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Genetic dissection of complex, polygenic trait variation is a key goal of medical and evolutionary genetics. Attempts to
identify genetic variants underlying complex traits have been plagued by low mapping resolution in traditional linkage
studies, and an inability to identify variants that cumulatively explain the bulk of standing genetic variation in genome-
wide association studies (GWAS). Thus, much of the heritability remains unexplained for most complex traits. Here we
describe a novel, freely available resource for the Drosophila community consisting of two sets of recombinant inbred lines
(RILs), each derived from an advanced generation cross between a different set of eight highly inbred, completely rese-
quenced founders. The Drosophila Synthetic Population Resource (DSPR) has been designed to combine the high mapping
resolution offered by multiple generations of recombination, with the high statistical power afforded by a linkage-based
design. Here, we detail the properties of the mapping panel of >1600 genotyped RILs, and provide an empirical demon-
stration of the utility of the approach by genetically dissecting alcohol dehydrogenase (ADH) enzyme activity. We confirm
that a large fraction of the variation in this classic quantitative trait is due to allelic variation at the Adh locus, and
additionally identify several previously unknown modest-effect trans-acting QTL (quantitative trait loci). Using a unique
property of multiparental linkage mapping designs, for each QTL we highlight a relatively small set of candidate causative
variants for follow-up work. The DSPR represents an important step toward the ultimate goal of a complete understanding
of the genetics of complex traits in the Drosophila model system.

[Supplemental material is available for this article.]

The complex etiology of most human diseases and traits of eco-

logical significance has severely hampered their genetic dissection.

Traditional linkage studies of complex traits have been plagued

by low mapping resolution (Mackay 2001), with QTL typically re-

solved to wide regions approaching 10 cM, requiring further fine-

mapping to clone the causative allele. In addition, since just two

phenotypically distinct lines are generally employed as the parents

of the mapping panel, only a fraction of the sites contributing to

trait variation in the population are tested, and the full complexity

of the genetic architecture of the trait is underestimated.

In recent years, characterization of causative loci has been

dominated by the genome-wide association study (GWAS) para-

digm. These studies have provided extraordinary insight into the

biology of human disease (Hirschhorn and Gajdos 2011), but it is

now clear that replicable associations contribute just a tiny fraction

to the variability in any given complex trait (McCarthy et al. 2008;

Manolio et al. 2009). The main challenges for the GWAS paradigm

are the low power to detect true, but subtle-effect causative variants

given the stringent correction for multiple testing that must be

applied (Yang et al. 2010), and the fact that low frequency variants

are poorly interrogated. If rare, presumably deleterious alleles are

responsible for a large fraction of trait variation (Mackay 2010; Zhu

et al. 2011), GWAS are likely to be unable to identify variants that

cumulatively explain the bulk of standing genetic variation (Weiss

and Terwilliger 2000; Pritchard 2001; Reich and Lander 2001;

Pritchard and Cox 2002).

Given the difficulties faced by simple QTL mapping methods

and GWAS, most of the nucleotide variants conferring phenotypic

change have remained elusive, and no complex phenotype has

been genetically dissected to anything approaching completion.

In model genetic systems, a strategy that combines the high

mapping resolution offered by multiple generations of recom-

bination, with the high statistical power afforded by a linkage-

based design, can serve to complement the GWAS approach. This

strategy maps QTL in a population composed of a genotypically

diverse set of inbred lines derived from multiple founders. Four

such resources have been described to date: the mouse Collabo-

rative Cross (Churchill et al. 2004; Aylor et al. 2011; Philip et al.

2011), the Arabidopsis multiparent RIL (Recombinant Inbred Line)

population (AMPRIL) (Huang et al. 2011), the Arabidopsis multi-

parent advanced generation inter-cross lines (MAGIC) (Kover et al.

2009), and the maize nested associated mapping population (NAM)

(Buckler et al. 2009; McMullen et al. 2009). These powerful resources

provide accurate estimates of QTL positions and effects and, by

virtue of being founded by multiple genotypes, allow estimates of

the number and frequency of alleles at QTL. Importantly, because

these populations are composed of a series of homozygous, geno-

typed RILs, they represent stable genetic reference panels that fa-

cilitate systems-level analyses of genetic architecture.

Here we introduce the first multi-founder, advanced genera-

tion genetic reference panel for the elite model system Drosophila

melanogaster: The Drosophila Synthetic Population Resource (DSPR).
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The DSPR consists of >1600 genotyped RILs derived from a pair of

highly recombinant F50 intercross populations initially founded by

a total of 15 completely resequenced inbred lines. Our resources are

freely available as a community resource for investigators seeking to

elucidate the genetic basis of complex trait variation (FlyRILs.org).

The two main goals of this paper are first to describe the devel-

opment and general properties of the DSPR, and second to experi-

mentally demonstrate the capability and performance of the DSPR

by genetically dissecting the classic quantitative character, alcohol

dehydrogenase (ADH) activity.

Results

Development of the DSPR

The DSPR is composed of two large panels of RILs. Each panel was

derived from a different synthetic recombinant population, pA or

pB, founded with eight highly inbred strains (Fig. 1; Supplemental

Table 1). The set of 15 founders—one line (AB8) is included in both

populations—is of diverse geographic origin and should include

a large swath of the genetic variation in D. melanogaster. After

founding, each synthetic population was maintained as a pair of

independent subpopulations at large census size for 50 generations

to expand the genetic map, after which we generated over 800 RILs

for each population.

We characterized nucleotide-level variation encompassed

by the DPSR by genome sequencing all 15 founder strains. After

aligning raw, paired-end Illumina reads to the reference genome

(iso1) and applying various quality filters, we identified 1.89 million

SNPs, with the average genome coverage at SNPs ranging from

45.6 to 58.13 per founder (Supplemental Tables 2, 3A).

Finished RILs were genotyped by sequencing 96-plex

restriction-site associated DNA (RAD) libraries (Baird et al. 2008).

The average number of unpaired 100-bp RAD reads for each of

the 1670 successfully genotyped RILs was 860,000 (95% of RILs

have >347,000 reads), and these data reveal 10,275 SNPs (Sup-

plemental Table 3B). A hidden Markov model (HMM) was used to

convert this set of SNP markers to the underlying founder geno-

type for each genomic segment, and uncover the mosaic haplo-

type structure of each RIL (Supplemental Table 4A,B). The result

of the HMM is a soft genotype assignment, giving the probability

a genomic segment is derived from each of the eight founders.

Owing to our high marker density, for 95% of all positions over all

RILs the most likely founder type has a probability >0.95 (Sup-

plemental Fig. 1).

Details of all freely available community resources associated

with the DSPR project (RILs, sequences, genotypes, QTL map-

ping software) are presented in Supplemental Material and at

FlyRILs.org.

Properties of the DSPR

Only 1% of genomic positions in the finished DSPR RILs are as-

signed a heterozygous founder genotype by the HMM, and these

often occur near centromeres (Fig. 2). This low residual heterozy-

gosity is supported by the SNP data, where the median fraction of

polymorphic SNPs per RIL is 2%. These values compare favorably

with a smaller set of two-way RILs used widely by the Drosophila

community (Nuzhdin et al. 1997) and are consistent with values

expected based on simulation (Broman 2005).

The accumulation of recombination breakpoints during syn-

thetic population intercrossing results in expansion of the gene-

tic map. We define a breakpoint as that interval in which the

founder ancestry of a RIL transitions from a probability of >0.95

for one founder type to >0.95 for a different founder type. In the

DSPR the sizes of recombination breakpoint regions follow an

exponential distribution with a median physical distance of 148 kb

(24 bp to 2.4 Mb) (Supplemental Fig. 2A). Intervening founder

segment sizes between recombination breakpoints follow an ex-

ponential distribution as expected (Broman 2005), with a median

size of 3.0 cM and 3.2 cM for the autosomes and X chromosome,

respectively (Supplemental Fig. 2B). Map expansion in the DSPR

was ;20 times that of the standard Drosophila map, with fairly

uniform expansion throughout the entire length of chromosomes

(Supplemental Fig. 3), facilitating high-resolution mapping of

QTL. This level of expansion is slightly less than the 273 and 353

expansion expected for autosomes and the X chromosome, re-

spectively (Teuscher and Broman 2007). This result is perhaps due

to the sampling properties of recombination events during main-

tenance of the synthetic populations, and/or because some small

segments resulting from pairs of recombination events in close

proximity are not tagged by our marker set (see below).

Assuming an ideal synthetic population breeding scheme, on

average the eight founders should contribute equally to every RIL.

This is not the case in the DSPR, and founder contributions devi-

ate from the expected proportion of 0.125. This has been observed

previously in similar, highly recombinant D. melanogaster syn-

thetic populations (Macdonald and Long 2007). The average

proportion of each founder genotype in a given RIL ranges from

0.03 to 0.26 (Supplemental Fig. 4), and the average frequency of a

founder genotype at a position ranges from 0 to 0.8 (Fig. 2). Thus,

some genomic regions are dominated by a single founder geno-

type, and some entirely lack material from one or more founders.

Nevertheless, over the genome the DSPR shows high founder rep-

resentation: Assuming a founder is present at a position if five or

more RILs possess that haplotype, of the 15 possible founder ge-

notypes that could be represented at each position over both

populations, the average number of haplotypes observed is 12,

with a minimum of eight.

We cannot discount the possibility that some of the hetero-

geneity in the founder composition of the DPSR RILs came during

the inbreeding phase, as has been observed in the Collaborative

Cross (Philip et al. 2011). However, given our deliberate effort toFigure 1. Breeding scheme for the eight-way DSPR RILs.
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reduce segment length in the RILs via 50 generations of free re-

combination, and our use of mass breeding rather than a specific,

multigeneration crossing design (Rockman and Kruglyak 2008),

the unbalanced allelic structure is most likely to have resulted

from the action of random genetic drift, and both purifying and

positive selection during maintenance of the synthetic pop-

ulations. Combining the eight founder genomes using a fixed

funnel design over three generations (Churchill et al. 2004) may

have yielded the balanced founder representation seen in the

Collaborative Cross population (Aylor et al. 2011), but would

have come at a cost of a marked decrease in mapping resolution

in the DSPR.

Figure 2. Founder genotype frequency variation across the genome in the DSPR RILs. The first eight rows show the frequency of each homozygous
founder genotype in the pA (pA1, dark blue; pA2, light blue) and pB (pB1, dark red; pB2, pink) DSPR RILs. The 1/8 line shows the expected frequency for
equal founder composition. The bottom row shows the frequency of heterozygous genotypes (note the y-axis scale is considerably reduced for these plots).
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Comparison of RILs derived from the same population, but

from different subpopulations, suggests that between founding

of the synthetic population and completion of inbreeding both

drift and selection contributed to uneven founder representation.

In Figure 2, chromosomal regions where the curves from the two

subpopulations parallel each other (e.g., the X chromosome for

founder B1) suggest a common selection pressure altered the

haplotype frequency of this founder. In contrast, regions where the

two curves diverge (e.g., the distal end of chromosome 2L for

founder A4) suggest the action of drift.

Validation of the HMM results

The RAD genotyping method provided high marker density across

the genome resulting in high performance of the HMM (King et al.

2012). However, no genotyping method provides perfect in-

formation. To validate our HMM results, we sequenced the full

genomes of four pA RILs and present data from line A1.100 as an

example (all four RILs show similar results). Comparison of the

most likely founder genotype assignment across all SNPs (exclud-

ing ;1.4 million sites in the 1 cM around centromeric regions and

from telomeres) in the fully sequenced RIL with the same locations

in the same RAD genotyped RIL shows 97% identity across the

genome (Supplemental Fig. 5). Regions where the most likely

founder genotypes do not match are small, with a median size

of 17 kb, and for 81% of these nonmatching regions, the RAD

founder genotype assignment is uncertain (the most likely founder

genotype probability is <95%). We observe 11 segments, ranging in

size from 406 bp to 506 kb, in the sequenced data set that are not

resolved by the RAD genotype data (Supplemental Fig. 5). While

some of these breakpoints may represent true recombination

breakpoints missed by the RAD genotyping, segments of such

a small size could also result from gene conversion events or se-

quencing alignment errors.

Demonstration of the methodology

To empirically evaluate QTL mapping power and resolution in the

DSPR, we sought to genetically dissect variation in overall activity

of the ADH enzyme. This trait provides a valuable ‘‘positive con-

trol’’ for our approach, since a large fraction of the variation in

ADH activity is known to be due to sites at the Adh locus (Laurie

et al. 1991; Laurie and Stam 1994; Stam and Laurie 1996). A kinetic

enzyme assay confirms the 15 founders show variation for ADH

activity (Supplemental Fig. 6) and highlights the known large ef-

fect of the nonsynonymous Fast/Slow (F/S) polymorphism—the

four Slow founders exhibit a qualitatively different phenotype

from all but one of the 11 Fast founders. The =1 intronic insertion/

deletion polymorphism that influences the amount of ADH protein

produced (Laurie and Stam 1994) also segregates in the founders

although its influence is not clear from direct assays of the inbred

founder strains.

Scoring 814 pA RILs and 824 pB RILs for the trait revealed

substantial variation (Supplemental Fig. 7), and we estimated

the broad sense heritability of our measure of ADH activity as

0.60 in pA and 0.57 in pB (see Methods). For QTL mapping we

employed RIL means to reduce the environmental variance, and

the broad sense heritability of these mean measures is 0.92 in pA

and 0.90 in pB (hereafter, we will refer to these values as herita-

bility). As anticipated, we succeeded in identifying a large-effect

QTL directly over Adh in both panels of RILs (Fig. 3). This QTL

(Q1) explains 49% and 28% of the heritability in the pA and pB

RILs, respectively, and a 2-LOD support interval implicates a

370-kb (0.5 cM) region that includes Adh along with 21 other

genes. In pB we also map two trans-acting QTL (Q2 and Q3) to

;800-kb windows on chromosome 3, one to the middle of 3L

and one to the middle of 3R (Fig. 3; Table 1). Interestingly, Q2

maps to the same broad genetic interval as a previously identified

locus that has a trans-regulatory effect on ADH level (King and

McDonald 1987).

To further explore the genetics of ADH activity we rescanned

the genome after statistically controlling for the three Adh haplo-

types defined by F/S and =1 (Fig. 3). Eight QTL, including five not

seen in the initial scan, were mapped to intervals averaging 728 kb

(1.6 cM). The support intervals for QR2 and QR3—the same pair of

trans-acting QTL previously mapped with the raw ADH activity

data (Q2 and Q3)—were narrowed, but otherwise their proper-

ties were unchanged. Two of the QTL mapped after accounting

for the F/S and =1 variants are closely associated with the Adh

region (Fig. 3). One maps directly to the Adh locus itself (QR1),

confirming the presence of cis-acting variants at Adh other than

F/S and =1 (Stam and Laurie 1996). A second QTL (QR4) maps

2.6 Mb (2.4 cM) to the right of Adh on chromosome 2L, and may

have only been identified as an independent QTL due to the ge-

netic map expansion available in the DSPR. We detected a sig-

nificant interaction between QR1 and QR4, indicative of epistasis

(P = 0.014) (Supplemental Fig. 8).

The eight QTL mapped after conditioning on known func-

tional alleles segregating at Adh each account for 2%–7% of seg-

regating variation. This demonstrates that even for modest-effect

QTL the DSPR has excellent mapping resolution and power.

Combining over both of our genome scans for ADH activity, the

total percentage of the genetic variance explained by mapped QTL

is 57% and 60% in the pA and pB RILs, respectively (Table 1).

Figure 3. Positions of loci contributing to variation in ADH activity. QTL identified in analysis of raw ADH activity data (above) and analysis adjusted
for Adh polymorphisms F/S and =1 (below). (Horizontal dashed lines) QTL significance thresholds determined by permutation. (Black diamond) Position
of the Adh locus.
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Identifying candidate causative polymorphisms

An ultimate goal of any genetic analysis of complex traits is to

identify the precise causative nucleotide variants that give rise to

phenotypic variation. A feature of mapping approaches employing

multiparent synthetic populations is that one can estimate the

phenotype for each founder haplotype at the QTL, and determine

the pattern of shared allelic effects across founders (Macdonald

and Long 2007; Aylor et al. 2011). We term this procedure ‘‘QTL

phasing’’ (see Methods).

For pA, where the F/S and =1 variants at Adh are in complete

linkage disequilibrium (LD), our phasing heuristic predicts two

alleles segregate at the Adh-associated QTL Q1, and the founders

fall into two clear groups, A1/A2 and A4/A5/A6/A7/AB8 (Fig. 4;

Supplemental Table 5). The result is more complex for pB since F/S

and =1 are not in complete LD, and we identify a closely linked

epistatic QTL in this population (see above). Our phasing strongly

suggests three alleles are present in pB, highlighting three founder

groups, B7, B3, and B1/B2/B4/B6/AB8 (Fig. 4; Supplemental Table 5).

There is also significant, although lower support for an additional

allele further partitioning the founders into groups B1/B2/B4 and

B6/AB8. Notice that the three major ADH activity classes do not

entirely correspond to the known causative variants F/S and =1

(Fig. 4). Founders B3 and B6, both genotypically Fast and =1-Low,

fall into different classes, indicating an additional closely linked,

or allelic variant modifies ADH activity variation in pB. This result

is consistent with the observation that at least three sites in the

transcribed region of Adh contribute to protein expression (Stam

and Laurie 1996).

Access to high-coverage founder genome sequences gives us

the opportunity to identify SNPs, and potential segregating indels,

within a QTL interval that match the configuration predicted by

phasing the founder phenotype means (Yalcin et al. 2005; Keane

et al. 2011). This subset of the extant genetic variation most likely

includes the true causative site. Under the major Adh-associated

QTL (Q1; Supplemental Tables 5, 6A) 217 polymorphic events

match the QTL phase, including three nonsynonymous SNPs, one

of which is the F/S variant.

In general, our phasing heuristic implicated a relatively modest

number of 14–191 in-phase segregating polymorphisms associ-

ated with the small-effect QTL (Supplemental Fig. 9; Supplemental

Tables 5, 6A,B). For instance, only 21 segregating events are in

phase with Q2 despite this interval encompassing 106 genes. If we

assume the causative site is a coding variant we implicate just a

single candidate gene for QR2, QR4, and QR7. In addition, for QR1

we identify a promising candidate causative indel in an intron of

GABA-B-R1, a gene implicated in alcohol-induced behavioral im-

pairment (Dzitoyeva et al. 2003).

Table 1. Details of all QTL identified

Name

Peak location
(Mb) LOD

Confidence
interval (Mb)

Confidence
interval (cM)

Percent of
heritability

Number of
genes

In-phase
polymorphisms

Chr A B A B A B SNP NSe INDEL

Raw ADH activity
Q1 2L 14.45 14.48 107.4a 53.0a 14.33–14.70 49.7–50.2 49 28 22 169 3 48
Q2 3L — 11.70 0.7 8.6a 11.12–11.92 34.7–36.9 — 5 106 11 0 10
Q3 3R — 19.11 2.5 7.3a 18.90–19.73 77.8–81.4 — 4 101 109 24 92

ADH activity corrected for F/S and =1
QR1 2L — 14.98 4.1 22.6a 14.32–15.18 49.7–50.7 — 15d 67 11 20 40
QR4 2L — 17.24 1.4 22.0a 16.83–17.47 52.2–52.6 — 49 12 1 12
QR5 2R 4.28 — 7.9a 7.5a,b 3.59–4.46 56.9–58.5 3 — 136 — — —
QR6 3L 9.61 — 7.3a 1.9 9.5–10.08 29.2–31.4 3 — 71 537 233 490
QR2 3L — 11.89 1.5 13.1a 11.31–11.91 35.3–36.8 — 7 83 6 0 8
QR7 3R — 9.21 1.7 6.9a 8.58–9.52 52.3–53.8 — 4 105 2 6 11
QR8 3R — 14.83 2.4 7.3a 14.45–14.98 63.6–65.0 — 4 64 37 2 33
QR3 3R 19.37 19.11 7.7a 6.9c 18.95–19.75 78.0–81.5 2 4 94 102 25 89

Total: 57 60

Percent of heritability refers to the percent of broad sense heritability of RIL means. Confidence intervals are a 2-LOD support interval. When QTL were
identified in both pA and pB (Q1 and QR3), we estimate a single, conservative confidence interval taking the leftmost and rightmost positions over the 2-
LOD support intervals for both populations.
aLOD score exceeds the significance threshold.
bThis QTL is not distinct from QR4 in pB.
cAdjusted P = 0.069.
dPercent of heritability explained by both 2L QTL (QR1 and QR4) and their interaction.
eNonsynonymous SNP or indel in a gene.

Figure 4. Founder haplotype means at the major Adh-associated
QTL from the analysis of the raw ADH activity data. Founders are
shaded to highlight the three major phenotypic classes identified
by our phasing heuristic, and below are the genotypes of the founders
at F/S and =1.
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In contrast to all other mapped QTL, a large number of poly-

morphisms (1027) match the inferred phase of QR6. This is be-

cause we lack phase information for six of the founders at this QTL:

Four founders are absent from the RILs at this position, and we were

unable to confidently assign phase for two others. Furthermore,

phasing of the remaining founders reveals that all but one fall into

the same allelic group, such that any site with an allele unique to the

singleton strain is immediately implicated as putatively causative.

This result highlights the fact that any phasing strategy will ulti-

mately yield far fewer candidate functional variants for subsequent

validation if two or more founders share the minor QTL allele.

Discussion
We have described the design and features of the first completed

multiparent advanced generation intercross resource available

for an animal model system. The DSPR consists of a set of >1600

highly inbred eight-way RILs, each genotyped for a genome-

wide set of >10,000 SNPs. As a result of sequencing each of the

15 founder strains to high coverage we were able to use an HMM

to confidently assign a founder genotype to each segment in

each RIL. In addition, access to sequence from all founders allows

users of the DSPR to define all polymorphisms within any mapped

QTL interval. These resources allow for accurate characterization

of QTL, and a route toward identification of the underlying causa-

tive genes and loci.

The DSPR is able to provide high resolution positional in-

formation on mapped QTL because the synthetic populations

from which the RILs were derived were maintained as large, re-

combining populations for 50 generations (for simulation studies

showing both the power and resolution of the resource, see King

et al. 2012). Allowing these extra generations of recombination in

an intercross leads to a trade-off between mapping resolution and

equal founder representation. An increased number of generations

will result in a greater number of recombination events, and higher

mapping resolution. At the same time, the forces of selection and

drift will have a longer time to operate, leading to greater variation

in founder genotype representation. In the DSPR, the multiple

rounds of recombination resulted in very small segment sizes

(averaging just 3 cM), but came at a cost of unequal founder ge-

notype representation across the genome (see Fig. 2). Unbalanced

founder composition can lead to QTL going undetected if a var-

iant unique to a set of missing founders is lost. In addition,

multiple missing founders at a QTL location may lead to a much

larger number of candidate causative variants being implicated,

as we observed with QR6 (Table 1; Supplemental Table 5). How-

ever, such difficulties should not be pervasive in the DSPR be-

cause the number of founder genotypes at each position is still

quite high, with on average 12 of the 15 founders present.

A feature of the DSPR, in common with the Collaborative

Cross (Churchill et al. 2004) and the Arabidopsis MAGIC lines

(Kover et al. 2009), is that phenotyping a single panel of strains

allows one to simultaneously interrogate a large amount of genetic

and functional diversity. Since alleles from each of the founders

will be fixed on a range of otherwise highly variable genetic back-

grounds, the phenotypic effects of founder haplotypes at QTL can

be estimated accurately. The pattern of effects over founders—

what we term QTL phasing—can in turn be employed to examine

whether QTL are bi- or multiallelic, to estimate the frequency of

alleles at the QTL (Macdonald and Long 2007), to distinguish

tight linkage from pleiotropy (Macdonald and Long 2007), and to

highlight a subset of the genes within QTL intervals that are most

likely to harbor functional variation (Yalcin et al. 2005; Aylor et al.

2011; Keane et al. 2011).

We tested the performance of the DSPR by genetically dis-

secting overall activity and expression of the ADH enzyme, a classic

quantitative character whose genetic basis is fairly well under-

stood (Laurie-Ahlberg et al. 1980; King and McDonald 1987; Laurie-

Ahlberg and Stam 1987; Laurie and Stam 1988, 1994; Choudhary

and Laurie 1991; Stam and Laurie 1996). We were able to confirm

that the DSPR is able to successfully recapitulate much of what is

known about the natural genetics of ADH activity. In addition to

mapping a large-effect QTL directly to Adh, where two causative

polymorphisms were already known to reside, we precisely mapped

several previously unidentified trans-acting factors each explain-

ing just 2%–5% of the variation. These novel ADH activity QTL are

mapped to intervals <1 Mb and, by virtue of our QTL phasing,

implicate only a relatively small number of candidate genes and

variants. Overall, our work in the DSPR maps QTL, contributing up

to 60% to the genetic variation in ADH activity (Table 1). The

remaining unexplained segregating variation is likely to map

to sites having individually very small effects of perhaps <1%,

which are extremely difficult to reliably identify with any map-

ping approach.

Our overall results suggest the genetics of ADH expression is

more complex than previously known. A key advantage of the

DSPR in terms of elucidating such complexity is the ability to de-

tect and characterize QTL regions exhibiting a high degree of allelic

heterogeneity. When multiple alleles are segregating in a region,

each individual allele will often be at low frequency, and may go

undetected in a GWAS. In contrast, although multiparent mapping

panels only include a subset of the rare alleles segregating in a re-

gion, once sampled their detection is no longer dependent on their

population frequency (Macdonald and Long 2007). Indeed the

distribution of minor allele frequencies in the DSPR panel contains

few rare alleles (frequencies <1%) while the Drosophila Genetic

Reference Panel (DGRP) of 168 naturally derived, resequenced

inbred lines contains an excess of rare alleles (Mackay et al. 2012).

In this regard, linkage-based mapping methodologies employing

multiple founding genotypes can complement population-based

association studies such as the DGRP (Mackay et al. 2012), and

allow investigators to characterize some of the ‘‘missing’’ herita-

bility not captured by the GWAS approach (Manolio et al. 2009).

We show that the phenotypic means associated with each

founder at mapped QTL can be used to identify a small set of ge-

netic polymorphisms that likely includes the causative allele. If

causative SNPs are often coding variants, the DSPR can quickly

implicate a handful of genes and SNPs worthy of further study.

Given the battery of molecular and functional genetic tools avail-

able for the D. melanogaster system, there are a number of routes

available to experimentally validate the true causative allele.

Alternatively, the total number of phase matching polymorphisms

is sufficiently low that all could be confirmed using an association

study framework (Mackay et al. 2012), incurring only a modest

multiple testing penalty in comparison with a typical GWAS (per-

haps P < 10�4 as opposed to P < 10�8).

Over the past 20 yr enormous scientific effort has focused on

identifying the genetic variants underlying complex traits. How-

ever, we remain unable to explain more than a small percentage of

the heritability for the vast majority of complex traits. The DSPR

detects both small-effect (<5% of heritability) and low-frequency

variants, and can explain a large fraction of the total segregating

variation. As a genetic reference panel freely available to the com-

munity (FlyRILs.org) the DSPR allows multiple traits to be assayed
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in multiple environments, facilitating analyses of pleiotropy, ge-

notype-by-environment and genotype-by-sex interactions, and

ultimately providing a detailed picture of the underlying genetic

architecture of complex traits.

Methods

Development of the eight-way RILs
Each synthetic population (pA and pB) was initiated with eight
founder strains, seven unique to a population (A1–A7 or B1–B7),
and one common to both populations (AB8). In the first genera-
tion, lines were intercrossed (e.g., A1 3 A2, A2 3 A3, . . . AB8 3 A1),
and 10 F1 flies per genotype per sex were used to establish the next
generation. Adult F2 flies were used to seed two separate 1/2 gallon
population bottles, and the two replicate subpopulations (pAr1
and pAr2 or pBr1 and pBr2) were maintained independently by
transferring adults en masse to fresh bottles every 12–13 d.

At the F50 generation males and virgin females were used to
initiate 576 pair matings for each of the four subpopulations. In
the next, and in all subsequent generations, 1–3 single male 3

single virgin female crosses were set up for each incipient RIL. If all
crosses for a given line at a given inbreeding generation failed, the
line was maintained via a single mated female, and not considered
to have been inbred for that generation. Inbreeding continued for
up to 25 generations, leading to a total of ;1700 completed RILs
(minimum 20 generations of inbreeding, 81% inbred for 22–25
generations).

Genome sequencing

Using polytene squashes and genotyping assays (Andolfatto
et al. 1999; Matzkin et al. 2005) we determined that two of the
founders harbor a common cosmopolitan inversion: Founder A2
has In(3R)Payne and B5 has In(2L)t. We identified A2 individuals
homozygous for the standard chromosome arrangement for ge-
nome sequencing but could not isolate homozygous standard
B5 individuals (the strain appears to have a balanced lethal on
chromosome 2L, as all B5 individuals tested were heterozygous
for In(2L)t). As a result, for sequencing we created flies that are
trans-heterozygous for the standard 2L from B5 against founder
AB8 and against iso1 (y1; cn1 bw1 sp1), the sequenced strain of D.
melanogaster (Adams et al. 2000).

For each of the 15 founders, the homozygous standard chro-
mosome 3 arrangement of A2, both trans-heterozygous B5 ge-
notypes, and four finished RILs, we isolated and purified DNA
from 50 adult females. Following Qubit quantification (Invitrogen),
1–3 mg of DNA was sheared to ;300 bp using a Covaris acoustic
shearer, and used to generate paired-end Illumina DNA sequenc-
ing libraries. Libraries were run over two to three PE54 lanes on
a GAII sequencer, and FASTQ files generated using the standard
Illumina pipeline. Raw reads from the founders were aligned to the
D. melanogaster genome (release 5.1) using MosaikAligner, custom
scripts were used to create a pileup table for each founder, and
pileup tables were collectively used to identify SNPs (see Supple-
mental Material).

RIL genotyping

To construct RAD libraries for each RIL we extracted and purified
DNA from 12–15 females, and normalized all samples to 10 ng/mL
using a NanoDrop ND-1000. To uniquely mark each of the 18
DNA plates, and control for sample mix-ups and plate spins, we
included one sample of iso1 DNA in a different well of each plate.
Multiplexed RAD libraries were made with 50 mL of diluted DNA

using proprietary protocols (Floragenex), similar to those de-
scribed in Baird et al. (2008), using SgrAI as the restriction en-
donuclease. Finished 96-plex RAD libraries were sequenced over
two to three SE100 lanes on a GAII sequencer, or a single SE100
lane on a HiSEQ2000.

The FASTQ files were processed using a custom Perl script that
stripped the barcodes from any given lane of reads, and generated
96 new barcode-specific FASTQ files. The barcode-stripped, lane-
specific FASTQ files were processed with the same pipeline used for
the founders to generate 1710 pileup tables, one for each geno-
typed sample (1692 RILs, and 18 replicate iso1 samples). We fil-
tered candidate RAD markers to retain those SNPs that (1) also
scored as a SNP in the founders, (2) had non-zero coverage for at
least 50% of the RILs, (3) were heterozygous in <20% of the RILs,
and (4) assuming coverage was >10 in the iso 1samples, showed
<0.05 heterozygosity in iso1. The final set of 10,275 high-quality
SNP markers represents 4026 SgrAI restriction cut sites.

Five RILs were excluded from our analysis due to insufficient
read coverage. The genotype data also indicated that 12 of the RILs
had high heterozygosity over much of the genome, indicating a
post-inbreeding contamination event. In addition, we detected
five RILs that appear to have been contaminated either prior to, or
very early during the inbreeding process. These latter events were
detected by first identifying a set of diagnostic alleles for each
ancestral synthetic population, i.e., alleles fixed in pA but segre-
gating as SNPs in pB, and vice versa. A RIL harboring a large frac-
tion of alleles diagnostic for the alternate population strongly
suggests a contamination event. Overall, we successfully obtained
genotype data for 1670 RILs.

Determining founder ancestry across the genome of each RIL

We constructed an HMM to infer the underlying founder ancestry
of each genomic segment in each RIL, utilizing the set of biallelic
SNPs identified in the RILs and founders (King et al. 2012). We
followed standard methods for HMMs (Rabiner 1989; Mott et al.
2000; Mann 2006; Broman and Sen 2009) and assumed a geno-
typing error rate of 0.5%. Transition probabilities were defined as
the probability of a recombination event occurring between any
given pair of markers and were initially estimated from the map
conversion tables available on FlyBase, and scaled up to corre-
spond to the multiple generations of recombination experienced
by the DSPR. In D. melanogaster crossing over only occurs in fe-
males and the FlyBase map is in female units. Therefore, the au-
tosomes effectively experience 25 generations of recombination,
and the X chromosome (which spends 2/3 of the time in females)
experiences 33.3 generations of recombination. Our expected map
expansion following the completion of both the recombination
and inbreeding phases is 27 for autosomes and 35 for the X chro-
mosome (Teuscher and Broman 2007). The HMM calculates, at each
marker, for each RIL, the eight probabilities the marker is derived
from each of the eight founders (homozygous states), and the 28
probabilities the underlying state segregates for two founder geno-
types (heterozygous states).

Phenotyping alcohol dehydrogenase (ADH) enzyme activity

We adapted the colorimetric, kinetic ADH enzyme assay described
in Clark and Wang (1994), and controlled for variation in the total
amount of protein present in any given homogenate via a Bradford
assay (see Supplemental Material). At the end of data collection,
each test genotype (15 founders and 1737 RILs) was assigned a
mean normalized ADH activity measure based on an average on
8.08 biological and technical assay replicates. RIL phenotype
means are provided in Supplemental Table 7.
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Estimating heritability

Broad sense heritability of ADH activity in pA and pB was esti-
mated by calculating the genetic and phenotypic variance com-
ponents from a linear mixed model using the lme and VarCorr
functions in the nlme package in R (Pinheiro et al. 2011). We esti-
mated the heritability of RIL means as the estimated genetic vari-
ance component over the total variance of RIL means.

QTL mapping

To perform QTL mapping, we converted the 36 state probabilities
described above to eight additive probabilities by assuming het-
erozygous states are intermediate between the two homozygous
states. These additive probabilities and the 36 raw state probabilities
are available both at http://FlyRILs.org/Data and as a set of R
packages (DSPRqtlDataA and DSPRqtlDataB; see http://FlyRILs.org/
Tools/Tutorial for a step-by-step tutorial). We have also released an
R package (DSPRqtl) to facilitate data analysis for users (see http://
FlyRILs.org/Tools/Tutorial for a step-by-step tutorial).

We performed QTL mapping in two stages, both of which
were implemented using R (R Development Core Team 2011). First,
we performed a multiple regression, regressing our measure of
ADH activity on the eight additive probabilities with no covar-
iates, separately for the pA and pB populations. We converted the
resulting F-statistic to a LOD score (Broman and Sen 2009), and
determined the genome-wide significance threshold via 1000
permutations (Churchill and Doerge 1994). Second, we performed
standard interval mapping (Lander and Botstein 1989; Broman and
Sen 2009) locally around each mapped QTL to localize peaks more
precisely and estimate confidence intervals. A conservative 2-LOD
support interval was used to estimate confidence intervals on the
locations of all QTL.

To help identify additional QTL influencing ADH activity, we
performed a second analysis that statistically controls for the ef-
fects of the two known causative polymorphisms at Adh (F/S and
=1). We performed genome scans separately for pA and pB as above
but included allele class as a covariate. We considered three hier-
archical models:

H0 : Y = m + A + e

HA : Y = m + A + +Gi + e

HF : Y = m + A + +Gi + +Gi � A + e

where m is the grand mean, A is allele class at Adh, and Gi is the ith
founder genotype probability. We then calculated three LOD
scores by comparing the likelihoods (LL) of the three models:

LODA = log10 LLH0=LLHAð Þ

LODI = log10 LLHA=LLHFð Þ

LODF = log10 LLH0=LLHFð Þ

with thresholds identified via permutation tests (Churchill and
Doerge 1994). The significance of the additive genetic effect is in-
dicated by LODA. We determined significance of the interaction
effect according to the recommendations of Broman and Sen
(2009) by testing for a significant interaction term only at locations
where LODF is significant, with no additional correction for mul-
tiple tests. Finding no evidence for interaction effects, we corrected
the ADH activity phenotype for the F/S and =1 polymorphisms
for both pA and pB together to better facilitate later comparisons
between the two populations using the model:

Y = m + A + e:

We subsequently performed genome scans separately for pA
and pB using the residuals from this model to localize any addi-
tively acting QTL.

Identifying candidate causative sequence polymorphisms

To categorize founders into QTL allelic classes, we only used RILs
that had a single founder type with >95% certainty at the QTL
peak. After assigning these RILs a hard founder genotype, we
ranked the founder genotype means at the peak. We then fit a se-
ries of models with an increasing number of partitions among the
ranked founder groups until adding an additional group did not
significantly improve the fit of the model. The general method is as
follows. The optimal first partition is found by performing a set of
ANOVAs with the founders in all possible sets of two distinct
‘‘high’’ and ‘‘low’’ classes, and choosing the model with the highest
F-value as the best two-class partition. This two-class partition
model is compared to the model with all founders belonging to
a single group using an F-test. If the two-class model is a signifi-
cantly better fit than the single class model (at P < 10�4), this
partition is fixed and all possible three-class models (that include
the fixed optimal two-class partition) are tested. Once again, we
choose the model with the highest F-value as the optimal model
for that round, and then test this optimal three-class model fit
against the optimal two-class model fit. This process continues
until adding an additional partition does not result in a signifi-
cantly better fit.

To identify SNPs and indels that match the predicted allelic
configuration for each QTL we used the following procedure. For
the large Adh-associated QTL we identify three allelic groups from
the founder means: (1) A1, A2, B7; (2) B3; (3) A4, A5, A6, A7, B1, B2,
B4, B6, AB8. At this QTL position, none of the RILs have the
founder A3 or founder B5 genotype. In addition, the state of
the underlying polymorphisms in B3 is equally likely to match the
‘‘low’’ or ‘‘high’’ group (Fig. 4). We scanned the 350-kb region
underlying the QTL (2L:14,330,000..14,680,000) to identify all
polymorphisms that perfectly match the pattern implied by the
QTL phasing, i.e., 22?1111111?1??21 for founders A1–A7, AB8,
B1–B7, AB8. Polymorphisms were identified from the SAMtools-
derived consensus sequences associated with the founder ge-
nomes. For many QTL we could combine the phase-matching
patterns for the pA and pB populations based on the phase as-
signment for founder AB8 (the founder shared by both pop-
ulations). In other cases AB8 was missing, or its phase was poorly
inferred, and the phasing associated with populations pA and pB
took on two possible configurations.

Data access
All data associated with the DSPR project are hosted at FlyRILs.org,
along with a form allowing users to request fly lines, and the
R/DSPRqtl analytical software we have developed (this package can
be installed directly within R—see FlyRILs.org/Tools/Tutorial/
index.html for details). The raw sequence reads from this study
have been submitted to the NCBI Sequence Read Archive (SRA)
(http://www.ncbi.nlm.nih.gov/sra) under accession no. SRA051306
(RIL RAD genotyping) and SRA051316 (founder resequencing).
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