, L.

Accordingly, when J= 0 , we find 8LK3 — 432L3= 0. Hence

L =0, or K3=54L2, i. e. V =54L !;

so that the complete section of G made by the coordinate plane J  becomes a straight 
line, viz. the axis of D, and a semicubical parabola whose axis is the negative part of D. 
When J is very nearly zero, v becomes a positive or negative infinitesimal in the equa
tion 04-{-403=v.

One real root of this equation is 0— .

The other is — 4+&s where (4( — 4)3-j-12( — 4)a)$=v,

Now K3
L2'

64

(£ i)> + 4)2
(fl +  6)£ 
(S +  4)

The first value of 0 gives K3=54L2 to an infinitesimal pres; the other value gives
512-,. „K3=

or, to an infinitesimal ,
JL Y _ y _ 2T2.
128 J v ’

so that D passes from -f co to —oo, i. y- passes through
zero.

(59) In the annexed figure(18), the plane of the paper repre
sents the plane of D, i.e. the plane for which H = 0 ; JOJ is 
the axis of J,_OJ being the positive and OJ the negative 
direction; LOL is the axis of L, OL being the positive and 
OL the negative direction. In order to avoid any appearance 
of an attempt at a practicably impossible accuracy of drawing, I use straight lines to

(48) I shall refer, when I have occasion to do so, to this figure, which contains a synopsis of the whole theory, 
under the name of the Dial figure.
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denote cubical parabolas, and pay no attention whatever to relative magnitudes, but only 
to the order or progression of magnitudes, using the lines which are drawn in the figure 
not as copies but as symbols of the actual curves which are to be mentally imagined.

Thus the line JOJ is used to represent the straight line L = 0 ; A'OA' the cubical 
parabola J 3= 27*2'°L; AOA the cubical parabola J 3= 2 nL; IlO n the cubical parabola 
J 3= —27L(49).

It will be observed that certain combinations of , , positive and nega
tive infinity are placed along the lines and inside the sectorial spaces. The meaning of 
these will be sufficiently obvious from what has preceded. They refer to the signs of 
the two values of D in the surface G for each point in the line or sector along or within

which they are placed. At every point along the line O J, 5  has only one value, and that
t « J *

positive; along A'OA', ^  has two values, one positive and the other zero. Along AOA,

p  has two values, one positive the other negative. Immediately below LOL two values,

one +  oo, the other finite and negative. Immediately above LOL two values, one — oo, 
the other finite and negative. Along IIOII one value, finite and negative.

Moreover D has been shown to be never zero, except along A'OA', AOA. Hence it is 
obvious that inside A'O J  and the opposite sector D has two values, both plus; inside the 
next pairs of opposite sectors two values, one plus, the other minus; inside the next 
pair of sectors also two values, one plus, the other minus; inside the next pair of sectors 
two values both minus, and in the pair of sectors left vacant, for which v< —27, it 
has been shown that D becomes impossible.

(49) It has been shown in the preceding articles that corresponding to the line JOJ and to the line n o n ,  
the vertical ordinate D of the amphigenous surface ( 0 =  0) has only one value positive for the former, negative 
for the latter; along the line A'O A' two values, one positive the other negative; for the space between AOA', 
LOL indefinitely near to the latter two values, one positively infinite, the other negative; and for the space 
indefinitely near to the same on the opposite of it, two values, one negatively infinite, the other negative. These 
results are collected and represented symbolically in the Table annexed.

+

A'

+
A
0 (+ 00) —

0 -  — ( — 00) 
Thus, corresponding to the upper sheet of G, we have the succession 

_1_ -h 0 (+ 00)
and to the lower sheet

+ ( -  00)
the two sheets coming together at a cuspidal edge above JOJ and below TIOII.

Moreover these are the only positions of the line revolving in the plane of D corresponding to which a change 
in the nature of D can take place, and thus we can without further examination fill up the Table, giving the 
nature of D for the intervening spaces, and may thus obtain the Table embodied in the dial-figure above, viz.,

+
+

+

+ + + ( +  00) “  

— (— °°)0
4 q 2
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(60) Thus it will be seen that the surface G consists of two opposite portions precisely 
similar and symmetrical in respect to the axis of D.

Let us trace that one of these whose ground-plan is comprised within the sector nOJ. 
It will consist of two sheets coming to a cuspidal edge (a common parabola) in the 
superior part of the plane of L. The upper sheet will touch the plane of D in OA(50), 
and, remaining above the plane of D, approach continually to the plane of J  as an 
asymptotic plane. The lower sheet will cut the plane of D in OA', pass under the 
plane of D, cut the plane of J, progress to a maximum distance from it, and then 
approach indefinitely to J as its asymptotic plane. This will become apparent by 
taking a vertical section of this portion, cutting the lines OL, O J ; for the nature 
of the flow of the two branches of the section will evidently be as figured below, 
where/, a ,  ?/, /, sr represent the points in which fhe lines OJ, OA', OA, OL, O n are cut 
by the secant plane. [It should be particularly 
noticed that this figure is only intended to exhibit, 
under its most general aspect, the nature of the 
flow of the two branches of the curve; it is drawn 
in other respects almost at random, and makes 
no pretension whatever to giving a representation 
of the actual form of the curve.]

No part of the surface G lies under or above the 
sector nOJ, except the axis of D. The cusp C, 
where the two branches meet, is the intersection of 
the cutting plane with the parabola J = D 2 lying in 
the plane of L, and there will be another cusp at , 
the point of maximum recession from the plane of J.

(61) I now proceed to discriminate, by aid of 
this surface, the facultative from the non-facul- 
tative portion of space.

If in the expression for G as a function of J, K, L we substitute for K its value

128 128
, we obtain G:

( 128)'
D4-f terms involving only lower powers of D ; so that,

calling Dls D2 the two real values of D in  the upper and lower sheets of G respectively 
corresponding to any point J, L,

G = J (D -D 1)(D -D 2)Q,
Q being a quantity essentially positive.

Hence when J is negative the facultative points in any line parallel to D will be 
those for which D lies between D1} D2, but when J is positive, the facultative points 
must be exterior to the segment ; I denote this difference in the figure by placing 
a colon between the signs in each sector for which J is positive, indicating thereby that 
the facultative points lie between -J-oo and Dn and between D2 and — oo; but where no

(50) For the value of D for this sheet is zero all along OA, and positive on either side of it.
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colon is interposed, then it is to be understood that the facultative points lie between Dj 
and D2. Thus, if we turn back for a moment to the section of G last drawn, the whole 
of the space included between the two branches and the asymptote is facultative, because 
up to the asymptote J is negative, and beyond the asymptote the whole of the space 
not included between the asymptote and the lower branch is facultative, because beyond 
the asymptote J  becomes positive. Thus, then, we see that the whole of that portion of 
the plane which lies on the left-hand side of the entire curve is facultative, and the 
portion on the right-hand side of the same non-facultative; the curve separating facul
tative from non-facultative space as a coast-line, indefinitely extended, separates land 
from water; so that there is, as of course we might have anticipated, no break of conti
nuity in passing through the plane J.

If we take a corresponding section of the opposite portion of space corresponding to 
the ground-plan JLII, it is obvious that precisely the contrary takes place, because the 
sign of J  is opposite in the opposite sectors; so that what was facultative becomes non- 
facultative, and vice versd.

(62) It is now clear that the whole of the facultative part of space is divided into 
three, and only three of the regions previously defined. One region will consist of that 
portion of it which is entirely under the plane of D : the second region will be so much 
of the upper portion as stands upon the acute sector JO A ; and the third of so much of 
the remainder of this portion as stands on the sector AOJJOII(51). Again, as regards 
the second region, the line OA' is quite inoperative against its unity, because we have 
vertical ordinates above O A' through which free communication can take place between 
the blocks over JOAr and ArO A ; but when we come to OA, where G touches the plane 
of D, there we have an effective line of demarcation between the adjoining blocks above 
the plane of D ; for it is impossible to pass from one into the other without going under 
D and coming up again through that plane, or else descending to the line OA and so 
meeting the plane of D (52).

(51) It will be borne in mind that the whole of the infinite prism, both above and below, standing on nOJ
belongs to facultative space: the prism standing on the opposite section JOfl, or, to speak more strictly, on the
inside of this last-named sector, is wholly unfacultative. The facultative line D which passes through 0  is com
pletely isolated from the facultative portion which stands over AOJ, except at the point 0  (which we are for
bidden to pass through if we would remain in the same region), and is of course a rectilinear edge to the facul
tative prism above referred to.

(52) Two superior regions we know d priori must exist to correspond respectively to the two cases of fi\ c and 
of one real root. Moreover we know d priori that two regions can only meet on the plane of D, and an inspec
tion of the dial-figure shows that only OA can be such line. Thus without completely making out the geometry 
of the question as regards the remarkable lino (J= 0 , L = 0 ) (the axis of D) which lies on the surface 0 , "w c may 
feel assured that the upper part of this line (which is easily found to belong to the 1-real-root region) cannot 
have any point except the origin in common with the 5-real-roots region, since otherwise these two regions 
would communicate along this line and merge into one. When it is considered that is a surface of the ninth 
order in J, D, L, it will not appear surprising that some difficulty arises in forming a mental conception of cer
tain of its local properties ; on the contrary, the subject of wonder rather is that enough can be ascertained about 
it in a very brief compass to shed all the needful light upon the analytical problem which it illustrates.
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(63) It remains only to fix the characters of the several regions; but this requires 
no calculation to effect, for we know that when D is negative there is one and only one 
pair of imaginary roots. This disposes of the first of the regions above enumerated. 
Again, we know that when L is positive so that the reduced form is the superlinear 
equation m 5+stf5+£w5=  0, u, v, w being re functions, D being also positive, there 
must be four imaginary roots, as follows from the theory of the second section. Hence 
the third region has for its character two pairs of imaginary roots; and consequently 
the onlv remaining region, the second described, must correspond to the case of no 
imaginary roots, since otherwise we should be absurdly assuming the impossibility in 
any case of a quintic equation having all its roots real.

(64) It may, however, be an additional satisfaction to see how the change of character 
comes to pass at the critical line OA from one to five real roots.

Along the line OA we have found that, calling the reduced form mf+sty5+#w5,

Hence the equation becomes

t rs rA . r —s - = —= - = 9 + 4 =  —4.q St t 1

4 u] +  kv] +  (ul +fly)5= 0 ,
— W-j-Z'y —— 2/ — I'D

Up vt being of the form — ^— ’ —2— ’ because ^  negative.
Hence ^ + ^ = 0 ,  or

4 (u] — u 3jv l+ u]v]— u p ]+ vf) +  + fly)4—0,
i. e. 5wJ+lOwJ«J+0*=O,
i. e. ( u] - \ - v] ) =  0;

so that there are two pairs of equal roots of viz.+/; to these values of ̂  correspond

u —iv u —iv
u-\-iv u +  iv /*

Hence
(1—/)%=(/— l ) v,or (l+ /)w = (/+ l)v ;

so that the two pairs of equal roots of -  are + 1 , the outstanding root corresponding to
XLbeing -= 0 .

Now, still keeping upon the surface G, which we know is facultative, let 0 become 
— 8 + 4s, where s is an infinitesimal, then

i ( ^ = & = ( 4 ^ + 1 2 ^ = —6120«;

also the supposed equation becomes
(4 —4g)(w;5 +  +  ( u t +  =  0,

or
v (*»— u) (u;+w)5+8(l+s)w 5= 0 ;

or, calling -=§,
0 f - l ) 5“ 0 g + l)#+ 8 (l+ « )= 0 .
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Let § = + l+ < r, where g  is an infinitesimal. Hence
(-1 0 (± < —1)‘+ 10(± < + I)sy —8s=0,

or
20(l—10+5)o'2—8g=0, 

or

■ - 5 = + s i k > © '
Hence calling <r15 g 2 the two values of <r, the four roots that at OA were 1, 1, — 1, — 1 

become l+«i> 1+<r2, — 1 d-cq, — 1+<72, when becomes varied by & and conse-
J3 J3

quently become all real if jj is increased, and all imaginary if jj is decreased, i. e. be
come real or imaginary according as the line OA sways towards or away from OJ, con
formably with what has been shown on other grounds.

It will be noticed that in the line OA produced in the opposite direction, i. e. along 
the line OA, L being positive, the reduced form is

i{ub-f- -y5)+ (u -f v)5= 0,
W U 'll uand the roots of -  become - =  — 1, - = + / ;  so that, according to the canon laid

down at the commencement of this discussion (see foot-note (46)), no change in the cha
racter of the roots can possibly take place along OA, and accordingly we have seen that 
this curved line does not correspond to any demarcation of regions.

(65) It is easy to express the conditions to be satisfied by the coordinates of a point 
according as it lies in one or another of the three regions which have now been mapped 
out, and it is clear that we have the following rule:
When D is negative the equation has two imaginary roots.
When D is positive the equation has no imaginary roots, provided the two criteria J and 

2UL—P  are both negative(53); but if either of these is zero or positive, there are two 
pairs of imaginary roots (54).
The duodecimal criterion-invariant, 2nL —J 3, and the invariants of the like order, 

27‘2l6L—J3, —27L—P, I shall henceforth call A, A', n  respectively. It has been just 
above shown that the three invariants J, D, A of the 4th, 8th, and 12th orders re
spectively are sufficient for ascertaining the character of the roots of the quintic to 
which they appertain.

J3 J3
(53) Observe that this implies L also being negative; so that 211 — -- is positive and j - < 2 n.

(54) (a) observe that in general when 2nL —J is zero there are no facultative points above the plane of D, but 
when J and 2UL—J, and consequently L and J are both simultaneously zero, a facultative right line springs 
into existence, viz. the axis of D extending both above and below the plane of D. The reduced form of equa
tion (as previously demonstrated) corresponding to this singular line is w*+m>4= 0 .

(b) It may further be noticed that on each side of the line OA the limits of D are between positive infinity 
and a positive quantity, and between negative infinity and a negative quantity; so that as we pass from OA to 
either side of it no facultative point can be found lying in the plane of D, showing that we cannot pass by a 
real infinitesimal variation of coefficients from an equation with two pairs of equal imaginaiy roots to an equa
tion with a single pair of equal roots, as is apparent also on purely analytical grounds.
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(66) The assertion that the whole of facultative space is divisible into three regions, in 
strictness requires a slight modification. I t is obvious that the plane of D itself cannot 
be said to belong to any of the regions; and in order to make our theory quite complete, 
so as to furnish criteria applicable to equations having equal roots, and to enable us to 
distinguish between the case of the unequal roots being all three real, or two imaginary 
and one real, we must examine what takes place in this plane, and under what circum
stances a passage from one point of it to another will or may be accompanied with a 
change of character in the roots.

If  the roots o fy (# )= 0  are supposed to be , , , , where c, d, e are unequal,
on varying the constants of fxin such a manner that the variation of the discrimi
nant D is zero, the two equal roots a, a will remain equal. Now general we have

{daY'b f(a )- \- f '(a )^ -= 0 ; if this, under the particular supposition made, continued to obtain,

da would have two distinct values, and the two equal roots would cease to continue to 
be equal, contrary to hypothesis. Hence we see that D = 0 , ^D =0 necessarily implies 

0(55), and consequently lf(a-\-da) is no longer 'hfa, but Ifada; so that we obtain

da—0, or da— 2 lfa , and no change of character in the five roots results. If, however,

the original roots are a, c, c, e, then, as shown in the general case, will have two 
distinct values, which will be both real or both imaginary. Accordingly we see that in

(is) ̂  This is a somewhat curious theorem (whether new or otherwise I know not) thus incidentally established 
in the text, viz. that if D ( / )  represent the discriminant o f /, and if D ( / ) = 0  and £ D (/)  =  0, then w h e n /=  0 we 
must have K f ) — 0. The very simplest example that can be chosen will serve to illustrate this proposition. Let

/ =  ax2+ 2b xy  -f- cy~.
Suppose

D ( f ) —cic—b -= 0 ,
and also

oD(/)=a$c + c-&r— 0,
we have

£( / ) = +  + y”$c.

Now i f / = 0  we may write x = b ,

according to the theorem.

y = —a, and $f becomes 
b2Sa—2abSb +  aHc 
=  b2oa—2abSb -\-2ab'6b—ac$a 

=  (b2— ac)8a=  0,

I f  we m ak e/— (x,l)n, D we know becomes a syzygetic function o f /  and/'^meaning by the latter J Q . Hence

since £D vanishes when f x = 0 ,  D = 0 , and $ f(x )= 0 ,we learn that o(D) is a syzygetic function of ( / , / ' ,  </).
The theorem thus stated easily admits of extension to the higher variations of D, and so extended takes I 

believe the following form:
£‘(D )=  a syzygetic function of ( / ,  / ' ,  f " , ---- /* , £/).

(b) Professor Cayley has since informed me that the theorem in (55) (a), about whoso originality I  was in doubt, 
will be found in Schlapli’s ‘ Do Eliminatione.’ This is not the first unconscious plagiarism I have been guilty of 
towards this eminent man, whose friendship I am proud to claim. A much more glaring case occurs in a note 
by me in the ‘ Comptes Rendus,’ on the twenty-seven straight lines of cubic surfaces, where I believe I have 
followed (like one walking in his sleep), down to the very nomenclature and notation, the substance of a por
tion of a paper inserted by Schlapli in the ‘ Mathematical Journal,’ which bears my name as one of the editors 
upon its face!
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the plane of D no change can possibly take place except in crossing the line which 
corresponds to a family of two pairs of equal roots.

(67) It has already been pointed out, in a foot-note, that we cannot pass facultatively 
from OA to either side of this curve line. Hence the separation of the plane of D into 
subregions can only take place along the line OA, and it remains but to ascertain the 
character of the points on either side of this line, which we know, therefore, a , 
must possess opposite characters, since otherwise we should be admitting the absurd 
proposition of its being impossible to construct an equation of the fifth degree having 
two equal roots without the remaining three being always of one , either all
real or all not real. Let us, then, ascertain the character of the points inOJ for which 
D =0, L = 0 , and J  is positive (56).

Since L = 0 , the reduced form is rf+beuv*-{-v5.
This equation, by D escartes’s rule, must contain imaginary roots. Hence in the sector 

AOJ the roots are all real, and in the remainder of the facultative portion of the plane 
(from which it may be noticed the sector AOJ is excluded) two of the roots are imagi
nary.

Along OA itself there are, as already observed, two pairs of real equal roots, and 
along O A two pairs of imaginary equal roots. Thus, finally, we have the complete rule.

If D is negative, 2 roots imaginary.
If D is positive.

When J, A are both negative, 0 roots imaginary.
„ J, A are not both negative, 4 roots imaginary.

If D is zero.
When J, A are both negative, 0 roots imaginary

„ J, A are not both negative, 2 roots imaginary.
„ J  is negative, A zero, 0 roots imaginary
„ J is positive, A zero, 4 roots imaginary
„ J  is zero, A zero,

•1 pair of equal roots.

3 equal roots (56bis).
Thus we see that our space referred to an arbitrary origin, and with the invariants 

J, D, A for the coordinates, has been first divided into facultative and non-facultative 
space. The former has then been resolved prismatically into two regions above and one 
below the plane of D. The plane of D itself, or the facultative part of it, into two

(56) yre eoixLd. not take J negative, for the facultative points of D in J are two positive quantities, bee dial 
figure.

(56 bis) When d = o, A = 0 , there are two pairs of equal roots. If J is negative these pairs are both real. If 
J is positive they are both imaginary. When J is zero there are no longer two pairs, but a single triad of equal 
roots. This perfectly explains what at first sight has the air of a paradox, viz. that the discrimination between 
the two kinds of double equality of an apparently equal order of generality that may subsist between the loots 
of an equation, depends on the fulfilment or failure of an algebraical equality. I he fact is, as shown above , 
that there are not, as commonly supposed, two, but three kinds of double equality, according as then are tv o 
pairs of real, two pairs of imaginary, or one triad of equal roots; and the last is a sort ot tiansition case be tv t ea 
the other two.

4 RMDCCCLXIV.
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planar regions on opposite sides of the line AO A ; and again this line into two linear 
regions on either side of the origin O, which last corresponds to the case of three equal 
roots, and constitutes a region or microcosm in itself.

(68) It may as well be noticed here that the ambiguity of character in the points 
representing the different families of biquadratic forms when and D are taken as the 
coordinates (and the same would be true if s and D were employed), which prevails 
when these points lie above the line D =  0, equally obtains along this line itself. For 
the reduced form, when D =0, is aaf+Mafy+teoftf. In that case, calling the deter
minant of transformation [a, we have s= 3 ^ 1V, D = —pW ; and thus, whatever s and 
D may be, the character of the unequal roots is left undecided.

It may also be noticed that the blending of characters at the origin for the quintic 
form is not precisely of the same nature as that for the points above the line D in 
the biquadratic form; for at these points it is the cases of 4 and 0 imaginaries which 
become nndistinguishable invariantively; whereas at the origin for quintics the re
duced form becomes ax5-{~5b%4y-{-10%3y*, and the characters left undistinguished are 
those of 4 and of 2 imaginary roots—unless, indeed, we consider equal real roots as 
belonging indifferently to the class of real and imaginary; on which supposition all the 
three genders (so to say), masculine, feminine, and neuter, become blended together at 
that point. But if we consider equal real roots as exclusively of the real class, then the 
origin for quartics ceases to be epicene; for when there are three equal roots all of them 
must be real. Thus the origin in quintics is the only epicene point, and in quartics 
the only non-epicene point—understanding by epicene the blending of the masculine 
(4 imaginary roots) and feminine (no imaginary roots) characters.

(69) We may draw some further important inferences from an inspection of the 
“ dial figure,” or the section of facultative space which follows it.

Within the prism JO A' (57) it will be observed I) is always positive (58). Hence, when 
J is negative and A is negative, all the roots must be real, and the necessity for using 
the criterion D is done away with.

Again, when J and L are both negative, D is always negative, so that just two of the roots 
must be imaginary; and in this case also it becomes unnecessary to apply the criterion D.

Again, since there is no facultative prism corresponding to nOJ, the combination 
of L and D, both negative, can never occur unless II is negative.

When L is negative, but J not negative, there may be two or four imaginary roots, 
according to the sign of D ; but all the roots cannot be real.

(TO) M. Hermite’s rule is as follows. For remarks on the relation between his A, 
J2, J3 and the J, K, L of this paper, see foot-note (86). D is still the discriminant.

If D is negative (of course) two roots are imaginary.
If D is positive.

(57) By which I mean within the facultative prism of which JOAf is the section made by the plane of D.
(58) The vertical section of facultative space in this supposition (see figure) is the area xCA', which lies wholly 

above the plane of D.
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When A is negative, 25 A3—3.210J 3 negative and J 3 positive, no roots are imaginary.
A is negative, 2 5 A 3- 3 . 2 10J 3positive, 25A3- 2 UJ 3 negative, no roots are im aginary.
A is positive, ....................................................................four roots are imaginary.
A is negative, 25A3—3.210J 3 positive, 25 A3—2UJ 3 positive, four roots are imagi

nary^9).
(71) What is the effect of the condition “ A or negative” as the case may

be1? or rather, how does this condition arise'? The ground of it is simply this, that A=0 
represents a cylindrical surface passing through the curve OA (see dial figure), which 
curve is the edge of separation between two regions of opposite characters above the 
plane of D ; the cylinder in question cuts the facultative position of space below the 
plane of D, but above this plane (except along the vertical line J= 0 , L =0, e. the 
axis of D) it passes exclusively through non-facultative space, never again cutting or 
meeting the surface G (the facultative boundary). Now it is clear that any surface 
whatever which passes through OA and never meets the surface G above the plane 
D = 0 , except along the axis of D (i e. the line J = 0 , L =0), may be substituted for 
A(60) and will serve equally well with A to distinguish between the masculine and femi
nine regions of space. A—^JD will fulfil the condition of passing through the line OA,

(59) (a) The last four conditions ought tota lly  (and be in effect coextensive) with the two given by me for 
the case of D positive. The third of them, viz. the case of D positive A positive, I  have already noticed, as 
inferences from the dial figure; for M. H ermite’s A, if  not identical with my J, is at all events a positive mul
tiple of it. I do not see how the case of A negative, 25A3—3 .2 10J3 negative with D positive, is met by this 
system of criteria, since J3, as well as A, may be negative consistently with the second condition. I  have not 
been able to ascertain whether in the memoir such a combination is shown to be impossible. M. H ermite 

admits, and indeed has been always aware of, the existence of a lacuna in the conditions above stated, which, I  
understand from him, it is his intention at some future time to fill up, and thus to complete his original solution. 
In the meanwhile he has been led to study the question from a different point of view, and has succeeded in 
obtaining a new set of criteria adequate to a complete solution of the question without calling in the aid of the 
principle of continuity. In this new system my A criterion is replaced by an invariant of the twenty-fourth 
degree, which is of course an objection as far as it goes, but in no wise diminishes the extraordinary interest 
that attaches to this altered mode of approaching the question, which bears to his original method and my own 
the same relation as the proof of Sturm’s theorem by the law of inertia for quadratic forms bears to that given 
by S t u r m  himself.

(b) It is apparent from the fact that when D = 0 , G (M. H ermite’s I2) becomes (25A3—3 .2 10J3)(25A3—2nJ3)2 
(Camb. and Dub. Journal, vol. ix. p. 206), that the factors of this product are respectively of the form aA'-f£JD, 
cA +  MD, a, b ,  c ,  e being certain numerical quantities. This gives rise to a singular reflection, to that my 
own criteria for the case of D positive may be varied by the addition of a term Al)J to A (A being a numerical 
coefficient), provided A lies within certain limits, the form of the criteria in all other respects remaining un
changed. This proposition, fraught with the most important consequences, and not unlikely to lead to an 
entire revolution in the mode of attacking the general problem of criteria, I proceed to establish in the text.

(60) The surface to be employed will be A —f JD, which call M. A and M (or at least their upper portions above 
the plane of D) may then be regarded as the two sides of a sack, of infinite dimensions, open at the top, and 
seamed together at the bottom, along the curved line D = 0 , A = 0 , and in the vertical direction along the 
straight line J = 0 , L = 0 . The surface A serving as a screen of separation between the two upper regions, it is 
clear that M will serve equally well as such screen, provided no superior facultative points lie in the interior 
of the sack.

645 .

4 r 2
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whose equation  is A = 0 ,  D = 0 ,  and obviously is th e  only invarian t n o t exceeding the 
tw elfth  order capable o f so d o in g ; i t  only rem ains to ascertain  w ith in  w hat lim its the 
num erical coefficient m ust be taken  so as to fulfil the  condition th a t th e  com bined equa
tions A —p J I ) = 0 .  G = 0  shall be incapable o f being  satisfied by any positive value of D. 

(72) S ubstitu ting  for A and D th e ir  values, th e  equation  to  be com bined w ith  G = 0

beCOmeS P - 2 " L + ?J ( J 2- 1 2 8 K ) = 0 .

R etu rn in g  to th e  no ta tio n  of art. (55), and  dividing by J K , th is  equation, w hen G = 0 , 
becomes

9.—2 n^ + f ( # — 1 2 8 )= 0 ,

Q--\-g)qv—211£=128£v,
which, substituting for q, v in terms of 0, gives

— ^ + 6 ^ — = 21’ l V ^  —128^ ( ^ + 4)>
or

(9+4)fl2(« +  8)((33-4 fl!+ 32fl-256)+ («3- 4 « 2-960)?)=O.

When 3 +  8=0, D =0, see art. (57); neglecting, then, this factor, the condition to be 
satisfied is that when from the equation

(9+4)0,((0, -4 fl,+320—256)g+(0s—40*-969))=O
a value of 3 has been deduced, the values of D corresponding thereto shall not be a 
positive finite quantity.

(73) Now
D 128(9 +  6) 03 +  402 —128(0+ 6 )  (0 +  8)2(0 —12)
J2— 1 02(0 + 4 ) ~  ~ 02(0 + 4 ) — ~ 02(0 +  4 )

If  5 — 0, or S +4= 0, since D cannot be infinite, we have J = 0 , so that A—^JD be
comes identical with the original criterion A. Hence the factor (3+4)32 in the quantity 
just above equated to zero may be neglected, and the condition to be fulfilled by § is that 
if 3 be any root of the equation

_ 0 3 +  402 _320  +  2 5 6 _
93—402—960 — ^

3 shall be between —4 and 12; this equation on making 3=  — 4<p, so that 1 —3,
becomes

_ p 3 +  p2 +  2<p +  4
_  ̂ <p3 +  <p2 — 6<p ’

or, writing a= — ^
_  2<p +  1 ________ 2<p + 1 ___

6 ~  f  +  f — 6? ~  (<p~  +  3) *

(74) We wish to ascertain what values of <r will be incompatible with the violation of 
the limits just assigned to <p, and accordingly we must inquire what is the range of values 
assumed by <r when <p> 1 or <p <  — 3; any values of a not included within this range will 
be admissible for the purpose in view.
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When <p< 3, <r is always positive, and proceeds continuously from oo to 0 as passes
from — o — e(s being infinitesimal) to — oo. Consequently <r must not be allowed to 
have any positive value. When <p =  oo, <r=0, and when <p=1, <r=— f.

Hence, if no minimum value of a (i. e. no maximum value of —<r) occurs between 
<P= 1’ 0=co , <t may have any value between 0 and —f-; but if such a minimum value, 
” M, wheie M^> should exist, the admissible values of <x would become more enlarged, 
and might be taken between 0 and — M.

Making then &r=0, we have
2 _  6 

2 < p + l  <p3 +  <p2 — 6<p’
or

4<p3+ 5f+ 2< p-6 =  0;
which, substituting 1+*^ for <p, becomes

4^3 +  17^2+ 2 4 ^ + 5 = 0 ;
so that there can be no real root of the equation in <p greater than unity.

Hence the admissible values of a are defined by the inequalities 0><x> —f,

i. e. 0>  —^ > —|,  or 0 > —(! +  §)> —3, or 2 > g > —1.

(75) We have thus obtained the complete solution of the problem of assigning inva- 
riantive criteria, such that their signs (positive, negative, or zero) shall serve to fix the 
nature of the roots. These criteria we now see are

J, D, A +^JD ,
where p (the negative, it must he noticed, of §) is any numerical quantity intermediate 
between 1 and —2 (61).

(76) This important modification of the original criteria J, D, A I proceed to apply
to the problem of obtaining the simplest and most symmetrical expression for the criteria 
in terms of the roots of the equation. Let <z, <?, , e be the roots, and write

Z = t{{a -b )\a --c )X l--cy {a -d )X a --e )\b --d )\b -e )\c --d )\c~ -ey},
or say

Z ̂ a , i , o ( al c) } n

(61) Strictly it has only been proved that the surface A+jtxJD, which passes through the line A, D, contains 
no superior facultative points except those comprised in the line L = 0 , J = 0 . It is, I think, not difficult to see 
from this, that, if in the “sack” formed between A and A +ju.II) any such points were contained, L = 0 , J = 0 , 
i. e. the axis of D would be a double or multiple line on the surface G, which is easily disproved by examining

the algebraical form of G in art. 41, where K represents — ; any °kSCUI%> however, which may be sup

posed to cling to this view is immaterial, as a demonstration capable of being followed in piano and leaving 
nothing to be desired in point of perspicuity, will be found in the Note appended to this Part.

(62) Agreeable to the meaning assigned to £ and to a couple of rows of letters in my memoir on Syzygetic Re
lations, in the Philosophical Transactions.
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Then, since each letter occurs the same number of times (12) in each term, Z will be an 
invariant.

(77) Again, suppose any two roots to become equal, say that e becomes , then Z
fCL 1) c \

reduces to the single term £ (a, b, c^\d  ̂  ); for any such factor as b, d) will be

accompanied with the factor y ^ jwhich vanishes.

If, further, we suppose any two of the letters , c to become equal, then Z disap
pears entirely, since on that supposition £( a, b, c) vanishes. Hence Z is an invariant of 
the twelfth order, possessing the property of vanishing when the equation to which it 
belongs has two pairs of equal roots. Hence Z is of the form pA +^JD , and it be

comes of importance to ascertain the value of the ratio -•r  p

To do this let us suppose e= 0 , a——b, c——d.
The ten terms in Z correspond to the following ten partitions:—

(1) (2) (3) (4)
abc abd acd bed
de ce be ae

(5) (6)
abe cde
cd ab

(7) (8) (9) (10)
ace bde ade bee
bd ac be ad

(78) The corresponding values of the terms will be

4 a\a2- c 2)2. lQ(a2c2)&2(a2—c2)4; 4a2(a2- c 2)216a2c2(a2-c  4
4c\a2- c 2)2Ua2c\a2- c 2)4; 4 a6e?(a2- c 2)2;
a2c\ a— c)2256a4c4. a 4c\a-\-c)8; (a-\-c)2256a4c4(

Collecting and simplifying these terms, and observing that

{a— c)2(a-\-c)8-\-(a+c)2(a—c)8=(a2~  c2){(a+
we find

Z=128(«2-{- c2)a8c8{ a2—c2)6+ 4  («2 +  c2)a6c \  — c2)8
+10 2 4(a2+  c2) (a4+ 1 4a2 c2+ c4)(a2—c2)2a10cw.

Let (a2— c2)2=p, a2c, and let Z,=Then
(a2 +  c2) q3

Z t=16384pq3+102 -f-12 8p3q-J-4p4
= 2  iy /  +  2 y y  +  2 +  2 y .
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(79) We must now calculate J, D, L:

D — n. —55Z(a> —« > —c, 0)

= ^ 4 a V (< f-Cy  ;
or writing

D = ® ,cf

D, = p i )2-

Again, for J. The form to which it belongs is

x5—(a?-f- c2)#3y2+
or

(i. 0, i f ,  0yx ,yY -,

so that the coefficients of the biquadratic Emanant are
2 +  c2 +  c2 «2c2

® » i(f »

Hence the quadratic covariant becomes

«2C2
10 5  y’ 5

#2 J2 O q
- 5 - ^ +  f 5(«2+ c 2) « v / +  i7 ^ K + c 2)V

20«2c2 +  3 (a2 +  c2)s

100 '

2
-  100 ^ + 2 5 ( « 2+ c a) ( a v y .

Hence, by definition, J  (which =  — 4 x  Discriminant of the Quadratic Co variant)
4

1250 (aV)(02+ c2)(3(a2- c a)2+ 3 2 aV );
and making

T____ **
J '“ (a2 + c2)? 5
T 6 64 6 28
J)— 625-  ̂ 625^ _  54-̂  55̂ *

Finally, to calculate L. The canonizant of the form

1 0 A 0
0 A 0 B
A 0 B 0

—x f ; x*y; —„r3

(A3-AB)tf3+ (B 2- A 2B )^ 2, 

of which the discriminant is
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where
A = . «2 + c2 B = «2C2

10 5
Hence, by definition,

L=A BS(A2—B)4 =  - 1 2 5 T T O ;
and making

T  L
^  (a? +  c*)q3'

h =  ■- 5 ^ 2 , ( / - 1 6 2 ) ‘-
(80) Now let us write

This gives
± Z = v L + c J D n + tF .  

^i2Z/= ^ J /D/4-s(^+4^)Jf + j?L,

4p4+128^3p3d-1024g'2̂ 2+16384j9^3
=125(256p 2<f+  2 4̂ p3q)e-{- ( ]) +  !<?)( 6j?+ 6  4^)3s -}- —1 %)h?),

by means of which identity we can obtain linear equations for finding the values of c, s, pj. 
Thus, equating the coefficients of j>4, ^4, respectively, we obtain

4 = 216s+  27^

4.64’s + ^ + O ,

which gives ??=-—2ns (as it ought to do),
128=(24x 125>+(4x 216 +  108x  64)s+64 2ns 

=  3000^+8800s.
Hence

*’ 1 010
200s=4 s—— ,’ s 50’ 25

3000«=128—176= —48, e= — +  and ; = - | -

In order to verify the value of £, let jp = — 4, ^ = 1 ; then, assuming the correctness of 
the above determinations, we ought to find

4S-1 2 8 .4 S+1024.16+16384=125(256.16-24.64).7 ^ + jV .  160000. - 2 ”.
or

2'"(1 —8+16—64)= (—32.256 +  4 8 .6 4 ) -^  X160000,
or

210(—55)= —5120—25.2048=210(—5—50),
which is right.

(63) Since Z has been proved to be of the form pA +  ̂ JD, v e  know priori the value of but I have 

thought it safer to determine e, rj independently, as an additional check upon the accuracy of the computations.
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(81) Thus

and accordingly we have proved that — Zis of the form (A + fJD ); and consequently, 
since f  lies within the allowed limits 1 and — 2, —Z may be used to replace A in the 
system of criteria.

(82) On examining the composition of Z, it will be found to have a remarkable relation 
to the lower criterion J.

J  we know is, to a numerical factor pres,of the form

? denoting, as usual, the squared product of the differences of the quantities which it 
affects; and Z, it will readily be seen, is of the form

and the squared factor is always positive whatever the roots may be, for J is always real. 
Hence the essential part of our rule thus transformed comes to this, that if

are both of them positive, then when the discriminant is positive, so that the case of two 
of the five quantities a, c, d, e being conjugate and the other three real is excluded,
and the choice lies between supposing all or only one of them real, we are able to affirm 
that they will all be real. Nothing could be easier than to multiply tests expressed by 
simple symmetric functions of differences of the roots, any infringement of which would 
contradict the hypothesis of all the five letters denoting real quantities; the difficulty 
consists in discovering a system of the least number that will suffice of decisive tests, 
such that not only their infringement shall contradict the hypothesis of imaginary roots, 
but whose fulfilment shall ensure the roots being all real. This is what has been proved 
to be effected by means of the invariants J, D, A + f  JD.

In the case before us it is clear that when the roots are all real, each of the sums 
above written must be positive and greater than zero. That their being both positive and 
greater than zero is inconsistent with four of the letters , c, , e being imaginary 
would probably not admit of an easy direct demonstration.

Z we have seen is only a particular value of the general invariant A-f-^JD, which 
.may be called M, where ^  is an arbitrary constant limited to lie between 1 and —2.

(83) It may be well to notice the effect of using as a , in conjunction with
J and D, the value of M corresponding to either extreme value of In such case, 
supposing M to become zero, it might for a moment appear doubtful to which region 

MDCCCLXIV. 4 S

? { ( d - eyi;(a,b,c)},

2 (j(a, b, c )x (d — e)4) and 2{(?(a, b, c)) j
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that point representing the family of forms is to be referred. But since the doubt can 
only arise when J  is negative and D positive, and since by hypothesis we have A =  — ̂ JD, 
we see that A takes the sign of p ;and consequently the sign of M, when it becomes 
zero, is to be understood as following the sign of i. e. as positive when ^ is 1 and 
negative when îs —2.

(84) The method above given for ascertaining the nature of the roots of a quintic 
involves the use of only three criteria. It may be inquired how many would become 
needful in applying S turm ’s method. In the case of a cubic equation only the last of 
the two Sturmian criteria comes into use; and it seems therefore desirable to ascer
tain whether all four of the Sturmian criteria applicable to that case are required, or 
whether a smaller number are sufficient. I speak of four criteria, inasmuch as the lead
ing terms f x  and f'xcannot be considered as such, their signs being fixed; so that we 
are at liberty to consider them both positive. Suppose all six Sturmian functions to be 
written down, including f x  (a function of x  of the fifth degree) and/V , and let us cha
racterize by the index ( r, s) any succession of signs of the leading coefficients which con
tain r continuations and s variations, and which therefore will correspond to the case of 
(r—s) roots.

The total number of cases to be considered are the sixteen following:

(5, 0) + + + + + +
+ + + + + —

( i  1) -
+
+

+
+

+
+

+ —

- + + — — — —

+ + + + — +
+ + + — + +

(3, 2) • 4"
+

+
4"

+
+ +

+
+

+ + — — + +
, + + — — — +

+ + + — + —

(2, 3) - +
+

+
+

—— +
+

+
.

l + 4" — — + —

(1. 4) + 4- — + — +

the successions corresponding to the indices (2, 3), (1, 4) will become impossible, as 
corresponding to a negative number of real roots. An inspection of the eleven cases 
corresponding to the indices (5, 0), (4, 1), (3, 2) will show that no ternary combination 
of signs in the third, fourth, and sixth columns belongs to any of the three characters 
(5, 0), (4,1), (3, 2) exclusively, and consequently all four signs must be used; and there
fore, if the method of S turm  is employed, four criteria are indispensable for determining
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effectually the character of the roots in an equation of the fifth degree(64) ; whereas in 
the symmetrical and invariantive method which I have employed three have been seen 
to suffice.

In an equation of the seventh degree the case of 0 or 4 will be distinguishable from 
that of 2 or 6 imaginary roots by the sign of the discriminant, and then again the case 
of 0 from that of 4, and of 2 from that of 6, by other invariantive criterion-systems. So 
for an equation of the ninth degree, the first separation will be that of the 0, 4, or 8 
case from that of 2 or 6; then it may be conjectured the 2 case will be invariantively 
separated from the 6, and the 0 or 8 from that of 4, and, finally, 0 and 8 from each 
other—the reduction of cases apparently depending upon the relation of the index of 
the equation to the powers of the number 2. This much we know (from art. 49) as 
matter of certainty, that no single criterion other than the discriminant can ever serve 
to distinguish one form of roots from another so that all other criteria must accom
pany each other in groups; and accordingly the scheme of criteria established in the 
foregoing investigation is in kind the very simplest a priori conceivable.

(M) ^  p or an equation of the nth degree there are n—1 variable criteria, each capable of being +  or —, and 
thus giving rise to 2W_1 conceivable diversities of combination. The actual number possible, however, is consider-

j
ably less than this; and I  find by an easy method that this number, when n is odd, is 2W~2- ' ----- ------

when wis even, is 2n~2-
II (n—1)

J  n —1 \2 and

n (n  , \  
n 2 n \2 /

(b) Not quite foreign to this subject is the inquiry as to the comparative probability of each different succes
sion or each different family of successions possessing equivalent characters; and, as connected therewith, the 
comparative probability of a certain specified number of the roots of an equation of a given degree being real 
and the remainder imaginary. In the simplest case of a quadratic equation of which the coefficients are real 
but otherwise arbitrary, I find that upon the particular hypothesis of the squares of the three coefficients being

limited by one and the same quantity, the probability of the roots being imaginary is or *3727932,

a little less than f , this being the value of the integral ; feut we are not at libert7  to infer

from this the value of the probability in question when the coefficients are left absolutely unlimited. A case 
in point, as illustrating the effect of imposing a limit in questions of this kind, occurs in the problem (which I  
raised in my lectures on Partitions) of finding the probability that four points placed at hazard in a plane will 
form the angles of a reentrant quadrilateral, which Professor Cayley has shown is exactly £  in the absence of 
any limit. For if ABCD be the four points, and ABC the greatest of the four triangles of which they may be 
regarded as the angular points, and if through A, B, C be drawn lines parallel to BC, CA, AB respectively, the 
triangle ufiy  so formed will be four times as great as ABC, and the point D must be somewhere within a fly, 
otherwise ABC would not be less than each of the three other triangles ABD, BCD, CAD; and consequently,

since D must lie within ABC when the quadrilateral is reentrant, the probability in question is or I-

Now it is easy to see, by using the very same construction, that if any contour whatever be imposed as a limit 
upon the positions of the four points, the probability referred to will exceed |  by a finite quantity a result 
somewhat paradoxical, since a priori one would have supposed that the value of it for the case of no would 
be the mean of the values corresponding to the respective suppositions of every possible form of limit. 4

4 s 2
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Received December 8, 1864,

Note on the arbitrary constant which appears one of the criteria for distinguishing the 
case o f four from that o f no imaginary , and on the curve whose coordinates ex
press the limiting relations of all the octodecimal invariants o f a binary quintic, &c.

(85) The appearance of an arbitrary constant in a criterion is a circumstance so unex
ampled and remarkable that I have thought it desirable to give a more complete, or at 
least a more palpable proof of the validity of the substitution of A +^JD  for A than 
that furnished in the foregoing text, where some indistinctness arises from the diffi
culty of raising up in the mind a clear conception of the form of the amphigenous 
surface, and the two portions of space which it separates. That difficulty is entirely 
obviated, and the theory rendered palpable to the senses by the following investigation, 
where the problem is so handled as to involve the contemplation of two dimensions only 
of space. We have in general

D = J 2-128K , A=2048L—J 3, 
and at the amphigenous surface (see art. 57)

Let

Then

K 5+6 L 1 
J2 (0 + 4)02’ J3 (0 + 4)53 *

D _A
[2 5 *1’—J3*

and consequently

n , 2 0 4 8  -
_ 1  +  ( 5 + 4 ) 4 5 =  - 1

\ ___ 4 (?  +  2)(4p  +  3)
y p3(<p+ i )2

8 .. — (<p +  2) (<p3-—<p2+2(p—4 ).
<p4 + <p3

&P=' 8(4<p +  3) v l y __ <p2 +  2<p '
bx 2

x, y may be considered as the coordinates (inclined to each other at any angle) of a curve 
of the fourth order, whose form, so far as is essential to the object in view, I proceed to 
determine. It is obvious, furthermore, that this curve will be a section of the amphi
genous surface made by the plane J = l .

(86) This curve will be seen to consist of four branches, coming together in pairs or 
two cusps, so as to form two distinct horns(65). For when <p=co , or —f, by, bx will

H O  Since f  +  1 = 0 ,

we see at once, from Descartes’s rule, that <p can never have more than two real values to one of or con-

sequently of x, and consequently there can only be two values of y  to each of x.
O  When J = 0 , the cusp of the left-hand horn and the two points of intersection of the dexter horn with 

the axis of L coincide at the origin; the upper branch of the latter and the linear of the former become the 
lower and upper parts of the axis of D, whilst the lower and upper branches of the same respectively become 
the left and right-hand branches of the semicubical parabola 27 .222 L2= —D3.
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each of them be zero. Hence there is a cusp at the point where 2/= l(66), and
again at the point where

x  1^81 —108 ivsm V— —

(87) When <p=0, and also when <p= — l, x  and each become infinite; when <p=+oo , 
x and y each become unity.

As <p passes from +  g o  to 0, hy is always negative, and x  always positive; so that there 
will be one branch of the curve (CMP in Plate XXV.) extending from to
X—-j-co , for which y commences at 1, which cuts the axis of x when 3, i. e. 
x = —-§y(6‘), and which, for the remaining part of its course, lies completely under the 
axis of x, becoming infinite when x  becomes indefinitely great.

Again, as <p passes from —co to —1, 'bx remains always positive, but ly is negative so 
long as <p<—2 vanishes when <p=2, and ever afterwards continues positive. Thus 
there is a second branch, COQ, which starts from the cusp C, touches the axis of x at 
the origin, ever afterwards remaining positive, and increasing up to positive infinity.

Since when <p=co , , the tangent at C is parallel to the axis of and conse

quently the two branches which start from C lie on the same side of the tangent, so 
that the cusp at this point is of the second or ramphoidal kind; in Professor Cayley’s 
nomenclature a cusp-node, and equivalent to the union of a double point and a cusp 
of the first kind.

There remains to account for the values of <p in the interval between 0 and — 1.

Throughout this interval y  and x  remain both of them negative, and * ̂ ( 68,69)
is always positive.

There will thus be two branches, in each of which x and y increase simultaneously 
in the negative direction, coming to a cusp necessarily of the first kind at the point 
X— — 76-ff-, y — ~25, one branch corresponding to the values of <p from — f  to 0, the 

other to the values of <p from — f to —1, both of them lying completely under the axis 
of x, and becoming respectively infinite at the extreme values of <p (0 and —1).

(66) Where this branch cuts the axis of ywe have f 3 — 4 = 0 , of which the real root will be a trifle 
less than -|.

(67) From this it is easily seen that, whatever may be supposed to be the inclination of the axes x, y, the
ds

curve in question is rectifiable by means of elliptic functions; for -j- will be expressible as a rational function of

<p and the square root of a quartic function of <p. The same conclusion will hold for the curve obtained by 
making J constant when J, together with any invariant of the eighth and any of the twelfth order, are taken as 
the coordinates of the amphigenous surface.

(G8) To ascertain which range of <p gives the superior and which the inferior outline of the sinister horn, 
let <p=s, an infinitesimal; then <p4 +  <p3=  e3, and the other value of <p is — 1 — where v)=e3. Hence the two 
values of y  corresponding to <p nearly zero and <p nearly —1 respectively will be

Vi=- £3
12 , — 4 ( —1 — •>?) 4a„d ya= _ L _ _ J 2 = ? .

Thus y v is negativo for e positive or negative, but y.2 is positive in the one case and negative in the other, as
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Again,
2y— ̂ + 5 = ^ r^ ((2 < p 3—2 <p2-|-2<p)+(<p3—<p2+ 2  <p — 4)̂  5

= £+?(3 ^ _ 6 , - 4 ) + 5 = f c ^ .

Hence when <p= — 1, for which value of <p x and y both become infinite, 2y—#+ 5 =  0; 
hence the straight line 2y— #+ 5  =  0, represented by AN in the diagram, will be an 
asymptote to the curve (70).

If now we draw the straight line 2y— #=0, represented by OB in the figure and join 
OC, the curvilinear triangle OCM will be completely under OC, and the curvilinear 
infinite sector XOP completely under OB.

(88) What we have to prove is, that so long as lies between 2 and 1, so long may 
be substituted as a criterion in lieu of A, it being remembered that A only 

plays the part of a criterion when D is positive and J is not positive. Hence, since when 
J = 0  A +^JD  and A coincide, we have only to show that, so long as D is positive and 
J  is negative, A+//JD and A will bear the same sign for all such values of J, D, L as 
constitute a facultative system, i. e. coordinates to a facultative point in space.

Now at any facultative point G (the function of the amphigenous surface), or say

rather G(J, K, L)>0, or 

the coordinates of a plane

p G ^ l ,  ^  i ) > 0 ,  and consequently co n sid er in g  5 , as 

curve, the line G ^l, (the sign of J  being fixed)

will separate those points for which J, K, L constitute a facultative system from those

already seen for the dexter horn. "We see also that y2 becomes indefinitely greater than so that it is the 
value of p near to — 1 which gives the inferior branch; and consequently the superior branch of the sinister 
horn belongs to the range from — |  to 0, and the inferior to the range from — to —1.

(69) It may further be noticed that each hom so called is a true horn, being destitute of any point of contrary 
flexure, except at infinity; for otherwise we should have

(JhL-d±  ^  d<P(c ■ ^ - (P + W n
da? das' dp dasKf~r’ 8 (4p + 3) ’

which implies p = 0  or p ——1, for each of which values of p and y become infinite. It will be seen here
after that it is only for the value corresponding to ^ = 0  that there does exist at infinity a point of inflexion.

(/0) The two points where the asymptote cuts the curve will be found by writing

which gives

The superior sign corresponds to a point x,y in the inferior branch of the dexter horn, and the lower sign, for 
which <j3> -J, to the superior branch of the sinister hom. It is easy to see that there can be no other asymptote;
for x, y only become infinite when p ~  — 1, or p =  0; so that if A is an asymptote, it must contain
(? +1) > or as a factor. The first condition is only satisfied when A : u : v :: —1 :2 : 5 ;  and the latter cannot 
be satisfied at all.
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in which J, K, L constitute a non-facultative one. But the curve above traced is obvi

ously a homographic derivative of that line (for G is the resultant of —  ̂+ 6

Hence this latter curve will also separate systems of values of J, D, A corresponding 
to facultative from those corresponding to non-facultative points. Moreover when J is 
negative and D positive, it has been shown (see dial figure) that the values of D (in 
facultative systems) corresponding to finite values of J  are limited in magnitude; hence, 
upon the same suppositions, facultative systems of J, D, A will correspond to the inte
rior and contour of the curve we have been considering.

(89) Accordingly, since D is supposed positive, our sole concern will be with the 
curvilinear triangle CMO and the infinite sector QOX, and we have to show that for all 
points not exterior to those areas A and Afi-^JI) have the same sign; that is to say,

1 + ^ ,  or l+ /a  |  is positive.

When y and x  have opposite signs (as is the case in the triangle CMO), all negative 
values of //», and when y  and x  have the same signs (as is the case in the sector XOQ)>

all positive values of (m obviously make positive. But furthermore which isOC 00
— 1 for the line OC, is greater than —1 for all points in the triangle just named; and 

again, which is \  for OB (the parallel to the asymptote through O), will be less than JOC
for all points in the sector QOX. Thus, then, as regards points either in the triangle or 

in the sector, ^ is always intermediate between — 1 and \ ; so that when lies betweenOC
1 and —2, 1 |  will be always positive, and A and A +^JD  will bear the same sign 0,

so that A +|hJD  may be used to replace A as a criterion. Q.E.D.
(90) . It is apparent from the nature of the preceding demonstration that A may be

replaced by an invariant containing not one merely, but an infinite number of arbitrary 
constants (limited), provided we are indifferent to the degree which the substitute for A 
may assume. To this end we have only to draw any algebraical curve ~F(x, 0 passing
through the origin, and with its parameter subject to such conditions of inequality as 
will ensure the mixtilinear triangle and sector COM, XOQ lying on opposite sides of 
the curve. If its degree be n, the number of parameters in F left arbitrary within

limits will be w2 + 3w~2, an(j 2F(A, JD), where g means one of the two quantities +1 or — 1,

may be used as a criterion in lieu of A. For instance, a common parabola with its axis 
coincident with that of x and passing through O will obviously serve as a screen between 
these figures; its equation will be y*—x — 0, and the invariant H2—JA, which is of the 
sixteenth degree in the coefficients, will serve together with J  and D to fix the nature of 
the roots; so in general we may obtain invariants of any degree of the form 4? from twelve

J2 (0+4)0*’
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upwards. Thus M. H erm ite , by a method not introducing the notion of continuity, has 
found one of the twenty-fourth degree, which he has been so obliging as to communi
cate to me, viz. (Dt — 5AJ2)2+ (9D —25A2)J2, where D1= 16J3+25A J2; and D is his 
discriminant, which I cannot safely attempt to express in terms of for want of 
a certain knowledge of the arithmetical relations between his A, J2, J 3 D, and my own 
J, K, L ; but were this transformation effected, the curve so represented must, neces
sitate, pass clear between the triangle and sector above referred to, or else the invariant in 
question could not be a criterion. I have ascertained without difficulty that it passes 
through the origin and represents one of the principal species of N ew ton’s diverging 
parabolas.

(91) The curve which we have been discussing will, on reference to P lucker’s ‘ Alge- 
braischen Curven,’ p. 193, be seen to belong to his sixteenth species of curves of the 
fourth order having two double points; but as in reality one of these is tantamount to 
the union of two, it may be considered as having three, the maximum possible number 
of such points, and consequently comes under the operation of C lebsch’s rule, given in 
the last Number of Cr elle’s Journal, and accordingly its coordinates have been seen to 
be rational functions of a single variable. The equation connecting , y may of course 
be obtained by means of a simple and obvious substitution operated upon the G of 
art. 41, or it may be found directly by writing

#  + 1  y,  1 y — 1     2^ +  3
8 * <p4-f<p3 4  ̂ <p3 +  <p̂ ’

whence we obtain

P‘ + Ps- J = 0 , ........................................ .........................(1)

2p2+ 3 p - f |= 0 .................................................................. (2)

Calling p!<p2 the two roots of equation (2), making

( t f + t f - j j )  ( $  +  $ - ;? )  = 0 ,

and substituting the values of the symmetric functions of <px, <p2 found from the same 
equation, we obtain without difficulty

^ ~ ^ 3- 8 ^ 2+ 3 6 ^ + 1 6 r - 2 7 l3= 0
for the equation m question. The curve thus denoted I propose to call the Bicorn. 
Its figure is given in Plate XXV., in which r, are taken at right angles, but they may 
of course be supposed to be inclined at any angle whatever. If we now assume at 
pleasuie any two new axes U, V in the place of the Bicorn, the coordinates u, v will be 
always respectively proportional to two invariants of the twelfth order of the given 
quintic, whose paiticular forms will depend upon the positions of the two new axes so 
taken. If one of these axes, say that of u, be made coincident with the axis of v will
be pioportional to JD, and u to some other invariant of the twelfth degree. When
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this is the case, then in general v, as u travels from one end of infinity to the other, 
will sometimes have four, and sometimes two, or else sometimes two and sometimes no 
real values, as will be obvious by inspection of the figure. There is, however, one 
direction of the axis of v which will cause v in all cases to have two, and only two real 
values. This direction is that of the line joining the two cusps. At the node-cusp, for 
which 0 =  co, § = 0 , j]—() ; at the other cusp, for which <p=— v—_

Hence the equation of the joining line is 9£—8tj= 0. Now -5 = —1, Hence
J 3 2 J 236

along this line 9L-j- JK = 0  ; and consequently, if the axis of v be taken parallel to this 
line and passing through the origin, whilst u is proportional to 9L+JK , v will be pro
portional to J D ; and thus wTe see that for every value of 9L+JK , which is H erm ite’s 

J 3 (see foot-note (34)(e)), D at the amphigenous surface (?*. e. when G =0, and therefore 
when H er m it e ’s 1=0) will abvays have two, and only two real values. This perfectly 
agrees with M. H e r m it e ’s conclusion (71), and in an unexpected manner confirms the 
correctness of the concordance established, in the foot-note cited, between his J 3 and 
my J, K, L. Had M. H er m ite  employed any duodecimal invariant whatever other 
than J 3, a mere inspection of the Bicorn shows that a similar conclusion could not have 
obtained.

(92) The intersections of the curve whose equation is written in the preceding article 
with infinity evidently lie in the lines ?j3= 0 , tj—£ =  0. This latter is the equation 
to a line parallel to the asymptote which touches the highest and lowest of the four 
branches of the curve, and corresponds to the value —1 of Thus we see that there 
is a point of inflexion corresponding to the point at infinity at which the second and 
third branches of the Bicorn may be conceived to unite. I t is easy to show that the 
Bicorn has no double tangent; for we have seen that

. _ <P2 + 2<P,
dx 2

and consequently the values of <p corresponding to the two supposed points of contact 
maybe regarded as the two roots <pn <p2 of the equation <p2-}-2<p-{-2x=0, and we shall have 

gft+3 , 2fa + 3 _ ,  /  2___ 2 \

i. e .- (2 p 1+ 3 )($ + $ )+ (2 fc 1+ 3 )( tf+ $ )= ($ + p !)-(p ;+ ? > 1)3, 
or

4 * .(_ 2 )  +  4x +  3(4—2 x )+ 6 (-2 (4 —4x)+(4—2X))=0, 
or

(_ 8 - f  4—6 +  8—2)X+T2 — 6 —8 + 4 = 0 , 
i. e. —4x-j-2=0, X=J, <p‘2+2<p-{-l =  0, 

and the two values of (f> coincide, contrary to hypothesis.

It is also easy to find its class; for when corresponds to any point in which the 

(71) Lemma 3, p. 202, Cambridge and Dublin Journal, vol. ix.
4 TMDCCCLXIV.
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curve is met by a tangent drawn from the point whose g, r\ coordinates are a, , we have 

but

% = * d£ = - w + w - ’
hence

& ± ^ ± V + (f+2V)a+b=0;
hence

-{- 2«<p3 -f- 5<p2+ 1  =  0 ;

and <p having four values, four tangents (real or imaginary) can be drawn to the Bicorn 
from every point in its plane. It is thus of the fourth order, fourth class, possesses a 
common cusp and a cusp-node, no double tangent, and one point of inflexion at infinity. 
These results accord with those given by P lucker  (Algebraischen Curven, p. 2 2 2 ) .

(93) The canonical form of the equation to the Bicorn is (jpr+^2)2+^<73= 0, as seen
in P lucker , p. 193, where p= 0, r=  0, ^= 0  will obviously be the equations to the 
tangent at the node-cusp, to the tangent at the common cusp, and to the line of junction 
of the two cusps. This leads to a remarkable transformation of the invariant G of 
art. (41). Thus we may write $'=^(9^—8^); and to find r, we must draw the
tangent to the lower cusp, for which <p= — f, which gives

£ _ _ 2 5 6  _ 3 2
S — 2 7  3 16^

consequently we may write r=X(144^—135J+256), and then proceed to satisfy, by 
assigning suitable values to X, ja», v,the identity

(M 144^-135 |>+256|)+,»*(81|-9 |)* )*+ /»!'|(8 o- 9 §)3 
+36>,|!! +  16 |s- 2 7 §s) = k . 22,G.

On performing the necessary calculations it will be found that
,  _  I _  1 l
 ̂ 212* ^  26’ V 212'

Hence we see that J3G may be expressed under the form (LLj+ cJ3)2-{- eluJl, where Lj 
is a new duodecimal invariant, and c, e are two known numbers; in fact

J3G=(L(18JK+135L2—J3L )+(JK +9L )2)2+64L(JK +9L)3.
I am indebted to my friend Dr. H irst  for these references to the immortal work of 

P lucker .

(94) The existence has been demonstrated of a linear asymptote which is a tangent
('2) I find, by a calculation which, offers no difficulty, that the value of <p at the point where this tangent cuts 

the curve will be given by the equation

—256p4—2 5 6 f‘+288p2+432p +  1 3 5 = 0 ;
and taking away the factor (4<j5-j-3):i which belongs to the cusp, there ^remains <p—%> which corresponds to a 
point in the lower branch of the superior horn.
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at infinity to the first and fourth branch. A cubic asymptote touches the intermediate 
branches in the point at infinity corresponding to <p=0. For we have

%—f(i + — );

and writing v for — 77,
3 +  2<z 1

v = f( J + f l—p2(3—<p+p2—<p3---- ),

3J
V

Hence we may determine

A, B, C, D so that A # + B v + C ^ -f  D —g shall = W l+/W ?+ __ ,
and I find

a = 4 >  b = - I ,3T 6 c=X D = - ? *

Thus the cubic asymptote will have for its equation

N * +  ! ) ’= + + ■

which is a divergent cubic parabola with a conjugate point, viz. the point for which

v =  —-> § +  ~ v - { - - = 0 ,ov § = —8 * 6 '9  ’ 8  ̂ 128

(95) It is obvious from the preceding article, that we may expand § in terms of v by 
the descending series

|= A # + B t> + (V + D  +  ® +  . . . .

But we may also obtain an ascending series for § in terms of v which will exhibit the 

nature of the curve of the cusp-node at which point <p= oo. Let <£>=-, then

1 — at-}-®2—jy3....) ,

Hence

^ <P3(<P +  1) l+ co '

= “2 (t + ot)  = ^ ( 2 + ^ - ^ + ^  ■ • ■)•

2<y3 . . .w2 =a>4(4-j-4<5y—3<y2-j-

= « 4(
v̂ =&>4(

&c.=&c.

). 

).

8a;2+  12<y3 . . .  ) ?

/y/2a>3.. .  )}

4 T 2
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from which we may easily deduce

4 \ 2 32 V 2

in which it will be observed that the indices of the powers of v are precisely comple
mentary to those in the preceding expansion, the two series of indices together com
prising all multiples of \  from positive to negative infinity. ,

(96) We now see how, supposing the curve to be given with £ and at any angle,

the axes corresponding to p , ^  may be defined: viz., the origin of coordinates will be at 

the cusp-node; tj, along which y2 is reckoned, will be in the direction of the tangent at

that point; and §, along which — is reckoned, will be the axis of that common parabola

which at the same point has the closest contact with the given curve.
I t seems desirable, with a view to a more complete comprehension of the form of the 

amphigenous surface, i. e. the limiting surface of invariantive parameters, to ascertain 
the nature of the systems of plane sections of it, parallel to each of the three coordi
nate planes. The sections parallel to J, which are curves of the fourth order, have 
been already satisfactorily elucidated. It remains to consider briefly the sections parallel 
to J  and D, which will be curves of the ninth order.

(97) When L is constant, writing J= z, D=g, where for facility of reference we may

conceive y horizontal and z vertical, and making we have &

& 5 _ J ? - l ) ( 4 f  +  8) y 8 z _ l  4f +  3 Y Ŝr 1 (f  +  l)* .
y 3 (<p +  2)(p—3)(<p+ 1 ) z — 3 ? ( f  +  l)Sy— 2 k ( ? - l ) ( ?  + 2 ) ' ’

when P= - 1 ,
55 <P=— 4 5
55 0 ,

55 <P = 1 ,

55 +  CO ,

55 <P=— 2 ,

55 <P=— QO ,

Z  —  0 ,

ly=  0 , 
z =  0 ,

2 =+CO,

y  =  o,

2 = + C O ,

y  —  ,
l z — 0,
y  = — l 2 k \  

y  = + * > ,
Iz
* > =  00 >

y  = + ^ o .
Hence it appears that the curve consists of three branches, two coming together at 

an ordinary cusp at the point corresponding to <p=—f, and the third completely sepa
rate. The nature of the sign of k does not affect the nature of the curve. If, for 
greater clearness, h be supposed positive, the first branch, having the negative part of
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the axis of y for its asymptote, lies entirely in the quadrant, and is always
convex to the axis of y ;the second branch, joining the first at a cusp corresponding to 
<P=“ 45 is concave to the origin, cuts the axis of negatively and of positively, and 
goes off to infinity; the third branch, having the positive part of the axis of y for its 
asymptote, lies in the -\-y, -j-z quadrant, is always convex to the axis of z, which it 
touches at a point below that where it is cut by the second branch, and also goes off 
to infinity, lying entirely under the second branch. A straight line, according to the 
direction in which it is drawn, may cut the curve in one, three, or five real points.

(98) When D is constant, writing J= z, we have

D __?*(? + 0 ____________

The form of the curve changes with the sign of D. For sections parallel to and above 
the plane of D, we may make

D=c2, 2_<P+_1
<p’ or <p=3r2+ l .

T2 — 1 *

then the complete equation-system to the curve will be
3 r 2 + l  „ (t2 — l ) 4

Z— CT l ’ r 4 ( 5 T2_  1)3’

it being unnecessary to affect c with a double sign, since z and change their signs with 
that of r.

Also
8x (r2 +  1 ) (1 5 t2 +  1)8t __(r2—1 ) (1 5 t2 +  1)8t

x t ( t 2 —1)(5 t2—1) ’ z t (3t2 + 1 ) ( 5 t2 — 1) ’

v __ c3 (t2 +  1 )(15 t2 +  1)(t2— l ) 3
0 X = — -  (5t2 — l ) 4 It, y„ (1 5 t2+  1)(t2 1) v.

O Z — C -----(5 T2 _ 1 )2---- OT,

d x __c2 ( t 2 +  1 ) ( t 2 — l ) 2_____ —(5^T[)*

To the values of r  included between -f-\/^  and —\ / \  will correspond one branch of 
the curve passing through the origin, where it has a point of contrary flexure, and 
extending to infinity in both directions.

When (5r2—1) is positive ~ is always positive; and when r2= l ,

is=0, iz=0,|= 0 .

Hence there will be a cusp of the second kind when #=0, the axis of z being
a tangent to the curve at each cusp. One pair of branches has its cusp at the point 
x=0, z=c, and the values of x, z increase indefinitely in the respective branches as r  
passes from 1 to -foo and from 1 to This pair lies in the +x, +z quadrant, and
there will be a precisely similar and similarly situated pair in the —x, —z quadrant. 
Thus there will be in all one infinite )-formed branch passing through the origin, and
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two detached pairs of infinite branches lying in opposite quadrants (,J). The value -J- for 
t 2, it will of course be seen, corresponds to —2 for <p, and gives, as it ought to do, the 
position of the cusp.

(99) Finally, for sections parallel to the plane of the discriminant and lying below it,

making D = —k2, 2̂=i!r~ we obtain in like manner

z — l d
3/2- l  
5**+ l ’

x = k H
{P+1)4

4(5^ +  l)3’
S* (̂ 2 —l)(15/a —1) y
x  ~ ~ / ( / 2+ l ) ( 5 ^ 2 +  l ) dr’

l z  _  (/2+ 1)(1512— 1) 
z  t(3p—1) (5/2 +  1) ’

v ks(/2 —1)(15/2 —1)(/2 + 1 )3 7. (15*2- 1)(*2+ 1 ) 8* J*  1)(*2 + 1 ) 2
0 ^ = 4  (5*2 +1)4 ’ °z— ’ 4 (5*2+ l ) 2

When t2= Y t  there will be an ordinary cusp, and when f = 1 , g^=0.
There will therefore be three branches,—one corresponding to the values of t between 

and -f- the other two to values of t between these limits and — and -f-
infinity respectively. The middle branch passes through the origin, where it under
goes an inflexion, and comes to a cusp at a finite distance from the origin in two 
opposite quadrants. The connected branch at each cusp crosses the axis of #, sweeps 
convexly towards the axis of 2, arrives at a minimum distance from it, and then goes off 
to infinity.

The value -+5 for t  corresponds to — f  for p, and gives, as it ought to do, the cusp- 
node. In fact the values <p= — f , <p=—2 correspond respectively to a cuspidal and to 
a cusp-nodal line in the limiting surface whose sections we have been considering.

When the cutting plane is that of D itself, the section becomes a double cubic para
bola and a single cubical parabola crossing each other at the origin.

(73) Let £ be an infinitesimal, and $2= l  +  £; then

4(4+M’ 32
V ( 2  +  £ ) £ 2

Hence at either cusp the branch the further removed from the axis of corresponds to the values of be
tween 1 and 00, and the inferior branch to its values between 1 and so that the order of continuity of the 
five branches of the curve may be read as follows:—from the infinite point in the higher branch of the upper 
pair to its cusp; thence to the infinite point in the connected branch, which is contiguous to the infinite point 
in the opposite extremity of the middle branch; thence along this branch to its contrary infinite extremity; 
thence to the infinite point in the upper branch of the inferior pair; along that branch to its cusp; and thence, 
finally, along the lower branch to infinity.

 on July 19, 2018http://rstl.royalsocietypublishing.org/Downloaded from 

http://rstl.royalsocietypublishing.org/


AND IMAGINABY BOOTS OF EQUATIONS. 665

D escription  of the  P lates.

PLATE XXIV.

The (e, n) equation is (1, s,g2, ^  l j x ,  y)5= 0, of which two roots are always imagi
nary; its extreme criteria are 0, 0; its middle criteria g4 —

P  =  2q— 1, G =  (—

Points (p, g) above the discriminate indicate 2 pairs of associated roots in the (g, 
equation.

Points (p, g) on the discrim inate indicate 2 equal roots in the (g, equation.
Points (p, g) under the discriminate indicate 3 solitary roots in the (s, ??) equation.
Points (p, g) above the e q u a te  indicate g, real and unequal.
Points (p, g) on the e q u a te  indicate s, v equal.
Points (p, g) under the e q u a te  indicate g, n imaginary and conjugate.
Points ( p ,  g) above the loop of the ind icate  indicate middle criteria not positive.
Points (p, g )  on the loop of the ind ica te  indicate middle criteria of opposite signs.
Points (p, g) under the loop of the indicatrix indicate middle criteria not both negative.
The discriminatrix is a closed curve, the whole of which is figured on the Plate, and 

is shaped somewhat like a harp: it has a cusp of the fourth order at the origin.
The equatrix consists of two branches coming together at a cusp at the distance 1 

from the origin; the upper branch touches the horizontal axis at the origin; the lower 
branch, after touching the discriminant at a single point, sweeps out from and round it, 
cutting the vertical axis at the distance 4 below the origin. Both branches go off to 
infinity to the right, and lie completely under the horizontal axis. Where the lower 
branch touches the discriminatrix, the discriminant of the (g, r\) equation passes through 
zero without changing its sign.

The indicatrix consists of a single branch extending indefinitely in both directions. 
It passes from infinity below and to the left until, at the distance 1 from the origin, it 
touches the axis, which at the origin it crosses at an angle of 45°, after which it goes off 
to infinity in the positive direction. Its loop extends fromj?=0 to 1. The two
portions of it figured in the Plate join on together, coming to a maximum at a great 
distance below the horizontal axis. The narrow tract marked “ Region of Real para
meters ” is that portion of the harp-shaped space for which alone, g, r\ being real, the 
(g, rj) equation can have more than one real root. The areas of each of the three regions 
into which the discriminatrix is divided by the equatrix and indicatrix may readily be 
expressed numerically in terms of algebraic and inverse circular functions only.

I am indebted to Gentleman Cadet S. L. J acob, of the Royal Military Academy, for 
the tracing of the curves of which the above Plate is a somewhat imperfect reproduction.

PLATE XXV.
Described in text, p. 658.
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C O N T E N T S .

1. Proof (up to fifth degree inclusive) of Newton’s Rule for obtaining an inferior limit to the Arts.
number of real roots in an equation....................................................................................................  1— 9

2. Theory of the equation ( l ,  s ,  e2, rf, rj, l j f x ,  and conjugate equations.............  10— 14
3. Theory of per-rotatory and trans-rotatory circulation .....................................................................  .15— 16
4. On an inferior limit to the number of real roots in superlinear equations.......................................  17— 20
5. On the probable value of the above limit.................................................................................... ........... 21—30
6. On the reduction of the general equation of the fifth degree to its canonical form ................  31— 44
7. Geometrical representation of the mutual limitations of the basic invariants of Quintic forms,

and of the cause of the absence of the same for Quartic forms .................................................... 45—54
8. On the invariantive criteria for determining the nature of the roots of such equation................  55— 74
9. On an endoscopic representation of the above criteria.......................................................................... 75— 83

10. Geometrical determination of the arbitrary constant (limited) of the third criterion by means of
one of the principal sections of the limiting surface of invariants...............................................  84— 88

11. On the forms' of the other principal sections of the same ................................................................ 89 to end.

S u pplem en ta l  R e f e r e n c e s .

Proposed new reduced forms for binary quartics and ternary cubics (note n).
Theorem on the imaginary roots of odd-degreed equations (note 26).
Concordance between H ermite’s invariants and those of the memoir (note 34).
Identification of the latter with the corresponding numbered Tables of Professor Cayley (note 39 (h) and (i)). 
Proof that every invariant of a quintic is a rational integral function of the four basic invariants (note 35). 
Invariantive conditions for certain special forms of quintics (note 3~).
Conditions necessary in order that an infinitesimal variation of the coefficients of an equation may be accom

panied with a change of character in the roots (note 43).
Schlafli’s theorem (proof and extension of) (note 52).
On a number of cases capable of arising under Sturm’s theorem, and on certain questions of probability (note61). 
All the invariants of a binary form vanish when more than half the roots are equal to one another, art. 48. 
Identification of section of limiting surface of invariants as a variety of the sixteenth species in Plucker’s enume

ration of quartic curves with two multiple points, art. 92.
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