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Abstract—With the omnipresent usage of APIs in software
development, it has become important to analyse how the routines
and functionalities of APIs are actually used. This information
is in particular useful for API developers, to make decisions
about future updates of the API. However, also for developers
of static analysis and verification tools this information is highly
important, because it indicates where and how to put the most
efficient effort in annotating APIs, to make them usable for the
static analysis and verification tools.

This paper presents an analysis of the usage of the
routines and functionalities of the Java concurrency library
java.util.concurrent. It discusses the Histogram tool that
we developed for this purpose, i.e., to efficiently analyse a large
collection of bytecode classes. The Histogram tool is used on a
representative benchmark set, the Qualitas Corpus. The paper
discusses the results of the analysis of this benchmark set in
detail. This covers both an analysis of the important classes and
methods used by the current releases of the benchmark collection,
as well as an analysis of the time it took for the Java concurrency
library to start being used in released software.

I. INTRODUCTION

The widespread use of Application Programming Interfaces
(APIs) has had a significant impact on programming. Typically,
APIs implement many standard routines and data structures,
and can shield the programmer from many implementation
details. For example, the Java language includes an extensive
standard API [2].

Because of the widespread and varied use of APIs, it
is difficult to predict which routines and functionality of an
API are used most often. However, there are many reasons
why it is important to actually have this usage information.
First of all, like all other software, APIs need maintenance.
For API developers, knowing how heavily an API is used,
and which functionality of the API is actually used, gives a
good indication where to put effort during this maintenance.
Spending much effort on optimising performance of a method
that is never used might not be worth the effort, whereas
improving performance or resource use of a method that is
heavily used will be appreciated by many developers. Usage
information also can help to predict impact of refactorings,
and help to decide between different refactoring or deprecation
options.

Knowledge about API use is not only useful for API
developers, but also for developers of tools that increase
software quality, such as tools for static analysis, validation and
program verification (such as for example Clousot [3], Code
Contracts [4], [5], various JML tools [6], [7], [8], KeY [9],
ESC/Java [10], and VerCors [11]). To be used effectively, these
tools require annotations of some or all of an application,
including those API classes and methods that are actually used.
Extending APIs with such annotations is a great deal of work
without much reward. Therefore, usage information of APIs is
important to do this work strategically, and to focus on those
parts of the APIs that are most-widely used.

In this paper, we study the Java concurrency library
(java.concurrent.util). This top-quality, highly scal-
able library provides many concurrency and synchronisation
mechanisms (essentially as described in [12]). Our main con-
cern is to find out which (parts of) classes and interface must
be specified in order to make design by contract possible for
realistic Java programs.

To do the analysis, we wrote the Histogram tool1. This
tool has been developed to perform efficient, simple usage
analyses of APIs for Java at the bytecode level. We applied
the Histogram tool to a large corpus of roughly half a million
Java classes of various sizes, in bytecode format (collected
as the Qualitas Corpus benchmark set [13]). The classes are
written by thousands of developers, are of production-quality,
and are typically using multiple threads of execution. The
results of this analysis, i.e., an overview of usage frequency and
patterns for different concurrency constructs, has been used
to guide annotation writing of library classes for the VerCors
(Verification of Concurrent Data Structures) project [11].

The results of the analysis show that it is important to
consider several different ways to count the usage of classes.
It also revealed that developers use concurrency construct not
always in the same way as they are taught in university,
including using synchronisation mechanisms that are not in
the standard textbooks, or using unexpected routines. Finally,
the analysis also shows that the uptake of the concurrency
library has not been as fast and complete as one might hope
for.

The remainder of this paper is organised as follows. First
of all, Section II discusses the Java concurrency library, what
we want to know about its use and how the applications

1Available from http://fmt.ewi.utwente.nl/tools/histogram.
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to be analysed are determined, and what are the important
characteristics to ensure representiveness of such a set. Next,
Section III discusses our way of determining the importance
of classes and methods and the Histogram tool that we used to
compute the raw data. Then Section IV shows the application
of Histogram to determine the usage of the Java concurrency
library on the set of example classes. Finally, Section V
concludes and discusses related and future work.

II. SETUP OF EXPERIMENT

This section describes the basics for our experiment: it first
gives an overview of the Java concurrency package, and then
it introduces the benchmark collection that we use to obtain
information about the use of the concurrency package: the
Qualitas Corpus [13].

The Java Concurrency Package

The Java concurrency package has been added to the Java
standard with the release of Java 5 on September 30, 2004. It
is a standardisation of the concurrency package developed by
Doug Lea [12], [14]. Since its release in Java 5, the package
has been relatively stable. In both Java 6 and 7, the queueing
functionality has been extended with new variants. Moreover
in Java 7, the notion of fork-join task was added to the task-
based computing framework.

The package provides the most important building blocks
for developing concurrent programs:

• Implementations of synchronisation primitives, such
as locks, including read-write locks, semaphores,
count down latches, and barriers.

• The atomic classes, which are wrapper classes for
volatile variables, supporting set, get and atomic
compare-and-set operations.

• Implementations of typical concurrent data structures,
such as concurrent maps and queues.

• The Executor framework, supporting task-based par-
allelism.

The synchronisation primitives are implemented on top
of the Synchronizer framework, providing basis synchronisa-
tion mechanisms. Several different locking mechanisms are
implemented, all implementing a common Lock interface.
This interface declares methods lock() and unlock, al-
lowing arbitrary locking patterns. Before introduction of this
interface, locking in Java could only be done by using a
synchronized code block.

Volatile variables can be used for lock-free synchronisa-
tion. Updates to volatile variables are immediately visible to
other threads. Essentially, get and set-operations are updates
and lookups of these volatile variable, whereas the compare-
and-swap operation uses the hardware-specific CAS operator
natively.

The java.util.concurrent API provides a wide
range of common concurrent data structures, such as queues,
maps, stacks etc. For many of these data structures different
implementations are provided, providing different blocking
behaviour (e.g., lock-free implementations, fine-grained and

coarse-grained locking). As an example, the multi-threaded
version of the map ConcurrentMap extends the standard
Map with atomic operations. Threads can atomically attempt
to add, replace and remove mappings. For example, if an add
operation succeeds, the thread knows that it was the first thread
to add that particular key.

The basic task-based framework is based on the notion
of tasks that run from start to finish without blocking. These
tasks are submitted to an execution queue, that is backed
by an unknown number of worker threads. The essential
functionality of the framework is provided by the Callable,
ExecutorService, and Future interfaces. In particular,
the Callable interface encapsulates a computational task,
which is queued for execution by calling an implementation
of the Executor interface. To obtain the result of the task,
the creator of the task obtains a reference to a Future object
that was returned by the enqueue operation. When the task is
done, its result will become available in this Future object.

In the initial version of the framework, tasks are not
supposed to block. Therefore, it is unsafe for a task to wait
for another task, which makes writing divide-and-conquer style
algorithms awkward. This is fixed in Java 7, with the notion
of a fork-join task which can not only spawn new tasks, but
can also wait for the completion of the tasks that it submitted,
without deadlocking.

The Qualitas Corpus

To analyse the use of Java’s concurrency API, we need to
derive statistics from a representative benchmark set. To avoid
unfair bias, this should be a data set collected by somebody
else. The Qualitas Corpus collection of software system has
been collected exactly for purposes such as ours: its primary
goal is to provide a resource that supports reproducible studies
of software2 [13]. It contains open source Java projects, in
source and bytecode format. Criteria for inclusion in the set
are only based on technical conditions (such as being open
source, written in Java), but not on software quality or purpose.
This makes this collection suitable for the kind of analysis that
we intend to do: it provides a good average sample of large
software projects.

Moreover, the Qualitas Corpus set also maintains old
releases of the systems included in the benchmark set. This
makes the collection also suitable for a historical analysis, to
investigate the penetration of the Java concurrency library.

We used the 2012-04-01 version of the Qualitas Corpus set.
It contains the most recent versions of 111 software projects,
including 14 projects with 10 or more historic releases (see
Table I for a short description of these systems). These historic
releases go back in time to well before even the prototype of
the concurrency framework. To give an idea of the size of
the data set, the 111 most recent projects together add up to
roughly half a million of Java classes and 1.3GB of bytecode,
while the historic releases altogether add up to 5.5GB.

We analyse the collection of current releases to establish
what are the most important and widely-used classes and
methods in the concurrency library. Moreover, we looked at the
historic series to study how fast the concurrency library was

2See http://qualitascorpus.com/.
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TABLE I. QUALITAS CORPUS SYSTEMS WITH EVOLUTION HISTORY.

Project Description
ant A Java library and command-line tool for supporting processes described

in build files as targets and extension points dependent upon each other.
antlr A parser-generator framework for constructing recognizers, interpreters,

compilers, and translators from grammatical descriptions containing actions
in a variety of target languages.

argouml ArgoUML diagram generator/data visualization.
azureus A P2P file sharing client using the bittorrent protocol.
eclipse An open extensible development platform.
freecol Turn-based strategy game.
freemind Mind-mapping tool.
hibernate Projects allowing utilisation of POJO-style domain models.
jgraph Graph management and visualisation.
jmeter Application for measuring performance.
jung An extendible language for the modelling, analysis, and visualization of

data that can be represented as a graph or network
junit Unit testing framework.
lucene Indexing and search implementation.
weka A collection of machine learning algorithms for data mining tasks.

adopted by developers. The next section discusses the tool that
we used to analyse the bytecode, and the main considerations
underlying the analysis; Section IV then discusses the results
of the analysis.

III. ANALYSIS TOOL CHAIN AND METHODOLOGY

This section provides the details of the analysis process.
Essentially, we scan the bytecode of every project in the
benchmark set. Every invokation of a method on an object
of a certain class counts as one use of class, and also as one
use of the method for that class. Once we have obtained the
counting information, we pass (a subset of) the data into a
spreadsheet and analyse the spreadsheet.

To support the counting process, we have developed a
simple tool: the Histogram tool. We briefly describe its imple-
mentation. Then we argue that the analysis method of counting
uses of classes and methods has its limitations, but still can
provide useful information.

Histogram Tool Details

To count the method invokations, we developed the His-
togram tool, publicly available via http://fmt.ewi.utwente.nl/
tools/histogram. Histogram is a command-line tool that is
given one or more projects as parameters. Given a project, it
will search for bytecode files in that project. Specifically, given
a directory it will find all .class files, and it will scan all
sub-directories. The tool will also consider all .class files
contained in archives, such as .jar and .war files. This
approach mimics the behaviour of a JVM, which will scan
directories and archives in its CLASSPATH.

Each of the bytecode files is opened using the ASM
library [15] and scanned for method invokations. For each
method invokation, depending on the settings either the class
of the object on which the method invoked is counted, or the
class/method pair is counted.

The result of the scan is a table whose columns are indexed
with the projects and whose rows are indexed with classes
or methods. The entries are the computed counts. The result
is written to disk as a CSV file, which can then be further
analysed using a standard spreadsheet tool.

The Relevance and Correctness of Invokation Counts

As mentioned above, the tool counts invokations of meth-
ods on objects. This might seem a rather trivial measure, but
we claim that even though it has its limitations, it still provides
useful information.

First of all, it should be observed that the analysis will
answer the question whether a class is used at all conclusively,
because if a class is used, its constructor has to be invoked.
Moreover, the simplicity of the approach allows us to analyse
very large collections of bytecode quickly, and thus to provide
this information efficiently, and without any extra effort. Fur-
thermore, even though the information is incomplete, the really
important methods are likely to show up, and the differences
in frequency still can be used to decide which method is more
relevant.

To understand this, it is important to understand in which
cases our analysis results are incomplete. As mentioned above,
for each method invokation, the method call is counted as a
call to the method of the static type of the object. Since Java
uses dynamic dispatch in many cases this is not the method
that will be executed. There is one specific case where this
difference in result is especially relevant, namely when the
static receiver type is not part of the concurrency library.
In Fig. 1, we give an example of two situations in which
a method invokation is counted for a different class than
desired. First, the main program creates a LockedTalker
but assigns it to a Talker variable. Thus the call to
LockedTalker.say in the main class is counted as a
call to Talker.say. Second, the LockedTalker class
inherits from ReentrantLock, in order to be able to di-
rectly call the lock() and unlock() methods. But because
those method calls occur in the body of method say(),
they are counted as uses of the LockedTalker.lock()
and LockedTalker.unlock() methods rather than as
uses of the same methods in ReentrantLock. The end
result is that no method calls to ReentrantLock are
counted. Note however that there will always be a call to
the constructor of ReentrantLock (from the constructor
of LockedTalker), so it cannot happen that the use of this
class is completely ignored.

As a real example of the first case, consider the
ConcurrentHashMap, which extends Map from the Java
collection API. If the static type of the receiver object is a
Map, then any call to a method that was inherited (e.g., put),
will mean that this use of the concurrent hashmap will be
uncounted.

The other case in the example was constructed, due
to the fact that we observed that two projects did use
a ReentrantLock, but never used the lock() or
unlock() method. Detailed inspection of the two projects
revealed that these cases were due to extension of the
ReentrantLock class, thus hiding the use of the lock()
and unlock() methods.

It is future work to combine the counting results of the
Histogram tool with static analysis techniques for dynamic
method call resolution (such as e.g., Rapid Type Analysis [16])
to increase the precision of the analysis regarding the first
effect. But these analyses can be expensive and must be
incomplete, as the underlying problem is undecidable. In
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Fig. 1. Example with imperfect method counts.

i m p o r t j a v a . u t i l . c o n c u r r e n t . l o c k s . R e e n t r a n t L o c k ;

p u b l i c c l a s s LockDemo e x t e n d s R e e n t r a n t L o c k {

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
T a l k e r t =new LockedTa lke r ( ) ;
t . say ( ” h e l l o wor ld ” ) ;

}

}

i n t e r f a c e T a l k e r {
p u b l i c vo id say ( S t r i n g s e n t e n c e ) ;

}

c l a s s LockedTa lke r e x t e n d s R e e n t r a n t L o c k
implemen t s T a l k e r

{

p u b l i c vo id say ( S t r i n g s e n t e n c e ){
l o c k ( ) ;
System . o u t . p r i n t f (”% s%n ” , s e n t e n c e ) ;
un lo ck ( ) ;

}
}

addition, if we extract the class hierarchy first then we can
count every method invokation for every class for which the
method is defined and thus also eliminate the second effect.

Finally, for our particular application domain, the annota-
tion of API methods to be used in design by contract-based
verification tools, the imprecisions in the analysis results often
coincides with the methodological approach. In particular, it
is the static receiver type that determines which contract is
used for verification, and thus the counting information that
we generate correctly indicates how often the contract will be
used.

IV. RESULTS OF ANALYZING JAVA.UTIL.CONCURRENT

This section discuss the results of our analysis, i.e., how is
the java.util.concurrent packaged used in the Quali-
tas Corpus benchmark set. As mentioned above, the results are
based on the benchmark set with version number 2012-04-01.
As mentioned above, this set contains 111 projects in total; our
analysis revealed that 53 out of these 111 projects used the Java
concurrency API. For comparison, the java.lang.Thread
class is used in 102 projects.

First, we present the results of the analysis for class usage.
We present the results in two different ways: first we sort by
absolute number of references to the class; second we sort by
the number of different projects that use the class.

Next, for two widely used classes – the Lock inter-
face (most commonly used by absolute count) and the
ConcurrentHashMap class (most commonly used by
project count) – we discuss the results of the analysis for
method usage. Finally, we discuss the data we obtained re-
garding the uptake of the concurrency package from analysing
the systems with more than 10 systems in the Qualitas Corpus
benchmark set.

The complete results of the analysis are available
online at https://fmt.ewi.utwente.nl/redmine/projects/
vercors-charter-histogram/wiki/Download. This allows

TABLE II. TOP 25 CLASSES BY REFERENCE COUNT

refs projs class name
3401 21 Lock
2148 33 ConcurrentHashMap
1826 17 ConcurrentMap
1625 29 AtomicInteger

5 1596 22 AtomicLong
1295 26 ReentrantLock
1279 17 AtomicBoolean
619 21 ReentrantReadWriteLock
607 16 ReadWriteLock

10 551 26 CopyOnWriteArrayList
544 23 Future
502 20 ThreadPoolExecutor
440 12 ConcurrentLinkedQueue
429 11 AtomicReference

15 413 16 CountDownLatch
393 13 ReentrantReadWriteLock$WriteLock
371 27 ExecutorService
338 16 BlockingQueue
325 13 Condition

20 313 11 ReentrantReadWriteLock$ReadLock
303 25 LinkedBlockingQueue
234 18 TimeUnit
213 8 Semaphore
189 12 FutureTask

25 171 29 Executors

TABLE III. TOP 25 CLASSES BY PROJECT COUNT

refs projs class name
2148 33 ConcurrentHashMap
1625 29 AtomicInteger
171 29 Executors
371 27 ExecutorService

5 1295 26 ReentrantLock
551 26 CopyOnWriteArrayList
303 25 LinkedBlockingQueue
544 23 Future

1596 22 AtomicLong
10 3401 21 Lock

619 21 ReentrantReadWriteLock
502 20 ThreadPoolExecutor
234 18 TimeUnit

1826 17 ConcurrentMap
15 1279 17 AtomicBoolean

607 16 ReadWriteLock
413 16 CountDownLatch
338 16 BlockingQueue
157 16 Executor

20 108 15 ExecutionException
393 13 ReentrantReadWriteLock$WriteLock
325 13 Condition
86 13 CopyOnWriteArraySet
82 13 ArrayBlockingQueue

25 440 12 ConcurrentLinkedQueue

the interested reader to inspect for example method usage
information of classes of his or her own interest.

Most Often Used Classes

First, we discuss the results of the analysis of counting
the references to java.util.concurrent classes in the
current release variant of the Qualitas Corpus. We computed
both total number of references to each class in all projects
and the number of projects referencing a class. The top 25
classes according to reference counts and project counts can
be found in Table II and III, respectively.

It is important to compute the most important classes
both by considering the absolute number of references and
by considering the number of projects. The size difference
between the smallest and the largest project is about 3 orders
of magnitude. By looking at just the absolute number a big
project that intensively uses a single class could make that
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class seem more important than it really is. By looking at just
the number of projects, a group of tiny projects that all use a
class once could make that class seem more important than it
really is too.

What is also a factor is that certain classes, by design are
used less often than others. For example, the Executors
class has many factory methods. It is an important class,
ranking number 3 in the project count top 25, yet it ranks
as number 25 for total number of invokations. Similarly, the
Lock interface ranks as number 10 on the project count,
but is is the undisputed number 1 when considering absolute
numbers.

There are a small handful of surprises that arise out of this
objective, quantitative analysis.

Firstly, the CountDownLatch is far, far more popular
than CyclicBarrier, even though the latter has a simpler
semantics and is, in our experience, typically taught much
more frequently in concurrency courses.

Archetypical constructs available at the language level, like
semaphores, various kind of queues, and futures, occur with
very low frequencies. We have no working hypothesis for why
this is the case beyond the suspicion that, as instruction in
concurrency theory has fallen out of favour in universities, so
too has appreciation for these basic constructs.

Finally, atomic primitive type wrappers are used enor-
mously more often than atomic reference wrappers. We suspect
this is due to the fact that developers rightly believe that
reference updates are atomic, but forget that a test-and-set
on a reference is not. Therefore, they mistakenly believe it
is not necessary to use the atomic reference wrappers. An
other explanation that we see is that AtomicInteger and
other primitive wrappers are relatively easy to understand and
to reason about in global invariants, so developers use them.
But the major use of AtomicReference is in the design
of lock-free algorithms, which are much harder to understand,
and therefore probably avoided by many developers.

Most Important Methods

This section discusses the results of the method usage
analysis for two widely-used classes: the Lock interface and
the ConcurrentHashMap.

Lock-Related Methods: The Lock interface is the most
widely used according to reference count, therefore we further
analyse which methods are used. As it is difficult to look at
an interface in isolation, we also consider the method counts
for the cluster around this interface. Specifically, we looked at
the Condition, Lock and ReadWriteLock interfaces and
the ReentrantLock and ReentrantReadWriteLock
classes.

The top 10 of methods, sorted by project counts can
be found in Table IV. The top 10 by reference counts is
not included because it only differs in the ranking of the
constructors. (as expected, objects are constructed less often
than that they are used).

As expected, the lock/unlock methods are by far the most
often used. Out of 6428 method invokations in total, the
various lock methods account for 1458 invokations and the

TABLE IV. TOP 10 LOCK RELATED METHODS BY PROJECT COUNT

refs projs method name and signature
260 26 ReentrantLock.<init>() : void

2333 21 Lock.unlock() : void
956 21 Lock.lock() : void
80 20 ReentrantReadWriteLock.<init>() : void

568 16 ReentrantLock.unlock() : void
312 16 ReadWriteLock.readLock() : Lock
295 16 ReadWriteLock.writeLock() : Lock
286 16 ReentrantLock.lock() : void
252 12 ReentrantReadWriteLock$WriteLock.unlock() : void
122 12 ReentrantReadWriteLock$WriteLock.lock() : void

various unlock methods for 3352 invokations. A good third of
the projects using locks also use condition variables, which is
not unexpected. What came as a surprise is that no less than
11 projects use isHeldByCurrentThread. This particular
method is not covered at all in the theoretical standard API
for locks, which consists of (variants of) lock/unlock plus
wait/notify.

By taking a look at the available sources, we could find 10
uses of the isHeldByCurrentThread method. In 4 cases,
the method is used in an assertion. In 3 other cases, the method
is used to actually find out if a lock is held or not. Finally,
there are 3 cases where the method is used inside what seems
to be a utility library that is part of the project.

Considering our particular application domain, the anno-
tation of API methods to be used in design by contract-
based verification tools, this means that our specification
techniques have to be able to describe the behaviour of this
isHeldByCurrentThread method.

ConcurrentMap-Related Methods: The most
important artefact by project count (33) is
the ConcurrentMap interface. This interface
extends java.util.Map, is in turn extended by
ConcurrentNavigableMap and implemented by
ConcurrentHashMap and ConcurrentSkipListMap.
Because the ConcurrentNavigableMap and
ConcurrentSkipListMap are used only twice, we
ignore them in the method analysis.

The analysis of this interface is complicated by the fact
that it extends the common java.util.Map interface from
the collection API. Hence, as discussed above, there are cases
where calls to the concurrent map are not counted as such, but
counted as calls to the Map interface instead.

Table V shows the top 10 of concurrent map methods.
Note that 33 projects create a concurrent map, while the
first non-constructor method is used only in 16 projects. This
suggests that the concurrent map is indeed used as a thread-
safe replacement of the sequential map. When looking at the
usage information of the four atomic methods that form the
difference between the Map and ConcurrentMap interfaces,
we get similar indications. If we add up their uses in the
concurrent map interface and implementation, we get:

method count projects
putIfAbsent(key,value) 241 19
remove(key,value) 68 12
replace(key,value) 13 8
replace(key,old,new) 35 8
total 357 21
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TABLE V. TOP 10 CONCURRENT MAP RELATED METHOD BY PROJECT
COUNT

refs projs method name and signature
991 33 ConcurrentHashMap.<init>() : void
124 18 ConcurrentHashMap.<init>(int) : void
447 16 ConcurrentMap.get(Object) : Object
285 16 ConcurrentHashMap.get(Object) : Object
205 15 ConcurrentHashMap.put(Object,Object) : Object
182 14 ConcurrentMap.putIfAbsent(Object,Object) : Object
171 13 ConcurrentMap.put(Object,Object) : Object
59 12 ConcurrentHashMap.<init>(int,float,int) : void
59 12 ConcurrentHashMap.putIfAbsent(Object,Object) : Object
87 11 ConcurrentMap.clear() : void

Thus according to our counts, only 21 out of 33 projects use the
new atomic methods, again indicating that ConcurrentMap
is typically used as a thread-safe replacement of the sequential
map.

Results

This section gives a list of the classes from the Java con-
currency API that we consider the most important according
to the results from our analysis. As a starting point, we merged
the analysis results of Tables II and III. To complete the list, we
also added their parent classes and implemented interfaces to
our list. Finally, because the various atomic classes are highly
similar, we added all of them instead of just the popular ones
(because a change to or a specification for a method in one of
these classes is easily carried over to the other atomic classes).

This list is relevant for application developers and
specifiers. In particular, further developments of the
java.util.concurrent API are best focussed on
these classes, and also annotation-based verification methods
should focus on annotating these classes first.

The resulting list is:

• From the lock hierarchy:
Condition, Lock, ReentrantLock, ReadWriteLock,
ReentrantReadWriteLock, ReentrantReadWriteLock$
WriteLock, and ReentrantReadWriteLock$ReadLock.

• From the atomic variable classes:
AtomicInteger, AtomicLong, AtomicReference, and
AtomicBoolean.

• From the concurrent data structures:
ConcurrentHashMap, ConcurrentMap,
CopyOnWriteArrayList, ArrayBlockingQueue,
LinkedBlockingQueue, and BlockingQueue.

• From the executor framework:
Executors, ExecutorService, Future, Thread-
PoolExecutor, Executor, ExecutionException,
ConcurrentLinkedQueue, FutureTask, Callable,
RejectedExecutionException, and ThreadFactory.

• From the remaining classes:
CountDownLatch and Semaphore.

To confirm the relevance of the classes on this list, we have
counted the number of projects from the Qualitas Corpus
set, whose use of concurrency classes is completely covered
by classes on our list of most frequently used classes. This
indicated that this list fully covers the concurrency-related

Fig. 2. Concurrency use in releases during time period.
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aspects of 29 out of the 53 projects that use Java’s concurrency
API.

Adding a few more classes to the list can make a big dif-
ference. For example, the coverage is increased to 39 out of 53
by adding the following classes: TimeUnit, CopyOnWriteAr-
raySet, ScheduledExecutorService, ScheduledThreadPoolEx-
ecutor, SynchronousQueue, ThreadPoolExecutor$AbortPolicy,
and TimeoutException.

The Uptake of the Concurrency Library

The historic releases in the Qualitas Corpus allowed us to
also look at the uptake of the framework over time. The analy-
sis gives us a lot of data points, with a system name, a system
version, a release date and the class counts. Unfortunately the
releases are not in all cases linear, meaning that computing
precisely how many systems use the concurrency library at a
certain point in time is difficult. E.g., if version 3.0 released in
January uses the library, while version 2.8 released in February
does not, should we say that the system does or does not use
the library in March?

We chose to answer the question in both ways. That is, for
each year we count the number of systems with at least one
release that uses the library and we also count the number of
systems with at least one release that does not use the library.
Hence, when a system phases in the library in some year,
you will see that the year before the transition it contributes
0 to the using count and 1 to the non-using count. During the
transition year, it contributes 1 to both counts and after the
transition year it contributes 1 to the using count and 0 to the
non-using count.

Further, this counting is not just based on using and
not using the library, but we also looked at several other
criteria, including the use of of Doug Lea’s prototype of the
java.util.concurrent library and its variants.

Figure 2 shows the counts for the years 2004-2011 (before
2004 the concurrency library was not standardized and our
data points end early in 2012). It displays the following five
criteria:
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criterium Matches releases during the year that . . .
releases . . . merely happen,
prototype . . . use one of the prototypes of the concur-

rency library,
official . . . use the official release of the official

concurrency library,
any . . . use either variant of the concurrency

library,
none . . . use none of the variants of the concur-

rency library.

The picture shows us several things, which are not necessarily
all surprising. For example, in each year there are typically
two systems that do not release during the year, which means
that there is more than a year between releases. Also, the first
year in which the concurrency library is used is 2006, which
is more than a full year after the release of the official version
in September 2004 as part of Java 5. Neither of which is
surprising, considering that development cycles of a year or
two are not unusual.

What can be considered strange is that the prototypes show
up during 2009-2011 only, instead of already being in use
before 2004. The use of the prototypes seems to decline, but
because our data ends early in 2012, this is guessing rather
than fact.

What is clearly visible is that the releases that do not use
the concurrency library have decreased over the years from all
12 to just 4 in 2012. Assuming the sample is representative,
this means that two-thirds of all systems released use the
concurrency library in some way.

V. CONCLUSION

Contributions/Summary

This paper describes how we have developed and used a
simple tool to analyse the use of the classes and methods of
the Java Concurrency library (java.util.concurrent).
The tool has been used on the Qualitas Corpus bench-
mark set as a collection of representative product-quality
Java projects. Both the tool and the results of the analysis
are available online, via https://fmt.ewi.utwente.nl/redmine/
projects/vercors-charter-histogram/wiki/Download.

We have presented and analysed the usage data obtained by
the analysis. In addition, we have used the historic information
in the Qualitas Corpus benchmark set to derive information
about the uptake of the concurrency library for Java. Most
results are as expected, but even so a few surprises show
up, showing that developers do not always use concurrency
mechanisms in the way they are taught in textbooks.

The data that is provided by the tool conclusively indicates
whether a class is used at all. However, because of difference
between dynamic and static typing, the analysis is not precise
enough to count all method usages. However, even though
the data about method usage is incompleteness, it still shows
important trends about method usage. The results from the
analysis can be used to determine where to put effort when
maintaining and improving the library, it can provide infor-
mation about the consequences of refactoring the library, or
deprecating certain methods, and it can be used by developers
of annotation-based analysis tools, to decide where to put

the effort in annotating library classes. The results from the
analysis have in particular been used to determine the focus
on the Java concurrency library for the VerCors project [11].

Related Work

Peer-reviewed large-scale code analysis is relatively un-
usual given the volume of code created and available via
various Open Source projects and websites. Within the realm
of researchers focused on reasoning about programs, one
would think that developers, as stakeholders, and code, as
the primary artefact about which we reason, would hold the
attention of researchers more.

Chalin has published two pieces of work whose results
directly, objectively derived from developer surveys or code
analysis, that directly impacted the semantics of the Java
Modelling Language. In his ICSE paper he summarizes a
developer survey which, in part, made the community realize
that an assertion semantics based upon strong validity was
necessary [17]. In the complementary paper by Chalin and
James, large-scale static code analysis drove the community to
decide to switch to a non-null reference default semantics to
relieve annotation burden. Our work differs from his mainly in
the sheer size and scope of our analysis, given he only analysed
700 KLOC of code, which is several orders of magnitude
smaller than our sample.

Raemaekers et al.’s work is quite similar to ours because
it focuses on answering a particular question, one that is
perhaps presumed known in the folklore, through objective
static analysis [18]. They analyse the contents of the Qualitas
Corpus as well as nearly two hundred proprietary systems to
which they have access. Their analysis is different from ours
because it is syntactic, applied to source rather than bytecode,
and is thus potentially erroneous and overcounts library use,
since import statements do not means that a class is actually
used.

Rocha and Valente gather empirical evidence about the use
of Java annotations by developers by statically analysing the
Qualitas Corpus as well [19]. They attempted to use the JDK’s
apt tool to analyse source, but quickly found the tool not up
to the task. They then developed a textual search program,
which they do not describe in any detail. Consequently, they
suffer the same flaws as Raemaekers et al.

Finally, Beckman et al. study nearly two millions lines
of code to understand how object protocols are used in
practice [20]. Their work is based upon a conservative static
analysis of source code, based upon their own static analyser.
Thus, their method is more similar to ours in both scale and
method than any of the other aforementioned papers.

Threats to Validity

The main threat to validity for our work is the question
of whether or not the code base we have analysed is truely
representative of what developers write in practice. We are
confident of our validity due to the size and scale of our
analysis, the recognized validity of other published studies
based upon the same corpus, and the fact that we precisely
statically analyse bytecode. Originally we had prepared to
analyse a much larger corpus, which included every Open
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Source system ever shipped by the Apache Foundation, IBM,
Sun, and the Eclipse Foundation. We have kept this corpus in
reserve, in case we need to do a larger-scale analysis in the
future.

Future Work

Future work breaks down into two categories: further
analyse the results of our analysis, and improve the tool and
analysis method to obtain more precise results.

In the first category, one of the open ends is the unexplained
popularity of the CountDownLatch. The main purpose of
this class is to synchronise between computations, which until
Fork/Join tasks were added in Java 7, was not easily achieved
between tasks. Therefore, we believe it will be interesting to
see if the new Fork/Join tasks will take over marketshare from
the old style tasks and/or the CountDownLatch. But given
the uptake periods observed before, it will take a few more
years until this effect might become visible.

In the second category, an obvious improvement would be
to make the counts produced by the tool more precise. As
mentioned above, the source of this incompleteness is that
the tool counts the method as being invoked on the static
receiver type of the object, instead of the dynamic type. It
would be interesting to extract the subtype hierarchy and to
count a method usage for every supertype that has the same
method, in order to avoid artificially low counts. In addition,
we could also integrate an efficient static analysis for method
call resolution that allows us to consider the dynamic type of
the receiver object in as many cases as possible.

In addition, the tool could also do the counting at different
levels. With the analysis in this paper, we obtained an overview
of which classes and methods are important to projects, but
projects themselves are almost always a collection of sub-
projects and it might be interesting to also look at that level.
However, this would increase the number of data items by
an order of magnitude, which requires that the analysis is
supported by a database, and that more advanced queries can
be made.

Finally, it would also be useful to extend the tool so that
it can automatically give use and coverage information for a
user-specified list of methods.
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B. Beckert and C. Marché, Eds., vol. 6528. Springer, 2010, pp. 10–30.

[4] M. Fähndrich, “Static verification for code contracts,” in SAS, ser.
Lecture Notes in Computer Science, R. Cousot and M. Martel, Eds.,
vol. 6337. Springer, 2010, pp. 2–5.

[5] M. Fähndrich, M. Barnett, and F. Logozzo, “Embedded contract lan-
guages,” in SAC, S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal,
and C.-C. Hung, Eds. ACM, 2010, pp. 2103–2110.

[6] D. R. Cok, “OpenJML: JML for Java 7 by extending OpenJDK,” in
NASA Formal Methods, ser. Lecture Notes in Computer Science, M. G.
Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi, Eds., vol. 6617.
Springer, 2011, pp. 472–479.

[7] A. Sarcar and Y. Cheon, “A new Eclipse-based JML compiler built
using AST merging,” in Software Engineering (WCSE), 2010 Second
World Congress on, vol. 2, dec. 2010, pp. 287 –292.

[8] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML tools
and applications,” STTT, vol. 7, no. 3, pp. 212–232, 2005.
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