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Abstract
Neuroendocrine control mechanisms are observed in all

animals that possess a nervous system. Recent analyses of

neuroendocrine functions in invertebrate model systems

reveal a great degree of similarity between phyla as far apart

as nematodes, arthropods, and chordates. Developmental

studies that emphasize the comparison between different

animal groups will help to shed light on questions regarding
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the evolutionary origin and possible homologies between

neuroendocrine systems. This review intends to provide a

brief overview of invertebrate neuroendocrine systems and to

discuss aspects of their development that appear to be

conserved between insects and vertebrates.
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Endocrine and neuroendocrine cells

Cells in multicellular animals communicate through signaling

mechanisms that take place at direct intercellular contacts, or

that involve signals released systemically into the extracellular

space where they diffuse over large distances and are able to

affect targets far removed from the signaling source. The first

mechanism, communication of cells that are in direct contact,

is developed to a state of high complexity in the nervous

system. Here, a multitude of signals in the form of

neurotransmitters chemically couple networks of neurons at

specialized cell–cell contacts, the synapses. The second

mechanism of cell–cell communication defines the endocrine

system. It involves secreted signals, hormones that affect target

cells in a less directed way, since all cells expressing receptors

for a given hormone will react when that hormone is released.

The endocrine system in bilaterian animals consists of

multiple specialized cell populations, sometimes compacted

into glands that are found in all parts of the body, and are

derived from all three germ layers (Tombes 1970, Highnam &

Hill 1977, Gorbman et al. 1983, Laufer & Downer 1988).

Endocrine glands regulate a large number of homeostatic

mechanisms. They include the activity of neurons, muscles,

and pigment cells during specific behaviors (food intake, fight

and flight, and reproduction), the activity of visceral muscle

and exocrine glands (digestion), the control of major

metabolic pathways (synthesis, storage, and release of

carbohydrates and lipids), the control of the ionic milieu
through absorption and excretion, the formation and

maturation of gametes, and growth and regeneration of the

body. In many instances, endocrine glands form an integrated

system in which hormonal production and release is

controlled through feed back loops.

Most hormones found throughout the animal kingdom are

short polypeptides, produced by proteolytic cleavage from

larger precursor proteins, called prohormones. Similar to

other secreted proteins, peptide (pro)hormones are produced

in the rough endoplasmic reticulum, processed through the

Golgi apparatus, and stored in membrane-bound vesicles.

These vesicles, 100–300 nm in size, give peptide hormone-

producing cells their characteristic granular appearance

(Golding & Pow 1988, Thorndyke & Georges 1988). Peptide

hormone receptors belong to the class of seven pass

transmembrane, G-protein-coupled receptors. Beside

peptides, lipids and amino acid derivatives act as hormones.

The steroid hormones (e.g. cortisone or estrogen in

vertebrates and ecdysone in arthropods) are derived from

the lipid cholesterol. Juvenile hormone in insects is an ether

derivative of a polyunsaturated fatty acid. Like other lipids,

these hormones are synthesized in the smooth ER and are not

stored in vesicles. Steroid hormone receptors belong to a class

of transcription factors, called nuclear receptors that are

localized in the cytoplasm in their inactive state; upon ligand

binding, they will enter the nucleus and bind to DNA,

thereby modulating gene expression (Schulster et al. 1976).
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In addition to endocrine glands, many neurons of the

central and peripheral nervous system produce hormones

which are released locally into the extracellular space, as well

as into the blood stream (Thorndyke & Georges 1988). In

most cases, hormones (all of them of the peptide class)

synthesized by neurons are the same that are also produced by

non-neuronal endocrine cells. Examples are provided by the

large number of peptides formed in both the nervous system

and the intestinal endocrine cells, including the pancreas

(brain–gut peptides; Walsh & Dockray 1994): glucagon,

gastrin, cholecystokinin, tachykinin, and many others.

Neurons that produce hormones are called neurosecretory

cells (NSCs). NSCs, and the structures their axons target,

form the neuroendocrine system (Fig. 1). In vertebrates, the
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neuroendocrine system includes the hypothalamus and

pituitary, as well as peripheral neurons of the autonomic

nervous system that target endocrine cells in the adrenal

medulla, the intestinal wall, and the pancreas. NSCs form a

distinct population of nerve cells, which are recognized by

their content of large peptide-storing vesicles. Vesicles are

distributed throughout the cell body, axon, and synapse of

the NSC, rather than being restricted to the synapse,

like regular neurotransmitters (Thorndyke & Georges

1988). Furthermore, release of neurohormones, occurring

through fusion of the vesicles with the cell membrane, occurs

not only at synapses but also anywhere along the soma

and axon (Fig. 1B). In this way, the released neurohormone

affects multiple cells which are within reach of the NSC.
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Figure 2 Hypothetical stages in the evolution of the endocrine and
neuroendocrine systems. Cells releasing endocrine signals are
likely to predate the appearance of a nervous system, since they can
be found in extant metazoa lacking nerve cells (A). The first nervous
system is thought to have possessed the structure of a basi-epithelial
nerve net, similar to the one still found in present day cnidarians (B).
At this stage, neurons and NSCs/endocrine cells most likely had
evolved into distinct lineages of sensory cells integrated into the
epidermis, the gastrodermis and the nerve net. A central nervous
system integrating multimodal sensory input evolved in bilaterian
animals (C). Populations of sensory NSCs involved in the regulation
of fundamental biological processes, such as feeding and
reproduction may have formed specialized complexes in the brain,
pharynx, and gut of early bilaterians. During later stages of
evolution (shown in (D) for the chordate lineage), NSCs and
endocrine cells in general show the tendency of losing their sensory
function, delaminating from the surface epithelium (epidermis,
pharynx, and intestinal epithelium), and undergoing morpho-
genetic changes that produced dedicated endocrine glands, such as
the pituitary, thyroid/parathyroid, and pancreatic islets.
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Important aspects of endocrine system evolution

Cell communication through secreted, diffusible signals is

phylogenetically older than neural transmission. Animals

without nervous system (e.g. sponges and placozoa) and even

protists produce a wide array of hormones, which are in some

cases identical to the corresponding compounds found in

highly derived taxa (Robitzki et al. 1989, Schuchert 1993,

Skorokhod et al. 1999). The general hypothesis put forward in

classical reviews and textbooks assumes that in primitive

multicellular animals, specialized epithelial cells integrated

into the epidermis and the intestinal lining reacted to certain

stimuli, chemical or physical, by secreting metabolites that

diffused throughout the body and evoked adaptive responses

in other tissues (Fig. 2A). These primitive endocrine cells

then underwent further specializations during the course of

evolution. They separated (delaminated) from the epidermis,

neuroectoderm, and intestinal epithelium; many became

neurons of the peripheral and central nervous system

(e.g. hypothalamus in vertebrates), others formed specialized

endocrine glands (e.g. pituitary and endocrine pancreas;

Fig. 2B and C).

For most of the peptidergic endocrine systems, we start to

recognize phylogenetic relationships that span far across

phyletic boundaries (Fig. 2C and D). First and foremost, one

might think of the neuroendocrine system that develops from

the neuroectoderm of the head in bilaterian animals, and that

includes: (1) populations of NSCs that are integrated into the

brain; (2) NSCs that migrate and form a nerve plexus in the

walls of inner organs (autonomic nervous system); and (3)

peptidergic endocrine glands or cell clusters (e.g. anterior

pituitary in vertebrates and corpora cardiaca in insects),

usually spatially close to the brain, and controlled through

neurosecretory mechanisms by the central NSCs. As discussed

later, we can recognize these neuroendocrine elements in

many bilaterians, which suggests that they already existed in

the bilaterian ancestor. Among the protochordates and

chordates, further specializations occurred in the endocrine

cell populations of the pharynx and gut. We see the formation

of endocrine glands, from the pharyngeal endoderm (thyroid

and parathyroid) and the midgut (endocrine pancreas), which

apparently have no counterparts in other phyla (Fig. 2D).

One striking trend that can be observed at multiple

instances in the evolution of endocrine systems is the

interpolation of novel steps into endocrine pathways. For

example, GnRH is a peptide hormone that plays a role in

reproduction, acting on neural circuits controlling reproduc-

tive behavior and on gamete differentiation in the gonads alike

(Rastogi et al. 2002, Gorbman & Sower 2003). In chordates,

GnRH (via other peptide hormones) acts on steroidogenic

cells in the gonads, and it is the steroid hormones that in these

animals profoundly affect gametogenesis and reproductive

behavior.

In the following, a brief overview of the endocrine system

of invertebrate animals will be given, emphasizing those
www.endocrinology-journals.org
aspects that tie together evolution and development. In view

of this objective, only the populations of peptidergic cells that

form the neuroendocrine system associated with the brain

and intestinal tract, and that can be recognized in one form or

another in all animals, will be covered. I will begin with a

look at the cnidarians, the simplest animals that possess a

nervous system containing groups of fairly well-characterized

neuroendocrine cells. From there, the survey will proceed to

the two large lophotrochozoan phyla, annelids, and mollusks,

to the ecdysozaoans, arthropods, and (very briefly)
Journal of Endocrinology (2006) 190, 555–570
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nematodes. The last section of the review will look in a

comparative manner at the genetic mechanism controlling

neuroendocrine system development in the model system

Drosophila and in vertebrates.
Structure of the neuroendocrine system in invert-
ebrate phyla

Origins: the neuroendocrine system of cnidarians

In cnidarians, endocrine cells occur as scattered neurons and

epithelial cell in the epidermis and gastrodermis (Lesh-Laurie

1988, Thomas 1991, Grimmelikhuijzen & Westfall 1995).

NSCs comprise both sensory cells (i.e. neurons integrated into

the epidermis, with modified cilia acting as stimulus-receiving

apparatus), as well as subepidermal ganglion cells. Cnidarians

possess almost the full range of neurotransmitters, neurohor-

mones, and non-neuronal hormones present in chordates or

arthropods (Grimmelikhuijzen et al. 1996). A considerable

fraction of both sensory and ganglion cells are neurosecretory.

For example, in the planula larva, more than 40% of the neurons

express the neuropeptide FMRFamide (Martin 1992).

Neuropeptides in cnidarians act as transmitters mediating

communication of neurons within the nerve net and

stimulating effector organs (Grimmelikhuijzen & Westfall

1995, Holtmann & Thurm 2001, Pernet et al. 2004). Peptides

act as stimulators or inhibitors; no specific behavioral

responses have been associated with any particular peptide.

For example, FMRFamide-expressing cells, mostly bipolar

sensory neuron, are concentrated in the tentacles of Aglantha.

These neurons control the feeding response: tentacular

movement leading to prey capture and ingestion (Mackie

et al. 2003). FMRFamidergic neurons in the planula larvae of

the anthozoan (coral) Hydractinia echinata exert a tonic effect

on motility (Katsukura et al. 2004). Planulae settled on a

substratum migrate toward light and then initiate metamor-

phosis into polyps. Migration occurs in rhythmic bursts of

active movement interrupted by resting periods. The peptide

LWamide extends the active periods longer, thereby speeding

up migration, whereas RFamide has the opposite effect.

Beside their role as neurotransmitters, peptides have been

shown to systemically act like true hormones on reproduc-

tion, development, and reproduction. Cnidarians reproduce

sexually (haploid gametes released in the seawater) and

asexually by budding. Development typically undergoes

multiple phases where small larval forms (planula) give rise

to polyps which then change into medusae. Cnidarians,

like many other simple invertebrates, show a pronounced

capacity of regeneration, where a small piece of the body can

regenerate into the full organism. Each of these reproductive

and growth phenomena is under the control of neurohor-

mones released by the NSCs (Lesh-Laurie 1988). For

example, the same RFamides introduced earlier as stimulators

of migration induces metamorphosis, whereas LWamides

inhibit the same process (Katsukura et al. 2003).
Journal of Endocrinology (2006) 190, 555–570
The neuroendocrine system in lophotrochozoans: annelids
and mollusks

Scattered NSCs, similar to those described for cnidarians in

the previous section, can be found among central and

peripheral neurons, as well as the gut epithelium, of all animal

phyla. Many cells undergo further specializations that add to

the complexity of the neuroendocrine system. In the brain,

NSCs cluster into several ‘nuclei’ whose neurites innervate

specific compartments of the neuropile, and whose neuro-

secretory peripheral axons form specialized endings in

association with the glial sheath covering the brain, with

blood vessels, or with peripheral endocrine glands.

Variable clusters of NSCs have been identified in

representatives of all annelid taxa in both larval forms and

adults (Tombes 1970, Baid & Gorgees 1975, Aros et al. 1977,

Highnam & Hill 1977, Orchard & Webb 1980, Jamieson

1981, Porchet & Dhainaut-Courtois 1988). Besides, largely

unknown neurite terminations in the neuropile of the brain

and ventral nerve cord, axons of many NSCs terminate in the

pericapsular organ, a neurohemal structure at the ventral

surface of the brain (Bobin & Durchon 1952, Highnam &

Hill 1977; Fig. 3A and B). The pericapsular organ is formed

by a glial (connective tissue) sheath, a layer of epithelial cells

some of which also appear to be neurosecretory and blood

vessels. Specialized endings of NSCs are clustered next to the

glial sheath and among the epithelial cells, suggesting that the

pericapsular organ represents a site of active neurohormonal

release. NSCs of the ventral nerve cord also terminate in

neurohemal release sites associated with the glial sheath; some

produce axons that leave the CNS and terminate among

epidermal cells (Jamieson 1981, Gardiner 1992).

NSCs and neurohemal structures located in the glial sheath

of the nervous system have been described in detail for several

mollusk species. Within the brain cortex of terrestrial snails

(pulmonates), several peptide hormone producing ‘nuclei’

have been described (Geraerts et al. 1988, Joosse 1988, de

Lange et al. 2001). Among these are the caudo-dorsal cells

(CDCs), bag cells (BCs), latero-dorsal cells (LDCs), medio-

dorsal cells (MDCs), and BGCs (Fig. 3C). All of these cell

groups produce axons terminating underneath the glial sheath

and releasing their hormonal content into the hemolymph.

The CDCs, controlling ovulation and egg laying behavior,

produce complex recurrent axons terminating in several glial-

bounded neurohemal ‘compartments’ located in the brain

commissure. The LGCs form a large, bilateral cluster of

peptidergic NSCs in the dorsal brain. They control body

growth and receive synaptic input from peripheral sensory

neurons located in the epidermis of the head (Roubos & van

der Wal-Divendal 1982).

Outside the populations of NSCs, several non-neuronal

populations of endocrine cells, have been described (Fig. 3C).

They are located within or close to the glial sheath around the

brain, are possibly of mesodermal origin (Boer et al. 1968), and

are innervated by brain neurons. Among these endocrine

structures are the dorsal bodies and lateral lobes (in pulmonates)
www.endocrinology-journals.org
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and optic glands (in cephalopods). The lateral lobes are

functionally related to the LGCs and influence body growth;

the dorsal bodies produce a female gonadotropic hormone, as

well as ecdysteroid hormones (de Jong-Brink et al. 1986,

Marchand & Dubois 1986, Wiens & Brownell 1994, Wayne

1995, Wayne et al. 2004). The optic gland in cephalopods

produces gonadotropic hormones and receives inhibitory

input from neurons of the brain (Di Cosmo &Di Cristo 1998,

Iwakoshi-Ukena et al. 2004).
Neuroendocrine system of arthropods

The neuroendocrine system of arthropods shows strong

homologies among different taxa of this phylum. The

arthropod brain contains a wide variety (in regard to location,

projection, and peptide content) of NSCs. Most are scattered

cells with largely uncharacterized projections within the

neuropile. In addition, subsets of NSCs form conspicuous

clusters, whose axons leave the neuropile and project to

neurohemal release sites and non-neuronal endocrine glands.

Insects The neurosecretory system in insects consists of

several sets of neurosecretory cells located in the brain and

ventral nerve cord. The majority of NSCs are found in the

dorso-medial protocerebrum, the so-called pars intercereb-

ralis (PI) and pars lateralis (PL; Pipa 1978, Raabe 1989,

Schooneveld 1998, Veelaert et al. 1998, Siegmund & Korge

2001). These NSCs project their axons toward a set of

endocrine glands, the corpora cardiaca (CC) and corpora

allata (CA; Fig. 3D). In Drosophila, the CC and CA, along

with a third neuroendocrine gland, the prothoracic gland

(PTG), are fused into a single complex, the ring gland, which

surrounds the anterior tip of the dorsal blood vessel (Fig. 4D).

Containing release sites for neurosecretory products, the CC

and CA act as neurohemal organs. At the same time,

neuropeptides that reach the CC and CA from the brain
Figure 3 Comparative overview of important elements of the neuroendo
((E) and (E 0)) crustaceans. In all panels, the central nervous system is color
cells (targeted by the NSCs) in magenta, and vascular cells in light green
terminate in contact with the glial/connective tissue layer covering the ve
contact the pericapsular organ (pco), a presumed endocrine structure lo
(C) Schematic dorsal view of gastropod cerebral ganglion. Multiple pop
caudo-dorsal cells; and ldc, latero-dorsal cells). In some cases, neurohem
organ; and mln, median lip nerve). The medio-dorsal body (mdb), later
closely associated with the brain and targeted by NSCs. (D) Posterior–dor
in the pars intercerebralis (PI) and pars lateralis (PL) of the protocerebru
ventral nerve cord (vnc). Peripheral axons of these cells innervate the retr
nccII (from PL), and nccIII (from subesophageal ganglion/tritocerebrum).
at neurohemal release sites associated with the glial sheath surrounding
receiving NSC axons consists of the corpora cardiaca (cc) and corpora a
(bv). The corpora allata produce juvenile hormone which, together with t
(ptg), control growth and molting. The stomatogastric nervous system (sn
corpora allata and corpora cardiaca. (E) and (E 0) dorsal view of crustacea
brain, particularly in the ‘X-organ’ (X) found in the optic lobe (ol in (E 0)). E
postcommissural organ (pcoo), and pericardial organ (peo), the latter po
produces ecdysone and represents a homolog of the insect prothoracic gl
which is chemically and functionally similar to insect juvenile hormone
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may act locally on the glandular cells of these organs and

control the release of their hormones.

The pars intercerebralis comprises an unpaired cluster of

neurons located along the anterior brain midline, flanked by

the mushroom body on either side and the central complex

ventrally. The architecture of the NSCs has been the object of

many studies, describing them as monopolar neurons with

dendrites spreading in the hemispheres and axons joining the

first nerve to the corpora cardiaca (nccI; Geldiay & Edwards

1973, Rowell 1976, Koontz & Edwards 1980, Zaretsky &

Loher 1983, Homberg et al. 1991a,b, Fig. 3D). NSCs of the

PI secrete insulin-like peptides, FMRFamide-like peptides,

Locusta-diuretic hormone, pigment-dispersing hormone,

Manduca sexta-allatostatin, ovary ecdysteroidogenic hormone,

and myomodulin (reviewed in Nassel 2002). The NSCs

forming the PL of the brain produce FMRFamide-like

peptides, pigment-dispersing hormone, corazonin, and M.

sexta-allatostatin. Their axons form the second nerve of the

corpora cardiaca (nccII), which in most insects travels

alongside the nccI (Fig. 3D); in Drosophila, both nerves are

enclosed by a single perineurial (glial) sheath.

Outside the PI and PL, the tritocerebrum and the ventral

nerve cord, as well as the ganglia of the stomatogastric nervous

system (SNS) contain neurosecretory cells. NSC axons of the

tritocerebrum and subesophageal ganglion projecting toward

the corpora cardiaca form the nccIII nerve (Penzlin 1985,

Kim et al. 1998, Schooneveld 1998, Nassel 2002); neuro-

secretory axons from the SNS also form a compact axon

bundle connecting the hypocerebral ganglion with the

corpora cardiaca (Penzlin 1985). NSCs of the ventral nerve

cord have release site associated with the dorsal glial sheath of

the cord and the segmental peripheral nerves (Duve et al.

1988, Nassel et al. 1988, Schooneveld 1998).

Peripheral neuroendocrine glands in insects: the CC of insects

consist of two distinct zones, an unpaired ventral storage lobe,

containing the terminals of NSCs located in the PI and PL,
crine system in ((A) and (B)) annelids, (C) mollusks, (D) insects, and
ed light blue; central NSCs are shown in violet, peripheral endocrine
. (A) Section of annelid brain (br). NSCs form fiber tracts (NSCtr) that
ntral brain surface. Other NSC axons penetrate the glial layer (B) and
cated between the ventral brain and the blood vessel (bv).

ulations of central NSCs are found in the brain (bgc, bag cells; cdc,
al release sites have been identified (cco, commissural neurohemal

o-dorsal body (ldb), and lateral lobe (ll) form endocrine structures
sal view of insect neuroendocrine system. Central NSCs are located
m, the tritocerebrum and subesophageal ganglion (seg), and the
ocerebral complex of endocrine glands via the nccI nerve (from PI),
Secretory axons of NSCs located in the ventral nerve cord terminate
the nerve cord and peripheral nerves. The retrocerebral complex

llata (ca), both of which are located close to the dorsal blood vessel
he steroid ecdysone produced and released by the prothoracic gland
s) contains further NSCs and is functionally closely connected to the
n brain and neuroendocrine system. Central NSCs are located in the
ndocrine glands controlled by central NSCs are the sinus gland (sgl),
ssibly homologous to the insect corpora cardiaca. The Y-gland (Y)

and; likewise, the mandibular organ (mo) secretes methyl farnesoate
.
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and a more lateral glandular lobe that is formed by NSCs in its

own right (Gupta 1990, Dai & Gilbert 1991, Dorn 1998,

Schooneveld 1998). Some insects, among them flies, lack a

storage lobe; here, neurosecretory axons that would terminate

in the CC in locusts and other insects pass through the CC

and end in contact with the aorta (King et al. 1966,

Schooneveld 1998). The glandular lobe of the CC produces

several hormones, including AKH, certain glycemic factors,

cardiac-accelerating factors, and melanin-inducing factor.

The AKH hormones are the major products of the CC,

which are secreted into the hemolymph to mobilize lipids and

carbohydrates during flight (O’Shea & Rayne 1992, Noyes

et al. 1995, Veelaert et al. 1998, Nassel 1999, Oudejans et al.

1999).

The CA produces juvenile hormone (JH), a fatty acid

derivative which has profound effects on larval growth,

metamorphosis, egg development, and sexual behavior

(Veelaert et al. 1998, Vullings et al. 1999, Gilbert et al.

2000). The pars lateralis in the brain via its projections to the

CA is the source of positive and negative control over JH

production (Stay et al. 1996, Stay 2000, Siga 2003). One of

the neuropeptides reaching the CA was identified as

allatostatin, which inhibits JH release.

The prothoracic gland (PTG) derives its name from the fact

that in most insects it is situated in the prothoracic segments. In

dipterans, the PTG consists of bilateral clusters of large glandular

cells that form the lateral wings of the ring gland. The PTG

synthesizes and secretes a polyhydroxylated steroid prehormone,

which is then converted to the major molting hormone, 2O-

hydroxyecdysone, by peripheral tissues (Bollenbacher et al.

1975, Gilbert et al. 1997). Ecdysone triggers the transition from

larval to pupal molts. It is also responsible for the complex

metamorphic-remodeling processes that shape the adult organs

of the insect body. The level of ecdysone is controlled by
Figure 4 Embryonic development of the insect neuroendocrine system.
(after Dorn 1972). Parasagittal section in A illustrates the topology of th
labium (lb)) and corpora allata (ca, in ectoderm of maxilla (mx)). Transve
allata and prothoracic gland form mesenchymal cell clusters migrating
Schematic drawings of heads of Drosophila embryo, dorso-lateral view
(stage 11/12; corresponding to the stage shown for Oncopeltus in (A)).
intercerebralis (PI) and pars lateralis (PL), form placodes in the antero-me
and prothoracic gland (ptg) originate from the lateral ectoderm of the g
Primordia of corpora cardiaca (cc) are associated with the stomatogastric
later stage (stage 16, depicted in (D)), the corpora allata, prothoracic gl
surrounds the anterior end of the dorsal blood vessel (bv). Neurosecretory
nerves respectively. (E)–(G) Micrographs of heads of Drosophila embryo
dorsal view) labeled with RNA probe against DN-cadherin (A Younossi
DN-cadherin is expressed in a cluster of cells that can be seen to delamin
DN-cadherin labeling occurs in the prothoracic gland and, to a lesser e
Drosophila embryos (both stage 12, dorsal view, anterior to the left; from
V Hartenstein (unpublished observations)). (H) Primordia of the PI and P
Grenningloh et al. 1991). The Drosophila Rx gene (Eggert et al. 1998) i
primordium. (I) Labeling with the apical membrane marker anti-Crumb
primordia. Arrows point at strongly Crumbs-positive pits which demarca
brain; cdm, cardiogenic mesoderm; cl, clypeolabrum; fg, foregut; lg, lym
nerve cord.
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numerous humoral and neural pathways. One of the factors that

controls ecdysone release is prothoracicotropic hormone

(PTTH), a peptide that has been isolated in several insect

species, including Drosophila (Gilbert et al. 1997, Kim et al.

1997).Axon tracts that funnel PTTH(andother factors) directly

to the PTG stem from the ventral nerve cord (prothorax!); in

addition,PTTH-secretingNSCs are located in thePI, send their

axons through the NCCI to the CAwhere they release PTTH

into the hemolymph (Westbrook & Bollenbacher 1990, Dai

et al. 1995, Aizono et al. 1997).

Crustaceans Numerous groups of NSCs with specialized

neurohemal projections outside the neuropile have been

identified in the brain and ventral nerve cord of crustaceans

(Tombes 1970, Cooke & Sullivan 1982, Beltz 1988,

Fingerman 1992, Keller 1992). Compared with insects,

where the PI, PL, and tritocerebrum form a relatively

uniform central neuroendocrine system, the diversity of

central neuroendocrine cells in crustaceans is considerable. A

schematic map is shown in Fig. 3E/E 0. A conspicuous group

of NSCs with no obvious counterpart in insects, called the

X-organ, forms part of the proximal optic lobe. Axons of the

X-organ and most other NSCs of the brain project toward the

ventral surface of the optic stalk where they terminate in a

large neurohemal structure called the sinus gland (Tombes

1970, Beltz 1988). Two other neurohemal structures, called

the postcommissural and the pericardial organs, receive

projections from NSCs in the brain and ventral nerve cord.

A large variety of neuropeptides influencing pigmentation,

carbohydrate levels, osmoregulation, growth/molting, and

reproduction are released from each of these sites (Bulau et al.

2004, Serrano et al. 2004).

Whereas the sinus gland/X-organ system associated with

the crustacean optic lobe has no obvious counterpart in insects,
((A) and (B)) Sections of the anterior part of Oncopeltus embryo
e invaginating primordia of prothoracic gland (ptg, in ectoderm of
rse section in (A) shows later embryonic stage. Primordia of corpora
dorso-medially toward the dorsal blood vessel (bv). ((C) and (D))
, anterior to the left. (C) Depicts late extended germ band embryo
Primordia of the neuroendocrine centers of the brain, the pars
dial neuroectoderm of the head. Primordia of the corpora allata (ca)
nathal segments (lb, labium; mx, maxilla; and md, mandible).
placodes (sns) which invaginate from the roof of the foregut (fg). At

and, and corpora cardiaca have coalesced into the ring gland that
axons from the PI and PL reach the ring gland via the nccI and nccII
s ((E) stage 11, lateral view; (F) stage 13, dorsal view; (G) stage 15,

-Hartenstein, F Wang & V Hartenstein (unpublished observations)).
ate from the maxillary ectoderm and migrate dorsally. At later stages,
xtent, the corpora allata. (H) and (I) Micrographs of heads of
B De Velasco, T Erclik, D Shy, J Sclafani, HD Lipshitz, RR McInnes &
L are labeled with antibodies against Dchx1 (green) and FasII (red;

s expressed in a large dorso-medial domain posterior of the PL
s (Tepass et al. 1990) reveals the placodeal nature of the PI and PL
te the centers of the invaginating placodes. Other abbreviations: br,
ph gland; md, mandible; mg, midgut; ph pharynx; and vnc, ventral
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the pericardial organ may be considered homologous to the

insect corpora cardiaca. Beside nerve terminals from the brain

and ventral cord, the pericardial organ contains intrinsic

endocrine cells which produce, among others, crustacean

hyperglycemic hormone (CHH), which controls hemolymph

sugar and fatty acid levels, similar to AKH produced in the

insect corpora cardiaca (Beltz 1988, Fingerman 1992, Keller

1992, Dircksen et al. 2001). CHH also affects heart beat and

molting. Beside the pericardial organ, theX-organ/sinus gland

complex is another source of CHH (Fu et al. 2005).

Homologs of the insect growth/molting controlling non-

neural endocrine glands, the corpora allata and prothoracic

gland, exist in crustacean and appear to develop in a similar

fashion from ectodermal invaginations of the head segments.

One gland, called the Y-organ, produces ecdysteroids;

the other gland, the mandibular organ, releases a hormone

(methyl farnesoate, MF) similar to juvenile hormone in

insects (Beltz 1988). MF not only controls growth and

morphogenesis, but also reproduction and sex determination.

Both Y-organ and mandibular organ, similar to their

PTG/CA counterparts in insects, are controlled by hemo-

lymph born neurohormones (Beltz 1988, Han et al. 2006).

Notable among the peptides released from the sinus gland and

acting on the Y-organ is molting-inhibiting hormone (MIH),

which decreases ecdysone production (Nakatsuji & Sonobe

2004). Sinus gland-derived peptides acting on juvenoid

production in the mandibular organ are mandibular organ-

inhibiting hormone (MO-IH) and gonad-inhibiting hor-

mone (GIH; De Kleijn & Van Herp 1995).
Neuroendocrine system of nematodes

A significant number of peptidergic neuroendocrine cells

occur in the CNS of nematodes. The genome of

Caenorhabditis elegans contains 41 genes encoding peptide

hormones, 21 of which represent FMRF-like peptides with

multiple functions in neural transmission (Li et al. 1999). A

neuroendocrine network that has been characterized in detail

in C. elegans regulates growth, metabolism, and lifespan

(Kimura et al. 1997, Gerisch et al. 2001, Jia et al. 2002, Tatar

et al. 2003, Gissendanner et al. 2004, Kurz & Tan 2004, Mak

& Ruvkun 2004). Central neurons producing insulin-like

peptide act on a group of cells, among them a pair of sensory

neurons and a set of epidermal cells in the head, which express

a cytochrome P450 enzyme (encoded by the daf-9 gene)

suspected to be involved in the synthesis of a steroid hormone.

This suspected hormone acts on a widely expressed nuclear

receptor (encoded by the daf-12 gene), which promotes

molting. The insulin and steroid pathway, similar to their

function in other animals, control growth, metabolism, and

lifespan. One might speculate that the epidermal cell cluster

expressing cytochrome P450 are evolutionarily related to the

ectodermally derived cells of the prothoracic gland in insects,

or the Y-organ in crustaceans.
www.endocrinology-journals.org
Development of the insect neuroendocrine system

Formation of the peripheral endocrine glands

The ontogeny of the neuroendocrine system has been

followed for a number of insect species; little is known

about this process outside of the insects. According to Dorn’s

(1972, 1998), careful histological studies in Oncopeltus and

other taxa, the anlage of the prothoracic gland (PG) arises in

the ectoderm of the labial segment, lateral of the salivary

gland. Following invagination cells of the PG anlage become

mesenchymal and migrate dorsally. They are in contact with

the first segmental tracheal branch that permeates the

prothoracic segment. Mitosis within the PTG primordium

ceases after blastokinesis (germ band retraction); at this stage,

the number of cells approximates 300. This number remains

constant throughout development until the adult stage.

The anlage of the corpora allata (CA) makes it appearance

in a manner similar to that of the PTG. In this case, a group of

cells invaginates from the ventro-anterior ectoderm of the

maxillary segment. Adopting a solid, mesenchymal organiz-

ation, the primordium of the CA migrates dorsally where it

comes in contact with the third endocrine gland, the corpora

cardiaca (CC). This structure derives from cells that can be

first detected adjacent to the primordium of the esophagus.

The roof of the esophagus of the early insect embryo contains

three large, unpaired placodes, aligned antero-posteriorly,

which give rise to the neurons of the stomatogastric nervous

system (Hartenstein 1997). Following invagination, these cells

dissociate and differentiate as neurons, which move along the

elongating foregut and anterior midgut and eventually

aggregate into the ganglia of the SNS. As mentioned earlier,

the SNS (very similar to the vertebrate intramural autonomic

ganglia) contains numerous NSCs, but their projection and

function is largely unknown. Precursors of the CC can be first

detected on either side of one of the SNS placodes (Dorn

1972, 1998, Copenhaver & Taghert 1991), and it has been

stated that CC precursors invaginate, or delaminate, from the

same esophageal epithelial domain that also gives rise to the

SNS. As the esophagus primordium stretches posteriorly,

the cells of the SNS and CC precursors move along until they

reach the CA primordium.

In Drosophila, the peripheral endocrine glands appear to

develop along similar lines as in other insects, although the

conspicuous invaginating ectodermal placodes that give rise

to these glands in Oncopeltus and other species have not been

observed in the fly. Molecular markers, among them the

transcriptional regulator Glass, are expressed in the precursors

of the CC at a time when these are aligned with the SNS

placodes. However, the origin of these cells from one of the

placodes has so far not been confirmed; instead, mutant

analysis suggests that the CC precursors originate from the

anterior ventral furrow, which is adjacent to, yet separate

from, the esophagus primordium (De Velasco et al. 2004).

The precursors of the Drososphila PTG and CA can be

traced to the dorsal region of the gnathal segments (maxilla,
Journal of Endocrinology (2006) 190, 555–570
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labium; A Younossi-Hartenstein, F Wang & V Hartenstein

(unpublished observations), Fig. 4C and E), which corre-

sponds to the location identified as the site of origin of the

corresponding structures in other insects (discussed earlier).

The Drosophila adhesion molecule DN-cadherin is expressed

in this domain, first in the ectoderm, and then (after an

inconspicuous delamination event transporting the cells into

the interior of the embryo) in a mesenchymal cluster of cells

that migrate dorsally, following the elongating tracheal

primordium to which they become attached at an early

stage. In the late embryo, these cells merge with the CC

precursors arriving from anteriorly and become arranged as a

ring-shaped cluster around the anterior end of the dorsal

vessel (Fig. 4D–G).
Development of the central neuroendocrine system

The PI/PL originate as placodes from the dorso-medial

neuroectoderm of the head (Younossi-Hartenstein et al. 1996,

B De Velasco, T Erclik, D Shy, J Sclafani, HD Lipshitz,

RR McInnes & V Hartenstein (unpublished observations) in

a way that is similar to the formation of a few other structures

of the nervous system of the head, including the optic lobe

(Green et al. 1993) and the stomatogastric nervous system

(Hartenstein et al. 1994). In all of these cases, shortly after

gastrulation, small domains of the neuroectoderm adopt the

shape of placodes (Fig. 4G and H), with cells elongating in the

apico-basal axis and expressing a higher level of apical markers

(such as the Crumbs protein) at their apical surface.

Eventually, all of these placodes invaginate, dissociate, and

directly turn into neural cells (as in the case of the PI placode,

or the SNS placodes), or give rise to neuroblasts (as for the

optic lobe). In the dorso-medial head, one can recognize four

bilateral pairs of placodes aligned along the antero-posterior

axis. The anterior pair gives rise to the PI and the second pair

to the PL. In the late embryo, following their invagination,

both placodes become part of the dorso-medial brain cortex.

A subset of neurons formed from these placodes express

neuropeptides and send out axons that innervate the CC

and CA.

The origin of the PSCs forming the central neuroendo-

crine system from epithelial placodes is atypical for insects.

Most neurons of the insect brain are formed by the

proliferation of stem cell-like neuroblasts, which delaminate

as individual cells from the neuroectoderm. It seems probable

that the neuroblast-mode of neural cell birth and proliferation

is a derived feature because it appears not to be present in taxa

considered basal in the arthropods, and taxa outside the

arthropods. In chelicerates and chilopods, for example, the

neuroectoderm produces a large array of small placodes,

which subsequently invaginate, dissociate, and differentiate

into the neurons and glial cells of the ventral nerve cord and

brain (Stollewerk et al. 2001, Dove & Stollewerk 2003,

Kadner & Stollewerk 2004). Regarding their pattern, the

placodes are comparable to the array of neuroblasts in insects.

One might speculate that at the root of arthropods, the
Journal of Endocrinology (2006) 190, 555–570
neuroectoderm gave rise to an array of small placodeal

domains, which invaginated and produced a specific part of

the CNS. In later stages of evolution leading towards insects,

this mode of neurogenesis was replaced by the ‘invention’ of

stem cell-like neuroblasts. According to this hypothesis, one

would have to conclude that the occurrence of placodes along

the head midline, giving rise to the PI and PL, of insects

represents a vestige of the phylogenetically older mode of

neurogenesis. Similarly, one could argue that molecular

mechanisms at work in these placodes, or the function of

brain parts derived from them, is phylogenetically more

ancient compared with structures developing from neuro-

blasts. This makes further research on the formation of the

neuroendocrine placodes an important area in developmental

neurobiology.
Genetic control of neuroendocrine development: a
comparison between Drosophila and vertebrates

Similarities in structure and function

Many previous studies have emphasized similarities between

the neuroendocrine system of vertebrates and arthropods

on the structural, functional, and developmental levels

(e.g. Veelaert et al. 1998), despite the fact that these taxa are

separated by more than 500 Mio years of evolution. In both

vertebrates and arthropods, the highest command center of

the neuroendocrine system is comprised of groups of NSCs

located in the brain; these cells, beside innervating brain

centers and thereby influencing neural circuits as ‘neuro-

modulators’, send their axons to peripheral neurohemal

glands in which the hormones produced by the NSCs are

stored and released. In vertebrates, neurosecretory cells are

located in the hypothalamus. The endocrine gland they act

upon is the pituitary. The corresponding structures in

arthropods would be the PI/PL and their peripheral targets,

the CC/CA respectively. The main hormone produced by

the CC, adipokinetic hormone (AKH), mobilizes lipids and

carbohydrates from the fat body (O’Shea & Rayne 1992,

Oudejans et al. 1999, Van der Horst et al. 2001, Diederen et al.

2002) and thereby resembles vertebrate glucagon that is

produced in endocrine cells of the pancreas, as well as

peptidergic neurons in the brain (Han et al. 1986). AKH also

shows some sequence similarity with the N-terminus of

glucagons (Scarborough et al. 1984). The relationship

between Drosophila insulin-like peptides and AKH (Kim &

Rulifson 2004) is most likely homologous to the antagonism

between glucagon and insulin in vertebrates. There exist a

number of other neuropeptides, among them FMRFamides

(Rastogi et al. 2001, Nassel 2002), tachykinins (Nussdorfer &

Malendowicz 1998) and CRF/CRF-like diuretic hormone

(Schoofs et al. 1997, Nassel 2002) found in vertebrate

hypothalamus and insect PI.
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Signaling pathways affecting neuroendocrine development

The vertebrate and Drosophila neuroendocrine systems show

significant similarities during early development. Both

structures arise within the anterior neural plate where the

anlage of the pituitary/CC is anteriorly adjacent to the cells,

which will become the hypothalamus/pars intercerebralis

(Couly & Le Douarin 1990, Eagleson & Harris 1990, De

Velasco et al. 2004). At the time when the fate map of the

neuroendocrine system and other structures associated with

the brain is established, Shh is expressed near themidline of the

vertebrate neuroectoderm and is required to promote the

expression of determinants of hypothalamus and pituitary

fate (Fig. 5A; Rosenfeld et al. 2000, Herzog et al. 2003,

Roessler et al. 2003, Sbrogna et al. 2003). At a corresponding
Figure 5 Molecular determinants of embryonic neuro
and (C)) and Drosophila ((B) and (D)). All panels sho
embryos (anterior to the left, dorsal up). ((A) and (B)) P
the anterior domain of the neural plate. The anlage o
the eye field; the anlage of the pituitary (anterior lob
hypothalamus. In Drosophila, the anlage of the pars
midline of the head neuroectoderm, anteriorly adjac
cardiaca and stomatogastric nervous system (SNS) ma
stage vertebrate embryo (C), hypothalamus and anteri
primordium of the anterior pituitary, called Rathke’s po
and comes into contact with the primordium of the h
corresponding stage (D), the primordium of the SNS fo
foregut. Precursors of the corpora cardiaca are assoc
pattern of relevant signaling pathways and transcript
system specification is indicated.
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early stage of development, Drosophila Hh plays no role yet in

specifying the anlagen of the PI/PL or the neuroendocrine

glands. However, Dpp (the Drosophila BMP2/4 homolog) is

expressed in the dorsal midline and is involved in delineating

the fate map of the brain, including the PI/PL (Fig. 5B;

B De Velasco, T Erclik, D Shy, J Sclafani, HD Lipshitz,

RR McInnes & V Hartenstein (unpublished observations)).

At a later stage when the morphogenesis of the

neuroendocrine system is under way, precursors of the

pituitary/CC become closely associated with the primor-

dium of the foregut. During this stage, Shh/Hh is expressed

posteriorly adjacent to the CC/Rathke’s pouch in the

primordium of the foregut/oral epithelium in both

vertebrates and Drosophila (Fig. 5C and D). At the same

stage, expression of BMP2/4 is initiated in the mesenchyme
endocrine system development in vertebrate ((A)
w schematic lateral views of anterior part of
ostgastrula stage embryos. The eye field forms in
f the hypothalamus represents the medial part of
e) is located anteriorly adjacent to the
intercerebralis/pars lateralis is located near the
ent to the eye field. The anlagen of the corpora
p anterior to the head neuroectoderm. In the later
or pituitary are seen in their primordial state. The
uch, invaginates from the roof of the stomodeum
ypothalamus. In a Drosophila embryo of a
rms three invaginating placodes in the roof of the
iated with the SNS primordium. The expression
ion factors (boxed) involved in neuroendocrine
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surrounding the base of Rathke’s pouch (Fig. 5C). Similarly,

in Drosophila, Dpp appears in the mesoderm flanking foregut

primordium, CC and SNS (Fig. 5D). A third signaling

pathway active in pituitary development is the FGF pathway.

FGF8 and FGF3 are secreted from the hypothalamus

primordium in vertebrates (Fig. 5C; Ericson et al. 1998,

Dasen & Rosenfeld 2001, Burgess et al. 2002, Herzog et al.

2003). The expression of FGF homologs in the Drosophila

head has not yet been analyzed; however, the FGFreceptor

homolog heartless (htl) is expressed in the head mesoderm

anteriorly adjacent to the CC/SNS primordium, indicating a

role of FGF signaling in the morphogenesis of these

structures (De Velasco et al. 2004). In vertebrates, the

ventral-to-dorsal BMP gradient and dorsal-to-ventral FGF8

gradients control the differentiation of pituitary cell types.

Shh is required in the proliferation and differentiation of the

pituitary primordium (Treier et al. 2001). The role of these

signaling pathways in Drosophila has so far not been defined

as clearly. The CC is still present in dpp and hh or htl mutant

embryos, although it exhibits abnormalities in shape and

location (De Velasco et al. 2004). One can hope that the use

of additional markers for subsets of CC cell types will further

elucidate the role of the Hh- and Dpp-signaling pathways in

neuroendocrine development.
Similarities in transcriptional regulators controlling
neuroendocrine cell fate

Shared regulatory genes switched on by the signaling pathways

mentioned in the preceding section add to the overall similarity

between neuroendocrine development in vertebrates and flies.

One example is the expression pattern of genes of the sine

oculis/six group. In Drosophila, sine oculis (so) appears in a fairly

restricted manner in the eye field, the stomatogastric anlage,

and the anterior lip of the ventral furrow that gives rise to the

CC (Cheyette et al. 1994, Chang et al. 2001, De Velasco et al.

2004, B De Velasco, T Erclik, D Shy, J Sclafani, HD Lipshitz,

RR McInnes & V Hartenstein (unpublished observations)

Fig. 5B). Another gene of the same family, optix, the ortholog

of vertebrate six3/6, is expressed in an anterior unpaired

domain close to the SNS and PI anlage (Seimiya & Gehring

2000). In the early vertebrate embryo, six3/6 is specifically

expressed in the eye field and the anlage of the pituitary (Jean et

al. 1999, Ghanbari et al. 2001, Fig. 5A); six1/2, orthologs of

Drosophila sine oculis, are expressed in sensory placodes of the

vertebrate head, although no pituitary expression has so far

been reported. Thus, in both Drosophila and vertebrates, a sine

oculis/six gene plays an early and essential role in the

specification of the CC and pituitary respectively. In

Drosophila, both CC and SNS are absent in so mutants; in

vertebrate loss of six3/6 causes severe reduction and poster-

iorization of the forebrain region (Lagutin et al. 2003).

Other transcriptional regulators that are expressed during

development of the hypothalamus of vertebrates (Fig. 5A and

C) include Rx (Mathers et al. 1997, Deschet et al. 1999), the

paired-box genes pax6 (Kioussi et al. 1999) and Nkx2.1/2
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(Takuma et al. 1998), the PAS-bHLHgene sim1 (Michaud et al.

1998), and the orphan nuclear receptor Tlx (Monaghan et al.

1995, Hollemann et al. 1998). Homologs of all of these

transcription factors also appear in or adjacent to the anlage of

theDrosophilaPI/PL (Fig. 5D):Rx is expressed posterior to the

PL placode (Eggert et al. 1998, Fig. 4H); the Nkx2.1/2

homolog vnd (Nirenberg et al. 1995) appears laterally adjacent

to the PI placode (BDeVelasco,TErclik,D Shy, J Sclafani,HD

Lipshitz, RR McInnes & V Hartenstein (unpublished

observations)); the Sim1 homolog sim and the Tlx homolog

tailless (tll) are both present in the PI placode (B De Velasco,

T Erclik, D Shy, J Sclafani, HD Lipshitz, RR McInnes &

VHartenstein (unpublished observations)). Loss of tll function

results in the absence of the PI; the role of the other

transcription factors in PI development awaits further study.

Members of the LIM family (Lhx 3, Pit-1, and Prop-1) of

transcription factors play an early and essential role in the

vertebrate pituitary (Ericson et al. 1998, Dasen & Rosenfeld

2001, Burgess et al. 2002). Drosophila lim3 is expressed at a later

stage in part of the SNS primordium, but not the CC

primordium (Thor et al. 1999, De Velasco et al. 2004). No

structural phenotype associated with the SNS or CC has been

noted in lim3 mutants. Two additional factors, Glass (Gl) and

Giant (Gt), are centrally involved in Drosophila CC develop-

ment, since loss of either of them results in the absence of this

structure (De Velasco et al. 2004). Vertebrate counterparts with

similar function have so far not been described.

In conclusion, there is evidence for a number of conserved

properties in the way the progenitors of the neuroendocrine

system in vertebrate and Drosophila embryos are spatially laid

out, and employ cassettes of signaling pathways and fate

determinants. This suggests that fundamental elements of a

primordial ‘neuroendocrine system’ were already present in

the Bilaterian ancestor. Among such elements could have been

populations of neurosecretory neurons fromwhich the central

neuroendocrine compartments of extant taxa (e.g. vertebrate

hypothalamus, insect PI) evolved. Current ideas on pituitary

evolution (reviewed in Gorbman 1995) are also compatible

with the notion of a primitive neuroendocrine system in the

bilaterian ancestor. Thus, sensory structures that may

constitute homologs of the vertebrate pituitary exist in lower

deuterostomes (cephalochordates, urochordates, and hemi-

chordates). These data support the idea, discussed in the

beginning section of this review, that the pituitary and

comparable invertebrate endocrine glands originated early in

bilaterian evolution as a chemosensory structure involved in

reproductive behavior, feeding, and control of fundamental

metabolic functions. In later stages of evolution, this ‘ancestral

pituitary forerunner’ was internalized and placed under the

control of NSCs located in the CNS. It is possible that this

‘centralization’ of the ancestral pituitary occurred in several

phyla independently. To shed light on this issue, we can eagerly

await more molecular comparisons between the neuroendo-

crine systems of ‘model systems’, such as Drosophila, mouse,

and zebrafish, as well as comparative analyses of
www.endocrinology-journals.org
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neuroendocrine development in the multitude of invertebrate

taxa about which fairly little is known at present.
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