
1

BEATS: Blocks of Eigenvalues Algorithm for
Time series Segmentation

Aurora González-Vidal, Payam Barnaghi, Senior Member, IEEE, and Antonio F. Skarmeta, Member, IEEE,

Abstract—The massive collection of data via emerging technologies like the Internet of Things (IoT) requires finding optimal ways to
reduce the observations in the time series analysis domain. The IoT time series require aggregation methods that can preserve and
represent the key characteristics of the data. In this paper, we propose a segmentation algorithm that adapts to unannounced
mutations of the data (i.e. data drifts). The algorithm splits the data streams into blocks and groups them in square matrices, computes
the Discrete Cosine Transform (DCT) and quantizes them. The key information is contained in the upper-left part of the resulting
matrix. We extract this sub-matrix, compute the modulus of its eigenvalues and remove duplicates. The algorithm, called BEATS, is
designed to tackle dynamic IoT streams, whose distribution changes over time. We implement experiments with six datasets combining
real, synthetic, real-world data, and data with drifts. Compared to other segmentation methods like Symbolic Aggregate approXimation
(SAX), BEATS shows significant improvements. Trying it with classification and clustering algorithms it provides efficient results. BEATS
is an effective mechanism to work with dynamic and multi-variate data, making it suitable for IoT data sources. The datasets, code of
the algorithm and the analysis results can be accessed publicly at: https://github.com/auroragonzalez/BEATS.

Index Terms—BEATS, SAX, data analytics, data aggregation, segmentation, DCT, smart cities

F

1 INTRODUCTION

Less than 1% of the data that are nowadays captured,
stored, and managed by means of the Internet of Things
(IoT) and Big Data technologies is being analysed [1]. There
exist several challenges in the analysis of data such as
high dimensionality, high volume, noise, and data drifts.
Data provided by IoT sources (sensory devices and sens-
ing mechanisms) are multi-modal and heterogeneous. Since
all of the above mentioned features hinder the execution
and generalization of the algorithms, many higher-level
representations or abstractions of the raw data have been
proposed to address these challenges.

In this paper, we attempt to aggregate and represent
large volumes of data in efficient and higher-granularity
form. The latter is an attempt to create sequences of patterns
and data segments that occur in large-scale IoT data streams.
The contribution of our approach is to do such representa-
tion on-the-fly since usually data treatment has to be done
very quickly, adapting to unpredictable changes in the data
or even without prior knowledge.

A use case where large and dynamic datasets are present
is smart cities. Data aggregation and pattern representation
enables us to find underlying patterns, providing further
understanding of the city data. Big Data analytics, machine
learning and statistical techniques are used to predict, clas-
sify and extract information that empowers machines with
decision-making capabilities.

IoT data is usually related to physical objects and their
surrounding environment. Normally, IoT data is collected

• Aurora González-Vidal and Antonio F. Skarmeta are with the Department
of Information and Communications Engineering, University of Murcia,
Spain.
email: aurora.gonzalez2@um.es

• Payam Barnaghi is with the Institute for Communication Systems, Uni-
versity of Surrey, UK.

together with a timestamp . The collection of several points
spaced in time, having a temporal order is known as time
series data. Time series can be analysed using various tech-
niques such as clustering, classification and regression (as
inputs of models) in the fields of data mining, machine
learning, signal processing, communication engineering,
and statistics.

Our proposed method is based on splitting time series
data into blocks. These blocks can be either overlapping or
non-overlapping and they represent subsets of the whole
data structure. The method synthesizes independently the
information that the blocks contain. It reduces the data
points while still preserving their fundamental characteris-
tics (loosing as little information as possible). We propose
a novel technique using matrix-based data aggregation,
Discrete Cosine Transform (DCT) and eigenvalues charac-
terization of the time series data. The algorithm is called
Blocks of Eigenvalues Algorithm for Time series Segmen-
tation (BEATS). We compare BEATS with the state-of-the
art segmentation and representation algorithms. We also
compare and evaluate the approaches in two of the most
common machine learning tasks, classification and cluster-
ing, by comparing metrics between each of the transformed
datasets. We also present a use case that is related to smart
cities showing the suitability of BEATS for real time data
stream analysis. This is shown by explaining how to apply
it within a Big Data framework.

The remainder of the paper is organized as follows:
Section II describes the related work. Section III motivates
the need of a new approach. Section IV details the algorithm
and briefly explains the mathematical background of the
work. Section V includes the evaluations in several scenarios
using different datasets and a use-case related to smart
cities. Section VI discusses the results of the experiments
and Section VII concludes the paper and describes the future

2

work.

2 RELATED WORK

There are several approaches to represent a numeric time-
dependent variable (i.e. a time series). The most basic one is
to compute the mean and standard deviation among other
statistical measures (e.g. variance, mode). Using those statis-
tics it is not possible to represent all the information that
the time series contains. A classical example that supports
this claim is the Anscombe’s Quartet, [2] that shows how
four very different datasets have identical simple statistical
properties: mean, variance, correlation and regression coef-
ficients.

In order to reduce the number of data points in a series
and create a representation, segmentation methods can be
used as a pre-processing step in data analytics.

Definition 1. Segmentation
Given a time series T containing n data points, seg-
mentation is defined as the construction of a model T̄ ,
from l piecewise segments (l < n) such that T̄ closely
approximates T [3].

The segmentation algorithms that aim to identify the
observation where the probability distribution of a time
series changes are called change-point detection algorithms.
Sliding windows, bottom-up, and top-down methods are
popular change-point detection based approaches. For slid-
ing windows, each segment is grown until it exceeds an
error threshold. The next block starts with the new data
point not included in the newly approximated segment and
so on. In the bottom-up methods, the segments of data
are merged until some stopping criteria is met and top-
down methods partition the time series recursively until a
stopping criteria is met [4].

Another way of classifying the algorithmic methods for
segmentation is considering them as online and offline solu-
tions [5]. While offline segmentation is used when the entire
time series is previously given, the online segmentation
deals with points that arrive at each time interval. In offline
mode, the algorithm first learns how to perform a particular
task and then it is used to do it automatically. After the
learning phase is completed, the system cannot improve or
change (unless we consider incremental learning or retrain-
ing). On the other hand, online algorithms can adapt to pos-
sible changes in the environment. Those changes are known
as “drifts”. Whereas top-down and bottom-up methods can
only be used offline, sliding windows are applicable to both
circumstances.

After segmentation, the representation of the time series
based on the reduction can be regarded as an initial step
that reduces the load and improves the performance of
tasks such as classification and clustering. The use of such
algorithms can be generally regarded in two ways:

• Representation methods: Extracting features from
the whole time series or its segments and applying
machine learning algorithms (Support Vector Ma-
chines, Random Forest, etc) in order to classify them
or compute the distance between the time series
representation for clustering.

• Instanced based methods (similarities): Computing
the distance matrix between the whole series and
using it for clustering or classification applying a k-
nearest neighbour approach [6] by finding the most
similar (in distance) time series in the training set.

BEATS is based on the first perspective since as stated
in Bagnall et al The greatest improvement can be found through
choice of data transformation, rather than classification algorithm
[7]. However, we review the work made using both ap-
proaches since the ultimate goal of our time series repre-
sentation is to make the time series data more aggregated
and better represented for further processing.

2.1 Whole series similarities

Similarity measures are used to quantify the distance be-
tween two raw time series. The list of approaches is vast
and the comparison between well-known methods has lead
to the conclusion that the benchmark for classification is dy-
namic time warping (DTW) since other techniques proposed
before 2007 were found not significantly better [8].

Similar results have been stated in [9] when comparing
DTW with more recent distance measures as: Weighted
DTW [10], Time warp edit (TWE) [11] and Move-split-merge
(MSM) [12] together with a slight accuracy improvement
(1%) when using Complexity invariant distance (CID) [13]
and Derivative transform distance (DTDC) [14].

When computation time is not a problem, the best ap-
proach is to use a combination of nearest neighbour (NN)
classifiers that use whole series elastic distance measures
in the time domain and with first order derivatives: Elastic
ensemble (EE) [15]. However, if a single measure is required
a choice between DTW and MSM is recommended, with
MSM preferred because of its overall performance.

In the clustering domain, the number of evaluated sim-
ilarity distances is even higher, due to the nature of the
problem. An extensive description of similarity measures
can be found in [16]. DTW and CID are also used in
clustering the raw time series [17] [18].

2.2 Intervals

Various algorithms focus on deriving features from intervals
of each series. For a series of length m, there are m(m−1)/2
possible contiguous intervals.

Piecewise Linear Representation (PLR) [19] methods are
based on the approximation of each segment in the form of
straight lines and include the perceptually important points
(PIP), Piecewise Aggregate Approximation (PAA) [20], and
the turning point (TP) method [21].

The state-of-the-art models Time Series Forest (TSF) [22]
and Learned pattern similarity (LPS) [23] generate many
different random intervals and classifiers on each of them,
ensembling the resulting predictions.

TSF trains several trees in a random forest fashion but
each tree uses as data input the 3

√
m statistics features

(mean, standard deviation and slope) of the
√
m randomly

selected intervals.
LPS can be regarded as an approximation of an autocor-

relation function. For each series, they generate a random
number l of series by randomly selecting a fixed number w

3

of elements of the primitive one. A column of the generated
l ∗ n × w matrix is chosen as the class and a regression tree
is built (autocorrelation part). After that, for every series the
number of rows of the matrix (originated by the raw series)
that reside in each leaf node is counted. Concatenating these
counts the final representation of the series is formed. Then,
a 1-NN classifier is applied to process the time series data.

2.3 Symbolic Aggregate approXimation (SAX)

Among all the techniques that have been used to reduce the
number of points of a time series data, SAX has specially
attracted the attention of the researchers in the field. SAX
has been used to asses different problems such as finding
time series discords [24], finding motifs in a database of
shapes [25], and to compress data before finding abnormal
deviations [26] and it has repeatedly been enhanced [27],
[28], [29].

SAX allows a time series of length n to be reduced to a
string of length l (l < n). The algorithm has two parameters:
window length w and alphabet size α, and it involves three
main steps [30]:

• Normalization: standardizes the data in order to
have a zero mean and a standard deviation of one;

• Piecewise Aggregation Approximation (PAA): di-
vides the original data into the desired number of
windows and calculates the average of data falling
into each window; and

• Symbolization: discretizes the aggregated data using
an alphabet set with the size represented as an inte-
ger parameter α, where α > 2.
As normalized time series data assumes a Gaussian
distribution for the data, the discretization phase
allows to obtain a symbolic representation of the data
by mapping the PAA coefficients to a set of equiprob-
able breakpoints that are produced according to the
alphabet size α. The breakpoints determine equal-
sized areas under the Gaussian curve [31] in which
each area is assigned to an alphabet character.

Since SAX representation does not consider the segment
trends, different segments with similar average values may
be mapped to the same symbols. Among the multiple en-
hancements done to SAX (see related work section of [28]
and [29]) we highlight the following works:

• Extended SAX (ESAX) [27]: adds maximum and min-
imum along with the original SAX representation.

• SAX Trend Distance (SAXTD) [28]: defines the trend
distance quantitatively by using the starting and end-
ing point of the segment and improved the original
SAX distance with the weighted trend distance.

• SAX with Standard Deviation (SAXSD) [29]: adds
the standard deviation of the segment to its SAX
representation.

The Vector Space Model (VSM) is combined with SAX
in [32] in order to discover and rank time series patterns by
their importance to the class. Similarly to shapelets, SAX-
VSM looks for time series subsequences which are charac-
teristic representatives of a class. The algorithm converts
all training time series into bags of SAX words and uses

tf-idf weighting and cosine similarity in order to rank by
importance the subsequences of SAX words according to
the classes.

2.4 Shapelets
Shapelets are subsequences of time series that identify with
the class that the time series belongs to.

The Fast shapelets (FS) [33] algorithm discretises and
approximates shapelets using SAX. The dimensionality of
the SAX dictionary is reduced through masking randomly
selected letters (random projection).

Learned shapelets (LS) [34] optimizes a classification
loss in order to learn shapelets whose minimal euclidean
distances to the time series are used as features for a logistic
regression model. An improvement of such model is the use
of DTW instead of euclidean distance [35].

The Fused LAsso Generalized eigenvector method
(FLAG) [36] is a combination of the state-of-the-art feature
extraction technique of generalized eigenvector with the
fused LASSO that reformulates the shapelet discovery task
as a numerical optimization problem instead of a combina-
torial search.

Finally, we take into consideration the clustering algo-
rithm k-shape [37], a centroid-based clustering algorithm
that can preserve the shapes of time-series sequences. They
capture the shape-based similarity by using a normalized
version of the cross-correlations measure and claims to be
the only scalable method that significantly outperforms k-
means.

2.5 Ensembles
So far we have reviewed how data transformation tech-
niques are applied to different algorithms in order to im-
prove their accuracy and to reduce the computation time.
COTE algorithm [38] uses a collective of ensembles of clas-
sifiers on different data transformations.

The ensembling approach in COTE is unusual because
it adopts a heterogeneous ensemble rather than resampling
schemes with weak learners. COTE contains classifiers con-
structed in the time, frequency, change (autocorrelations),
and shapelet transformation domains (35 in total) combined
in alternative ensemble structures. Each classifier is assigned
a weight based on the cross validation training accuracy, and
new data are classified with a weighted vote.

The results of evaluations in COTE show that the simple
collective formed by including all classifiers in one ensemble
is significantly more accurate than any of its components.

3 MOTIVATION AND CONTRIBUTIONS

As it can be seen among the segmentation techniques that
we referenced in section 2, we have mentioned not only the
representation techniques but also how the whole classifi-
cation and clustering procedure is performed by combin-
ing representation with machine learning algorithms. We
intended to show that our representation method is an
efficient alternative segmentation method to be employed
in time series data processing.

One commonality of the several studies that we have
reviewed is that most of the existing algorithms use normal-
ization that re-scales the data.

4

However, there are few studies that do not apply re-
scaling and normalization. BEATS uses a non-normalized
algorithm for constructing the segment representation.

The concept drift appears when a model built in the past
is no longer fully applicable to the current data. Concept
drift is due to a change in the data distribution according to
a single feature, to a combination of features or in the class
boundaries, since the underlying source generating the data
is not stationary.

The potential changes in the data might happen in:

• The prior probability P(yi);
• The conditional probability P(x|yi);
• The posterior probability P(yi|x); and
• A combination of the above.

Where x is the predicted data and yi is the observed
data.

These changes can cause two kinds of concept drift: real
and virtual [39].

If only the data distribution changes without any effect
on the output, i.e. changes in P(yi) and/or P(x|yi) that does
not affect P(yi|x), it is called virtual drift.

When the output, i.e. P(yi|x), also changes it is called real
concept drift.

In the IoT domain and especially in smart city data anal-
ysis, we are interested in the second type of drift which will
be referred as data drift in this paper [40]. Some examples
where a data drift may occur in smart cities are related to the
replacement of sensors (different calibration), sensor wear
and tear [41] or drastic changes to the topics of discussion
in social media used for crowdsensing [42].

There are several existing methods and solution ad-
dressing the concept drift for supervised learning [41], and
some recent ones also for unsupervised learning [40]. How-
ever, we focus on the initial step of the analysis (i.e pre-
processing). We claim that not only the model has to be
adaptive but also the way that we segment the inputs has
to take into account the dynamics of the data and be able to
efficiently deal with the changes in the structure of the data.

A considerable challenge in segmentation is to find a
common way to represent the data. This is due to the variety
of ways to formulate the problem in terms of defining the
key parameters (number of segments, segmentation starting
point, length of segments, error function, user-specified
threshold, etc.).

The first step in SAX algorithm is assuming that for a
particular problem that we deal with, the data follows a
normal distribution or at least we have a sufficiently large
number of samples in order to say that the distribution of
the data is approximately normal, appealing to the central
limit theorem [43]. Nevertheless, this is a strong assumption
because there are many scenarios in which this might not be
the case; for example:

• Outliers and noise: data from physical devices usu-
ally contains noise and outliers that affect the identi-
fication of the correct parameters of the distribution.

• Data follows different distribution.
• Fast data: two of the V’s from the 7V’s Big Data

challenges [44] are velocity and variety. Traditionally
in data mining, batch data is processed in an offline

0 50 100 150 200
Time

M
e
a
s
u
re

Fig. 1. An example of a time series divided into blocks of 64 observations

manner using historical data. However, in IoT ap-
plications we need to consider short-term snapshots
of the data which are collected very quickly. Thus,
we need adaptive methods that catch up with the
changes during their operation.

All mentioned algorithms lack of at least one of such 3
problems too. We have developed an algorithm that does
not require normalization of the data. The latter will also
help to preserve the value of the data points (i.e. magni-
tude of the data). The lack of sensitivity to magnitude in
the algorithms that make assumptions about the normal-
ized distribution and use Z-normalization makes them less
efficient in analysing correlation and regression. Another
requirement is the application of the algorithm in an online
way and using sliding windows. Nonetheless, we have to be
able to compute the distance between the aggregated time
series. Considering these requirements we have designed
the BEATS algorithm.

4 BEATS PRESENTATION

This section describes our proposed algorithm and discusses
its mathematical and analytical background. We present
BEATS and show the effect of each step of the algorithm
in a block of data.

4.1 BEATS construction

Transforms, in particular integral transforms, are used to
reduce the complexity in mathematical problems. In order to
decorrelate the time features and reveal the hidden structure
of the time series, they are transformed from the time do-
main into other domains. Well-known transformations are
the Fourier Transform, which decomposes a signal into its
frequency components, and the Karhunen-Loeve Transform
(KLT) which decorrelates a signal sequence.

Discrete Cosine Transform (DCT) is similar to Discrete
Fourier Transform (DFT) but uses cosines obtained from
the discretization of the kernel of the Fourier Transform.
DCT transfers the series to the frequency domain. Among
the four different cosine transformations classified by Wang
[45], the second one (i.e. DCT-II) is regarded as one of
the best tools in digital signal processing [46] (times series
can be regarded as a particular case of signals). Due to its
mathematical properties such as unitarity, scaling in time,
shift in time, the difference property, and the convolution
property, DCT-II is asymptotically equivalent to the KLT
where under certain (and general) conditions KLT is an

5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fig. 2. The heatmap of the matrix obtained from the first block of time
series data

optimal but impractical tool to represent a given random
function in the mean square error sense (MSE). KLT is said
to be an optimal transform because:

• It completely decorrelates the signal in the transform
domain;

• It minimizes the MSE in bandwidth reduction or data
compression;

• It contains the most variance (energy) in the fewest
number of transform coefficients; and

• It minimizes the total representation entropy of the
sequence.

The details of the proof of the above statements can be
found in [46]. Understanding the properties of the DCT, we
use it to transform our time series data.

We apply the transformation essentially by using the
compression of a stream of square 8x8 blocks, taking ref-
erence from the standards in image compression [47] where
DCT is widely used (e.g. JPEG). Since 8 is a power of 2, it
will ease the performance of the algorithm.

As an illustration, we provide an example. We have
divided the time series shown in Fig. 1 as blocks of 64
observations that are shown using a dashed red line. If we
arrange the first block row-wise into a squared matrix M ,
we can visualize that the information is spread through the
matrix as the heatmap shown in Fig. 2.

It should be noted that while our raw time series data is
represented in value/time, a 2D transformation is applied
to the data. This is based on the assumption that in each
block, the neighbour values of a selected observation mij

(eg. mi−1j ,mij−1,mi−1j−1 are correlated. In time series
with very rapid changes in the data, small block sizes will
be more suitable and if the changes are not very rapid size
block can be larger. In this paper, we use a common 8 × 8
block size for our description.

Intuitively, each 8×8 block includes 64 observations of a
discrete signal which is a function of a two-dimensional (2D)
space. The DCT decomposes this signal into 64 orthogonal
basis signals. Each DCT coefficient contains one of the 64
unique spatial frequencies which comprise the spectrum of the
input series. The DCT coefficient values can be regarded as
the relative amount of the spatial frequencies contained in
the 64 observations [47].

Let M be the 8 × 8 input matrix. Then, the transformed
matrix is computed as D = UMUT, where U is an 8 × 8
DCT matrix. U coefficients for the n× n case are computed

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Fig. 3. The heatmap of the DCT matrix

as shown in Eq. 1:

Uij =

{√
2
2 i, j = 1

cos
(
π
n (i− 1)(j − 1

2)
)

i, j > 1
(1)

The formula of Eq. 1 is obtained using Eq. 5 (Appendix A).
Finally, we multiply the first term by 1√

2
in order to make

the DCT-II matrix orthogonal.
After applying DCT, the information is acumulated in its

upper-left part, as it is shown in the heatmap in Fig. 3.
Each of the 64 entries of the matrix D is quantized by

pointwise division of the matrices D and Z, where the
elements of the quantization matrix Z are integer values
ranging from 1 to 255.

Quantization is the process of reducing the number
of bits needed to store an integer value by reducing the
precision of the integer. Given a matrix of DCT coefficients,
we can divide them by their corresponding quantizer step
size and round it up depending on its magnitude, nor-
mally 2 decimals. If the maximum of the DCT matrix is
small, the number of decimals is selected by the operation
|blog10maxc − 4|, where blog10maxc returns the position
of the first significant figure of the maximum number in
the transformed matrix D. This step is used to remove the
high frequencies or to discard information which is not very
significant in large-scale observations.

The selected matrix Z is the standard quantization ma-
trix for DCT [48].

After the quantization process, a large number of zeroes
appears in the bottom-right position of the matrix Q = D

Z ,
i.e. it is a sparse matrix.

We extract the 4 × 4 upper-left matrix that contains the
information of our 64 raw data and compute the eigen-
values, wich in our case are: 0.18605, 0.02455, 0.00275 +
0.00843i, 0.00275− 0.00843i.

Using BEATS so far we have significantly reduced the
number of points of our time series from 64 to 4 but we
have also converted its components into complex numbers.
These complex numbers (eigenvalues vector) represent the
original block in a lower dimension. This eigenvalues vector
is used in BEATS to represent the segments and hence, it is
the potential input for the machine learning models. How-
ever, it is not always possible to feed machine learning algo-
rithms with complex numbers and the eigenvalues could be
complex numbers. To solve this problem, we compute the
modulus of the eigenvalues and remove the repeated ones
(they are presented in pairs so the information would be
repeated).

In case that there are no complex numbers in the output

6

Fig. 4. BEATS is shown step by step with an example

of BEATS, we will conserve the first three values, since the
latter values are sorted in a descending order. This means
that we have represented the original 64 observations as
three values. In our example, the final representation (mod-
ulus of the eigenvalues) consists of 0.1860, 0.0246, 0.0085.

The BEATS process is summarized in Fig. 4.
We also consider the relevance of the direct computation

of the eigenvalues of the 8 × 8 matrix M in order to assure
that the DCT and its quantization contribute to the aggrega-
tion of the information. We refer to this method throughout
the paper as Eigen.

4.2 Complexity analysis of BEATS

The time complexity is represented as a function of the input
time series size (n). Regarding the different steps of BEATS,
the processes that have a key impact on the run time are
DCT, which is a double matrix multiplication, i.e O(n3);
pointwise matrix division for the quantization, i.e. O(n2)
and eigenvalue computation, i.e. O(β3), where n is the size
of the matrix block (square root of the amount of data that
compounds each block), and β (≤ n) is the size of the
extracted matrix from which we compute the eigenvalues.
Although we have set the values to n = 8 and β = 4, we
compute the complexity in general terms.

So far, the dominant task regarding the complexity is
the DCT function. For about the past 40 years, many fast
algorithms have been reported to enhance the computation
of discrete cosine transforms [49]. In order to improve the
efficiency of the algorithm, we have implemented a popular
way of computing the DCT of our N-points time series.
We use a 2N-points Fast Fourier Transform (FFT). This has
reduced the complexity to O(n2log(n)) [50].

Hence, for each block we have a complexity of
O(n2log(n)+β3). LetN be the size of our time series data; if
we do not use sliding windows, we will apply the algorithm
N
n×n times, so the complexity is N

n×nO(n2log(n) + β3). As
we can see, the complexity of the algorithm grows linearly

depending on the number of blocks where we have to apply
the computations.

By applying multiple processing architectures, the com-
plexity problem nowadays can also depend on how effi-
ciently we can parallelize the processing load. Parallelising
the BEATS algorithm is very simple since the computations
are block dependent and no information out of the block is
required for each individual calculation. This makes the
process ideal to be done using graphics processing units
(GPUs), and thereby minimising the latency of the compu-
tation.

5 EXPERIMENTAL EVALUATION

We perform two data mining processes: classification and
clustering. Following our approach the data is going to
be transformed by the two methods: BEATS and Eigen,
summarized as follows:

• BEATS: 8 × 8 matrix blocks of the data, discrete
cosine transformation, and quantization of each of
the matrices, reduction to a 4× 4 matrix, removal of
the duplicated modulus of the complex eigenvalues
and selection of the first three values.

• Eigen: 8 × 8 matrix blocks of the data, computation
of the eigenvalues of the matrices, removal of the
duplicated modulus of the complex eigenvalues, and
selection of the first three values.

Having introduced several algorithms in section 2, we
compare BEATS and Eigen with common existing state-of-
the-art methods that show an improvement in comparison
with the primitive ones.

The algorithms’ code has been accessed from the au-
thors’ public repositories when available. When not, R soft-
ware and Python have been used in order to program them.

We perform each of the techniques using several datasets
in order to analyse the type of problems that our algorithm
performs better than other methods. It is possible to use
sliding windows for our method. In the experiment, we con-
sider a slide of 8 observations. The evaluations also include
a cross validation step in order to find their parameters.

A smart cities use case where we cluster traffic data
is also presented. The intention is to see how BEATS is
suitable for different scenarios including online smart cities
applications.

5.1 Datasets
We give a short explanation of the datasets that are used
to evaluate the algorithm. Four of the datasets are ob-
tained from the UCR Time Series Classification Archive [51]:
Arrow Heads, Coffee, FordA and ProximalPhalanxOutlin-
eAgeGroup . The Lightning7 dataset is taken from the UC
Irvine Machine Learning Repository [52]. For each dataset
we use, when provided, the train sample in order to find
the hyperparameters of the model and then, we test their
classification performance with the test set. For clustering
we use only the training set. When the split is not provided,
which is the case in one of the datasets (the randomly
generated by us), we use 75% of the samples for the training
set and 25% of the samples for testing.

The datasets that are used in the experiments are briefly
described below.

7

Arrow Heads (real and without drifts)
The Arrow Heads dataset1 contains 211 series having 192
observations classified into three different classes. The ar-
rowhead data consists of outlines of the images of arrow-
heads [53]. The shapes of the projectile points are converted
into a time series using the angle-based method and they are
classified based on shape distinctions such as the presence
and location of a notch in the arrow. The classification
of projectile points is an important topic in anthropology.
According to our method, we reduced the dataset to 72
observations.

Lightning7 (real and long)
We use the Lightning7 dataset that gathers data related to
transient electromagnetic events associated with the light-
ning natural phenomenon. Data is gathered with a satellite
with a sample rate of 800 microseconds and a transforma-
tion is applied in order to produce series of length 637.

The classes of interest are related to the way that the
lightning is produced 2.

Initially, each measurement (time series) carries 320 vari-
ables. Using our method, we have reduced the dataset to 96
variables.

Random LHS Generator Lift (synthetic and with drifts)
A dataset with data drifts is also used in our experiments.
In this case, we have evaluated the algorithms with the data
generated by using the code from the Repository3 described
in [54], which was first used in [40]. The drift is introduced
both by shifting the centroids in randomized intervals and
by changing the data distribution function used to ran-
domly draw the data from the centroids that are selected
through Latin Hypercube Sampling (LHS). This dataset is
created for smart cities data analysis and allows to create
sample datasets that simulate dynamic and multi-variate
data streams in a smart environment. The data generator is
developed in the context of the CityPulse smart city project
4.

The number of centroids is set to ten and we generated
300 series that follow three different distributions (trian-
gular, Gaussian and exponential). Initially, each set (time
series) carries 192 variables. Using our method, we reduced
the dataset to 51 variables.

Coffee (real-world data)
The Coffee dataset 6 contains 56 series having 286 observa-
tions classified into two different classes. The Coffee data
consists of the series generated by the Fourier transform
infrared spectroscopy of two species of coffee: Arabica and
Robusta. Originally, such method intended to serve as an
alternative to wet chemical methods for authentication and
quantification of coffee products [55]. Using BEATS, we
reduced the dataset to 57 observations which represent the
patterns that occur in the dataset. This can be used for
further analysis and classification of coffee types.

1. http://www.cs.ucr.edu/∼eamonn/time series data/
2. http://www.timeseriesclassification.com/description.php?

Dataset=Lightning7
3. https://github.com/auroragonzalez/BEATS/tree/master/data/

random LHS generator drift
4. http://www.ict-citypulse.eu

FordA (real-world data)
The FordA dataset 6 contains 4921 series having 500 obser-
vations each classified into two different classes. The data
was generated on the context of a classification competition.
The problem is to diagnose whether a certain symptom
exists in a automotive subsystem using the engine noise
as a measurement. Both training and test data set were
collected in typical operating conditions, with minimal noise
contamination. Using BEATS, we reduced the dataset to 100
observations. The BEATS observations are more resilient to
noise and provide an efficient way to discover and extract
patterns from real-world raw data.

ProximalPhalanxOutlineAgeGroup (real-world data from im-
ages)
The ProximalPhalanxOutlineAgeGroup dataset 6 contains
605 series having 80 observations each classified into three
different classes. The dataset was created [56] for testing the
efficacy of hand and bone outline detection and whether
these outlines could be helpful in bone age prediction. The
problem involves using the outline of one of the phalanges
of the hand in order to predict whether the subject is one
of three age group.sUsing BEATS, we reduced the dataset
to 9 observations per subject. This observations provide a
reduced feature set that ease the analysis tasks.

5.2 Classification
Classification of time series analysis is a classic problem
consisting of building a model based on labelled time series
data and using the model to predict the label of unlabelled
time series samples.

The applications of this technique are widely extended in
many areas, ranging from epilepsy diagnosis based on time
series recorded by electroencephalography devices (electri-
cal activity generated by brain structures over the scalp) [57]
to uncovering customers’ behavior in the telecommunica-
tion industry [58], and predicting traffic patterns in a smart
city environment.

After transforming our data using BEATS and Eigen, we
followed the general data modelling process proposed in
[59] to classify the series: standarization, splitting the dataset
into training and test sets, choosing the model, selecting
the best hyperparameters of each model using 10-fold cross
validation on the training set and checking the accuracy of
the model using the test set. With respect to the methodol-
ogy followed in [59], we improve the way of looking for
the hyperparemeters of the algorithms using the python
package optunity since it contains various optimizers for
hyperparameter tuning.

Among other options like grid search, random search
and genetic algorithms, we have choosen particle swarm im-
plementation since it is shown to surpass the performance
of other solutions [60].

The models that we use to combine with BEATS and
Eigen are the widely known Random Forest (RF) and
Support Vector Machines (SVM) with Radial Basis Funcion
Kernel.
Whereas Random Forest deals with small n large p-problems,
high-order interactions and correlated predictor variables,
SVMs are more effective for relatively small datasets with

8

0

5

10

Arrow H Lighting7 Random LHS Coffee Ford A Proximal

dataset

lo
g

(s
e

c
o

n
d

s
) Models

BEATS−SVM
SAX−VSM
Eigen−SVM
TSF
DTW−1NN
FLAG
COTE

Fig. 5. Running time (log(sec)) and programming language of the algo-
rithms

fewer outliers. Generally speaking, Random Forests may
require more data. Both of the algorithm show better per-
formance when combined with SVM.

The tuning of SVM has been done without deciding the
kernel in advance. That means, the kernel (linear, polyno-
mial or RBF) is considered as an hyperparameter.

According to the discussion in section 2, we compare our
method with:

• Original time series (i.e. raw data): DTW with 1-NN
classification since, after many trials, it is still the
benchmark of comparison for distance based classi-
fication. Having a complexity of O(n2) that under
certain circunstances [61] could be reduced to O(n)
using lower bounds such as LBKeogh or LBImproved
[62].

• Intervals: We choose TSF in order to make the com-
parison since it is more modern and quicker than the
rest.
Its complexity isO(t∗m∗n∗logn), where t = number
of trees and m = number of splits or segments.

• Symbolic approximations: In the classification task,
we use SAX-VSM. The complexity is linear: O(n).

• Shapelets: FLAG is the newest, the quickest and
claims to be better than its predecessors.
Its complexity is O(n3).

• Ensembles: COTE. It is an ensemble of dozens of
core classifiers many of which having a quadratic,
cubic or even bi-quadratic complexity. It is the most
computationally expensive in this list.

The results are shown in Table 1. It is important to
mention that not only accuracy results but also the time that
it takes the algorithm to run both training and test phases
including input transformation, has improved. This run-
time is shown in Fig. 5 , where a logarithmic transformation
is applied to the data in order to improve visibility.

We have depicted both metrics: accuracy and running
time in a plot that summarises the results over all the
datasets. Both metrics have been scaled per dataset and we
have computed the average performance per model that is
represented by the bigger points in the plot.

In order to make a more consistent analysis of the results,
we have generated 100 Random LHS Generator Lift datasets
and the model accuracy of the models using violin plots
(see Fig. 6) , which together with the regular statistics that

● ●

●

0.4

0.5

0.6

0.7

0.8

0.9

BEATS DTW SAX TSF FLAG COTE

Model

Ac
cu

ra
cy

 (p
er

ce
nt

ag
e)

Fig. 6. Classification accuracy on the 100 randomly generated datasets

boxplot provide they show the probability density of the
data at different values of accuracies. While the differences
between BEATS-SVM, TSF and COTE are not statistically
significant (p-value = 0.7 > 0.05), BEATS-SVM is very
quick in comparison to COTE and that BEATS is also more
versatile than the rest since it can be combined with any
classification algorithms.

5.3 Clustering

Clustering is used to identify the structure of an unla-
beled dataset by organising the data into homogeneous
groups where within-group-object similarity is minimized
and between-group-object dissimilarity is maximized. The
process is done without consulting known class labels.
Clustering is an unsupervised machine learning method. In
particular, time series clustering partitions time series data
into groups based on similarity or distance; so that time
series data in the same cluster are similar.

Clustering has tackled tasks such as the assignment of
genes with similar expression trajectories to the same group
[63]. The creation of profiles of the trips carried out by
tram users [64] or the acquisition of energy consumption
predictions by clustering houses [65] are among examples
of using clustering methods.

After transforming our data using BEATS and Eigen,
we applied the connectivity based algorithm hierarchical
agglomerative clustering and the centroid based algorithm k-
means to cluster the time series datasets. In the hierarchical
clustering, the selected agglomerative method is complete
linkage, meaning that the distance between two clusters is
the maximum distance between their individual compo-
nents (in each time series). Hierarchical clustering seems to
be a better partner for both of them.

The dissimilarity matrix contains the distances between
the pairs of time series. We use the cosine dissimilarity for
the rest of the segmentations (BEATS and Eigen). The cosine
dissimilarity is calculated as one minus the cosine of the
included angle between elements of the time series (see Eq.
2).

9

TABLE 1
Accuracy of each method using as inputs each of the segmented time series

Model

dataset
Arrow Heads Lightning7 Random

Generator
Coffee Ford A Proximal

BEATS-SVM 0.81 0.7 0.75 1 0.75 0.85
Eigen-SVM 0.79 0.72 0.73 1 0.74 0.8
DTW-1NN 0.67 0.75 0.71 0.87 0.66 0.81
SAX-VSM 0.68 0.59 0.52 0.96 0.09∗ 0.75
TSF 0.73 0.75 0.75 0.97 0.75 0.85
FLAG 0.57 0.76 0.67 1 0.73 0.64
COTE 0.78 0.8 0.7 1 0.75 0.83

*The bag of words generated by a wide mayority of the test subjects is not related to the ones generated by the train step. This implies that their TF*IDF weights
are not computed and it is not possible to compute the cosine similarity. In consequence, the method is not valid for many of the cases, producing the reported
bad results.

dissimilarity = 1− XY

‖X‖ ‖Y‖
= 1−

∑n
i=1XiYi√∑n

i=1X
2
i

√∑n
i=1 Y

2
i

.

(2)
Finally, for both methods we have used a fixed number

of clusters. As we were aware of the classification groups
(our data is labeled), we applied the algorithms setting
apriori the number of clusters k and used the silhouette
coefficient as a metric for measuring the cluster quality.

The silhouette coefficient is an internal measure that
combines the measurement of cohesion and separation.
Cluster cohesion measures how closely related the objects
in a cluster are. Cluster separation measures how well
separated the clusters are from each other. The silhouette
coefficient for a subject i is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (3)

where a(i) is the average distance between i and each of
the points of the assigned cluster and b(i) is the average
distance between i and each of the points of the next best
cluster. This value can be used to compare the quality of
different cluster results.

From the definition it is clear that s(i) ∈ [−1, 1]. Mean-
while a silhouette coefficient value closer to 1 means that
the clustering is good; a value close to -1 represents less
efficiency in the categorization for the clusters. When it is
close to 0, it means that the point is in the border between
two clusters.

According to the discussion in section 2 we will analyse:

• Original time series: DTW distance using the tight
lower bound of [62], that makes it faster.

• Symbolic approximations: We have taken the most
modern improvement that SAX has experienced:
SAXSD. The MINDIST function that returns the
minimum distance between the original time series
of two words [66] is enhanced with the distance
between the standard deviation of each segment.

• Shapelets: k-shape is the model chosen in this direc-
tion.

0

3

6

9

Arrow H Lighting7 Random LHS Coffee Ford A Proximal

dataset

lo
g

(m
ili

s
e

c
o

n
d

s
)

Models
BEATS−HC
DTW
Eigen−HC
k−shape
SAXsd−HC

Fig. 7. Running time (log(milisec)) of the clustering algorithms

The results of the clustering experiments done in the
trainning sets are shown in Table 2. The run time of the
algorithms is shown in Fig. 7. In this case, all the algorithms
have been coded using the same programming language so
we consider that the graph is enough in order to estimate
the different algorithms complexity regarding time.

5.4 Big Data Use Case: Traffic in Smart Cities

In this subsection we apply BEATS in a smart cities related
use-case: traffic data clustering, done in an online and
distributed way.

5.4.1 BEATS implementation for Big Data

In contrast to the traditional analysis procedure where data
is first stored and then processed in order to deploy models,
the major potential of the data generated by IoT is accom-
plished by the realisation of continuous analytics that allow
to make decisions in real time.

There are three types of data processing: Batch Process-
ing, Stream Processing and Hybrid Processing.

Batch processing operates over a group of transactions
collected over a period of time and reports results only
when all computations are done, whereas stream processing
produces incremental results as soon as they are ready [67].

10

TABLE 2
Silhouette coefficient of each method using as inputs each of the segmented time series

Model

dataset
Arrow Heads Lightning7 Random

Generator
Coffee Ford A Proximal

BEATS-HC 0.6 0.25 0.45 0.25 0.46 0.4
Eigen-HC 0.58 0.31 0.25 0.26 0.36 0.38
DTW 0.33 0.21 0.44 0.21 0.12 0.31
SAXSD- HC 0.53 0.06 0.19 0.13 0 0.33
k-shape 0.44 0.19 0.05 0.43 0.38 0.5

Regarding the available Big Data Tools, we have consid-
ered Hadoop5 and Spark6 Big Data frameworks. Hadoop
was designed for batch processing. All data is loaded into
HDFS and then MapReduce starts a batch job to process that
data. If the data changes the job needs to be ran again. It is
step by step processing that can be paused or interrupted,
but not changed.

Apache Spark allows to perform analytical tasks on
distributed computing clusters. Sparks real-time data pro-
cessing capability provides substantial lead over Hadoops
MapReduce and it is essential for online time series seg-
mentation and representation.

The Spark abstraction for a continuous stream of data
is called a Discretized Stream or DStream . A DStream is
a micro-batch of Resilient Distributed Datasets, RDDs. That
means, a DStream is represented as a sequence of RDDs.
RDDs are distributed collections that can be operated in
parallel by arbitrary functions and by transformations over
a sliding window of data (windowed computations).

5.4.2 BEATS adapted to Spark technology
For the online implementation of BEATS we have decided to
use pyspark, the Spark Python API that exposes the Spark
programming model to Python.

There are many works proposing online time series
processing but few of them that have implemented it. In
[68] is highlighted that MapReduce is not the appropiate
techonology for rolling window time series prediction and
proposes a index pool data structure.

Pyspark allows us to use the Spark Streaming function-
alities that are needed in order to implement BEATS online.
In section 4 we have seen that BEATS algorithm can be
separately applied to windows of the data. Therefore we
associate the data received within one window to one RDD,
that can be processed in a parallel way.

A suitable type of RDDs for our implementation is
key/value pairs. In detail, the key is an identifier of the time
series (e.g., sensor name) and the value is the sequence of
values of our time series that fall in the window. That way
the blocks are exposed to operations that give the possibility
to act on each key in parallel or regroup data across the
network.

The transformations that we use are:

5. http://hadoop.apache.org
6. https://spark.apache.org/

• Window: use for creating sliding window of time
over the incoming data.

• GroupByKey: grouping the incoming values of the
sliding window by key (for example, same sensor
data).

• Map: The Map function applied in parallel to every
pair (key, value), where the key is the time series,
values are a vector and the function depends on what
has to be done.

5.4.3 The applied scenario
We use one of the real-world datasets obtained from the
collection of datasets of vehicle traffic in the City of Aarhus
in Denmark for a period of 6 months7. The dataset is
provided in the context of the CityPulse smart city project.

The selected dataset gathers 16971 samples of data from
sensors situated in lamp posts covering an area around
2345m 8. The variables considered for the analysis are: flow
(numbers of cars between two points) and average speed.
Each variable is a time series.

In order to simulate an online application we consider
that the BEATS segmentation is carried out on hourly based
data. To achieve this, since the data is collected every 5
mins., a sliding window of size 12 is selected. The goal
of the clustering is to determine the status of the road in
terms of the traffic flow and occurrences. For every window
of 128 observations (64 for each variable) BEATS obtains
three flow related representatives and three speed related
representatives.

Each observation of the final input dataset for the clus-
tering model represents one window of the raw data. The
final dataset has 6 variables and 1409 samples. This means
a reduction of around 75 % of data.

The data is gathered by anonymously collecting Wi-Fi
and Bluetooth signals transmitted by travelers’ smartphones
or in-vehicle systems. This infrastructure provides noisy
data in cases such as stopped vehicles in traffic jam, buses
with a lot of passengers.

In order to tackle the presence of outliers and noise, the
selected clustering technique is density-based spatial clus-
tering (DBSCAN). DBSCAN groups points that are closely
packed together. Points that do not fit into any of the main

7. http://iot.ee.surrey.ac.uk:8080/datasets.html#traffic
8. http://iot.ee.surrey.ac.uk:8080/datasets/traffic/traffic june sep/

index.html

11

−10

−5

0

5

10

−60 −50 −40
Dim1 (98.8%)

D
im

2
(1

.2
%

)
2D cluster plot

cluster ●● 1 2 3

Fig. 8. Plot of the DBSCAN clusters using traffic data

groups because they lie in low-density regions are marked
as outliers. The hyper-parameters of DBSCAN are minimum
number of points required to form a dense region (MinP)
and ε in order to find the ε-neighborhood of each point.
We set that clusters contain at least a 20 % of the data and
ε = 4.014. Using such configuration, we obtain 3 different
clusters and a 8 % of data that cannot be classified in any
of the previous, i.e. outliers. The description of the clusters,
including the number of points n that belong to each of the
clusters and the mean µ and standard deviation sd for both
flow and speed is:

• Cluster 1 (n = 618): High flow (µ = 30.97, sd= 12.66)
and medium speed (µ = 102.5, sd= 10.2);

• Cluster 2 (n = 271): Medium flow (µ = 15.97, sd= 8.4)
and high speed (µ = 110, sd= 9.21); and

• Cluster 3 (n = 432): Low flow (µ = 6.1, sd= 5.56) and
low/medium speed (µ = 97.8, sd= 14.3).

In order to represent the data in lower dimension, we
select the first two principal components of the data using
Principal Components Analysis (PCA). The obtained clus-
ters are shown in Fig. 8. Crosses in black colour represent
the noise data. We have also projected the clusters in the
three flow related components of BEATS, so that clusters
can be visualized in a 3D form as presented in Fig. 9.

Regarding this aplication, we can conclude that cluster-
ing methods applied to the segments generated by BEATS
are able to characterise the status of the roads by grouping
the values in an effective form.

Using a computer with an Intel i5 Processor, 8GB RAM
Memory, Ubuntu 16.04 operative system and the statistical
software R 3.4.3 [69], the running time of DBSCAN using
BEATS segmented data is 0.25 seconds. However, to run the
DBSCAN with raw data it takes around 35 seconds. The
later confirms again the suitability of BEATS in current IoT
scenarios.

6 DISCUSSION

As we have described in the paper, the randomness and
predictability of a real-world time series changes over time
due to several factors.

The existing solutions for pattern creation and abstrac-
tion in time-series data often work based on statistical mea-
sures (which have limited representation and granularity),
symbolic methods such as SAX (which assumes that the

data is normally distributed and requires normalization
of the data), or signal processing and stream processing
methods such as wavelet or Fourier transforms (which act
as filters and can extract features from the data but do not
provide a pattern representation/abstraction).

Our proposed model combines a series of methods to
create a window based abstraction of time series data and
uses a frequency domain function combined with charac-
teristic value measures that represents the overall direction
of the dataframe (i.e. an n-dimentional matrix constructed
during our windowing/slicing process) as a vector.

BEATS is an algorithm that process data streams whose
randomness and predictability varies depending on the
segment of data. The proposed algorithm is useful spe-
cially in applications such as smart cities where results of
the segmentation and processing algorithms are used in
order to make fast decisions regarding traffic, energy, light
regulation, etc. This can be made by combining various
sensory data and other historical data. In general terms,
the intention is to predict and manage what is occurring
in order to provide informed or automated decisions for
repetitive tasks that can be handled by machines. BEATS
offers a powerful solution to aggregate and represent large-
scale streaming data in a quick and adaptable way. It uses
blocks of eigenvalues in a much lower-dimensionality (with
a high aggregation rate) which preserves the main infor-
mation and characteristics of the data. Since BEATS uses
eigenvalues, it provides a homogeneous way to represent
multi-modal and heterogeneous streaming data. In other
words, all different types of numerical streaming data are
transformed into vectors of eigenvalues that, in principal,
preserve and represent the magnitude and overall direction
of the data in a lower-dimensionality space. This not only
allows to compare and combine different blocks of data
from various data streams, but also provides a unified way
to represent the blocks of data as patterns in the form of
eigenvalues.

In this paper, we mainly target a key step after collection
of the data: aggregation. Aggregation of data becomes a
very significant task in order to extract the key character-
istics of the data in lower-dimensionality. We segment the
time series and make a reduction for each time series at a
rate of 60 ∼ 70 % when using overlapping windows. The
independence between blocks that our algorithm provides
is one of its most important features. BEATS also presents
other qualities such as adapting to drifts and low latency.

BEATS reduces the data by using the eigenvalues of a
submatrix of the DCT transformation. These eigenvalues
represent the key-charactertistics of the data.

The evaluation is performed using classification and
clustering, two of the classical machine learning tasks using
several types of datasets. The inputs of the models are the
different representations introduced in the paper: BEATS
and Eigen together with raw data for the other models.

Classification is measured by accuracy. This allows us
to perform a test for equality of proportions, that is a χ2

test of independence in order to assure that the differences
between accuracies are statistically significant.

For the Arrow Heads dataset we find that BEATS com-
bined with SVM outperforms all the algorithms. However,
the differences between COTE and BEATS are not statisti-

12

Fig. 9. 3D plot of the DBSCAN clusters using traffic data

cally significant (χ2(1) = 0.37, p-value = 0.54 > 0.05). On
the other hand, the difference between TSF and BEATS are
statistically significant (χ2(1) = 4.8, p-value = 0.04 < 0.05).

In the case of Lightning7, there are several models that
outperform BEATS. The winning one is COTE. Nonetheless,
COTE is very complicated, time demanding and computa-
tionally expensive. The rest only overperforms BEATS by
6% at most.

In the case of Random LHS Generator Lift, TSF and
BEATS perform similarly.

In the Coffee dataset, we observe that several approaches
(including BEATS) achieve a 100 % accuracy on classifica-
tion.

In FordA, BEATS, TSF and COTE perform similarly.
However, BEATS is the quickest amongst them.

Finally, in the Proximal dataset TSF and BEATS perform
similarly in terms of accuracy. However, BEATS is again
quicker.

Even though COTE and TSF are strong rivals to BEATS,
it should be noted that the computation time and simplicity
of BEATS makes it useful to use in rapid analysis having
still good results. Also, due to its nature is very adaptable
and easy to combine with any other classification algorithm
different than SVM.

The clustering experiment is evaluated by comparing
the hundredths of the silhouette coefficients, where each
hundreth is going to be counted as a point in the below
description.

BEATS is 7 points above SAXSD for the Arrow Heads
dataset, 1 point above DTW in the Random LHS Generator
Lift set and 8 points above k-shape in Ford A.

Being the most computationally expensive of all the
clustering algorithms under study, as it can be seen in Fig.
7, k-shape outperforms BEATS in two datasets: Coffee and
Proximal.

It can be said that in clustering, BEATS behaves better
when we are using long datasets since it outperforms every
algorithms in both metrics: silhouette coefficient and run-
ning time in the biggest dataset: FordA.

Finally, by applying DBSCAN to cluster traffic data, we
noticed that BEATS performs efficiently since the clusters
represent different situations of the use-case in terms of
traffic flow and speed.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a novel algorithm called BEATS,
which aggregates and represents time series data in blocks
of lower-dimensional vectors of eigenvalues. BEATS is not
sample dependent so it adapts to data drifts in the underly-
ing data streams.

The BEATS abstractions can be combined with various
machine learning models to discover patterns, identify cor-
relations (within or between data streams), extract insights
and identify activities from the data. In this paper, we have
used several datasets and have shown several use cases that
demonstrate how the BEATS abstractions can be used for
clustering, analysis and grouping the activities and patterns
in time-series data.

Compared to existing segmentation methods, BEATS
shows significant improvements in representing datasets
with drifts. When combined with classification and cluster-
ing methods, we have shown that it can obtain competitive
results compared with other state-of-the-art but more com-
plex and time consuming methods.

For the BEATS algorithm evaluation we have fixed the
length of the segments at 64; so the only parameter to take
into consideration was the slide of the window, that we
have kept constantly equal to 8, so the blocks of transformed
data intersect. Nevertheless, the optimization of the sliding
window is an open issue to be addressed in future work.

For the clustering tasks, it is important to take into
account that the definition of similarity is subjective. The
similarity depends on the domain of application.

By using BEATS, we are able to restructure the streaming
data in a 2D way and then transform it into the frequency
domain using DCT. The algorithm finds a smaller sequence
that contains the key information of the initial representa-
tive. This aggregation provides an opportunity to eliminate
repetitive content and similarities that can be found in the
sequence of data.

The eigenvalues vectors are a homogeneous representa-
tion of the data streams in BEATS that allow us to go one
step further in understanding of the sequences and patterns
that can be considered as the data structure of a data series
in an application domain (e.g. smart cities). Its applications
can be extended to several other domains and various
patterns/activity monitoring and detection methods. The
future work will focus on applying 3D cosine transform and
adaptive block size estimation.

APPENDIX A
Definition A.1. Integral transform

The integral transform of the funtion f(t) with respect
to the kernel K(t, s) is

F (t) =

∫ ∞
−∞

K(t, s)f(t)dt, (4)

if the integral exists.

The kernel of the Fourier Transformation is K(t, s) =
e−its, and, in particular for the cosine fourier transformation
K(t, ω) = cos(t, ω). If we discretize the kernel we can reach
that Kc(j, k) = cos(jkπN), where N is an integer.
Definition A.2. Discrete Cosine Transformation (DCT) - II

13

DCT is a linear and invertible function

f : Rn −→ Rn

where R denotes the set of real numbers or, equivalently,
on a n× n matrix, defined by:

fj =
n−1∑
k=0

cos

(
π

n
j
(
k+

1

2

))
where j = 0, 1, . . . , n−1 (5)

ACKNOWLEDGMENT

This work has been partially funded by MINECO grant
BES-2015-071956, PERSEIDES TIN2017-86885-R project and
ERDF funds, by the European Comission through the
H2020-ENTROPY-649849 EU Project, and the H2020 FIESTA
Project under grant agreement no. CNECT-ICT-643943.

REFERENCES

[1] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east,” IDC
iView: IDC Analyze the future, vol. 2007, pp. 1–16, 2012.

[2] D. Abbott, Applied predictive analytics: principles and techniques for
the professional data analyst. John Wiley & Sons, 2014.

[3] E. J. Keogh and M. J. Pazzani, “An enhanced representation of time
series which allows fast and accurate classification, clustering and
relevance feedback,” KDD, vol. 98, pp. 239–243, 1998.

[4] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time
series: A survey and novel approach,” Data mining in time series
databases, vol. 57, pp. 1–22, 2004.

[5] H. Aksoy, A. Gedikli, N. E. Unal, and A. Kehagias, “Fast seg-
mentation algorithms for long hydrometeorological time series,”
Hydrological Processes, vol. 22, no. 23, pp. 4600–4608, 2008.

[6] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana,
“Fast time series classification using numerosity reduction,” in
Proceedings of the 23rd international conference on Machine learning.
ACM, 2006, pp. 1033–1040.

[7] A. Bagnall, L. Davis, J. Hills, and J. Lines, “Transformation based
ensembles for time series classification,” in Proceedings of the 2012
SIAM international conference on data mining. SIAM, 2012, pp. 307–
318.

[8] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and
E. Keogh, “Experimental comparison of representation methods
and distance measures for time series data,” Data Mining and
Knowledge Discovery, pp. 1–35, 2013.

[9] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: a review and experimental eval-
uation of recent algorithmic advances,” Data Mining and Knowledge
Discovery, pp. 1–55, 2016.

[10] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted dynamic
time warping for time series classification,” Pattern Recognition,
vol. 44, no. 9, pp. 2231–2240, 2011.

[11] P.-F. Marteau, “Time warp edit distance with stiffness adjustment
for time series matching,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 2, pp. 306–318, 2009.

[12] A. Stefan, V. Athitsos, and G. Das, “The move-split-merge metric
for time series,” IEEE transactions on Knowledge and Data Engineer-
ing, vol. 25, no. 6, pp. 1425–1438, 2013.

[13] G. E. Batista, X. Wang, and E. J. Keogh, “A complexity-invariant
distance measure for time series,” in Proceedings of the 2011 SIAM
International Conference on Data Mining. SIAM, 2011, pp. 699–710.

[14] T. Górecki and M. Łuczak, “Non-isometric transforms in time
series classification using dtw,” Knowledge-Based Systems, vol. 61,
pp. 98–108, 2014.

[15] J. Lines and A. Bagnall, “Time series classification with ensembles
of elastic distance measures,” Data Mining and Knowledge Discov-
ery, vol. 29, no. 3, pp. 565–592, 2015.

[16] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, “Time-series
clustering–a decade review,” Information Systems, vol. 53, pp. 16–
38, 2015.

[17] V. Hautamaki, P. Nykanen, and P. Franti, “Time-series clustering
by approximate prototypes,” in Pattern Recognition, 2008. ICPR
2008. 19th International Conference on. IEEE, 2008, pp. 1–4.

[18] G. E. Batista, E. J. Keogh, O. M. Tataw, and V. M. De Souza, “Cid:
an efficient complexity-invariant distance for time series,” Data
Mining and Knowledge Discovery, vol. 28, no. 3, pp. 634–669, 2014.

[19] Y. Zhu, D. Wu, and S. Li, “A piecewise linear representation
method of time series based on feature points,” in International
Conference on Knowledge-Based and Intelligent Information and Engi-
neering Systems. Springer, 2007, pp. 1066–1072.

[20] E. J. Keogh and M. J. Pazzani, “A simple dimensionality reduction
technique for fast similarity search in large time series databases,”
in Pacific-Asia conference on knowledge discovery and data mining.
Springer, 2000, pp. 122–133.

[21] N. T. Nguyen, B. Trawiński, R. Katarzyniak, and G.-S. Jo, Advanced
methods for computational collective intelligence. Springer, 2012, vol.
457.

[22] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest
for classification and feature extraction,” Information Sciences, vol.
239, pp. 142–153, 2013.

[23] M. G. Baydogan and G. Runger, “Time series representation and
similarity based on local autopatterns,” Data Mining and Knowledge
Discovery, vol. 30, no. 2, pp. 476–509, 2016.

[24] E. Keogh, J. Lin, and A. Fu, “Hot sax: Efficiently finding the
most unusual time series subsequence,” in Fifth IEEE International
Conference on Data Mining (ICDM’05). IEEE, 2005, pp. 8–pp.

[25] X. Xi, E. J. Keogh, L. Wei, and A. Mafra-Neto, “Finding motifs in a
database of shapes.” in SDM. SIAM, 2007, pp. 249–260.

[26] C. D. Stylios and V. Kreinovich, “Symbolic aggregate approxima-
tion (sax) under interval uncertainty,” in Fuzzy Information Pro-
cessing Society (NAFIPS) held jointly with 2015 5th World Conference
on Soft Computing (WConSC), 2015 Annual Conference of the North
American. IEEE, 2015, pp. 1–7.

[27] B. Lkhagva, Y. Suzuki, and K. Kawagoe, “Extended sax: Extension
of symbolic aggregate approximation for financial time series data
representation,” DEWS2006 4A-i8, vol. 7, 2006.

[28] Y. Sun, J. Li, J. Liu, B. Sun, and C. Chow, “An improvement
of symbolic aggregate approximation distance measure for time
series,” Neurocomputing, vol. 138, pp. 189–198, 2014.

[29] C. T. Zan and H. Yamana, “An improved symbolic aggregate
approximation distance measure based on its statistical features,”
in Proceedings of the 18th International Conference on Information
Integration and Web-based Applications and Services. ACM, 2016,
pp. 72–80.

[30] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel
symbolic representation of time series,” Data Mining and knowledge
discovery, vol. 15, no. 2, pp. 107–144, 2007.

[31] S. Kolozali, D. Puschmann, M. Bermudez-Edo, and P. Barnaghi,
“On the effect of adaptive and non-adaptive analysis of time-series
sensory data,” IEEE Internet of Things Journal, 2016.

[32] P. Senin and S. Malinchik, “Sax-vsm: Interpretable time series
classification using sax and vector space model,” in Data Mining
(ICDM), 2013 IEEE 13th International Conference on. IEEE, 2013,
pp. 1175–1180.

[33] T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable algo-
rithm for discovering time series shapelets,” in Proceedings of the
2013 SIAM International Conference on Data Mining. SIAM, 2013,
pp. 668–676.

[34] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme,
“Learning time-series shapelets,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2014, pp. 392–401.

[35] M. Shah, J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-
Thieme, “Learning dtw-shapelets for time-series classification,” in
Proceedings of the 3rd IKDD Conference on Data Science, 2016. ACM,
2016, p. 3.

[36] L. Hou, J. T. Kwok, and J. M. Zurada, “Efficient learning of
timeseries shapelets,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[37] J. Paparrizos and L. Gravano, “k-shape: Efficient and accurate
clustering of time series,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. ACM, 2015, pp.
1855–1870.

[38] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series classi-
fication with cote: the collective of transformation-based ensem-
bles,” IEEE Transactions on Knowledge and Data Engineering, vol. 27,
no. 9, pp. 2522–2535, 2015.

14

[39] M. Sayed-Mouchaweh, Learning from Data Streams in Dynamic
Environments. Springer, 2016.

[40] D. Puschmann, P. Barnaghi, and R. Tafazolli, “Adaptive clustering
for dynamic iot data streams,” IEEE Internet of Things Journal,
vol. 4, no. 1, pp. 64–74, 2017.

[41] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Computing
Surveyshttp://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6703726
(CSUR), vol. 46, no. 4, p. 44, 2014.

[42] C. Lifna and M. Vijayalakshmi, “Identifying concept-drift in twit-
ter streams,” Procedia Computer Science, vol. 45, pp. 86–94, 2015.

[43] C. M. Grinstead and J. L. Snell, Introduction to probability. Ameri-
can Mathematical Soc., 2012.

[44] M. Ali-ud-din Khan, M. F. Uddin, and N. Gupta, “Seven v’s of big
data understanding big data to extract value,” in American Society
for Engineering Education (ASEE Zone 1), 2014 Zone 1 Conference of
the. IEEE, 2014, pp. 1–5.

[45] Z. Wang, “Fast algorithms for the discrete w transform and for the
discrete fourier transform,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 32, no. 4, pp. 803–816, 1984.

[46] K. R. Rao and P. Yip, Discrete cosine transform: algorithms, advan-
tages, applications. Academic press, 2014.

[47] G. K. Wallace, “The jpeg still picture compression standard,” IEEE
transactions on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[48] A. C. Bovik, The essential guide to image processing. Academic Press,
2009.

[49] G. Bi and Y. Zeng, Transforms and fast algorithms for signal analysis
and representations. Springer Science & Business Media, 2004.

[50] J. Makhoul, “A fast cosine transform in one and two dimensions,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 28,
no. 1, pp. 27–34, 1980.

[51] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and
G. Batista, “The ucr time series classification archive,” July 2015,
www.cs.ucr.edu/∼eamonn/time series data/.

[52] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[53] L. Ye and E. Keogh, “Time series shapelets: a new primitive for
data mining,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2009, pp.
947–956.

[54] D. Puschmann, “Random lhs generator drift,” https://github.
com/UniSurreyIoT/random-LHS-generator-drift, 2016.

[55] R. Briandet, E. K. Kemsley, and R. H. Wilson, “Discrimination of
arabica and robusta in instant coffee by fourier transform infrared
spectroscopy and chemometrics,” Journal of agricultural and food
chemistry, vol. 44, no. 1, pp. 170–174, 1996.

[56] L. M. Davis, “Predictive modelling of bone ageing,” Ph.D. disser-
tation, University of East Anglia, 2013.

[57] A. Anguera, J. Barreiro, J. Lara, and D. Lizcano, “Applying data
mining techniques to medical time series: an empirical case study
in electroencephalography and stabilometry,” Computational and
Structural Biotechnology Journal, vol. 14, pp. 185–199, 2016.

[58] Y. Yang, Q. Yang, W. Lu, J. Pan, R. Pan, C. Lu, L. Li, and Z. Qin,
“Preprocessing time series data for classification with application
to crm,” in Australasian Joint Conference on Artificial Intelligence.
Springer, 2005, pp. 133–142.

[59] A. González-Vidal, V. Moreno-Cano, F. Terroso-Sáenz, and A. F.
Skarmeta, “Towards energy efficiency smart buildings models
based on intelligent data analytics,” Procedia Computer Science,
vol. 83, pp. 994–999, 2016.

[60] S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee, “Particle swarm
optimization for parameter determination and feature selection of
support vector machines,” Expert systems with applications, vol. 35,
no. 4, pp. 1817–1824, 2008.

[61] C. A. Ratanamahatana and E. Keogh, “Three myths about dynamic
time warping data mining,” in Proceedings of the 2005 SIAM Inter-
national Conference on Data Mining. SIAM, 2005, pp. 506–510.

[62] D. Lemire, “Faster retrieval with a two-pass dynamic-time-
warping lower bound,” Pattern recognition, vol. 42, no. 9, pp. 2169–
2180, 2009.

[63] Z. Bar-Joseph, A. Gitter, and I. Simon, “Studying and modelling
dynamic biological processes using time-series gene expression
data,” Nature Reviews Genetics, vol. 13, no. 8, pp. 552–564, 2012.

[64] M. V. Moreno, F. Terroso-Saenz, A. Gonzalez, M. Valdes-Vela, A. F.
Skarmeta, M. A. Zamora-Izquierdo, and V. Chang, “Applicability

of big data techniques to smart cities deployments,” IEEE Transac-
tions on Industrial Informatics, 2016.

[65] C. Costa and M. Y. Santos, “Improving cities sustainability through
the use of data mining in a context of big city data,” in The 2015
International Conference of Data Mining and Knowledge Engineering,
vol. 1. IAENG, 2015, pp. 320–325.

[66] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representa-
tion of time series, with implications for streaming algorithms,” in
Proceedings of the 8th ACM SIGMOD workshop on Research issues in
data mining and knowledge discovery. ACM, 2003, pp. 2–11.

[67] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar,
V. Kumar, M. Mendell, H. Nasgaard, S. Schneider, R. Soulé et al.,
“Ibm streams processing language: Analyzing big data in motion,”
IBM Journal of Research and Development, vol. 57, no. 3/4, pp. 7–1,
2013.

[68] L. Li, F. Noorian, D. J. Moss, and P. H. Leong, “Rolling window
time series prediction using mapreduce,” in Information Reuse and
Integration (IRI), 2014 IEEE 15th International Conference on. IEEE,
2014, pp. 757–764.

[69] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2016. [Online]. Available: https://www.R-project.org/

Aurora González Vidal graduated in Mathemat-
ics from the University of Murcia in 2014. In 2015
she got a fellowship to work in the Statistical Di-
vision of the Research Support Services, where
she specialized in Statistics and Data Analyisis.
In 2015, she started her Ph.D. studies in Com-
puter Science, focusing her research on Data
Analytics for Energy Efficiency and studied a
Master in Big Data. She was a visiting Ph.D.
student at the University of Surrey, where she
worked on the study of segmentation of time

series.

Payam Barnaghi is a Reader in machine intel-
ligence in the Institute for Communication Sys-
tems Research at the University of Surrey. He
was the coordinator of the EU FP7 CityPulse
project on smart cities. His research interests
include machine learning, the Internet of Things,
the Semantic Web, adaptive algorithms, and in-
formation search and retrieval. Hes a senior
member of IEEE and a Fellow of the Higher
Education Academy.

Dr. Antonio F. Skarmeta received the M.S. de-
gree in Computer Science from the University of
Granada, Spain, and the B.S. (Hons.) and the
PhD degrees in Computer Science from the Uni-
versity of Murcia. He is a Full Professor in Dept.
of Information and Communications Engineering
at the same university. He is involved in numer-
ous projects, both European and National. Re-
search interests include mobile communications,
artificial intelligence and home automation.

