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Abstract. Friction stir processing (FSP) has been employed for localized modification and control of 

microstructures in NiAl bronze materials, which are widely utilized for marine components. The 

thermomechanical cycle of FSP results in homogenization and refinement and the conversion of 

microstructures from a cast to a wrought condition within stir zones in the material. However, the 

direct measurement of stir zone temperatures, strains, strain rates and cooling rates is difficult due to 

steep gradients and transients in these quantities, and this is an impediment in the assessment of 

FSP-induced microstructures and properties. Quantitative microstructure analyses following FSP of 

cast NiAl bronze materials have been used to develop estimates of stir zone thermomechanical cycles. 

The estimation procedures will be reviewed and the microstructure-based estimates will be compared 

to results from computational models and embedded thermocouples measurements. Stir zone 

microstructures comprise a mixture of primary α grains and transformation products of the β that 

formed during processing. Recrystallization in the primary α occurred due to particle-stimulated 

nucleation in this low stacking fault energy material. Factors that influence the distribution of strength 

and ductility in the stir zone appear to include the mixture of microstructure constituents and gradients 

in microstructure due to gradients in processing conditions. 

 

Introduction 

FSP is an adaptation of friction stir welding (FSW), a solid-state joining process originally developed 

at The Welding Institute [1]. FSP enables localized modification and control of microstructures in 

near-surface layers of metallic components [2, 3, 4]. In the process, a cylindrical, wear-resistant tool 

consisting of a smaller diameter pin with a concentric, larger-diameter shoulder is rotated and forced 

into the surface of the work piece. As the tool penetrates, a combination of frictional and adiabatic 

heating softens the material so that tool rotation induces a stirring action and flow of material about 

the pin. The severe, but localized, plastic deformation results in formation of a stir zone (SZ) while 

adjacent regions that experience only moderate straining comprise the thermomechanically affected 

zone (TMAZ). Large areas may be processed by traversing the tool in a pattern on the work piece 

surface. FSP has been employed to homogenize and refine microstructures in both cast and wrought 

metals, including alloys of Al�[5, 6, 7, 8, 9, 10] and Mg [11, 12] and higher melting alloys of Cu�[13], 
Fe� [14] and Ti [15]. Benefits of FSP in cast metals include elimination of porosity and local 
conversion of cast microstructures to a wrought condition, with enhanced surface properties. 

Significantly improved strength/ductility combinations [16, 17] and high-strain-rate superplasticity 

[5, 6, 7, 8, 9, 18] have been achieved by FSP of wrought materials. 

The FSP/W thermomechanical cycle likely induces recrystallization and phase transformations but 

direct measurement of SZ temperatures, strains and strain rates is difficult due to steep gradients and 

transients in these quantities, and this impedes the assessment of processing-induced microstructures. 
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For this reason, quantitative microstructure 

analysis following FSP of cast NAB materials 

has been used to develop estimates of local peak 

SZ temperatures and details of the estimation 

procedure have been given in previous reports 

[19, 20]. Briefly, during cooling at rates ~10
-3
 

ºCs
-1
 after casting, the NAB solidifies as a 

single-phase β bcc solid solution. The primary α 

constituent forms from the β with a 

Widmanstätten morphology during subsequent 

cooling;. Globular precipitates which are Fe3Al 

having a DO3 structure and designated κii also 

form from the β and attain sizes of 20 – 30 µm, 

and, at lower temperatures, finer Fe3Al 

precipitates designated κiv form in the primary α 

and are 1 - 10 µm in size. A eutectoid reaction, β → α + κiii, takes place at ~800 ºC. The κiii is 

nominally NiAl having a B2 structure. Thus, following such equilibrium cooling the microstructure 

of this as-cast NAB consists of a primary α fcc terminal solid solution, which contains a fine 

dispersion of κiv precipitate particles, and a eutectoid constituent, α + κiii, which contains coarse, 

globular κii particles. 

After FSP, SZ microstructures in NAB materials generally include primary α, non-equilibrium 

transformation products of the β phase, κii, and, in some locations, κiv. These microstructures depend 

strongly on local peak temperatures and subsequent cooling rates. Altogether, the absence of the α + 

κiii eutectoid constituent as well as the presence of non-equilibrium β transformation products, 

including fine Widmanstätten α, bainite and martensite, indicate local heating to temperatures above 

the eutectoid (~800 °C). The relative fractions of the primary α, the β transformation products and the 

κii and κiv have been employed to estimate local peak temperatures in conjunction with data on phase 

equilibria in NAB alloys. These estimates assume local equilibrium due to acceleration of 

diffusion-controlled reactions by excess vacancy generation during deformation and heating to the 

local peak temperature [21, 22, 23]. The morphologies of the primary α and the β transformation 

products depend on the details of the local thermomechanical history, but also suggest that the α and β 

phases experience compatible deformation during straining at T ≥ 800°C. A detail discussion of the β 

transformation products that form during cooling after passage of the tool has already been provided 

[19, 20]. The effects of deformation and recrystallization processes within the primary α are retained 

after FSP and these processes are the subject here. Microstructure and microtexture data were 

acquired in the fcc α phase of the SZ and surrounding TMAZ by use of OIM and TEM methods in 

order to evaluate the deformation and recrystallization processes that resulted from the FSP. 

Experimental Procedures 

The material examined in this investigation is UNS C95800 NAB, and details of the specification and 

composition have been included in previous reports [19, 20]. FSP was accomplished at the Rockwell 

Scientific Company, Thousand Oaks, CA with tools machined from MP159, an alloy having a 

Table 1. FSP parameters for samples examined in this investigation 

Process 

Designator 

Rotation Rate 

(rpm) 

Traversing Rate 

(mm m
-1
) 

Tool Advance per 

Revolution (mm/rev) 

FSP516 800 152 0.191 

FSP520 1000 203 0.203 
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Fig.1. A schematic of the SZ illustrates the 

locations (A – G) from which data were 

acquired. The coordinate axes correspond to the 

standard axes for FSP 
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nominal composition of 25Ni – 36Co – 19Cr – 9Fe – 7Mo 

– 3Ti (wt pct). Details of the tool design have also been 

given previously [19, 20]; briefly, the tools had a shoulder 

diameter of 23.8 mm, a pin diameter of 7.95 mm and a pin 

depth of 6.65 mm; additionally, the pin had a spiral 

groove. Two processing conditions from prior work were 

selected for the present study. These were: 1) tool rotation 

and traversing rates of 800 rpm and 152 mm m
-1
 (6 in m

-1
), 

respectively; and 2), rotation and traversing rates of 1000 

rpm and 203 mm m
-1
 (8 in m

-1
). In both cases, the tool axis 

was inclined ~ 3º opposite to the direction of tool advance 

and the process involved a single traverse approximately 

200 mm in length under X-axis displacement rate control. 

The ratio of the traversing rate to the rotation rate, i.e., 

tool advance per revolution (Table 1; the designators are 

only serial numbers), is essentially the same for these two 

samples; accordingly the SZ microstructures are similar 

and have been discussed in previous reports [19, 20]. The 

conventional axes for FSP are included in the schematic 

of Fig. 1; the tool traverses in the X direction, Y is the 

longitudinal direction, and Z is the plate normal direction. 

In Fig. 1, the Y – Z plane is the transverse plane; here, a 

plan view of the SZ was obtained in a plane 2.5 mm below 

the plate surface and parallel to the X – Y plane. Locations 

of various analyses are indicated in Fig. 1. Microtexture 

analysis by orientation image microscopy (OIM) was 

conducted using a Topcon SM-510 scanning electron microscope (SEM) equipped with a tungsten 

filament and operated at 20 kV. OIM was conduced at the locations indicated in Fig. 1. Sample 

preparation has been described previously [19, 20]. Standard methods of data acquisition and analysis 

were employed to evaluate microstructure and texture in the primary α grains. Transmission electron 

microscopy (TEM) was accomplished with a Topcon 002B microscope equipped with a LaB6 

filament and operated at 200 kV. Samples for TEM examination were obtained by standard methods. 

Convergent-beam electron diffraction (CBED) patterns were taken from each α phase grain in a 

region of contiguous grains and the patterns were then analyzed to determine unambiguous lattice 

orientations of the grains. The orientation of the CBED pattern captured from each grain was indexed 

with an accuracy of ~0.2º using the Tools for Orientation Crystallographic Analysis (TOCA) software 

(EDAX-TSL, Inc.) for TEM. The grain-to-grain lattice disorientation accuracy was then ~0.4º. 

Optical microscopy (OM) involved standard sectioning and preparation methods; etched samples 

were examined using bright-field (BF) illumination in a Zeiss Jenaphot 2000 equipped with a digital 

imaging system. 

Results and Discussion 

Inside the SZ. Fig. 2 shows representative OIM data from the SZ in FSP516. These data are in the 

form of image-quality (IQ) maps, discrete (001) and (111) pole figures, and histograms representing 

the grain-to-grain misorientation angle distributions in the α phase. Detailed OM and TEM analysis of 

the β transformation products at these SZ locations for the processing conditions of Table I have been 

previously reported by the authors [19]. Here, higher IQ in the EBSD patterns corresponds to brighter 

gray tones in the maps; the corresponding areas in the maps are mainly the primary α that persisted 

during processing. Locations of low IQ during scanning may reflect locations near α-phase grain 

Fig. 2. OIM data from the SZ illustrating 

random orientations in the primary α and 

random grain to grain misorientation 

distributions with distrnutions of twin 

and low angle boundaries superimposed. 
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boundaries, undissolved κii, or fine, complex β transformation products. The banded distribution of 

primary α and β transformation products in Fig. 2 agrees with previous OM analysis of this material 

[19]. The primary α grain size becomes finer with depth in the SZ and is finest at the bottom, i.e. the 

location of Fig. 2(d) which is location D in Fig. 1. Throughout the SZ the discrete pole figure data 

shows only random orientations in the α phase. In contrast, distinct shear textures in the SZ in FSP/W 

of aluminum alloys [14, 15 ,24] have been reported. The observation here of random textures within 

the SZ is indicative of recrystallization involving the formation of randomly oriented grain nuclei 

followed by migration of high angle boundaries during the thermomechanical cycle of FSP. The 

distributions of grain-to-grain misorientation angles for all locations show a distinct random 

component, which is similar to that predicted by MacKenzie for randomly oriented cubes [25], but 

with additional peaks at 0 - 5° and at 60°. The low-angle boundaries may reflect deformation of newly 

recrystallized grains by the tool shoulder after passage of tool pin. At all SZ locations there is a 

distinct population of ~ 60º boundaries that likely reflects the formation of annealing twins after 

recrystallization during FSP. The results of TEM/TOCA analysis for location D near the boundary of 

the SZ under the tool pin are shown in Fig. 3. Fig. 3(a) is a TEM image suggesting that highly refined 

α grains 1 - 2 µm in size are attained in this location by the processing. The boundaries in this image 

are shown in the tracing of the boundaries in Fig. 3(b) in which the line width corresponds to the 

grain-to-grain disorientation angles from TOCA analysis. The hatched areas indicate locations 

comprising either κii or κiv constituent particles that were deformed or broken up by processing. Most 

of the boundaries are of high disorientation angle, θ > 40º; these are indicated by thickest lines, and 

many of these are twin boundaries of approximately 60º disorientation. 

Locations along the SZ/TMAZ interface. Fig. 4(a) shows a montage of optical micrographs from the 

plan-view plane on the advancing side of the SZ for FSP520. This plane is at about half of the SZ 

depth and corresponds to location F as shown in Fig. 1. The tool traversing direction is upward. Figs. 

4(b) - (d) show OIM results obtained from the region delineated by the dotted frame in Fig. 8(a); this 

region spans the distinct interface between the TMAZ and SZ, and the TMAZ appears to be about 250 

µm in width at this location. The OIM results are in the form of IQ maps, discrete pole figures and 

misorientation angle distributions for scans that each have areas of 100 x 100 µm
2
. The α grains just 

inside the SZ are very fine, equiaxed and ~ 5 µm in size in the IQ map in Fig. 8(b), and the α grains are 

interspersed with dark-etching features that are transformation products of the β which formed after 

dissolution of the eutectoid constituent. The boundary between the SZ and base metal is very sharp in 

the OM image of Fig. 4(a) although the α (sub)grain size in the IQ maps appears to be nearly constant 

throughout this region. The pole figure data from locations inside the SZ/TMAZ boundary indicates a 

random texture, as seen in Fig. 4(b), while a single lattice orientation becomes apparent upon crossing 

the boundary, as seen in Fig. 4(c). This orientation may be interpreted as a shear texture component, 

{111}<110>, at the intersection of the A-fiber, {111}<uvw>, and B-fiber, {hkl}<110>. The notation 

(b)(b)

Fig. 3. Highly refined grains are apparent in the TEM images of 

(a); CBED analysis in (b) shows that the boundaries are mainly 

high-angle or twin boundaries. 

θ > 40º
15º < θ < 40 º
θ < 15º

θ > 40º
15º < θ < 40 º
θ < 15º
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refers to {the plane parallel to shear plane}<the 

direction parallel to shear direction> [26]; this 

interpretation requires the assumption that the 

strain state in the TMAZ is a simple shear on a 

plane approximately parallel to the local 

SZ/TMAZ interface and in a direction aligned 

with the traversing direction. In Fig. 4(d), at a 

location farther into the TMAZ, large lattice 

rotation from the orientation observed in Fig. 4(c) 

to another orientation has become apparent and 

the random component is less distinct. The 

second orientation does not correspond to a shear 

texture component aligned with the SZ/TMAZ 

interface.  

Altogether, these data suggest that the SZ/TMAZ 

interface is a distinct boundary separating 

recrystallized and deformed and annealed 

material. The SZ microstructures and 

microstructure-based estimates of local SZ 

temperature indicate the temperature at the 

SZ/TMAZ interface is ~800 ºC and that severe 

deformation begins as the local temperature 

exceeds this value upon tool approach to a 

location along its path. At this temperature 1 - 10 

µm κiv particles will persist in α grains. Severe 

deformation will generate localized deformation zones around these particles. For lattice-diffusion 

control of deformation and recovery, the strain rate necessary to achieve particle stimulated 

nucleation (PSN) of recrystallization is given by [27] 1

2
exp D

PSN

p

K Q

d T kT
ε

 
≥ − 

 
& ,where 0,

1

lGD
K

k

Ω
= . 

Here, Ω is the atom volume, G is the shear modulus, D0,l  is the preexponential factor for lattice 

diffusion, k is Boltzmann’s constant, dP is the particle diameter, T is the temperature and QD,l is the 

activation energy for lattice diffusion. When the local strain rate is sufficient to satisfy equation (1), 

local lattice rotations will lead to the formation of deformation zones around particles and support 

nucleation of new grains at the particles. Lattice-diffusion control may be assumed because of the 

high local temperatures, and, so, terms involving boundary diffusion have been omitted from equation 

(1). Using data for Cu [28] and taking dp ~5 µm for the κiv particles and the temperature T = 800°C at 

the SZ/TMAZ interface, the strain rate for PSN is 3 19 10  sPSNε − −= ×& . Modeling has indicated that 
1200 slocalε −≈&  in the SZ near the pin surface during FSP of NAB materials [29]; the process is 

characterized by steep gradients in strain rate and temperature and so PSN is a plausible mechanism 

for recrystallization in the primary α at the SZ/TMAZ interface. Typically, PSN results in random 

lattice orientations of the recrystallized grains due to the random nature of the local lattice 

reorientations in the deformation zones around the particles and this would account for the random 

textures nearby the SZ/TMAZ interface in the lower SZ. 
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Fig. 4. OM and OIM data from location F on the 

advancing side of a SZ, illustrating the sharp 

transition from refined, recrystallized material in 

the the SZ to deformed and recovered material in 

the TMAZ. 
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