A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/78840

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications


http://wrap.warwick.ac.uk/78824
mailto:wrap@warwick.ac.uk

' FUZZY TOPOLOGICAL SPACES
by

BRUCE HUTTON

A thesis submitted for the

dégr‘ee of Ph.D.,

Mathematics Institute,

~University of Warwick

July 1976, |

[fe]

-



FUZzZYy TOPOLOGICAL ‘SPACES :

i;‘ "INTRODUCTION_j”__‘ |

2. NORMALITY IN FUZZY TOPOLOGICAL SPACES.

3. UNIFORMITIES ON FUZZY.TOPOLOGICALiSPACES, PART 1.

e PRObUCTSOF_FUZZY TO?dLoGIcAL SPACES |

5. SEPARATION AXioms IN FUZZY roPdLoaiCAL SPACES (Version 2).
§;  | INIFORMITIES ON FUZZY_TOPOLOGICAL.SPACES, PART 1.

7. - FUTURE DEVELOPMENTS

e’
R

e
i
Tl



- ACKNOWL EDGEMENTS

I would like to take this opportunity to thank all my
teachers at the University of Auckland for all they have:
taught me. Among others: Lynne Gilmo're, Paul Hafrer,

Ganesh Dixit, and Bruce Calvert.

I would like to thank Jim Eells for looking after me -
at the University of Warwick, and my supervisor, David Elworthy,
for always listening to me in spite of his dislike of general

topology.

Finally I would like to thank Ivan Reilly, both for
.~ introducing me to Mathematics research, and for suggesting

fuzzy topological spaces as a research topic.

Thié research was supported, for the main part, by an
1851 Science Exhibition Scholarship, with par‘ti_al sqppopt from
a New Zealand Postgraduate scholarship. Hence I wish to thank
both the Royal Commission- of the Exhibition of 1851, and the

New Zealand University Grants Committee. ‘



ABSTRACT

(1) We define normality for fuzzy topolog_fcal spaces, define

a fuzzy unit interval, and prove a Urysohh'type lemma. -

(2) We define uh’ifor*knities on fuzzy lattices, and characterise

uniformizability in terms of complete regularity.

() We define the product of a collection of fuzzy topological |
spaces. We define compactness and connectedness, and
show that the product is compact (connected) iff each

factor space is.

(4) We‘place'nor‘mality and complete regularity within a coherent
| hierarchy of separation and regularity axioms. We prove
the usual implications, and the usual theorems about

"compactness and products.

(5) We give alternative definitions of uniformities and
pseudometrics, and show a compact R1 | space has a

unigue uniformity.



1. INTRODUCTION



1. History

Over ten years aga, Lotfi Zadeh wrote a pape.r on "‘fuzzy.
sets" [ 16 1. The basic idea was to rigourdusly,introduce
sets to represent "ill defined" concepts such as "the set of
\/ery large poéitive integers." This was done by'auowing pc-)ints‘
to have other degrees of inclusion besides "in" and "not in," .
eg: maybe 10 is % m the sét of very large vpositive integers,
100 is ¥ in, and 1,000,000 9/10 in. This gave the

idea of a fuzzy set on X as a map A: X - L, where

L is elements of L represent the "degree of membership"

of a point in the set A. L was first assumed to be the

unit interwval, and. then a comblete, completely distributive
lattive with order reversing involution ‘. Since then ,' thé
concept of fuzziness has produced over 500 papers, of which
about twenty or so have been on fuzzy topol'ogical spaces

(five of which are mine). The most comprehensive bibliography

so far produced is one by B.R. Gaines and L.J. Kohout [ 17 1].

2. Fuzzy Topology

The concept of fuzzy topological spaces was first introduced

by Chang L1 ],‘ and then later developed by Goguen [ 2],

Lowen [ 4,5,6 J,Mesequer and Sols [ 7 ], warren [ 8,9,10 ],
Wong L 11,1v2,13,14,15']and myself, Theih papers develop the
concept of fuzzy topology; they also déyelop the concepts of
compacthess, products, and uniformities , but in a very different
rﬁanner from mine. 1 have ‘always demanded that fuzzy topology
| should be a generalization of ordinary topology as done oh the

lattice of subsets of a set. The definitions of products and
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uniformities so faf* given have failed‘to do this. The definition of
compactness so far given does not seem to satisfy the intuiﬁion
upon which compactness is usually based, and is unatle to prove '

alot of the standard results. There have also been some

"applications" of fuzzy topologies.

3. The development of this thesis

This thesis is a collection of five papers written by
myself between November 1973 and June 1976. The first
paper developed the concept of normality and the fuzzy unit interval
- The second paper developed the concept of uniformities, and in '
the process defines cbmplete regularity. However, there was
one major gap. [ could not prove thaf compactnéss implied a
unique uniformity. This was because I had the wrong definition .
of corﬁpactness, and the wrong definition of a product space (I '
still had the "right" definition of a uniformity, though, since it
was not defined .‘m terms of products). Thus I produced another
paper orlm products and compactness which brought me closer to
proving compactness implies a unigue uniformity. 1 finally
- managed to show uniqueness. In the meantime, between writing
the first paper on uniforfnitieS, and the paper on products, [ had
produced a paper on separation and regularity axioms. This paper
placed 'nor‘mality and complete regularity in a coherent‘hierarchy of
regularity axioms. However,' there were several faults. I had
- the wrong definitions fof products and compactness, hence
limiting the theorems I could ;Sr‘ove. I had the Wr‘ong definition
oF. 'TO ‘to allow development of ‘compactification tAheory in the futur
Also, at that stage I was ohly just déveloping my "pointless"

stance. Hence I have rewritten this paper using the new definitions

of T _, compactness, and products.

O,



Producing this:thesis in parts has had its faults. ‘Deﬂnitions
have varied slightly from paper to paper (eg: the fuzzy unit |
interval) depending upon what seeméd more convenient at
the time. Notation has also varied slightly (eg: interchanging
‘A and N, V  and U caused no problems until pf‘oducts
occurred,' but more rigourous conventions had- to be ciev'eloped
from then on. .Allso, the "'ihvérse" of a uniformity was renamed
the "reflection’ later on.). For datails , see Appendix,

" Finally, I would like to mention the help I have had in
prbducing thesek papers., I was introduced to papers of Chang
alnd Goguen by Ivan Reilly, who suggested I may be able to
produce something _6n unif*‘o;ﬂmities. As a consequence, I have
made the paper on separation axiorﬁs a joint paper, .as a |
sigh of apbreciation, in spite of the fact that he took no pa?*t in
the research. Also, I woLxld' like to mention‘the fact that my

co~student Ralph Fox suggested that the property
DCU)Y = V' iff D(V) § U’ for
elements of a (non-fuzzy) uniformity may be of some use.

It certainiy was.
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f2. NORMALITY IN FUZZY TOPOLOGICAL SPACES



1. Introduction

In this paper we extend the notion of normality in topological spaces
to fuzzy topological spaces, as introduced in [1].

Normality is one of the few separation axioms which can be defined

purely in terms of the properties of the open and closed sets® (iLe. with

" no mention of points). We characterise normality in terms of a 'Urysohn’

type lemma, and in the process construct a fuzzy topological space which

plays the important role in fuzzy topological spaces that the unit interval

plays in ordinary toﬁological spaces.

Preliminaries

Suppose we consider a set X. If we identify a subset A of X

with its characteristic function Xy X > {0,1}, then we may consider

the value of A (i.e.‘ Xy) at @ point x in X as the degree to which

“x. is a nember of A. When we replace {0,1} by a more general lattice

"we obtain what is called a fuzzy set. More precisely: let (L, =, ")
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be a completely distributive lattice with order reveréing involution .” ,
thén an L-fuziy set on X is amap A : X~ L. -Allowing a more general
~ lattice than {0,1} allows us more degrees of membership in a set than
' is a member' and 'is not a member'. The mosf important example may be
when L is the colleCtionAof subsets of a set with a probability space
structure. |

Throughout this paperkwe shall consider an arbitrary but fixed lattice

(L, =, *) of the above type. We define the union, intersection and

complement of fuzzy sets as follows:

UADC) = VA ) X €X.
(A () = AA () X €X.
A" (x) =

AX)” x € X.

Wé definé a fuzzy topological space és a pair (X,1) whéré X is a
set and T is a collection of L-fuzzy sets closedvunder arbitrary union
aﬁd finite intersection. A set is called open if it is in t, and closed
if its complement is in t. If (X,t,) and (Y,TZ)‘ are fuzzy topological
spaces, then amap £ : X = Y_ is said to be continuous if for every T,
| open set U, f£-l(U) € t,» where f‘lcU)(x) = U(f(x))for x € X. The

interior and closure of fuzzy sets is defined in the obvious way (see

Chgng [1Dh.
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35, Normality and the fuzzy unit interval

Definition 1

A fuzzy topological space is normal if for every closed set K and
open set U such that K € U, there exists a set V such that
KcVv0 cVcu. |

It turns out that the fuzzy topological space we need to prove the

equivalent of Urysohn's lemma is the following:

Definition 2

The fuzzy unit interval [0,1](L) is the set of all monotonic decreasing

maps A : R+ L satisfying:

[}

(1) x(t) =1 for t <0, t €eR

(2) ACt)

1]

0 for t>1,te€ R

after the identification of A : R » L and ¥ : R+1L if for every

t € R A(t-) = u(t-) and A(t+) = u(t+) (where A(t~) = inf A (s) = 1lim A(s)
- s<t » stt

etc.).

We may define a partial ordering on [o,1]() by A <p if for every:
t € R A(t-) < u(t-) and A(t+) = u(t+). We may embed the unit interval
in the fuzzy unit interval by identifying r ¢ [0,11 with themap R : R+ 1L
- where R(t) =1 for t<r and R(t) =0 for t>r.
We define a fuzzy topology on [0,1](L)  by taking as a sub~base

{Lt’RtIt € R} where we define
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L) = A(t-)"
Rt(x) = Xx(t+)

This topology is called the usual topology for [0,1](L);
‘{Ltlﬁ € R} and.'{RtIt'é R}  are called the leftvand right hand
vtopology respectively. | :

Note that these really are topologies and that [6;1](L) and its

topology reduces to [0,1] and its usual topology for L = {0,1}.

Theorem 1. (Urysohn's lemma)

A fuzzy'topological space  (X,t) is normal if and only if for'eVery
closed set K and open set U such that K C U, there exists a continuous

function f : X » [0,1](L) such that for every x € X |

A

K(x) < £(x)(1-) = £(x)(0+) < U(x).

Proof

( <= ) Since

1A

K(x) < £(x) (1-) = £(x)(0+) = U(x)
we have that for any t € (0,1)
K S £(x) (84) S E(X)(E) S U).
Now £1(L7)(x) = £()(t-) and £RO) () = £(x)(t+). Since £ is
continuous we have f"l(Lg) is closed and f‘l(Rt) | |

is open (see [1]). Hence

-l Yy -1 -
K £IR) S £ U,
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that is (X,7) 1is normal.

(=) Conversely;

construct '{Vrlr € (0,1)} sothat KSV CU and r < s implies

V; E_Vg (see for example Pervin). - Define fX)(t) = Vt(x)‘ -Cleérly

K(x) < £(x)(1-) = £(x)(0+) = U(x).

. _1 » _ ) - | .
Now f (Rt) = U-(Vr) = U Vg is open
: >t >t
and f‘I(L;:) = NE)=n V_ is closed.
‘ T
: <t <t °

Hence f 1is continuous.
We note that perfect normality also has a natural generalisation to fﬁzzy

topological spaces.

Definition 3

A fuzzy topological space is perfectly normal if for every closed set
K and open set U ~such that K c U, there exists a continuous function

£ : X+ [0,11(L) such that for every x in X
K(x) = f(x)(1-) = £{x)(0+) = U(x).

Theorem 2

" A fuzzy topological space is perfectly normal if and only if it is
normal and every closed set is a countable intersection of open sets.

" The proof is a trivial consequence of Theorem 1 and a generalisation

of the usual topological proof.
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We now describe some of the properties of the fuzzy unit interval.

In particular we show that under certain lattice conditions the fuzzy

topology of the fuzzy unit interval is like the topology of the ordinary

unit interval.

Theorem 3
Let (L, <, ”) be a completely distributive lattice with orthocomplement.
Then there exists a natural 1-1 correspondence between the dpen sets in the

usual tdpology for [0,1] and the open sets in the fuzzy topology for

[0,1](L) which preserves arbitrary unions and finite intersections.

Proof

Each open set in_ [0,1] ¢an be written uniquely as a union of nonempty

disjoint open intérvals' Ui(ai,bi), (allowing a, ¢ [0,1] U {-=} and

b, € [0,1] U {+=} and interpreting as (~«b) as [0,b) etc). Define a

map ¢ from the topology of [0,1] to the topology of [0,1](L) by

¢(U; (a3, () = v; (A (a;+) A A(b3=)7).
¢ 1is obviously well defined.
¢ is 1-1.
~ If R is an element of [0,1](L) representing r € [0,1], then

¢$(U)(R) =1 if r ¢ U and ¢(UIR) =0 if r £ U. But U # V implies

there exists r € [0,1]>; which is in one of U or 'V but not the other,

‘and thus o (U)(R) # 6(V)(R). Hence ¢(U) # ¢ (V).
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(3) 6(U N V) = $C0) N 6(V).

- U(a.,b.) and V = U(c.,d.). ’ - . -
Let U= U(ag,by) end V= Ule,,d) Then UMYV =U; (T(a,b) 0 (egd)

and each of (ai,bi) N (cj,dj) is disjoint. - Hence .

]

[o@) N oIM) = v; sTr(a;) A A(by=)" A Mey) A A(d;-)7]

vi’j[k(ai v ;j+) A x(by A dj-)‘]

s UNV) ().

Since'if ‘(ai’bi) n (cj,dj) = ¢ . then bi«A dj ; a; Y cj and thus

A(a, Vc.+) A A, Ad.,-)" = 0. i =
(a1 cJ+) ( ; j ) | OtﬁerW1se (ai,bi) n (cj,dj) (aivcj’binj)'

(4) ¢(ViUi) =U; ¢(Ui)-
 First1y in an orfhocomplemented distributive lattice L, if

@, B,y €L and a=8 2y then |
(a A SJ) V (B A _Y,-)-= o A 'Y"

This is because

(@AB)V(BAY)=(VB)A (a v Y'Y A (BVBYA (B VYY)

oA (o Vy)Aay”

P

o AYyT.

Now let U = (a,b), V= (c,d). Then ,¢(U'U V) = ¢(U) U ¢(V). This is

trivially true if Unv=¢ or UCV, so without loss of generality

a<c<b<d, Let e besuch that ¢ <ec< b.  Then

il

[A(a¥) A A(6)7] v [A(er) A A(d-)"]
[A(a#) A A(e)7] v [A(e) A A(d-)"T

- A(a+) A A(d-)”

2 e e =

[4(0) U M1

v
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The other inequality 15 frivial.

Hence by simple properties'of the real line we obtain

n
ACr]

Ui)j= U?=l $(U;) for U, an open interval.

Noﬁ to prove the general case. Let .Ui' be any open set in [O,l].A.
Consider any open interval (a,b) in :UiUi,--and closed interval
[c,d] ¢ (a,b). By the compactness of [c,d],>we may find a Finite subc§vér
of open intervals, each contained‘iﬁ some Ui' By the result for finite
unions of intervals we have  ¢(c,d) S_Ui ¢(Ui). | Let ¢ converge down to
a, and d converge up to b. Cdmplete distributivity implies that
A(c+) A A(d-)” converges up to Af(a+) A A(b;)’ for A € '[O,IJ(L)..-,Henge
¢(a,b)_<§_'Ui ¢(Ui), and by the definition of ¢ -we have ¢(UUi) E_Ui ¢(Ui).

The opposite inclusion is trivial.

§ is onto.

The sef '{¢(a,b)l-a;b € [0,1] U {+»,-=}, a < b} férms a basis for the
open sets of [0,1](L),.and' {(a,b)|a,b € [0,1] U {+w,-m}lé < b} forms a
basis for the open sets of [0,1]. - Hence by‘ (4) {»U)|U open in [0,1]}
is the topology of [0,11(L). | |
Coiollarz 4

t

Let L be a completely distributive lattice with orthocomplement. |

‘Then any statement properly phrased purely in terms of open and closed sets

which is true for [0,1] is also true for [0,1](L)..

Corollagz 5

Let L be a completely distributive lattice with orthocomplement.
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Then [0,1](L) is perfectly normal. It is compact in the sense of - [1],
[2] and [4]. Is is also connected in the sense that if U. is a fuzzy

set which is both open and closed then U=¢ or U= fo,11().
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1. Introduction

In [3] we generalised normality to fuzzy topological
spaces as introduced in [1], and characterised it by a.sort of
Urysohn's lemma. In the process we constructed an interesting

fuzzy topological space, the fuzzy unit interval.

In‘fhis paper we generalise the notions of quasi-’
unifdrmities énd uniformities on tépologicalvspaces to fuzzy
topological spaces. We prove theorems corresponding to many of
the usual theorems. Inlparticular we show that every fuzzy
Aﬁopological space is qgasi—uniformizable. .The fuzzy‘unit interval
plays an essential part in a characterisation of uniformizability
in terms of a type of complete regularity. To achieve this we

construct a natural uniformity on the fuzzy unit interval

2. Preliminaries

Throughout this paper (L,<,”) will be a completely

' ' . . . . . . /
distributive lattice with order reversing involution
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An L-fuzzy set on a set X is any map A X } L ; We interpret L
as g set of trufh values, and A(x) as the degree of membership of
x in the fuzzy set A. When L is the lattice 10,1} theﬁ>the’
collectioﬂ 6f fuzzy sets corresponds to ﬁﬁe éharacteristic functions

" of ordinary sets.

We define the union, intersection and complement of

fuzzy sets as follows:. -

( Ui Ai ) (%) = Vi'Ai (xj for x €X
(N, A) () = A A () for  x €X
= AR’ - for  x €X

A% (x)

We define a fuzzy topological space as a paii (X,t) where t E_Lx

(all ﬁaps from X to L)- and T.iS closed under arbitrary unions and
finite intersections. A set is called open if it is in T, and
closedAif its complement is in 7. If (x,fl) “and (Y,rzj ére

fuzzy topological-spaces,vfhen amap f:X » Y ‘is‘said‘fo be continuous
" if for every v, open set U, £ 1(U) € 7y , where £ l1(U)(x) = U(£(x))
for x € X { The ihterior and closure of fuzzy sets are defined

in the obvious way(see [1]).

3. Quasi-Uniformities

.Consider a quasi-uniformity on X in the usual

topological sense.  An element D 1is a subset of X x Xj.
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X '{yleV"énd (x,y)€D} . It is

1)

We may défine D:2" » ZX by D(V)

i X
UD(VX) for V and VK 1nA2 g

obvious that V ¢ D(V) and D(UVX)

X

Conversely{'given D: 2% 52 satisfying V € D(V) and

D(UVX) = UD(VK).for.V and vy inlzx, we may dgfine D € X x X such
that D contains the diagomal Byb D = {(x,y) |y < D({x})}-. " Thus in
vdefining a quasi-uniformity for a fuzzy tdpology, we take 6ur basic
‘elements of the quasi-uniformity to be elements of the set Q of
maps D : LX+ LX which satisfy:» |

| (A1) v < D) for. Ve X |

e N,

(v  for v

(AZ) ‘D(UV)\) ‘ \

Before we define what we mean by a quasi-uniformity

we need some preliminary results.

Lemma 1

Suppose L is a completely distributive lattice and
o € L. Then there exists a set B C L such that sup B =a and
if A ¢ L satisfies sup A = o then for every B € B there exists

v € A such that B8 =y .

Proof

~ Consider all possible sets A C L such that sup A = a.

Indexvthese sets'{Ajlj € J} and index the elements in the sets by

C={a.. | ie€e1.}.
A {alJl j

g

i
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S
N

Y

“(yj | iem Ij} .

Conéider B = .‘ $Aj€J »
‘Then - Sup B= ViGHIj(AjGJai(j)j)
) AjéJ(Vicj)éIj"‘icj)‘j’v -
- Ajei o
= o
for k EvJ, - Thus for

A, chan s .
A;so JEJal(J)J < al(k)k

every B ¢ B there exists y € A such that B =y (for any k € J).
Lemma 2

Suppose L is a completely distributive lattice ahd
f:L » L satisfies
(a1l) o =< f(a) for a € L

(a2’) o =B implies f(a) < £(B) for «,B€L.
Then £* : L &'L defined by '

* = .
£*(a) A vy erf (1))
sup I' = o
is the greatest g : L - L which takes values less than or equal fo
£ and satisfies
(al) a =< g(a) for a €L

(a2)  glv;ey) = vzele;) for a.e L.

Also f*(a) = VBEBf(B) for B as in lemma 1.
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‘Proof

Clearly £* - satisfies (al) and (a2”). Also £*(a) S f(a)

for o €L .

Choose B as in.lemma 1. If ‘sup T = o then for

every B € B there exists <y €T such that B < B.

Hence VaeB £(8) = Vyﬂ—-f(Y) |
which implies £*(o) = Vo pf(8) . o )
Suppose V.a, = a . Then we may find B, such that

sup Bi =05 and .

£*(a;) = Vp g, £(8;)
. i
.50 Vi f* (al) = vi VBi EBif(Bi)

> f*(a) since sup v.B. = a .
] o 1 1
That £* is the greatest suc:h g is obhvious..

Definition 1

Let £, : L>Land £ : L->L satisfy (al) and

. 1 2
(a2) ( as in lemma 2)." Let g : L > L be defined by g(a) = £,(a) A £,(0)

(so g satisfies (al) and (a27)). Then we define f1 A f2 : L~>Lby

£, A £, = g*. (so f1 A fZ satisfies (al) and (a2)) .
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“'Lemma 3

) L » L satisfy (al)

. .Suppose ‘fi :L-Land £

and (a2) .. .Then

(£ ‘A £) (g) = "le?#z =(§1(a1)v £,(2,)) -
‘Proof
(£, A 5) | (a) | _ Qupl“ i 0L(.vYﬂ?(}El(wr) A £,(v) ) |
= ;\uplf _ Q(AASI‘([VYGAfl(Y)] v [VYﬁAfZ(Y)]))
= A (A O (f,VY) VE
' supr.= ) AS_I‘ : 1(761) 2 %}JA)))
= A (£  f (@),
alvaz=u' lcal)'v Z(uz))

Note that LX is a completely distributive lattice
if L is. Hence lemmas 1,2, and 3 may be apﬁlied with L replaced
by Lx . Thus (al) and (a2) are now the conditions (Al) and(A2) .
For D : 11X+ and E : X > 1X we denote DAE.byDﬂE. We
‘say D c Eif D(V) € E(V) fOI“eVGI‘Y V€ LX. | ‘We define D o E by
composition of functions. | We are now in a position to define a

quasi-uniformity.

Definition 2

A (fuzzy) quasi-uniformity on a set X is a subset

D of Q (the set of all maps satisfying (Al) and (A2)) such that: -
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QL D#4¢
(Q2) D €D and DCE € Q implies E € D .
(Q3) D € D and E€D implies DAE € D. T

() D €D implies‘there exists E € D such that E o E € D.

Note that this definition agrees with the usual

definition for L ='{O;1}. ‘Note that (Q3) may be replaced by

(QS’)A D1 € D and D2 €D implies there exists D € D such
that D EaDI and D E.Dz . '
Also note that any_subset B of Q which satisfies (Q4)'generatés
é fuzzy quasi uniformity in the sense that the collection of all
D E‘Q which contain a finite intersection of elements of B is a
Quasi-uniformity. . Such a set B is called a sub-basis for the

quasi-uniformity generated. If B also satisfies (Q3”) then B is

called a basis.

Before we define the Fuzzy topology generated by a

quasi-uniformity, we state the following trivial proposition.

Proposition 4

Suppose a map i : L ~ L satisfies the interior.

axioms:
m i) = X
(12)  i(v) ¢ Vv Cfor VEL
(13) i@y = iV for VEL.

(14)  i(VW) = i(VNiw)  forv,W € L
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Then 1 = { V € LX ['i(V) =VV } is a fuzzy topology and i(V) = Int(V).

“'Definition 3

.Let.(X,D) be a‘quasi-uniformity,. Define Int: ﬂx-+ ﬁx

by Int(V) = U{ U € 1X | D(U) <V for some D €D} .

- Proposition 5

Int satisfies the interior axioms.

‘Proof

(I11) and (I2) are trivially satisfied.
(I3) is satisfied since
If U and V are . fuzzy sets and D € D is such that
D(U) €V, then we can'fihd E €D such that Eo EcD. So in
“particular E(E U) ¢ V. Thus E(U) € Int(V), which implies U ¢ Int(Int V)).
Hence Int(V) < Int(Int(V)), and since the other inclusion follows by
(12) we have Int(V) = Int(Int(V)). .

(14) follows by (Q3).

Definition 4

The fuzzy topology generated by D is the fuzzy topology
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* generated by Int.

Hénce in particular .we note that D(U) is a neighbourhood

of U in the topology generated by D.

Lemma 6

Let (X,t) be a fuzzy topological space. Suppose
D € Q and D (U) is a nelchbourhood of U for any fuzzy set U (i=1,2).

' Then (D n Dz)(U) is a nelohbourhood of U for any fuzzy set U.

Proof

By Lemmas 1,2 and 3
0, NDYWU) = U.(D, (U, :
| | (D, N1 D,) (V) 501U 0 D))
for some fuzzy sets Uj whose union is U.  But D;(U.) is a neighbourhood
of Uy (i=1,2) and hence Dl(Uj) n DZ(Uj) is a neighbourhood of U.. So
, | I -
there exists open sets W. such that U. € W. c
P 3 j =N —-Dl(Uj) N DZ(Uj).- Hence

W

i

U.W. is open and U c W < U. (D, (U.
W pe an cWe UJ(_ 1 ¢ J) n D,(U,)).
 Theorem 7

Every fuzzy topology is fuzzy quasi-uniformizable.

_ Proof

Let (X,t) be a fuzzy topological space. Let G be any

open set in T .
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Define D,(V) = X for V¢G
= G for VcG

SoD.oD.=D.  Thus by Proposition 6 '{'DG | G €t} forms a

¢°% " ¢
. sub-base for a quasi-uniformity which generates the topology. -

We may define quasi-uniform continuity between

quasi-uniform spaces.

Definition 5

Let (X,0) and (Y,E) be quasi-uniform spaces. A map
f : XY is said to be quasi-uniformly continuous ifvfpr every

E € E , there exists a D € D such that D S_f_l(E). ' That is, for

Ve Lx, D(V) _c_f“lﬁ(f(V)) .

Proposition 8

Every .quasi-uniformly continuous function is continuous

in the induced fuzzy topologies.

Proof

Let £ : XY be quasi-uniformly continuous.
Consider an open set V in the fuzzy topology generated by E.

So V=U{U]| E(U ¢V for some E € E}.
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If E(U) C V then there exists D € D such that

oty ¢ £ sty c £ lEwy < £l ref[1]).

So - f~1(U) S_Int‘f_l(V), and hence:

ut £y | EQU) <V for some E € E } ¢ Int(£ (W) .
1 o -1 ‘ -1 o

But £ " (U UX) =U £ (UX) and hence £ (V) ¢ Int(f T(V)) .

That is f_l(V) is open, which is the definition of continuity.

We now prove a théorem corresponding to thé
characterisation of quasi-pseudo metrizability in term§ of quasi-
uniformities. We‘effe;tivély define quasi-pseudo metrizablity in
terms of a special sort of base for a quasi-uniformity. There ié
a.way.of‘converting this quasi-uhifdrmity into a map satisfying the
triangle inequalitylfrom X x X to a monoid, but this is no more'than
a notational change. The description in terms of this special base
‘appears to be more intuitively pleasing at the moment and so we

'leave it like this.

Theorem 9 (Quasi-pseudo metrization].

Let (X,D).be a quasi-uniformity. Then U has a base

'{Dr | r € R, r >0} such that Do D, & D . for- r and s po;itive

reals if and only if D has a countable base.

~Proof

(=) is trivial

(=) conversely;
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suppose D has a countable base { Un[ n = 1,2,3,,,;}.
- . ) C .
We may rechoose {Un} such that. Un o.U o Un €U _; (see for example

Pervin [4]).

" Define ¢, €D for e >0 by = U if 2 <o < 2—(n41)>

and ¢_(V) =X if 1se (sothat ¢_o¢_o ¢ Eﬁ¢2é')'l

Define D
_ £

N
[
o
s
.
.
1)
©
o)

D€ is'obviously in Q since 9 is.
Now (1)

(2)

. D t iV i o
o C rivially

C. i :
D ¢ since

If k=1 ¢, trivi
: ¢elc 0 ¢€k ¢2€ trivially. Assume

o

that k > 1 and if 4 <k and € > o then ¢€1 o,,,o‘¢ E.¢2€ (where

€2
€, *eeot e£.= s)l. .Consider ¢€io,,vo ¢€k (where Eitenat gy = g).
Choose the largest j such that e, +Wvo+‘5j < %. ' Thus €j+2+--e+ek < ke
By 1pduct10n ¢€H ) ",o¢€. < ¢€
‘ 1 j
¢ < ¢
€541 €
. C
| Pein Ty = K
Hence .. 0,,,00. S 40909,
: 1 k
' C
< L%

~ Hence { Ds le>o } generates the same quasi-uniformity
as '{¢é} and hence asi{Uh} . The family ‘{DE} e > 6 } obviously

3 . C.
satisfy D, o D €D s
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4. " Uniformities

_Consider a uniformity in thé usual.topblogical sense.
e define D™ by (,y) € D71 if and only if (v,x) €D .
Equivalent stataments:~afe;
y el ((x})  if and only if x € D({y})
PR et if and oﬁly if "x-k D({y})
pHxDS ¥} if and only if D({yl < {x}*
ol cur . ifandonly if D < V- .

This suggests the following.

Definition 6

Let L be a completely distributive lattice with order

reversing involution - | Let £ : L » L satisfy (al) and(a2). Then

we define £1:L>L by £1(a) = infl8)f(s)sar).

Proposition 10

(1) £(o) S8 if and only if £1(8") <a” .

2) £ satisfies (al) and (a2)

1 -1
(3 (7)) " =f£

(4) £ g if and only if £yt
) (Fop) = g et

e

A
>
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"'Proof

(1) (=) is trivial
(=) holds since if £ (87 < a’
then £(a) = £(£7(87)") |
= E(viy| £ = 8D
=V{f(y) |£(v) = 8}

it

=8

(2) (al) is trivially satisfied.

(a2)is true since
vif-l(ai) CBe f—l(ai) < B:for all i .

= £(87) ¢ of foralli
-1 _
hence £ ltv.a) = V.fl(a.) .
| pog) =t Leg)

(3),(4) and (5) follow by a similar argument.

Proposition 11

o
(£, A£) - £ A

. Proof

Let 4 € L be such that sup A= o and if sup I' = o

then for every & € A there exists Y'E I' such that § =y (as in iemma 1).
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Then (f A £ ) (a)

A{s[(f A f )(s ) <q”

/\{BI/\(f (87) v £,(85)) = o |
B ‘ ‘ : .
A{B]&ﬁEA s HBl,BZ.Such tha.t.B1 A 3 = B and f (Bi) v f (3') < 5§}

oo

v (A{B|361,82 such that 31 A 32 = 8 and f (B ) = 5 R f2(65)< §°H

€A
= v (A{BlAszlf (B')<53nd £ (82) = 38)
€A
= v (f] JOR, £, (5))

GGA

= (f A fz,)(u) (by lemma 3)

Now if L is a completely disfributive iattice with order
reveréihg involution “,then so is L  . Hence for every D:L f'L in Q
we can define D—1 as in definition 6. Note that if D is a quasi-
uniformity on X then so is T {D ]DED} Also note that if

-1 - :
D€Q then (DnD'l) = DND 1, that is DND~ -1 is symmetric.
We are now able to define uniform spaces.

Definition 7.

A quasi-uniformity D 1s a uniformity if it also
satisfies |
(Q5) DED implies Dfl €D
or equivalently

(Q5”) D has a base of symmetric elements.
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We introduced the fuzzy unit interval in'[S]. It

" is defined as follows.

Definition 8

The fuzzy unit interval [0,1](L) is the set of all .

mondtonic decreaéing maps A : IR+ L for which

A(t) =1 for t <0

S AMt) =0 for t>0

 after the identification of X : IR+ Land u:R+ L if

A(t-) u (t-) for t € IR

and A(t+) u (t+) for t € IR

i

vsup A(s) etc).

(where  A(t+)
. : . s>t

We define a fuzzy topology on [0,1](L) as the topology

, genérated by the sub-base"{Lt,Rtl t € R}

where L, : [0,1](L) = L

t
and R, [0,1](L) ~ L
are defined by Lt(X) = OA(t)
Rt(X) = A(t+) .

The fuzzy fopo;ogy'{Rtlt € IR} 1is called the right hand topology.

We can construct a uniform structure on [0,17(L)

as.follows.
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‘Definition 9

We define B, ;vLX > LX‘be:

-

it

BE(U) Rt—é where t is the greatest's € IRsuch that U CL

n{r,_| Uc L }

Pfoposition'lz

(1) B, satisfies (Al) and(A2).

‘1___ . "‘ :
(2 B =N {LS+EIU SR}

(3) Bso 86'5‘488;6 :
.(so in particular BE ) Bé 5'8282
Proof -
’(1). (A1) is true since L7 € R
‘ S =~ s-g
(A2) is. true since
U, € L° = ¥»0 U < R
)\ - 'S)\. )\, — S}\—é’
= Y80 Uu, ¢ j
= V60 W, < R .
- A = TAs, -5
. A
. v c r-
= UUX - _LASX
= Bs(UUK) o S RAs - g
o
= UGB )

and the other inclusion is trivial.

it

2) B;I(U) n v[B_(v?) < U7}

n {Lt[BE(Lg) <yl

s .

g

a
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= N LtIRt;e Euf}
= ML, JUCR}

= Lt+e, where t is the smallest s such that U E.R; .

Bs(Rt—é) where t is the greatest s such that U E.Ls .

it

(3) B_(Bs(W)

- Rt—é-a

B_,s(U)-

Corollary 13
"The set {B€|a>0} is a basis for a quasi-uniformity.
which generates the right hand topology.

Proof

Every open set in the topology‘generdted by'{B }

is open in the usual right hand topology since it is a union of Setg

of the form BE(U)(=Rt for some t).

Copversely Rt is in the topology generated by:{Bs} »

) = Rt and U Lt+e = Rtf

since B (L
g t+e >0

Corollary 14

| . -1 S ' :
| | The set {Bé’Be [ >0 } is a.sub-basis for a
~ uniformity on [0,17(L). The topology generated by the uniformity

is the usual (fuzzy) topology.
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 This uniformity is called the usual uniformity |

for the usual fuzzy topology on_[O;l](L).

We are now in a position to characterise

uniformizability.

" Theorem 15

Let (X,D) be a uniform space and let D €D,
Supposé D(U) C V. Then there exists a uniformly continuous

function £ : X - [0,1](L). such that

CUx) = £(x)(-) = f(X) (0+) = V(x) for x € X .

Proof

Construct.fuzzy‘setsi{Arlr € R}

such that ;(1)-..A X forr<0

T
(2) A= 0 forr>1
(3) A =V
(4) A =U

- and stmetric elements'{D€| e > 0} of the uniformity»Such that
- for r € IR .
Ds(Ar) E-Ar-s *
Since D€ is symmetric.we have
D8 (Ar) S_Ar+€

Now define £ : X - [0,1](L) by £(x)(r) =,Arcx);
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Clearly f is well defined and satisfies
U(x) < £(x)(1-) = £(x)(0+) = V(x) for x € X
Hence we only need to show f is uniformly continuous. Clearly
f‘l(Rt) = UAg - and £l = n A
. , t s
- s>t s<t .
. -1 . . .
Hence D_(£ (L)) ¢ D (A, _g) for any §>0

S Atse
< UA
s>t _

"1 -
(B

s-28-¢

. . . lon v cses -1,
Letting & = %€ we havg D_ Eﬁf (BZe) . Slmlla?ly D_ cf l(Bzi) and 50

£ is uniformly continuous.

 “Corollary 16

. Let (X,D) be a uniform space and U be an open set’
in the fuzzy topology generated.by U. Then there eﬁists a collection

{WK} of sets such that .UWX = U and continuous functions fx:‘X - [0,11(L) -

such that

Wy (x) = fx(xlﬁl-) < fAcx)(0+)-s~U(x) for x € X .

- Proof

‘ Since. U is open then. U = U{W|D (W) c U}.

Apply the previous theorem.

Note

The condition that for any open.set U there
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exist a collection 0f<sets'{wx} and continuous functions as above
is equivalent to complete :egularity'for the topological case

(since'{wx} might as well be all singletons contained in U).

We use this as our definition of complete

-regularity for fuzzy topological spaces.

We -now show the converse to corollary 16

'istnm.
- Theorem 17

"Suppose_(X,r) is a completely regular fuzzy

‘topological space. Then (X,t) is uniformizable.

" "Proof

’The‘Set‘{ffl(B ) ffl(B_l)lf : X »[0,](1) is continuous and >0}

forms a sub-base for a uniformity D since
(£ (B)of (B)Cf (BM)
(2 £ (B ) = £ (B )

The uniformity induces the topology.slnce
(1) Any continuous functioﬁ £ X~ [0,1](L) is

unlformly continuous in (X, U) and 50 is continuous in the topology

. Uenerated by 0 and so the topology induced by D is coarser that 1 .

(2) However, suppose U is open in 1 . We may find {WX}

Such that UW, = U and 'fX : X » [0,1](L) such that
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: W)\ x) = fx(x)_(l-) c = f)\(x) (0+) . = UX) .

Hence in particular fil(B%) (Wx) < U and so Wx C Int(U) in the
topology genérated by D,, Thus U is open in the topology generated

by D‘.'

'
Ul
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1. Intr‘oduct'ion '

‘In this paper we cohtinue with the same philosophical
attitude deveioped in er‘ previous papers. That‘is:" we try
and develop "point}ess" definitions for properties and structures
“which depend purely upon the lattice structure.of the collection -
of fuzzy sets, ‘and not upon its‘decomposition into the form |
L_X' (where X 'is an ordinary set). We then try to extract -
the essence of the usual topological theorems, and generalise
their proofs. N

A definition of the product of a collection of fuzzy topoiogical
spaces has already appeared in the literature [3],[‘133‘." However |
this is a "pointed" definition, and hence does not fit within our
"pointless" framework. Hence we give a new "pointless" .
definition, which is in fact a category theoretic definition. We
prove various classical theorems. including the "Tychon:ov product
theorem." When proving this theorem, we use a stronger" definition
than the usual compactness definition [11] of "ever*y open cover of
the whole space has a finite subcover." We say that to be
compact, ever'y' open cover of any closed set must have a. finite
subcover. This has the advantage that in sorﬁe sense it agr‘ées ‘
more with the usual meaning of compactness, as defined by its _»
applications (for examplé in proving Hausdorf and compact implies
T4 ). We hope these new deﬁni_tions of products and éompactness
" will turn out to be much more useful than the old definitions in -

mimicking the usual theorems about uniformities.

2. Preliminaries

Throughout this paper a fuzzy lattice shall be a complete,

cormpletely distributive lattice (L, =, ) with order reversing

involution ~ . The elements of the lattice shall be called
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fuzzy sets. A fuzzy topology - T on L is a subset of L
closed under f'mite- infima, and arbitrary suprema. The elements
of T are called open sets, and their éomplements closed sets.
Fuzzy lattices form a category. The objects are fuzzy
lattices. The morphisms from L to” L are maps' from

1 2

L.2 to L1 which preserve A, V, and . If the nﬁorphiSm

. : ’ : |
is called f, then we call the map from L.2 to L_1 , T

- (since we want f to correspond to a map f: X - X ,

1. 2

v -1 o ' ' ‘
cand f to correspond to f 1: @(XQ’) - J)(X1) ). We can

also define a map f: I.1 - Lé by f@) = inf { b € L2: a = f—1(

This map preserves suprema, but may not preserve infima or
complements. -

If we have two fuzzy topological spéceé and a morphism

f:(L

g T " (L, T,) between them, then we say f is

continuous if u & T, ‘=> f_1(u) € T -

If we have a family‘o'.f morphism(s f\ L - L.>\ » Wwhere
‘ ,L}\ has a fopoiogy' T s then the topology induced on | .L_ ‘is
the top.ollogyv g.e'ner*ated by { ‘f>:-1 (u>\) : | A 6. A, uy € '_TX } .

It is the smallest topology making { F\ } continuous.

3. Products of fuzzy lattices

Definition 1  (Product of lattices).

SUPPOSG. { Ly ¢ X € A } is a family of fuzzy lattices.

Then we define L = ®>\ Ly » the product of { Ly :. X €A}

as follows.
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The elements of L are the subsets A of I X l_kn

(where L; = l_>\ - {01} ) which satisfy:
(P1) asb, be€A 33 a€&A (giving H'XL)': - the:
obvious partial ordering).

(P 2) If B)\ < L.;: » and .'H)\B)\ S A, then

b €A, whe‘re‘ b)\ = sup B>\ .

The ordering on L is the ordering of set inclusion.

We define the complement as follows:
If BEL, then B ={x: (Vy €EBY(IAE A)(kayA’)-};

. Proposition 1

L is a fuzzy lattice,

Proof

(1) L is obviously a complete laAt‘tiCe'with A equal to N,
and with V equal to U followed by closure under (P 2).4

(2) Complete distributivity of L follows from the fact that
if Bi’ is closed under (P 1) ard generates - Ai € L under

closure by (P 2), then UiBi generates viAi , and ﬂBi
gener*a’tes '/\iAi. Thus A A ( ViBi ) = vi‘( A A Bi )

is generated by A N (.Ui Bi-) = Ui (AN Bi .
Similar‘ly‘for the other case.

(3) Complement interchanges V and A since:

(a) (‘vi A ) { x: (Y y ev Ai)(ik € Ax, s yx') I

= { x: (Vy €U Ai)(m € AX"‘A = yx') }

Nlx (7 y € AXIX € AXXy = yx'? }

® (A AY = N R S I T VRS
yé/\A AEA A "yﬂnA*’{ i
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Now - {x: X, =Y yi):} is generated by U, {x: x, = yik,} so

(/\.A_)’ is generated by . 1 u U {x Xy < y'k’ }
P - YETA, AEA il |

_ | o sur 1 )
Uu n U, {x Xy ym} UA 7.

lyiéAi A 11
‘Hence (/\iAi)’ = ViAilb' )
(c) Now A" = A for A={x: x, S a} where X € A
and a G L" . Also elements of this form gererate all elements of L

A _
- ‘under a'r‘bitrary A and V. Hence A"'A=.A for any A € L.

Definition 2 (Projection maps)
Define fuzzy lattice morphisms 7T>\: L - Lk by

T, (y) = {x_é_!_: xk“S.y }. Thus frr)\(A‘)—V.{ xkz.xéA}.

Proposition 2

7y o+ L2y | is a product in the category theoretic
' A A JAEA _

sense.

Proof |

That the‘,_vk are lattice morphisms is obvious ( in fact .

we discovered what the definition of the complement should be

by assuming the ”X were lattice morphisms ).

‘Suppose f, : M = L, are lattice morphisms, then

. define f: M - L by

-1 . -1 -
fT(A) = V»{ AT (%) x € A }
This. is a lattice morphism, and makes the diagram-

£ = . commute.
/ ™ |

M |
f)\\!_k



50
" The morphism f is unique since |{ w;1(y) t X E A,y E Ly

generates L under arbitrary A , V .

Proposition 3

® L does not depend upon labelling or” brackétihg ( eg:

. == | ‘ b® = L ®
L ®L, =L, ®L, ,and (Ly®L,)®L = L ®L 8L ).

Proof

That the product. does not depend upon any labelling (or order)

is obvious.
That the product does not depend upon bracketing is obviot.is,

~ once one realises precisely what the procedure for taking suprema

is. The correspondence

®)\€A UA L?\ ( AEA L')\ ) @ (®)\€A ,LK ) is by
‘ 1 .2 1 )

being induced on subsets. nWe only need to realise that taking suprema
for elemsn!.:s‘ of )\ea UAZ- L)\ e a§ in (P 2) can be fa,c#ored into -

taking suprema in each component, and then taking suprerma over

the pairs.

Proposition 4

Suppose LA EOD(XA) where X/\ is an ordinary set.

Then ® Ly e:. P ( IL X, )+

Proof

The -isomor‘*phism &Ly YP( HA ><>\ ) is

A€®L)\

\ —*YU{,a:aGA}EﬁAX}\, orits_inverse‘



1

wJt

Y

B € II,X, » {a:acB, and a is_a”box”:,l’l}\ax’ ‘where

These maps are bijective inverses since the properties (P 1)
and (P 2) are precisely the properties to ensure that all "box"

 sets included in a subset of H)\ X)\ are listed in the corresponding

element of QX l__'l . |
“The fact that the maps are bijective and order preserving‘ is
sufficient to imply they preserve A and V . They preserve

the complemént since they preserve it for sets of the form

1

(aj .where a & ><>\ , and these sets generate the whole

,1T>\

lattice.

Proposition 5

Suppose Lk == M}\ where M)\ is a fgzzy lattig:e, and

><>\ is an ordinary set. Then ®)\ L)\ = @)\ M)\ )CHX?\) .

(ie: if L, = fuzzy sets of a set X, with respect to the fuzzy

" lattice 'MA then

®>\ I‘Tq = fuzzy sets of HX)\ with respect to the fuzzy

vlattice' ®>\M>\ ) .

This allows us to relate the work in this paper to our
previous papers, and other papers, in which fuzzy sets are

maps from a set X 'into a fuzzy lattice L.

- Proof

The proof is not dissimilar from the proof of the previous
proposition, and is omitted for the sake of brevity.

However; the isomorphism is the following:
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[AS]

. (,0 : HX)\ " ®>\ M)\ .corresponds to

X

RSN .A - | : | ’_ '._
£¢§‘HX<MX, Yo Tx €T X,y (% )%y € 0(x) }

Proposition 6 (Char‘acter*isatibn of pr'oducts)

'|_1 ® L2 is lattice isomorphic to the lattice of supremum

preserving maps ¢ : L.1 - L2 » Wwith order ¢ = § iff
(Ta €L )(e(a)s i)

The isomorphism is 68: A < ¢, Wwhere
o (3) = A{b :(a,b) €A’} for a#o0,and @(0)=0.

(So ’(‘DA(a) < b" @ (a, b)) € A" ) (Note: We rﬁust have

'vcomple ments on the lattices, since otherwise there is' no

| isomorphism. For example if L = 2 (X)U {11}, with the
usual partial ordering on - p(X), and with A =1 for A C X,
 Then L ® L has n2 minimal elements > 0, but there are
only‘ n minimal elements in the lattice of sup preserving maps

: L =L (where X has n elements).).

Proof

- The map (‘DA is obviously sup preserving, since
Vi, (3, ,0)€A") & (Va ,b) € A,
The map 6‘ is also obviously a bijection, since we may
recover A from A’ = {(a,b): p(a) = b’}. (This set is in
L, ® L, , since (V ij p(a) = b’) <= (o (V a)) s/\be )y

1 2

The map 0 is also order preserving. This is sufficient

to show that 'we have a lattice isomorphism.



Proposition 7

Consider the "reflection" isomorphism

L, ®L, = L,®L, ,defined by r(A)s= {(b,a) : @,b) € A}.

The correspondence between products and sup preserving maps
defined in the previous proposition induces a "reflection" map

between sup presérving maps "tp: L1 - L2 , and sup preserving

maps ¥ l_2 - L.1 by ¢ - (,Dr‘ where:

.‘ @P(b) —_ 'A{a:qaf_)sb,}‘.

'Proof

As in Proposition 10 of our paper on unlifor'mities.

" Note:

Propositions 5 and 6 6ffer‘a relationship between
products and uniformities, as defined in our previous paperﬂ We |
hope to develop this later. We do however feel that it is now
necessary to change the notation from Df-1 to D" in our
previous paper on uniformities, to avoid confusion with the
rﬁultiple use of "inverse" that now occurs. Thus this map " Pt

is precisely the same as the map '"inverse of an element of Q,"

defined in [ 5 ].

Definition 3 (Product topology )

Suppose (L, , Ty ) are fuzzy topological spaces. = The N
product fopology on ®>\ L_)\ is the topology induced by the
projection rﬁorphi_sms_ ‘n‘x .

Proposition 8

@ Ly 'with the product topology is a category theoretic
product in the category of fuzzy topological spaces (with

continuous maps as morphisms).



4, Compactness and Products

Definition 4 (Open covers and filters)

Suppose (L, T) is a fuzzy topological space.

(1) An open cover U of é fuzzy set K is a collection

U of open fuzzy sets such that K s VvV u..

(2) Suppose G is a subset of L closed under finite infima,
then an G - filter ¥ relative to a fuzzy set U is

a non-empty subset F of G, which satisfies:

I F < ' € 7,
€%, F sF,€am F

(F 1) F,

E he F € F A .6"}. 
(F»Q) F1€ ,F2 %Fi r'-‘2

(F3) FsuU = F¢ 7

(If @=L, we just say ¥ 1is a filter. If @ = closed sets,

we say < is a closed-filter, ‘etc. D).

3 An G- filter pair (%, W) is a pair of subsets
%, W clL, such that |

(FP1) FC @, and ¥ satisfies (F 1) and (F 2).
(FP 2 u'={U:UE€ul}lca and ' satisfies
(F 1)and (F 2).

(FPg3) If FE€F and UEU, then F §U.

(4) We partially order G- filters by inclusion, and

@ - filter pairs by inclusion for each component. Thus
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Zorn's Lemma impliels every G- filter relative to U |
(G- ﬁfter* pair r‘esp'.) is conta‘ined:in a maximal

G- filter relatiye' to U (@- filter pair resp.).

() A subset F& g is said to satisfy the F.I.P. relative

toafu;zy§et U if"' F1,...,F~‘n€"w’§ F1/:\‘."A Fr"ﬁ}’-u.‘

Thus every subset & of O which satisfies the F.I.P.
relative to U is contained in an G- filter relative

to U,

(6) The cluster set of a filter ¥ is A {F : F €%} .

Proposition 9 (Equivalent definitions of cofnpactness).

Suppose (L, T) 1is a fuzzy topological space. The

following are equivalent:

M »Every open cover ! of a closed set F has a

finite subcover.

(2)' Every collection of closed sets & satisfying the F.I1.P.

relative to an open set U has A F $U.

(3) Every closed~filter # relative to an open set U

satisfies A ¥ % U,

(4). Every maximal clbséd-—ﬁlter‘ F relative to an opeh_

set U satisfies A F § U.
(5) Every closed-filter pair (%, W) satisfies A F i”f vou,

(6) Every maximal closed-filter pair (%, Ul ) satisfies

ANF $ v,
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Proof

The equivalence of (1), (2), (3), (4) is similar to the
standard proof. The equivalence of (B8) and (6) is obvious.‘

The equivalence of (8) and (5) is proved as follows:
(3) 2 (5). Consider ¥ as a closed filter relative to u,

for each U € U. Thus A % $ U. Then consider the complement

of U relative to the complement of A &,

(5) % (8). Since %, {u }.) is a clbsed~ﬁ1ter* pair., -

Definition 5 (Compactness)-

We say (L, T) is compact if it satisfies any of the

equivalent' statements in the previous proposition.

Proposition 10

Suppose f: L - M is a continuous surjection (as a morphism

in the category of fuzzy topological spaces. That is: f s

1-1 as a map). ‘Suppose L is compact, then so is M.

Proof

Essentially the standard proof..

Lermma 11

Suppose (%, 4) is a maximal g ~filter pair. Suppose

,F1,...',Fn' € g, and F—'1 VF’QV"-VFn € F, then at

least one of - Fi € 7.
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-3

Proof

IF FEF, Uel, then FA(F v-~vs=n)‘=vi(:=/\::i)$u.
so for some i 'F‘/\ Fiff-U. It is not hard to show that there is

an i which works for all F and U. Hence we may generate

a larger filter ¥ by including Fi in the filter., But ¥ is

maximal. Hence 'Fi € F.

Lémma 12

| Suppose (F, W) is a maximal closed-fitter pair in
L = ®>\L>\. - Then A F = A 72 and VU1 =V 1_1b, where

b . . ; - .

F is the filter of sets in F of the form I‘IKFX, with each

F)\ closed, and U~ is the dual filter of sets in U of the

form (TI, U;\ )Y with each. U

) open (ie: the complement

of sets of the form II}\FK , ‘Fk qlcsed.).

Proof

Evefy closed set F is the infimum of a family of closed

sets which are the finite supremum F1 VeV Fn of sets of
the form W.A—AICKA) »wha.ére KX is a closed fuzzy sev’c in. L_)\.

By the previous lemma, if F € %, then one of the s € 7.

‘ b

Hence AF s A 7 < F. Taking all F € § gives A F =AF -
o b

By duality VU =V -,
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Theorem 13 (Tychonov product theorem)

®>\LX" is compact iﬁ?' LA _is compact for each X € A,

Proof

( =» ). Follows by Proposition 10, since LIRS L —>.L_>\ is
. continuous.

(&= ). We take the "maximal closed-~filter pair"

- characterisation of compactness.

Suppose (F, ¥) is a maximal closed-filter pair. Then
by Lemma 12, A F = A 3b, and V# =V up , where
b . ; | _—
F is the filter of sets in ¥ of the form HK F—')\, with each
F'>\ closed, and ub' 'is the dual filter of sets in 1 whose

complements are of the form H)\ o with each F)\ closed.

ar

H = .
ence a«)\ { [:)\ .

F € "wfb } is a closed-filter in L‘)\' '
~ . . . ‘ b s 7
Similarly, if we write each U € U in the form U = (I'IXU/\) s

' e . . .
then a-uk:{ Uy U € u } is a dual close;i—ﬁlter in L.

' b 4 D .
Morever since each F € & , U €l satisfy F $ U, we have
that VA € A ,. F—‘X* UX. (éee the definition of complement for

'a product space). Hence VA é_v A, (?A’ u'k) 'is a closed-filter pair.

Since each l")L‘ is compact, A ajk 3V uk. Hence, as before,
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ILCA Fy ) # (T, V ux)'.)’. But t_he.lefg hand side is just 059
A F, and the vr*ight is ‘just VU, Hence AF # vV, and

=1} ®>\ LX

is compact.

5. Connectedness and Products

Definition 6

. We say a fuzzy topological space (L, T) is disconnected
if there exists a fuzzy set # 0, 1 which is both open and closed.’
- (L, T) is said to be connected if it is not disconnected.

In [ 7, Lemma 17 ] we have proved the following:

Lemma 14

Suppose U s ®>\ L_>\ is open and . 0 # II)\AX < U. Suppose

moreover that 0 # B)'\ € L)\ ~is atomic-like with respect to

A)\, for A X (iet for any CC LX such that sup C = A)L’

then there exists C € C such that Bk < C ). Then the

for A #£ ko ‘has

largest box set V = U such that V>\ = B)\

\4 open.

A

o

Theorem 15

L= ®)\ L.)\ is connected iFf 'L_>\ 'is connected for each
AE AL

Proof

( > ) Suppose there exists A€ A, and U)\ € I_)\, A 0,1 ,

: o : -1 .
such that U is both open and closed. Then Z_Tk (U)\) is both . -

A
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‘open and closed. Hence L)\ disconnected for |
some X € A implies L is disconnected.
( € ) Suppose U % 0,1 is a set in L which is both

open and closed. Choose a maximal box set

0 £ TLA

<= U. Then AX # 1 for some )\o .
Choose BX # 0. atomic-like with respect to
N . " A

A>\ such that the largest box'set V 7 such that

V>\=,B)\ for )x#)\o satisfies \/X ;é‘ 1

(We can do this, since otherwise Ak =1 ).

o

Then V}\ is closed (since. V < U, . U closed

-]

implies VAP U), and V)\ is open, by the

(-]

lemma. Hence VLK is disconnected.‘ Hence

o

L. disconnected implies l_>L is disconnected for

some X € A,

6. Separation Axioms and Products.

In our paper on fuzzy separation axioms [ 7 ] we have

shown:

Theorem 16

L = ®>\ !_); satisfies any of the following separation/Regularity

axioms iff LA does for-each A € A3

RO 5 R1 , Regular, completely regular.

T

Tor Tq» Tps Tgo Tay -
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Following the intﬁoduction of the notion of fuzzy sets in
the classical paper of Zadeh [ 14], several papers have considered
the generafthedry of fuzzy topolo'gicél spaces, as introduced -
by Chang [ 11]. In our previoUs papers we have developed
‘the concepts of Normality and the fuzzy unit interval (4 ]’
mformltles and complete regularity [ 5] a system of regulamty
‘a><1oms [7 1, and ﬂnally we have developed new ( and we feel
more satisfactory ) deﬁmtlons of pr*oduct spaces and compactness
[6 ] which differ from those previously defined I3 3, [11] , L1371,
In this modified version ‘of [ 7] we place the regularity axioms
into what we believe is a coherent picture. The main differences
oetWeen this and our previous version are that we have now
modified the definition of TO (and hence of Ti for 1> 0)
(in pr*epa_ra’tion for a paper on compactifications) .'and we have
utilized our new definitions of compactness and products . to
‘enable us to prove better results. | |

For an explanation of terms and notation not ‘defined

h:er*e, see our paper on products [ 6 1, and also our other

papers L 4] and [ 5 1.

2. Preliminaries

"Throu'ghout this paper L is a fuzzy lattice, ie: L is
a complete, completely distributive lattice with order reversing

involution ‘, and T is a topology on L (ie: a subset of

L closed under arbitrary suprema and finite infima). We
shall frequently omit the word '"fuzzy" when talking about
fuzzy sets - (elements of  L). A  shall denote the closure of A,

and A°  the interior. This paper differs from its predecessor ['7;1 |
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in that all definitions shall be pointless definitions in the sense that

-they depend only upon the 1attice' structure of L, and not on

. X ‘ . .
-any decomposition of the form M where M is a fuzzy lattice,

and X is a set. They shall, as before, be gener*alisations of the

-standard topological definitions.

3. TO

Definition - ("Generates")

We say ‘4 € L generates V' € L if [ is the smallest
subset of L containing 4, and closed under arbitrary v

and A,

Proposition 1

The collection of fuzzy sets generated by‘ U is the

collection b‘F fuzzy sets of the form A

= v . A jeJ e u.
A ¥ jé\di ,Uij where {uij i€l,j 1}—_

Proof

By complete distributivity of L.

Definition: TO

(L, T) is*TO' if the open and closed sets generate L.

Equivalently, if every fuzzy set | A € L is written in the form
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A =V A U,. where U,  1is an open or closed .
' i j&d. ij : ij
_ _ i
set,
Notation -
- Let L_T = the collection of fuzzy sets generated by
'T = open sets '
Let L.o_ = the collection of fuzzy sets generated 'by
0 = closed sets.
Let ‘L.'_w_ = the collection of fuzzy sets generated by tUo

" the sets which are open or closed,

Proposition 2

Suppose - { ( Ly >

T, ) A € A} is a collection of fuzzy,

topological spaces.

[y

= - - - .‘ ‘ . e .
The.n L ®)\ L>\ is TO_ iff L)\ is TO for eaeh )\ A

‘ F’roof

(&) Suppose each l_>L is TO. le.en each element of 'Fhe

form 1r>\_1(A) for A € L>\ is generated'by sets of
the form 'nxq(K) where K _is an open or closed set

in Ly But the sets of the form m * (A) for A € Lys
X € A, generate all the dlements of L, which proves .

the result. .
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(=)  Suppose L is T,» te: fuzzy sets of the form '

-1 o p _ .
N (A) for A € (L)\ )_m_ geher‘ate L. Thus :

every fuzzy set K is a supremum of "box" sets

of the form 11 ‘U, where U, € (L

x a NN R

Consider in patticular the case whare K = 1r>\ (A)
for a given X € A, Then K = Vi Ui where

Ui)\ € (L.)\ )TC’," and»so A = .")\(K)é Viﬂ'(Ui) = Vi L}i)\ € (L)L)T.'O‘

He{nc»e (va » Ty is TO.

4. RO and T1 (Ref [ 2] for the standard topological definitions). -

T

Definitions: R.O s Ty

(L, T) Iis RO if every open set is a supremum of
closed sets.,

(!._,T) is T1 if RO and TO.

Proposition 3

(@) R is equivalent to: .

o

(1) Every fuzzy set in L__m is a supkemum of closed sets.
e (2 L_=L_=L__.

(b) 'T1 is equivalent to:
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(1) Every fuzzy set is a SupreQO of closed sets.

@ L. o= L = L.

Proof Trivial.

, Pr‘opositidn 4

- Proposition 5

(2) ®>'\|_>\ is R, & L, s R, for each .
(b) ®)\ |_>\ is T, < L, is T. for each \.

1 A 1

Proof

(@ ( €« ) As in Proposition 2, each element of 71')\_1(1) is
a supremum of closed sets, and { 7T>\-1(Tj : N €AY

generates the topolbgy, so the closed sets ,geherate

the open sets.

( =) Again, as in Proposition 2, each open set is the

supremum of "box'" sets of the form II U

ATA
where U)\ € (L_>\ )'L'Cl' . Agam, taklng projections

gives the result.

(b) follows from (a) and Propositioh 2.
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T._.
5. R1 and_ 5

Definition: R, , T

1 2

(L, T) is _b R, if every open set U can be written

in the form:

U = V A U = V U :
U S VAR ijé\Ji Uij where

the Uij are open sets. (L , T ) s T2 if F\?1 and T0 .

In lemma 1. of [ 571 we proved that for any A € L,

there exists ® C L such that sup B = A - and for any Cc L

such that sup C= A, we have ( VB € 8 )(E C € ¢)|(B s C).

We call such a set ® an atomic-like decomposition of A.

Lemma 6 ‘

If BC L =
c L _®)LL>\

is an atomic~like decomposition

of Il A, , then @& = { 'rrk(B)_: BEG® } is an atomic-like

AT A

decomposition of Ak A O.

Conversely, if ®, is an atomic-like decomposition of Ay

A

then I!X(B}\ = {,'HA Bk s BI\E (BX } is an atqmic—like

decompositioh of H)LAX 3
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Proof
The first part is true, since if CX‘ c L)\' satisfies
| sup C)\‘ = A)\ , then C satisfies su'p C = HAAK , where -

o °

C is the collgctlon of boxes ‘)\ CX_ such th;t CX e C}\ ,

and C>\=A>\ for K#Ao,

Hence, for each B € (B,fher-e isa C € C such that B s C,

which i}nplies T (B) = C)\ , as desired.
-} -]

A AT
Bxf% D } satisfies D

Now to prove the '"converse." Take B e®

Then D>\=su9{D§A>\: X

‘CcL satis.ﬁes.‘ sup C. = I[AX,- although: UA B)\ %? C for all C € C.

# Ay - Suppose .

Without loss of generality, C is a collection of bdx sets, and

so- for any C &€ C there exists a X such that B, % C)\

B . s . e . S n A .
.Tl.‘)en C)\ D>\ But the \coll ction D of box sets HAC)\ V)

such that CXS D>\ for some X is a set in ®)t LA ( since it

is closed under (P 1) and . (P 2) -~ the defining conrditions

AT

no confusion caused by our identifying H)\ C)\ with

for elements of ® L, in [6]). (Note: we hope there is

{ I'IK Ky : Ky = C, for each X € A} — ie by identifying a
" set with its collection of box sUbsets).

Hence sup C =< DA# .HA)\" a contradiction. . Thus «the-ré

is. C s C.
1sa‘ > such that anx v
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B = A i =
Also, of course, sup ﬂx 3\ HK u iff sup (B)\ A/\ .
This completes the proof.
Note: _
If {Am} is an atomic-like decomposition of U, and
{B } is a dual atomic-like decomposition of U ( ie: {Bn'}
n . . ,
is an afomic—like decomposition of U’ ) then the existence of
’ U=V U .=V A U
open sets Uij such th;t ! jé\di i ] j“'i 'Uij
is equivalent to saying that for each Am > BI;] there is an open
set V “such that A =V sV =8B The proof
mn ] : m mn mn ne
- of this is essentially trivial.
Proposition 7
) R1 is equivalent to:
- (1) . Every fuzzy set U in LTd‘ can be written in the form

=V = V. A, U : U
Yo=Y b Y i By, Uiy wnere the Uy
1 1

“are open.
@ The smallest fuzzy set in (L ® L )fo' bigger than
the diagonal A is closed.

A is the fuzzy set in L ® L which corresponds

to the sup preserving map A ;L o~ L, with
A(A) = A for A € L, under the_isdmor‘phism
6:L ®L <« { suppreserving maps ¢ : L —~ L ]

defined in [, Prop. 6 ]. That is:
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A" = {(A,B) : A,BcL,and A<B" }).

(o) T, is equivalent to:

(1)  Every fuzzy set can be weritten in the form given

above (in the definition of R1 ).
(2) @ The diagonal A is closed.

Proof -

- The equivalence ._of R1 ‘( T2) with‘ .(a) (1) (M () resp.)

is trivial. We shall only bother to prove the equivalence

of T2 with (b) (2), since the equi\)alence of R1

with (a) (1j

is merely a technical variation.

( =) We shall show A ’ is open. ' Consider A€ L.

A=V A U.=V A U

Then by T
hen by Ty A=Y N VTR N Yy

where Uij open. Now (Uij’ Uij’) represents an

open set. Moreover:

(A, AT = Vl_] (Uij' , Ui’j ) s Af . The second

"~ lnequality is by definition'of A’ . The first follows since:

V.. (U u’y = V.. (AN U, U )

ij > Tij7 Tij ij k ik ij
= V. (A AU Y
i( . Uij,( Ulj ))
= V. (A U _,ACAU. DY

11
~
- >
>
A Y
~



10
P73

Hence (A, A") = Int A" . But

A" =suwp { (A, A) :A_e L}. Hence A’ A,is open.

( <= ) Suppose A’ is open, and suppose A is a fuzzy
set. Then we can oblain an'atomic-like" decomposition' |

for A in the form A = ‘ViAi , and a dual

- "atomic~like" decomposition in the formm A = /\J_ Bj
(by Lemma 1 in [6]). '

By Lemma 6,

' {(Ai’ Bj') } is an"atomic-like" decomposition of

(A, A’). Since A’ is open, it is the supremum

of open "boxes," and since { (A Bj') 1 is atomic-
like, one of these open boxes must be bigger than

’ y < t"', . ’ < ’
(A Bj ). Hence (Ai ; Bj) (Uij d Fij) A

where. Uij. is open, and Fij is closed. So

A s < < @ . =V A = A
L .Uij Fij BJ Now A =V A Bj’

which proves the result.

Note:

We do not yet know whether there is a characterisation of .
‘ T2 in terms of '"uniqueness of limits" for filters. Indeed

we do not yet even have a definition of convergence for a filter.



Proposition 8

11

R

1

=>RO_,T =}T

Proof Trivial.

Proposition 9

L

Proof

® L. is R &= LX is R1 foreach.)\.,

is T '® L)\ is T2'Foreach AL

The second statement follows immediately from the first and

Propositibn 2. Hence we shall only prove the first,

(<= )

‘open sets., Hence L is R

Suppose each ‘L)\ is R1 . Thus any cpen set of the

form wk-1(u) where U is opeh in 'L)t can be

written in the desired form. But these sets generate all

1

Suppose U = "Xo _( UXO) where U)L € T

o °

Let ¢, =1{ A

N :i €11 be an atomic-like

Al

decomposition of 1 € L)\ . Then there exist i, € I

% Akj' . This is because Aif_ A)‘\i < A)\'

such that A j

Ai
for every i,j € 1 then V. A s ANAS
poovery 1)l Y S
which is a contradiction (we may assume that L, has
more than one element, since otherwise the pr‘_OPOSitiO”‘

: A
Ckéa)\ f.o_r_k;é o )

is trivial). Hence choose BA’
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»such that BK N ,

Suppose BX . is an element of an atomic-like

(-]

’

decomposition of U}\ , and Ck

] o

~is an element of a

\

o

dual atomic-like decomposition of U, . Then by

-Lemma 6 and its adjoining note, we may find an

open set V (without loss of generality -V is an

open box) such that

n,B, = Vv < V. o< [ nkck')’; ‘Then,

using the definition of complement in ‘[6] we have

t ¥V, s c/ A But sV =g/
#ha \/)\ N for some X € A. Ut. B)\ N C)\

is false for X # \_ (since =N #Ci) and hence

A A A A A A
(-] [} o Q ° [}
This is sufficient to prove that l__>\ is R1
(since BX’ CX are arbitrary).

Proposition 10

Suppose (L, T) is ,Tg , and suppose A is a fuzzy

" set in L. for which every open cover has a finite subcover.
(ie. A is "compact" in a rather weak sense). Then A

is a closed fuzzy set. (Compare with [ 6, section 4 ],)‘.

Proof

= v ‘U = AV U, . Then
Let A /\i .jeJi i i JeJi ij
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{ Uij . € Ji } is an open cover of A. Hence there is
a finite subcover { Ui' . Ui' } , so that
. . J1 Jn .
A £ U, VesvU, s U_ V...VU_ | The right
1_]1 IJI’\ 1.]1 ) I'Jn .

hand side is a closed set, which we shall call K_, say.
v . i

—

S s V E . . .
Thus A Ki ‘ jEJi Uij » Which implies
A SAK £ AV.U. = A. Hence
, ii 1§ ij _ }
A = AiKi is closed.

Proposition 11

Suppose (L, T) Iis T2. Suppose K = U, and

K, U’ are "compact" in the sense that every open cover has
a finite subcover. Then there exists a fuzzy set V

such that K = V° = V = U,

Proof

Write K=A VvV, U . = AV, U_ . Then for each i,
v i j ij i 0§ ij . |

K = 'VJ. Uijv <V, Ui' . Taking a finite subcover , we get
: j i v : .

is the union of the finite subcover. Then K = A Vi' =AYV, = u.

Hence {V/ } is a finite subcover of U’. Thus taking
i . .
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a finite A of {Vi ] dives us V such that K = V° <V < U,

6. Regular and TS '

Definition: R, T3

¢ L, T) is Regular (R) if every open set U is a supreQO :
of open sets whose closure is less than U.

(L, T) is 'l"8 if Regular and TO

Proposifion 12

Regular - = R,

3

T, = T
= T,

Proposition 13

L =Q, L is Regular <& each L is. regular.

AT A

L:@ . 5 . . ‘.
)\Lk is T8 <> each .L)‘,ls TS .

Proof '

The second statement obviously follows from the first. . Hence :

we only prove the first,



(&=
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Suppose each Lk

is regular. Every open set
in L is a supremukn of open "box" type sets of

the form 11 U)\ where VU)\ is an open set in Ly

and all but a finite number of the U)\ equal 1.

ite U, = .V '
We may write ) 'ixGI U, . where

N K,lk

U £ U, . (where we choose U. . =1 if

U, = 1). Hence let _Ui =1, U . , where

U =<
Vi = Iy U

< U, which proves the result

A

for ""box" type sets. Taking the supremum of box

type sets gives the result.

Suppose L. is Regular. Then consider

U = i \ U
™ ( Uk) for a given U>\ €T Then

x

is a supremum of open sets whose closure is less than

or equal to U. We may assume these open sets -

- are box sets. It is ,n‘ot too hard to show (using

the definition of "complement" in [6] ) that

H)\ Fk, = I Fk . Hence for a bo>.< set Ui’
L o— — - ’ . - ‘
m(U) s u, iff U s U. So {m(UD1l is

A A i
a suitable collection of open sets to demonstrate the

regularity of L>\ .
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7. Completely Regular and TS,/2

Definition: . CR, TS%

(L, t) is completely régular if for every open set

U, there exist families of sets { U, ier,tefo,1) 1"

=U and t< .U <U° < U.
such that Vi Uio an s = " s U

if completely regular and T

8%

(L, T) is T 0_

The fuzzy unit interval

For technical reasons,in future papers, we shall

slightly modify the definition of the fuzzy unit interval
(0,11 (L) , from the definitions given in [ 4] and [51]."

We shall now say the fuzzy unit interval [0,1] (L) is the

set of all monotonic increasing maps MK - L for whicnh

X (0 2{0 t <0
1 £t > 1

after equivalence classing X\, p:R - L if AtH = wtd ,

AE=) = p.(t—-) for t € R . We define aﬁér‘der on [0,1]C(L)

by XS p. if pt=) < At-), and p@+H) S MNtd) for t € N

We define l_t:: o, 1(L)y - L anrd R, :

'L.t(>\) = A(t=) , Rt(A) = >\(t+)" .

generate the open sets in the lattice of

t

L, and R
‘ t

P19

-

Lo,11(L) - L by
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fuzzy sets of [O',1](L) (a fuzzy set is a map ¢: [0,11(L) - L ).

Thus the correspondence between the new definition of [0,1](1_)
and the old definition is that we have replaced X:R - L by

‘)\’:‘R - L (where M\(t)= A ).

Proposition 14

If (L , T) 1is a fuzzy topological space  (where L

is a fuzzy lattice, and X is an ordinary set), then .

complete regularity is equivalent to:
"For every open set U € T, there exist continuous
functions f, : X - [o,11¢(L) _'such that
sup f“1(R’) = sup f'1(|_ y = U " (ie éup f(>x)(0+) = sup vf ()1 =)=
i i 0 i i 1 ii ii

for each x € X). ‘(No'te that here we are dealing with ordinary
functions as used in [ 4 ] and [ 51, which of course induce

morphisms in the sense of [ & 1.).

Proposition 15

Complete regularity is equivalent to the following:
1. (L, t) is uniformizable.
2. s Consider all order‘. breserving maps
F o [o,1j - L such that f(t-) € T, 'an‘d»
f(t+) € 7. Then T is the weakest of all
_ topologies T* such that f(t-) € T", and

f(tt) € ™, for all f as above.
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Proof

The equivalence with 1. has been proved in 5] .
The equivalence with 2. |is essentially trivial.
Proposition 16

Completely Regular =% Regular.

TS,/2 = T8 .

Lemma 17

Suppose U -is an open set, and A, is a box subset
of U. Suppose - B)\ is atomic-like with respect to A)\ for
A A A, (ie‘: for any C such that sup C = A)\ » C € C
such that B}\ = C). Then the largest box set V = U such

V. =B. for XNA\
that Vk B)\ , has V>‘o ‘open.
Proof

Suppose BK is atomic like with respect to 'Vk .

© Then H}\ B is atomic-like Awith_ respect to U, and hence

since U is a supremum of open box sets, there exists an
open box W such that I B)L = W. Hence B)\ = W)L S V?\
But the supremum of all possible B)\ is Vk . Hence
Sup BX = sup W}\ = V>\ . That is, V)\' is open.

o o o -]
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Proposition 18 -

L = '®>\' Ly s completely regular <s, 'L)\ is completely

fegular fot each A, (Similarly for T31/2)

Proof

‘cé)

(=)

Similar to the previous pr_oofs on products.

Suppose we have a family { U : té€ (0,11}

of open sets in L suchthat t <s ‘iifnplies : Ut < U .
‘ s

Suppose also that 0 # H'XAA < Ub . Then choose -

=N #0,for X#X_, atomic-like with respect to

A)\' Let Vt be the largest box set such that

V < U : V = B f . T

Ve =Y and ™ 5 for AEX, hen
by Lemma 17, Wt = Vtx is open. Moreover
Vt = Ut , since th = Ut -, and hens:e

\-/tk = Vs)\ for t < s (since Vt is a.box set, and _

o o

U s U . N sinc w ='waehave'
¢ S)_ ow since ¢ t>\°’

W £ W_ for t<s.
t s
This completes most of the technicalities of the
proof. Suppose L is completely regular, and suppose

-1 ‘ ‘ : :
1r>\ (Uko) , where' Uk € 'L')\ .

o o

U = Then
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there exist box sets A = nkAik ~ such that
| i » |

| sup A, = U, and families of open sets { Uit : t € [0,1] 1
i v -
 such that A < U, < U, and t<s > Ui < U, .
: i o _

it t is

Applying the previous paragraph gives us families of open

w : t € 0,1 such that A, = W_ =
sets { it | [0,1] 3 such tha Ny it U>\° 5
and t<s > W, = W, . Since U is
it is )\o
arbitrary and sup Ai)\’ = U)\ , we have proved

-] o

complete regularity for L‘)\ .

o

8. Normality and T4

Definition: N, T, (Ref (41>

(L, T) is normal if for any closed set K and open set U
such that K < U, there exists a set V such that

K s Vv° = V¥V < U, (L, T) is T, ifnormal+To+Ro.

In [4] we proved:

- Proposition 19

X : )
If (L, t) is a fuzzy topological space where L 1is a
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fuzzy lattice, and X is an ordinary set. Then -

- Normality is equivalent to:

"For every closed set K and open set U

X
in L  such that K = U, there exists
a continuous function f: X - [0,1](L)
such that‘ Ksf (RO) s fF ([__1) = U.

(fe: K(x) < f(x)(0+) <= f(x)(1-.) < U
for any x € X). |

The '"pointless" version of this is:

Proposition 20

(L, T) is normal iff for every closed set K, and open set

U in L such'that K s U, there exist {vt : t € [o0,1] }

o ).

such that V_ = K, V, =U and (t<s > V. s v,

Proposition 21

Normal + RO = Completely Regular,

T, = T4 -

“Proof By Proposition 20.

Proposition 22

Normality is not productive.

P84
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Proof- By the usual topological counterexample.

Proposition 23

Suppose L is compact in the sense that every open
cover of a closed set has a finite subcover. Then if L

is R1 , then it is Normal. |

Proof By Phoposition 11.

9. Complete Normality and T5 .

Definition: CN, T5-

(L, T) is completely normal if for any fuzzy sets K, U

——

such that K € U, and K = U° there exists a set .V such tha
K = V° = V¥V < U, (L, 1) is T, if completely normal

+ T+ .
o Ro

Proposition 24

Completely Normal = Normal.
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10. Perfectly Normal and T51/2 p

Definition: PN, T5,/2

(L, T) is PN if Normal and every closed set is a

~countable A of open sets.

(L, T) is '1‘5,/2 if also ’1"1 .

Pr*opbsition 25

Perfect Normality is equivalent to:
"For every closed set' K, and open set U ' such that

K £ U, there exist { V t € [0,1] } such that

t :

°) and" K=V_ SV, = U."

o+ 1=

t<s = VYV = V
(,S t S

Or in the pointed case of (L'~ , T), that there exists a
continuous function f: X - [0,1](L) such that

- -1 ’
K = f1(RO') s f (L) = U

Proposition 26

Perfectly Normal = Completely Normal.

Proof
Let (L, T) be PN, and suppose K = U’ and K = U.
o _ (=2} ° — (\D/ e

Let K = n__/}' Gn and U' e Fm vwher

each G is open and each Fm is closed. By normality,
N :

<A =U°,

we obtain for each m a set | Am such that Fm < Am A
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' K < ° <= B < .
and for“eac_h n a set Bn such that Bn Bn , Gn .
| . n | _ mo_
vV o= AT A (LA ° and W _ =B V(V A
Let n N ( 21 Bj ) | N W " (j=1 j )
Then V. = W for alllm and n, V_  is open and W
_ n m N _ m
© o
is closed. Now let V = V¥, Yn and | W = Mt W, o
Then V < W, V is open and W is closed. Moreover,
K S U"AK = (Y F AR =V (FAR) sV v =v
T : m=1 m , m=1 > m m=1 m

=R < 2(6 vUSY=(3 & * kv U® <
Wo=A W = A(G VU (n=1Gn)V‘L_J _Kyu u,

as desired.

11. Pseudometrizability and Metrizability

Definition M, T6

(L, T) has a pseudometric on it if it has a uniformity with
base { D : r'is a positive real number-} of symmetric
roo _

i i ° = D if this
elements satisfying Dr‘ DS s 2 and i

, uniformity generates the topology.

(L, T) is metrizable (TG) if also To. (We hope to

develop. these concepts further in a later paper).
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Proposition 27

Pseudometrizable ‘> Perfectly Normal.

Metric = T5’/2 .

Proof

-We fifst prove normality. Suppose K < U, K is
closed and U is open. By appealing to Lemma 1 of [5]

we obtain an atomic-like partition {Ki} ‘of K, so that
K = VK;

1

yields U = A Uj . Since U 1is open, for each i there is

a D  such that DP (Ki) < U. Similarly, for each

T3 i
j there isa D such that DS ( Uj' ) = K’, and so
s, . :
] J '
since D is symmetric Ds (K) < Uj . Thus we have
: s, . v

J ' J

for each i and each j, D (K )sU, and D (K.)<U, .
: _ P j sy j.

In par~ticu1ar~, [)1
4 +s
2(7‘.1 J) j

for each i Hel"jc:e | D v D ’ < U and therefore
_ L. %SJ. ( i 1/2,«~i(Ki ) j’
| < | = D K. . is a

1/25_<i. %r
7 i

. The complementary version of [5’,‘l_emma' 11 |

(KD = uj so that Dzs,CD‘/zri( i))

P88

]

neighbourhood of K, since D‘/Qr‘ (KD isa neighbourhood of K. .
i .
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Moreover, .Dyas‘(W) 2. D%S.(W), te! tha’c‘ther‘e is_a set V‘
J ] :
such that K s Vv° = V s U,
We now show that any closed set K is a Gy Again
by the cbmplementary version of Lemma 1 of [5], K = A Wi .
For each i there is a 'Dr‘ such that DP(Wi’) < 'K’, since
'K’ is open. Hence Dr<K> < Wi . Now s < r implies
DS(Kv) < DP(K) » SO that A DP(K)" = K., In particular,
K= A, D, (K)"
T on=1 l( )
=
Proposition 28
™ ) '
L = ® Ln is pseudometrizable if Ln is for each ri.

Proof

Given a uniformity @n on each L_n with countable

. base, we may construct the product uniformity on L, also with
a countable -base as follaws: |

. x . __1 . .
Given D E@n define DT on L by D =7rn oD o T,

Thus the "pullback" of En will generate the topology on L.

produced by "pulling back" Tn .

P89
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Let © be the‘unifor‘mity generated by the "pullback" .

of '@n for all SS)n . - The countable bases for each - SJn

will generaté a countable sub-base for 9, which in turn

will produce a countable base as desired.

12, Summary

¢D) Ti > Tj fpr'i>j.

(@) IM 3 PN CN ' N

N+ R CR > R = )
\ O? —? =7R2=>-R1

(3 (a) CR, R, R, and RO are productive.

1 3
(b) TS‘é ) .TS » Ty s Ty 'and | TO “are productive.

() Y M is countably pr*oductive.

(d) PN, CN, N are not productive.
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6. UNIFORMITIES ON FUZZY TOPOLOGICAL SPACES, PART II

R

(3



Uniformities on Fuzzy Topological Sp.aces,

Part II.-

1. Introduction

In this paper we tie up some of the loose ends 1eft‘ '
from our first paper [ 2 ]. To achieve this we have had
to develop the concepts of’product's and compactness [ 3 1.
Qur main achievement in this paper is showing that a compact
R1 fuzzy space has a unique fuzzy uniformity. We also give ’
characterizations of uniformities and pseudomet.r*ics. In a
future paper we hope to extend the theory of fuzzy uniformities
to relate them to compactfications and completions. |

Since the writing of our last paper oh fuzzy uniformities
[ 2 ], we have become aware of another paper? on fuzzy
uniformities by R. Lowen [ 5 ]. We note that the definitions
are different, and produce different uniformizable spac’:es. |
Indeed there is no real relatlonshlp with our papers. Moreover,
R. Lowen's paper does not fit within the framework of our

sequence of papers: that definitlons should depend only upon -

the lattice structure of the lattice of fuzzy sets.

5. Preliminaries

Unfortunately this paper is so dependent upon our previous

papers [ 1], [ 2 ] (31, L[4 ] that we cannot give all the

notation relevant. The main concepts are as follows:

A fuzzy lattice is a lattice L which is complete,'

completely distributive and has an order reversing involution . 7.~

A topology T on L is a subset of L closed' under

arbitrary suprema, and finite infima.



A uniformity on L is a subset O of Q, the collection
of all sup preserving maps ¢ L - L such that a s ¢(a),

which satisfies:

@ 9 £ ¢

(Q2) DE€D, DSE€ET = E € 9,

(A3 D,E€8 = DAEE€EQ.

@4 DED > D eaq.

‘F'or* more details, see [ 2 ] [ 31, and [ 4 ], while
noting that some of the definitions and notation given in [ 2 ]
are later modified in [ 3 1 and [ 4 ], in particular

~ the definition of the fuzzy unit interval and naming of the

reflection map r.

3. A characterization of Uniformities

In our paper on products of fuzzy topological spaces. [ 3 1],
~we obtained a lattice isomorphism betweeh L®L and G,

the sup preserving maps ¢ L - L (Pr*op.' 6). The corr‘espondencé
is 6: A <> (pAv » where ¢,(a) = b’ & (a,b) € A’. Thus
any structure defined on one of the lattices can be transferred to

the other lattice.

" Proposition 1

The isomorphism between L ® L. and & induces the following
correspondences: '

(1 ?eﬂection: '(a generalization of "inverse'" defined in

our first paper on uniformities [ 2 ] ).



LeL: A ={(b,a): (a,0) € A }.
&: @® = A {a ®a’) = b’ }.

The reflection maps preserves V, A, and ‘.

(2) Complement:

Lol :. A" = [ (x,y) : (¥ (a,b) € AYx < a’ or y S b”) }.

VvV {e@ : a$x’ 1.

-

‘The- complement reverses 'V and A,

(8) Composition: (From composition of functions in & ).

L ®L : A o B is generated by: -
{@,d: (Tb,e)b §cHa,b) € B, (c,d) € A) .

& : (o #Xa) = o( (@)

Composition is associative, and is distributive over V.,

. r
Also (A o B)Y = B A",

(4) Identity A: -

g
il

LeL . Lo i (Ta€LYxsa’ orysa) b

6 :b A(a) = a.

A is an identity for composition. -

Proof

(1). was effectively proved in L 2 '] and has been
restated in [ 3 1. ’
(~2). " That complement reverses V and A follows from

its properties in L ® L.,

We now show the correspondence is as above. Suppose



€6 corresponds to A € L ® L.

() = Y & () € A

. -

<> (V(a,b) € A’)a = x" orb = y’).

¢

(adx’ > yso@)

& v s Alo@: akx )

Hence - ¢ () = Viop@ : a $x 1.

©

So (e YY) =

ie: ¢ ° P corresponds to %

That composition is associative, and is distributive
over V follows from its definition in &,

r\ .
That - (A * B) = B" . Ar‘_ is simple to prove,

and was initially stated in [ 2 J.

Since composition is distributive over V, we only -

need to show the formula .is true for box sets.
Suppose ¢ corresponds to (a,b), ¥ to (c,d) |

respectively. Then

o0 = © x=a
. - b x#a’v
‘zb(x)_= 0 xsc’
' d x=%c’

{o xsa” or b=sc’
d else -

(a,d). if b¥c”
0 if bsc’

- This proves the result.
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4). follows by taking the complement of oo
A = {(a,p) : as=b"l.
o

The previous proposition gives us:

Theorem 2

The isomor‘bhism 6: L®L — 6, induces the following

equivalent definitions of a uniformity:

"A yniformity O on a fuzzy lattice L, is a subset

of L ® L which satisfies: |
‘."(Pu P -.53‘75 ¢ :
o (PU2) DE 8 > s D.
(PU 3)‘- Deg, D<E » E¢ o
(PU 4) .'Dés,_E;-'sa > DAE € 9.
- (PU 5) D €Y ‘év there éxist; E Gv 2 such thét E-,o E‘ < D.
PUB DED > ples. "
The importance of this theoremn is that it makes the
definifion look more conventional (though less intuitive), ahd it

allows us to place a topology on 9 (since we can place

a topology on L ® L).



4. ‘A pointed characterization of pseudometrics.

- In the following L shall be a fuzzy lattice, and X

: X
an ordinary set. We shall consider L as a '"pointed”
fuzzy lattice. A ‘

We have alr_eady defined a pseudometric on a lattice as.
a family { D_ : s >0} of symmetric elements in g
Csatisfying D, ° Dy = D, . Also, we shall add on the
condition that D _ 11 as r-® , We did not include this
in previous papers, but it is easily rectified by taking a
{ DS } and replacing DS by 1 for s 21, say. This

is just so that nothing is an "infinite" distance away (which is
the case for ordinary (topological) metrics). The topology

generated by the pseudometric is the topology with open sets of
the form U:V{V:DS(V)SU for some s >0 }. We
shall identify two psuedometrics { D1S 1, { D‘QS 1 if

1 2 1 2 , ‘
= and =
D o D o : D ot D st for any s >0 Fthey

obviously give the same topology)-.

Definition (Ref [ 4, page 16 ].)

Suppose L is a fuzzy lattice.
| We define the fuzzy real line R (L) as the set of all

monotonic increasing maps X::[P\ - L for which A(t) 10 as

>

t | =, and MNt) t 1 as ! ©, As in the fuzzy unit interval, -

we identify A, p: R - L if Mt#) = tH) and At-) = p(t)
f’or any t € R . We define an order by X s p if

pit=) s Mt=), [.1.(1‘.—%-).S Mt+), for any 't € R . As before,
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we may define a topology on the L-fuzzy sets of R (L) . _
(fe. the maps X: R (L) =~ L ), by taking {'l'.t', Rf : te R}
as a sub-base, where l_t()\) = Nt=) , Rt()\) = Mt+)'. We may
R e defini _J1. t>a
. l"hap‘ { into R(L) by. efining  oft) 0 t<g
We can then define - [0,11L) = {XAe Rw): osx <1}

and RTw) = {(re R @wy X201, This gives us the
same definition of - [0,1)(L) as before in [ 4 ] .

'Now consider R (L ® L). We may define
reflection r: R(LeL) ~R (LeoL) by X =xo" .
We may define composition on R (L ® L) by (X o p)t) = Vv M r)eu(s).
. SR : ' rt+s=t -
Reflection preserves V and A (and o = o if « is a real number).
Composition is associative and preserves V (and ¢« -° 'B =a+ B
if @ and B are real numbers). We may also define
0 s S0

A €ER (Lo L) by AS) ={ ;
A s >0 .,

Theorem 3

Suppose l_>_< is a pointed fuzzy lattice. Then a

pseudometric corresponds to a map

+ ‘ .
d: X x X - ﬁ{ (L ® L) which satisfies:

M) dix,) = A o
SM2) Ay, = oGy

M3 2 S 90y ¢ d,z)



e
)

Proof

Suppose we are given { D }. Identify L ® L with &

and define d(x,y) € R (L ® L) by

0 ‘ -.s 50

dex,y)(sXa) = |
, Ds(xa)(y)v s >0
4 B ' a z=
.whehe xa is the fuzzy set xa(z) = io  else .‘

| | | ’ SR
Conversely, given such a map. d: X x X = R (e,

©we may define DX = sup  { dG,yXsXUGD) 1.
. : _ x&X _ .

Obviously starting with oné definition,consfructing its
corresponding structure, and then constructing the structure
corresponding to it, takes us back to the original one. The
fact that the new object will satisfy the desired conditions is also

obvious.

Note

It is this definition that we alluded to in [2, page 13].

Lemrﬁa 4

Suppose - L is a fuzzy topological space with a uniformity
8. Then we may define a product uniformity 2 on L ®L

v _1 . . .
by making {Di =T ° Doem: D €8, i=1,2 } a sub-base.

This uniformity generates the product topology, and is the smallest

uniformity making the projections uniformly continuous. Moreover, -

the elements (D = D1 A D2 : DE€9} form a base for 9,



n102

o ' ~ o ' -1 :
and satisfy D(¢) = ‘D ° ¢ °D for @ € &L) = L‘® L.

7

Proof .

All except the last part are trivial, and have implicitly
been used in [ 4 ] (by a(quasi) uniformly“conttnuoLJs .fuzzy
morphism f: (L, 8) =~ (M, €) ‘we mean a Mmorphism such
that f_1(E) = f'_1 e E of €90 forevery E€¢€. A more.
general "'pointleés" version of Prop. 8 in [ 2 ] now says
that any (quasi) uniforrhly continuous morphism is continuous.
The proof is the same.). That D(a,b) ‘=  (D@),D(b) ), is

pr*éved by uéing [2, Lemma 2] and [4, Lemma 6] .

Considering L ® L as &L), a "box" set '(a',b) cor‘r‘eéponds to

’ 0 csa’
PONE |
o : b else .
Hence | y o D—1(c) <a’
Degpe*D () = .
;. D) else .

-1 :
But D (¢) < a’ iff D@) = ¢’ iff ¢ < D@)° .

_ | » . .
Hence D ¢ ¢ » D = (D), D)) = D(p) for ¢ a
box set. Distributivity of composition over V proves the

statement for general Q.

Theorem 5
. < ‘ o .
Suppose L has a pseudometric  d: X x X - ‘R (L®L).

Then d is uniformly continuous (and hence continuous).

Proof

+ ' o
The uniformity on R (L ® L) is generated by

. . o '
B:eg>0 e B UW=R here t is the greatest
{ Be, e € , )} wh lfe E( ) = e wher ‘ g
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s such that U s L’

s
‘ = A { R#-—s v:‘ U s L_S' .} o

B; w = A» { LS& . u‘s‘ R;‘}‘ ) {see [2, page}g] )

Now | 6"1(Lt)(>$,3/>(é) = d(x,yXt+)@) -

i

Dt+(><a)(y) -

-1 1 : _
. =D ) .. ;o ‘
 That is, d (L.t) - Similarly d Rt Dt+ ‘
: -1 _r : ' ' .
Hence d (Bs) W) = D(t+e:)-~ > where t is the smguest

~

s such that U5D5+ . Hence 'Da (U s D oD oD

£ ‘ g€ 15 £
3 3 3
s D
(t + %er
s D .
t+ &)

]
. a
!
—r
~
o
m .
v
N
-
N

- .
. < o
e B, = a8 .
3
Hence also 65 < d~1(88) (since 58 is symmetric).

5 3

' This proves that d is uniformly continuous.

5. " Uniformities and Compactness

As in [ 8 ], we shall say L is compact if every open
cover of a closed set has a finite subcover. We showed that this

was equivalent to "If % is a collection of closed sets, closed
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L]
—
R
>

~under finite infima, and if ANF = U, where U s opén, then
there exists F € F such that F < U."
) /’

Theorem &

Suppdse L is a compact R1 space (and hence by

L4, P:r‘op. 237 completely regular). Then there exists a unique
uniformity on L ’whic:h generates the topology. The uniformity

~is in fact all neighbourhoods of the diagonal A (in the product

topology).

Proof -

Existence follows by the fact that L ' is completely

regutar [2, Theorem 177 .

Suppose © is a uniformity on L and D € 9. Then
’ the'r*e exists E € 9, symmetric, such that E o E <D, Now
E is an element of the product unifor‘mity‘and SO E‘J(A) =E o EsD
'is a neighbourhood of A (ref Lemma 4). Also if E, D € D.are

- symmétric, and E o £ =D, then E =D in the product

topology. This is because we may find F e'g, symmetr-ic’ such .

that F o F < E, which implies F(E) = F ¢« E o F

.bF:'oF-'oE

Il

< EsE < D.

By [2, Theorem 15] we have E < D. Thus the closed .

symmetric neighbourhoodé’of A in © form a base for .

Now since L is R

1 the smallest set ge_ner*ated by

T U1t and containing A is closed. Hence: AsU if U
is an open neighbourhood of A Thus if ¥ = {D:D€eol,
then ¥ 1is a closed-filter and A F = A £ U. Hence since L.’

is compact, there exists D € £ such that D = U. Hence

‘9 consists precisely of the neighbourhoods of A .



12

e
<
T}

References

1. B. Hutton, Normality in fuzzy topological spaces,

J. Math. Anal. Appl. 50 (1973) 74-79:

2. B. Hutton, Uniformities on fuzzy topological épaces,
Part I, J. Math. Anal. Appl. (to appear 1976).

3. - B. Hutton, Products of fuzzy topological spaces,

| (to appear). | ‘

4. B. Hutton and I. Reilly,'Separ*ation-axioms in fuzzy
topological spaces (Version 2), (to appear). »

5. R. waen,.Topologies floues, C. R. Acad. Sc.: Paris,
278 A (1974) 925-928. -



7. FUTURE DEVELOPMENTS




“plo7

What are the future devélopments of fuizy sets and fuézy )
topology? As far as applications g‘o,' I cannot say, for I am
“not familiar with the vast quantities of work that have been done
oﬁ fuzzy séts. ALl T can‘say is that a lot of mathematicians,
‘engineers and people in operations research seem to be very
interested and believe that there are many applications in the
study of ill defined concepts.. As far-as ! know, my papers are the-
only papers that have gone this deepfy into the general topology
related to fuzzy sets - other papers being essentially on a more
introductory level. My work definitely seems to be alone
in taking my particular "pointless" stance. Hence the question
- of future developments is very much a matter of what 1 intend
to develop in the future as .r‘ega.rds fuzzy topological spaces,
since nobody else seems to be working in this area.

- The méin area I intend to research m is ih the formation of
- Hausdorf corr{pactifications. To do this, ‘I shall need to do a much
more careful study of filters and filter pairs. Also I shall need
to develop the concepts of convergence of filters, and their
relationship with Hausdorfness, so that I can justify the demand
that the compactlflcatton be Hausdorf and that the mlttal space
b.y‘ TSZ
"be collections of zero~filters or filter pairs (a zero set being

t € [0,1], such

. The elements of the compactification shall presumably

a closed set <K0+fo|*~ which . there exist Kt s

that t <s implies Et s K&: )..

‘ I then wish'to ‘define‘t_otal boundedness and completions,
and relate all of the theory about compactifications, completiéns
and total boundedness to uniformities and proximities. I would
also like to discuss questions relating to local properties and -
paracompactness,  which 1 believe 1 should be able to define

satisfactorily without too much difficulty.



* ptos

Finally, I would. like to drop the complemeht from the
lattice structure, and consider "bitopological" concepts. 1
 believe that T can prove a theorem which says that any
reasonable phrased statement in terms of the universal and
existential quantifiers, order, suprema and infima, open |
and closed sets, which is true for all completely distributive
- lattices with a complement, can be rephrased tcS give a
cbr’*responding true statement for éll‘ completely distributive
lattices without a complement (subject to replacing an
assumption by both the assumption and the dual assumption _
(formed by interchanging open and closed, reversing order, etc.)).
I would also like to see how my definition of-compactness' relates

7

| to (non~-fuzzy) bitopological spaces.



APPENDIX

Tﬂis appendix is meant.to élérify any conquion_whichmay be caused
by the variationé in definitions which occur throughogt the five papers in
this thesis.
| (l) ﬁormality
(2) Uniformities I
‘(3) Products
(%) Separation Axioms (Veréion 2)
- (3) Uniformities II
(So paper k correspoﬂdé to chapter k + 1 for k = 1,2,3,4,5.)
In (1) and (2) I use N,U, &, instead of?«, v, 'ﬁ_ih the lattice LX
of fuzzy sets ovef a set L. This is to imitate the relatidnship between fuzzy
sets and ordinary sets. In (3), (&) and‘(S) I use the'lattice symbols,A,\/,:§
- Papers (1) and (2) are written using "pointed" notation, and (3), (4), (5)
- are written in ﬁpointless" notation. That is, ig (l),énd (2) the lattice I |
deal with is assumed t§ be decomposed into the form L = MX, whéré M is a fuizy
lattice, andIX is a.set. In (3), (4) and (5) I make no such aésumptions.
.In (1) and (2) a function (or morphism) is an ordinary'Set funétion f :»X.+ Y,

Y

. . ) - ' /
which generates a function £': M' + M° which preserves A, V and .

In (3), (4) and (5) a morphism frém L,rto L, is a function from Ly> Iy which
preserves A,V , and /. Thus a 'pgiﬁtless' morphism is a generalisation of a
'pointed' function. |

Paper (2) could in fact (and should in fact) have been written from the

'pointless' stance. This would stop the redefinition of (quasi)-uniform

~continuity in (5).

continued



Thus fhe»preliminaries to (3) should be taken as thé starting poiﬁt for
all basié ”pofntless” notation. Any other p01ntless notation is essentlally
defined aFter thlS (w1th the™ excentlon of unlformltles)

Note: In the pointless approach, one can define a relation between
L, and_Lz;as an‘element of théalﬁ_or alternaiivély as a sup preserving map
$ :,Li+ -L1. Thus a morphism 1s just a special type of relation (one which
preserves complement as well). Similarly one can define injective;.surjecfiVe ~
morphisms, and reflexive, symmetric,'transitivé relations. An equivalence
relation is thus a sup preser&ing map ¢: L > 1L which‘satisfiesv(l) ¢_: A,
(2)‘¢; = ¢, (5) if a € Im ¢ then ¢(a”) = ¢(a)’. An equivalence relation
corresponds té.a ‘_'partitionaM of L (M&L is élosed under V,A anci ‘) by making

M=1Imé¢. An élement_of afquasi; uniformity is of course a reflexive relation

6n L.

~ The fuzzy unit interval is first defined in (1), trivially modified in (2),

not used in.(s) and significantly modified in (4), mainly for ité use in (5).
The modification in (4) froﬁ that of (é) ié by replacing A :R~+ L (ménotcnic
deéréasing in (2)) by ‘A} :R > L (honotonic increasing in (4) where |
M (1) = A(E)Y. | . |

Metrlcs and‘pseudometrlcs are 1n1t1ally defined in (2) and then s11ghtly»
. modified in (5) (not changing the pseudo—metrlzablllty of a space at all).
This is just because the initial definition allowed infinite distances, which

is unconventional.
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