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The development of agriculture is one of humankind’s most pivotal achievements and 54 

questions about plant domestication and the origins of agriculture have engaged 55 

scholars for well over a century, with implications for understanding its legacy on 56 

global subsistence strategies, plant distribution, population health, and the global 57 

methane budget . Rice is one of the most important crops to be domesticated globally, 58 

with both Asia (Oryza sativa L.) and Africa (Oryza glaberrima Steud.) discussed as 59 

primary centres of domestication. However, until now the pre-Columbian domestication 60 

of rice in the Americas has not been documented. Here we document the domestication 61 

of Oryza sp. wild rice by the mid-Holocene residents of the Monte Castelo shell mound 62 

starting at ca. 4000 cal yr BP, evidenced by  increasingly larger rice husk phytoliths. 63 

Our data provide evidence for the domestication of wild rice in a region of the Amazon 64 

that was also the likely cradle of domestication of other major crops such as cassava 65 

(Manihot esculenta), peanut (Arachis hypogaea) and chilli pepper (Capsicum sp.). The 66 

results underlines the role of wetlands as prime habitats for plant domestication 67 

worldwide. 68 

  69 

 More than half of the world’s population depend on rice for more than 20% of their 70 

daily calories 1. Modern global consumption is dominated by varieties of the domesticated 71 

Asian (Oryza sativa L.) and African  (O. glaberrima Steud.) species 2, which were 72 

domesticated in the early Holocene in the Yangtze River, China3, and ca. 2000 cal yr BP in 73 

West Africa 4. In North America, Zizania wild rice was so important to the subsistence 74 

economy of several Upper Great Lakes Native American tribes that some early-twenty 75 

century ethnologists designated this region as a distinct ‘wild rice culture area’5. Wild rice 76 

was already a seasonal staple of indigenous subsistence in South America long before the 77 

introduction of Old World species in the 18th century6.  Growing in seasonally flooded areas 78 

that compose up to 10% (1.4M km2) of lowland South America (Fig. 1), wild rice is a 79 

particularly important resource during the rainy season when flooding causes other resources 80 

to be dispersed and scarce7. Early 16th-19th century historical and ethnographic accounts 81 

report extensively on the consumption of wild rice species by indigenous groups in this 82 

region. Similar to the traditional North American canoe-and-flail harvesting method, native 83 

South American people were reported to harvest wild rice by beating the grains of mature 84 

inflorescences into their canoes with wooden poles8-11. South American accounts hint towards 85 

the importance and culinary practices involving wild rice. For example, De Azara12 mentions 86 

the consumption of an unknown type of rice in southern Paraguay that “… feed a nation of 87 



approximately seventy warriors”. Cardim13 mentions that wild rice was mixed with maize to 88 

make bread, and  Acosta14 describes its consumption in the form of a fermented brew, similar 89 

to wine. Locally known as "arroz-de-pato” (duck rice) or "arroz-do-brejo" (swamp rice) 90 

today, wild rice is stilly consumed as a valuable source of carbohydrates when other food 91 

resources are scarce by riverine communities across the Amazon. It is still gathered and 92 

consumed in various modern localities close to the study site along the Guapore River such as 93 

Costa Marquez and Santo Antônio, where the communities used to manage wild rice stands 94 

until the first half of the twentieth century. This kind of landscape management can still be 95 

observed in other parts of the Amazon, such as in wild rice fields of the municipality of 96 

Manaquiri, in the lower Solimoes river basin15 (Supplementary Figure 1b). In the Pantanal, 97 

the  native Guató communities consume the wild native species Oryza glumaepatula and O. 98 

latifolia by sun drying the seeds, peeling them, and boiling them 16.  However, despite the 99 

occasional reference to its potential role in pre-Columbian diets 17,18, the domestication of rice 100 

has not yet been investigated in this region. Increasingly larger Oryza sp. husk phytoliths 101 

recovered from mid-Holocene levels of a shell mound in southwestern Amazonia (Fig. 1) 102 

dating to ca. 4000 cal yr BP show the progressive selection of larger wild rice seeds by its 103 

pre-Columbian residents, whom were already engaged in the cultivation of maize (Zea mays) 104 

and squash (Cucurbita sp.) 19.  105 

 106 

Taxonomy and domestication phytoliths of the Oryza. 107 

 Oryzoideae (syn. Ehrhartoideae) is a subfamily of the true grass family Poaceae 108 

that includes around 120 species in 20 genera. The Oryzeae tribe within the Oryzoideae 109 

subfamily consists of twelve genera and is distributed in tropical and temperate regions 110 

worldwide. Five of these twelve genera occur in South America: Leersia, Luziola, 111 

Rhynchoryza, Zizaniopsis, and Oryza 20,21. The Oryza genus comprises 22 known wild 112 

species. Four of them are endemic to Latin America with a tropical-subtropical distribution 113 

from Cuba 230 N to the Paraná River delta 340 S, including the diploid (2n = 24, AgpAgp) O. 114 

glumaepatula, and three tetraploids (2n = 48, CCDD) O. alta, O. grandiglumis and O. 115 

latifolia22 (Fig.1). Oryza spp. rice are all aquatic emergent macrophytes that grow along 116 

rivers, lakes and wetland margins. Oryza alta, O. grandiglumis, and O. latifolia are perennial 117 

species, while O. glumaepatula can be annual, biannual or perennial depending on the 118 

geographical location 23,24. Oryza spp. have a nutty flavour, and firm consistency. Preliminary 119 

studies on O. glumaepatula show that it has high levels of total protein, albumin, and glutelin 120 

fractions, which compares favourably with O. sativa commercial cultivars25. Wild rice can 121 



also be stored and can be rather productive. Although, not directly comparable to Oryza, the 122 

traditional canoe-and-flail harvesting of Zizania wild rice in North America yield about 125 123 

kg/ha26, while modern domesticated shattering resistant cultivars, yields have been reported 124 

as high as 1,680 kg/ha in Minnesota and twice that amount in California27. 125 

 The Oryzoideae subfamily produce four distinct phytoliths associated with different 126 

parts of the plant. The Oryzeae tribe produce: 1) cuneiform keystone bulliform cell phytoliths 127 

exhibiting fish-scale decorations on the fan edges are produced in the leaves (Fig. 2d)  and  2) 128 

‘scooped’-shaped bilobates in the leaves and stems (Fig. 2e). The Oryza genus produce: 3) 129 

double-peaked glume cells (Fig. 2a-b, f-i); and 4) deeply serrated phytoliths both derived 130 

from the epidermis of the Oryza seed glume (husk) (Fig. 2c)28-30. The presence of diagnostic 131 

Oryza phytoliths produced in the different parts of the plant has allowed the detection of crop 132 

processing stages31 and different agricultural techniques32 in Asia. For example, the 133 

distinctive bulliform and bilobate phytoliths from Oryzeae leaves and stalks are 134 

representative of the early stages of harvesting and processing, while the Oryza husk double-135 

peaked glumes represent later stages of processing, such as pounding, winnowing and 136 

storage. 137 

Domestication is a process that causes genetic changes in populations such that the 138 

average phenotype diverges from the range found in wild populations18. Domestication 139 

causes a gradual increase in plant size from wild to domesticate as a result of selective 140 

exploitation33. As the plant become larger, so do the phytoliths. The increase in phytolith size 141 

has been documented in Zea mays34, Cucurbita35  and Musa bananas36, where larger fruits 142 

and seeds often yield considerably larger phytoliths. Pearsall 29 and Zhao et al.30 have 143 

demonstrated a clear correlation between increasing phytolith size and domestication in 144 

Asian rice based on the analysis of 27 accessions of domestic rice, originated from China, 145 

and 79 specimens from the  nine wild rice species considered ancestral to rice distributed 146 

geographically in South and Southeast Asia. These authors30  devised a discriminant function 147 

to differentiate assemblages of wild from domesticated Oryza rice using five different size 148 

measurements of the double-peaked glume cells including: 1) Top Width (TW): the distance 149 

between the two peaks of the projecting hairs; 2) Maximum Width (MW): the width at the 150 

point where the glume projection attaches to the base; 3-4) Height of each hair (H1, H2): 151 

length from the tip to the base of the hair, H2 is defined as the smaller measurement; and  5) 152 

the Curve Depth (CD): distance from the tip of H1 to the lowest point of the curve (Fig. 3m). 153 

Further comparative research by Lu et al.37 including hundreds of grass species from China 154 



and Gu et al28 including wild and domesticated rice species from East Asia have confirmed 155 

their results.  156 

 157 

Archaeological background: the Monte Castelo shell mound.  Dating back to ca. 10,000 158 

cal yr BP, a diversity of  coastal  and freshwater 38 shell mounds represent some of the oldest 159 

forms of human occupations across lowland South America, some of which are associated 160 

with the earliest ceramics on the continent39. Our study site, the Monte Castelo residential 161 

shell mound is located in the Upper Madeira basin of SW Amazonia, Rondônia state, Brazil.  162 

The region is characterised by a seasonally flooded tropical wetland exhibiting gallery forest 163 

along the larger streams, which are dotted with anthropogenic shell mounds 38. Monte Castelo 164 

is a 6.3 m high platform-shaped freshwater shell-mound, exhibiting a 160 m long elliptical 165 

base (Fig. 1c) and dating from  9400 cal yr BP40,41. The first excavation of Monte Castelo by 166 

Miller 42 in 1984, revealed a seven-meter-deep stratigraphy bracketing a long-term 167 

occupation from 9130 to 667 cal yr BP (Supplementary Table 1). Miller defined three major 168 

and one transitional occupation phases based on stratigraphy, artefact content and sixteen 169 

radiocarbon dates including: Cupim phase (700-685 cm; 9130-7701 cal yr BP), Sinimbu 170 

phase (670-275cm; 7701-4822 cal yr BP), Sinimbu-Bacabal transitional stratum (275-220 171 

cm; 4862-4388 cal yr BP) and Bacabal phase (220-30 cm; 4388-689 cal yr BP)42. Renewed 172 

excavations at Monte Castelo in 2014 and 2016 by the Laboratory of Tropical Archaeology 173 

of the University of São Paulo expanded the previous excavation by E. Miller reaching a 174 

depth of 640 cm. They uncovered ten archaeological strata across the Sinimbu to Bacabal 175 

phases dating from 5310 cal. yr BP. to 689 cal yr BP (Fig. 3k; Supplementary Figure 3; 176 

Supplementary Note 1)40. The stratigraphy shows a sequence of construction events 177 

evidenced by unburnt entire Pomacea shell layers, occupation floors marked by lenses of 178 

crushed shells, primary burials and human-created dark soils. Sample collection for 179 

microfossil analysis was carried out in undisturbed sectors of each of the layers and targeted 180 

samples were collected from particular features such as burials (Supplementary Note 1; 181 

Supplementary Figure 3; Supplementary Table 3). 182 

 183 

Results and Discussion   184 

To investigate the use and potential domestication of wild rice by the Monte Castelo 185 

residents we analysed both archaeological samples and modern wild rice reference material. 186 

A total of 16 archaeological  sediment samples, from across all ten levels uncovered during 187 

the 2014 Monte Castelo excavations (Fig. 3; Supplementary Table 3), and 19 modern 188 



specimens from the four wild species of rice occurring in South America (Supplementary 189 

Table 2), were analysed for phytoliths following standard procedures34 (Methods, 190 

Supplementary Table 2 and 3). Each slide was scanned until the first 20 double-peaked glume 191 

cells were encountered. Following Zhao et al.30, the five metric attributes (Fig. 3m) were 192 

measured from 20 Oryza double-peaked glume phytoliths from each of the archaeological 193 

(16) and modern samples (19) totalling 700 phytoliths. 194 

Phytolith preservation was excellent in all context analysed. All archaeological 195 

sediment samples analysed yielded phytoliths of wild rice. Our analysis shows a clear 196 

increase in the proportion of rice morphotypes in the total phytolith assemblage from 6.4% on 197 

average in the Sinimbu phase occupation (Layers J-H) to 14.4% in the more recent Bacacal 198 

phase, suggesting that rice may have played a larger role in diet over time (Fig. 3f).  199 

At Monte Castelo, there is also an increase in the proportion of Oryza seed phytoliths 200 

from the lower to the upper levels of the mound reflected in the husk:leaf+stem ratio. For 201 

example, during the Sinumbú phase (Layers J-I; 280-460cm) Oryza sp. seed phytoliths 202 

represent on average 3.4% of the total assemblage while Oryzeae leaf and stem phytoliths 203 

constitute on average 3%, a 1/1 ratio. During the Bacabal occupation (Layers F-A; 30-210 204 

cm) Oryza seed phytoliths constitute on average 12% of the total assemblage while leaf 205 

phytoliths constitute on average 3.5%, a ratio of 3.4/1, over three times the relative proportion 206 

of seed husks as occur in the Sinimbu occupation (Fig. 3g). The collection and flailing of 207 

wild rice in canoes in the Americas should leave leaf and stem bulliform and bilobate 208 

phytoliths in the place of harvest while double-peaked and deeply serrated glume phytoliths 209 

should be more abundant at residential sites where the grain is brought for consumption. 210 

Therefore, the increase in the ratio of husk:leaf+stem Oryzeae phytolith morphotypes 211 

suggests that the Monte Castelo residents became more efficient harvesters over time, 212 

bringing more grain and fewer leaves to the site.  213 

The analysis of the average size of the attributes measured on the Oryza glume 214 

phytoliths (Fig. 3 and Supplementary Figure 5) shows a gradual increase in Height (H1, H2) 215 

and Width (TW, MW) through time. Mean H1 values increase ca. 8μm (17μm to 25μm) and 216 

H2 increases ca. 7μm (15μm to 22μm) from Layers J to A. MW increases 9μm (48-57μm) 217 

through the stratigraphy. Mean CD values are larger in the upper occupation layers (A-H) 218 

compared to its initial dimensions in Layers I-J (Fig. 3). We used Principal Component 219 

Analysis (PCA) of modern reference wild species to determine the variables that best 220 

explained phytolith shape differences among specimens, which are the two highly correlated 221 

height and width measurements (Supplementary Note 2, Supplementary Figures 6-9). 222 



Following Zhao et al.30, therefore, we created a simple model of phytolith size to characterise 223 

the changes in phytolith morphology through time. Results of a one-way ANOVA show that 224 

mean phytolith size varies significantly among layers and pairwise comparison (with 225 

Bonferroni corrected p-value) shows phytoliths in the upper archaeological layers (A - D) are 226 

significantly larger than those in Layer J and wild reference specimens (Supplementary Table 227 

4).   Fig. 4 illustrates mean height and width of all Oryza phytolith specimens, showing an 228 

increase in phytolith size through time. The data show a significant shift towards bigger 229 

phytoliths compared to wild specimens began in Layers D-E (Fig. 3k) around 4000 cal yr BP. 230 

Phytolith size in lower archaeological layers were not significantly different from some 231 

botanical specimens (O. latifolia, O. alta) (Supplementary Table 4). The gradual increase in 232 

Oryza husk phytolith dimensions since the basal layers of the Monte Castelo shell mound 233 

suggest that the Monte Castelo residents may have been manipulation Oryza by at least 5000 234 

cal yr BP. Phytolith data also show that subsistence strategies of the Monte Castelo residents 235 

were based on a mixture of wild and domesticated resources including cultivars such as 236 

maize and squash as well as other plants of economic importance including palm fruits and 237 

possibly soursop (Annona sp.) (Fig. 2 j-m). 238 

Our results indicate a significant increase in the size of double-peaked glume 239 

phytoliths across the Monte Castelo occupation starting around 4000 cal yr BP. Wild rice 240 

constituted an important seasonal resource for the Monte Castelo residents, who began to 241 

husband wild rice stands at lake or river edges. The phytolith data show that wild rice was 242 

modified by human intervention to produce larger grains, exceeding the range of variation 243 

found in the lower levels of the Monte Castelo shell mound and the modern populations of 244 

wild rice. The possibility that the increase in dimensions of husk phytoliths may be a result of 245 

selection for large seeds during collection from wild plant stands is countered by fact that no 246 

husk phytoliths with larger dimensions than the domesticated ones have been found on the 247 

modern wild rice specimens. 248 

Oryza alta, O. grandiglumis, and O. latifolia are perennial species, while O. 249 

glumaepatula can be annual, biannual or perennial depending on the geographical location 250 
23,24. Although we cannot distinguish specific Oryza species using phytoliths, it is likely that 251 

the Monte Castelo residents were targeting the annual varieties of O. glumaepatula due to 252 

their generally larger-scale seed production compared to perennials, as seen with other cereal 253 

grains43. The specific husbandry practices that led to this process of domestication are 254 

unknown; however, native North Americans increased natural Zizania wild rice stands by 255 

mixing wild rice seeds into clay, rolling it into a ball and dropping the clay ball into the 256 



water27. It is not unlikely that the Monte Castelo residents may have seeded the Guapore 257 

basin wetland margins with a similar practice.  With this technique, larger seeds might have 258 

been indirectly selected because they would germinate better from the clay balls, eventually 259 

leading to domestication. In addition, like traditional societies in India today, they may have 260 

practised burning of enriched rice patches during the dry season to remove competing 261 

vegetation after rice grains were embedded safely in the soil. To what extent the selection of 262 

non-shattering types contributed to the fact that the Monte Castelo residents became more 263 

efficient harvesters, as shown by the increase in husk:leaf+stem ratio, is something we cannot 264 

directly detect with phytolith analysis, since phytoliths cannot document the 265 

presence/absence of this key domestication syndrome trait. 266 

It is interesting to note that the apparent major role of rice in the diet of the Monte 267 

Castelo residents, as well as the beginning of its domestication, coincides with a rapid 268 

increase in precipitation in the Amazon. As summarised by Iriarte et al.44, the palaeoclimate 269 

records from southern Amazonia and adjacent regions influenced by the South American 270 

Low Level Jet show a consistent long-term trend of increasing precipitation starting during 271 

the mid-Holocene (~6k cal. yr BP), showing a rapid rise up to 4k cal. yr BP, and then 272 

continued to increase slightly towards the present. This higher precipitation would likely have 273 

expanded the spatial extent of wetlands across the basin and possibly made the flooding 274 

season longer. Since wild rice is a particularly important resource during the rainy season in 275 

wetlands and floodplains when flooding causes other resources to be disperse and scarce, the 276 

increase precipitation would have likely made wild rice a critical seasonal resource, which 277 

may have, in turn, led populations to focus on its manipulation, which ultimately led to its 278 

domestication. Further work is needed on this hypothesis. 279 

The presence of phytoliths from known cultigens, such as the wavy-top rondels of 280 

maize and scalloped spheres from squash, in the strata analysed shows that both crops were 281 

commonly grown in the region from at least 5300 B.P. onwards (Fig. 3, Supplementary 282 

Figure 4). This in turn, indicates that the Monte Castelo shell mound residents began to 283 

systematically select larger rice seeds when they were already engaged in the cultivation of 284 

maize and squash. While in other regions of the Americas, wild grasses such as Setaria45 or 285 

marsh-eleder46 decrease in importance or are replaced by maize, the opposite trend is 286 

apparent in the Monte Castelo record. Wild rice was domesticated and increased in 287 

importance a considerable time after Monte Castelo residents had become engaged in farming 288 

practices. 289 



The arrival of Europeans to the American continent in AD 1492, with the consequent 290 

population decimation and impact on cultural practices, caused the domesticated traits to 291 

gradually disappear. The loss of domesticated varieties is a phenomena that has also occurred 292 

for other indigenously domesticated species in both South18 and North America46. A case in 293 

point similar to Oryza is the ‘extinct cultigen’ marsh-elder (Iva annua), a member of the 294 

Asteraceae family greatly appreciated for its achene oil content, which was originally 295 

domesticated in southeastern North America and then abandoned with the introduction of 296 

maize46. As in our case study, the achenes of marsh elder from the earlier archaeological 297 

sequences are not much larger than the modern ones, but the achenes from the more recent 298 

archaeological contexts are much larger than any existing races of Iva annua today. In the 299 

case of rice, some varieties are in the process of de-domestication today; modern studies of 300 

Californian weedy rice show how reversions to non-domestic or wild-traits (such as seed 301 

shattering, presence of awns) can occur following abandonment47. In our case study, it is 302 

likely that the wind-pollinated wild rice progressively hybridised with the domesticated one, 303 

with the consequent return to the wild characteristics seen today. 304 

Our study highlights the importance of wetlands for the adoption and intensification 305 

of agriculture 48,49. The results contribute to a broader understanding of how wetlands and the 306 

seasonal tropical forests of the Amazon may have been critical for early human settlement 307 

and the origins of food production in the Americas. This domestication process took place in 308 

a region that was likely the cradle of domestication for cassava, peanuts and chilli peppers 309 

pointing to the importance of this region of South America19. 310 

Our research has implications for sustainable Amazonian futures. Modern intensive 311 

breeding for high yield and pest resistance has narrowed the genetic diversity of cultivated 312 

rice leaving crops more susceptible to disease and less adaptable to the effects of climate 313 

change. Understanding the process of rice manipulation by ancient Native Americans and the 314 

role of South American native varieties could help provide more resistant high-yielding 315 

varieties, and provide further knowledge for plant breeders interested in the introgression of 316 

genes from wild Oryza species into modern rice varieties22. 317 

 318 

Methods 319 

Phytolith analysis. Phytoliths were identified and counted under a Zeiss Axioscope 40 light 320 

microscope at 500X magnification. Phytolith identifications were made using published 321 

material for the Neotropics and the Oryzoideae family29,30,34 and by direct comparison with 322 

the phytolith reference collection of the Archaeobotany and Palaeoecology Laboratory in the 323 



Department of Archaeology of the University of Exeter. A minimum of 200 phytoliths were 324 

counted per slide. Following Zhao et al.30, the five metric attributes (Fig. 3m) were measured 325 

from 20 Oryza double-peaked glume phytoliths from each of the archaeological (16) and 326 

modern samples (19) totalling 700 phytoliths.   327 

 328 
 329 
 330 
Figure 1. a. Distribution of Oryza species, wetlands in South America, and important early 331 
Holocene shell mound sites in South America . Species occurrences from the Global 332 
Biodiversity Information Facility50. Wetland areas from the Global Lakes and Wetlands 333 
Database, World Wildlife Fund (https://www.worldwildlife.org). b. Map showing the 334 
location of the Monte Castelo.  c.  The Monte Castelo locality, topographical map, and 335 
location of the 2014 trench excavation.   336 
 337 

Figure 2. Microphotographs of phytolith morphotypes recovered at the Monte Castelo shell 338 
mound and modern reference wild rice species analysed. a-e. Oryza sp. phytolith 339 
morphotypes recovered in the Monte Castelo shell mound: a. double-peaked glume (Layer 340 
A); b. double-peaked glume (Layer J); c. deeply serrated body (Layer C); d. cuneiform 341 
keystone bulliform (Layer D 130-140cm); e. scooped bilobate (Layer E). f-i. Double-peaked 342 
glume phytoliths from modern wild-rice species native to the study area: f. O.alta (PRI-1); G. 343 
O.latifolia (Arg-5); h. O.grandiglumis (SO-23); i. O.glumaepatula (SO-17). J-N. Crops and 344 
other native edible plants recovered in the Monte Castelo shell mound: J. scalloped sphere 345 
from the rind of squash (Cucurbita sp.)(Layer F); k. wavy-top rondel from the cob of maize 346 
(Zea mays)( Layer C); l. large globular echinate from Arecaceae (Layer J); m. conical to hat-347 
shaped phytolith from Arecaceae (Layer H); n. spherical facetate from Annonaceae (Layer 348 
C); Scale bar= 20 µm. 349 
 350 
Figure 3. Sketch stratigraphic diagram of the 2014 Monte Castelo shell mound excavation 351 
layers showing: a-e. Mean and 95% confidence intervals of the metric attributes of Oryza sp. 352 
double-peaked glume phytoliths (N=700): a. TW, Top Width,  b. MW Maximum Width, c. 353 
CD, Curvature Depth, d. H1, Height 1 and e. H2, Height 2; f. Percentage of rice phytoliths to 354 
total phytolith assemblage; g.  Oryza husk:leaf+stem ratio; h. Presence of Cucurbita 355 
scalloped spheres; i. Presence of Zea mays wavy top rondels; j. Monte Castelo stratigraphy; 356 
k. Sketch drawings of double-peaked glume phytoliths using the average of the five metric 357 
attributes for each archaeological layer; l. Monte Castelo cultural chronology; m. Metric 358 
attributes of Oryza double-peaked glume phytoliths. Box and whisker plots for all metrics are 359 
shown in Supplementary Figure 5.  360 
 361 
Figure 4.  Mean height (H1+H2/2) and width (MW+TW/2) of all Oryza phytolith specimens 362 
(N=700), shown with 95% confidence intervals, demonstrating that archaeological specimens 363 
are larger compared to botanical specimens, and an increase in phytolith size through time. 364 
 365 
 366 
Data availability. The dataset analysed is available from corresponding author upon request. 367 
 368 
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