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	 In this study, we propose a novel coding method, called geometry permutation decoding 
(GPD), for square sensor topologies.  The GPD algorithm provides a two-dimensional geometry 
construction and decodes information sequences based on this construction.  The two-dimensional 
construction for square wireless sensor networks (WSNs) is suitable for employing channel coding, 
especially product codes and finite geometry codes, and for detecting multiple error patterns.  A 
majority logic decoding (MLD) is a less correcting efficient but simpler-to-implement decoding 
method.  To improve the drawback of the less correcting capacity, the GPD algorithm not only 
gives better bit error rates at low decoding complexity but also provides a new solution suitable 
for decoding in two-dimensional WSNs.  In particular, this decoding work in the two-dimensional 
WSNs is achieved over the bit level without a packet level so that the overhead in the network layer 
can be reduced.  

1.	 Introduction

	 In his landmark paper in 1948, Shannon proved the existence of the limited bound over a 
noisy channel.(1)  Since Shannon’s work, much effort has been focused on the problem of devising 
efficient and fast encoding and decoding algorithms for error control in a noisy environment.  
Recent developments have contributed toward achieving reliability while diminishing complexity.  
In 1963, Massey(2) proposed a less efficient but simpler-to-implement decoding method called 
threshold decoding.  This method spawned some practical applications of linear codes to digital 
transmission over telephone, satellite, and radio channels.  Shortly thereafter, researchers also 
proposed a number of decoding algorithms that were relatively easy to implement for hard-decision 
decoding of cyclic codes.  Majority logic decoding (MLD)(3) is a simple and effective method for 
decoding code classes in particular, such as cyclic codes.  Most codes with MLD found so far are 
cyclic codes.  One of the major cyclic codes is a code constructed based on finite geometries, called 
Euclidean geometries.  These codes are well-known finite geometry codes.  Finite geometry codes 
were first investigated by Rudolph in 1967.(3)  Another special subclass of finite geometries codes, 
called Euclidean geometry (EG) low-density parity-check codes, was introduced by Kou and 
colleagues(4,5) in 2000.  MLD algorithms are hard-decision decoding algorithms that can be easily 
implemented.  MLD based on orthogonal parity check sums from the parity check matrix of a code 
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is a simple decoding method.(6)  The error-correcting capability of majority logic decodable codes 
is based on the number of check sums.  These codes are nearly capable of correcting the error bits, 
which are about half the number of the check sums.  The parity check sums orthogonal on one bit 
can be used to estimate that bit or to decode that received digit.  The simplest and fastest decoding 
algorithm for error-correcting codes is the one-step MLD algorithm,(7,8) but it provides the worse 
decoding efficiency compared with other decoding algorithms for error-correcting codes.
	 In this study, we also propose a novel decoding method based on parity check sums, but 
the method is not majority-logic-based.   This method uses error patterns of 2-flat or a plane as 
an alternative to orthogonal check sums.  There are many lines through one point with various 
gradients, i.e., independent lines, in a plane.  A plane can be constructed by two of these 
independent lines.  These planes constructed by independent lines lead to permutations of the 
received sequence and provide a variety of error patterns in two dimensions.  This work locates 
some error bits according to these error patterns as long as error bits are less than three in number.  
Proposed in this article is a method called the geometry permutation decoding (GPD).  In this study, 
the GPD algorithm is suitable for application to wireless sensor networks (WSNs) with clustering 
protocols.  Network lifetime is an important issue in WSNs.  To achieve efficient network lifetime, 
one of the efficient protocols is the clustering scheme.   Clustering schemes have some cluster 
heads (CHs) and some node numbers within a cluster.  CHs are fusion points for data aggregation, 
so that the actual data sent to the sink is reduced.  The CHs closest to the sink are burdened with 
a heavy relay traffic load, and they run out of power first.(9)  A merging of clustering and multi-
hop communication can effectively overcome the path loss effects.(10,11)  In general protocols, the 
packets are transmitted in network access, and the decoding scheme is often achieved in a medium 
access control layer.  Instead, an efficient decoding method using finite geometry constructed over 
the bit level is proposed, called the GPD algorithm.  This scheme uses a localization technique in 
two dimensions constructed to correct the error patterns without employing packets transmitted in 
the network. 
	 The rest of this paper is organized as follows.  In Sect. 2, we state our problem in wireless 
sensor networks.  In Sect. 3, we briefly describe our major work on the proposed GPD.  In Sect. 4, 
we provide experimental results and constructive discussions.  Finally, we state our conclusions in 
Sect. 5.

2.	 Problem Statement

	 In this section, we present a statement of the proposed problem and its solution.  Assume that 
there are three events in a two-tier data dissemination protocol shown in Fig. 1. 
	 In Fig. 1, the field is partitioned into a grid of cells.   These sensor nodes are classified into 
sixteen groups, and the CHs are located in the intersections on the grid.  Each cell is a d × d square 
area.  One CH propagates data announcements to the others.  Consider three events represented by 
a square on the grid, and the position of the CH for the three events is given by

	
{
(x + id, y + jd) |i, j ∈ Z+

}
,	 (1)

where (x,y) represents the coordinates for the events.   In Fig. 2, the sink starts by flooding its 
query with its primary close to a CH node.  This CH records the location through these nodes 
and forwards the query to its neighbour CH until the query reaches the events.  The packets are 
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returned to the CH close to the sink along the path that the query traverses.  Finally, the CH close 
to the sink forwards the packets to the sink through sensor nodes.  Low-energy adaptive clustering 
hierarchy (LEACH)(4) is one of the first clustering schemes, which plays a key role in reducing 
energy consumption and enhancing the network lifetime.  LEACH can provide a balance of energy 
consumption between these nodes in the field.  In Fig. 2, the LEACH protocol can be achieved for 
network access.
	 Assume that the sink in Fig. 2 is located in the centric field shown in Fig. 3 and the two-
dimensional tree topology in Fig. 3 is used.  In WSN, the cooperation between sensor nodes is 
an important ideal.  Instead of working in packet level, this study proposes a decoding method 
achieved in bit level.  This decoding scheme requires the cooperation between the CHs in Fig. 3, 
and consumes energy l'Et, where Et and l' denote the energy of one bit and the number of CHs, 
respectively.  Assume that a packet consists of l bits and the energy consumption is l'Et for a packet 
transmission.  Generally, l is considerably larger than l'.  Unlike the case with the general LEACH 
in this study, the transmitting data is not forwarded to the sink but uses the tree-routing topology 
as the routing scheme.  In addition, each sensor node sends exactly one bit to the sink without 
transmitting packets.  The aim of these modifications is to improve the power consumption. 
	 The proposed WSN model shown in Fig. 3 is a two-dimensional grid configuration, and the 
node close to the intersection in the two-dimensional WSN is to be a CH.  LEACH done in Refs. 9 
and 12 is a common cluster-based communication model for WSNs.  Because the proposed model 
is also a cluster-based WSN, LEACH is suitable for application to this work and we use a similar 
radio model as noted in Refs. 9 and 12.  In this case, the distance between the transmitter and the 
receiver for sending one bit is d, and the power consumption is given by  

	 Et =


Eelec + ε f sd2, if d ≤ d0

Eelec + εtrd4, if d ≥ d0
,	 (2)

Fig. 1.	 (Color online) An example of a sensor 
network.
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Fig. 2.	 (Color online) Two-dimensional clustering 
topology for sensor network.
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where Eelec is the energy consumption of the wireless sensor node for transmitting and receiving 

bit data, and d0 =

√
ε f s/εtr.  Both the parameters εfs, free space, and the εtr, multiple path fading 

channel models, vary according to the distance between a sender and a receiver.  The cost of 
energy for the receiver is given by 

	 Er = Eelec.	 (3)

	 We assume an area m × m m2, and N is the number of nodes uniformly distributed over the 
square area.  The sink is at the centre of the two-dimensional network.  Each node in the cluster 
transmits one bit of data to the elected CH node.  The energy dissipated in the CH node during a 
round is given by(13)

	 Eclu =
N
k
× Eelec +

N
k
× Ed + ε f s × d2

sink,	 (4)

where k denotes the number of clusters, Ed is the processing cost of a bit report to the sink, and 
dsink is the average distance between a CH and a sink.  The other sensor nodes are given by 

	 Esen = Eelec + ε f s × d2
ch,	 (5)

where dch is the average distance between a cluster member and its CH, which is given by 

	 d2
ch =

M2

2πk
.	 (6)

	 According to this network model, the difference in the power consumption can be evaluated 
between the packet and the bit level.  When the lengths of the packet are quite large, the protocols 
for packet access consume more power.  Then, each sensor node generates a random number with 

Fig. 3.	 (Color online) The sink is located at the centre of a two-dimensional network.

Sink
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a value between 0 and 1 and compares it to a predefined threshold T(n).  If the random value is less 
than T(n), the sensor node becomes a CH in that round; otherwise, it is a cluster member, and

	
T (n) =

P

1 − P
(
r mod

1
P

)∀n ∈ G,
	

(7)

where P is the percentage of CHs over all nodes in the network, r is the number of rounds of 
selection, and G is the set of nodes that are not selected in round 1/P.  
	 In the next section, a new decoding scheme using finite geometry construction over bit level is 
proposed.  Our work results in low power consumption, along with the method discussed in Sect. 
2, because the consumption of the proposed method is inversely proportional to the length of the 
packet.

3.	 Decoding Using Two-Dimensional Error Patterns

	 In this section, we discuss the proposed method and a number of fundamental finite geometries.

3.1	 Permutation of error patterns

	 Consider all the roots {αi} in the finite field Fm
2s.  The collection of the following 2s points, {

αi + α jβ | β ∈ F2s

}
, with β ∈ F2s constitutes a line in EG(m,2s), which passes through the point αi.  

There are (2ms − 1)/(2s − 1) lines in EG(m,2s), which intersect at αi.  Moreover, {αj β} and {αi + αj β} 
do not have any common points, and these are called parallel lines.  In EG(m,2s), for every line 
passing the origin, there are 2ms − s parallel lines shown in Fig. 4. 
	 Let L1 = {αi + α1β1} and L2 = {αi + α2β2} be the two lines that have point αi in common.  A new 
plane consisting of the two lines is defined by

	 P1,2 = L1 ⊕ L2 =
{
αi + α1β1 + α2β2

}
.	 (8)

	 Because there are (2ms − 1)/(2s − 1) lines through one point, the number C(2ms−1)/(2s−1)
2  of planes 

can be constructed.  Each plane consists of two parallel bundles shown in Fig. 5.
	 The plane can be checked by eight lines and the obtained eight parity check equations.  The 
GPD algorithm uses these check sums to locate the error patterns.  Therefore, these planes 
constructed by lines through one point are permuted to a variety of two-dimensional matrices and 
the error patterns correspond to these planes.  To carry out the GPD method, this work employs 
EG codes of length 2ms − 1.  We construct an EG code with a parity check matrix whose null space 
contains the incidence vectors of all the lines of EG(m,2s), which do not pass through the origin.  
Let α be a primitive element of the finite field Fm

2s.  For example, let m = 3, s = 2, and μ = 0.  The 
finite field F3

22 may be regarded as the EG(3,22) over F22.  Let α be a primitive element in F3
22.  Let h 

be a nonnegative integer less than 63.  The generator polynomial g(x) of the (0,2)th-order EG code 

of length 63 has αh as a root if and only if 0 < max
0≤l<2

W22

(
h(l)
)
≤ 3  Hence, the (0,2)th-order EG code 

of length 63 is a (63,13) cyclic code.  In this work, we show that this code has total C5
2 = 10 planes 
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consisting of a variety of  two independent bases in some plane.  Consider the plane P ∈ EG
(
3, 22
)
 

that passes through the point α44: 

	 P =



α44 α4 α35 α39

α8 α61 α53 α54

α24 α37 α43 α13

α10 α48 α36 α51


.	 (9)

	 There are (24 − 1)/(22 − 1) = 5 lines in the plane P, and these lines are through point α44.  Two 
independent lines can be constructed as a two-dimensional plane, and the number of these planes 
is 10 as follows:


L1 =

(
α44 α4 α35 α39

)

L2 =
(
α44 α8 α24 α10

), 


L1 =
(
α44 α53 α13 α48

)

L2 =
(
α44 α39 α4 α35

), 


L1 =
(
α44 α37 α36 α54

)

L2 =
(
α44 α39 α4 α35

)


L1 =
(
α44 α61 α43 α51

)

L2 =
(
α44 α39 α4 α35

) , 


L1 =
(
α44 α53 α13 α48

)

L2 =
(
α44 α10 α8 α24

) , 


L1 =
(
α44 α37 α36 α54

)

L2 =
(
α44 α10 α8 α24

)  	    
 (10)

L1 =
(
α44 α37 α36 α54

)

L2 =
(
α44 α10 α8 α24

) , 


L1 =
(
α44 α37 α36 α54

)

L2 =
(
α44 α53 α13 α48

), 


L1 =
(
α44 α61 α43 α51

)

L2 =
(
α44 α53 α13 α48

),

and 


L1 =

(
α44 α61 α43 α51

)

L2 =
(
α44 α37 α36 α54

).		

	 Assume that there are three error bits in the plane P.  All error patterns permuted by these 
independent lines are illustrated in Fig. 6.  In Fig. 6, each error pattern has a row and a column as 
a syndrome pair.  These syndrome pairs can be divided into (1, 3), (3, 1), (3, 3), and (1, 1).  In the 

Fig. 5.	 The plane P consists of two parallel lines.Fig. 4.	 (Color online) The point intersects on one 
point and parallel lines.
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important case when the syndrome pair is (3, 3), the three error bits can be identified according to 
a row and a column syndrome.  In Fig. 6, the second pattern of the top corresponds to α44, α24, and 
α51.  Figures 7 and 8 are the error patterns for two error bits and one error bit, respectively. 
	 Table 1 shows the all error patterns for which the number of error bits is less than 4.  If the 
number of error bits is equal to 0 or 1, the total number of error patterns is 10.  However, the 
situation in which the number of error bits is more than 1 is characterized by a variety of syndrome 
numbers, including (4, 6), (3, 6, 1), and (1, 4, 6). 
	 The decoding procedures for the GPD algorithm based on the error patterns tabulated in Table 1 
can be achieved using the tree construction shown in Fig. 9.  The decoding procedures are divided 
into three steps.  The first is to estimate the category of the syndrome number.  The category of the 
syndrome number may be even or odd.  If the syndrome of an even number is found, the decoding 

Fig. 6.	 Error patterns for three error bits in plane P.

Fig. 7.	 Error patterns for two error bits in plane P.

Fig. 8.	 Error patterns for one error bit in plane P.
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tree is the one drawn on the left in Fig. 9.  The decoding tree constructed by odd syndrome patterns 
is similar to that of even patterns.  Although the GPD algorithm finds only the syndrome patterns 
for which the number of error bits is less than 4, the decoding plane can be randomly chosen in 
the EG(m,2s).  Because of the random property of error bits, the decoding plane chosen randomly 
can be regarded as a pseudo-random interleaver.  If the decoding algorithm is overall in EG(m,2s), 
a complete decoding procedure would be prohibitively complex; however, because more than one 
decoding plane is used, it is possible to employ a simple decoding procedure for each 2-flat space 
in an iterative fashion, in which the soft decision is passed to the other.   
	 The implementation of this decoding scheme can be simply achieved using memory and 
registers.  The decoding realization is implemented in two steps.  A message bit of a CH is first 
arranged as shown in the memory of Fig. 10.  It is possible to construct a memory by interleaving, 
that is, simply by arranging data from CHs into the rows of the memory and then permuting the 
data in the memory as another decoding array.   At the first step of encoding, each row of the 
memory array is encoded into a parity check sum.  At the second step of encoding, each of the 
columns of the memory formed in the first encoding step is encoded into a parity check sum for 
all the columns.  For the example in Fig. 6, a pattern of three errors at the distributed corners of 
a triangle gives two errors in each of the two rows or columns, and the other may be in any one 
row or column.  This error pattern is not correctable by simple correction on rows and columns.  

Table 1
Error pattern for error bits less than 4.

Number of 
error bits

Error pattern Number of total 
syndromeRow syndrome Column syndrome

0 0 0 10 10
1 1 1 10 10

2 2 0  4 102 2  6

3
1 1  3

101 3  6
3 3  1

3 1 3  4 103 3  6

Fig. 9.	 Decoding tree for the GPD algorithm.

Even number syndrome Odd number syndrome

(0,0)

1 0

1 0

1 0

1 0

1 0

1 0
(0,2)

(2,2) X

(1,1)

(1,3)

(3,3) X

Number=10

Number=6

Number=10

Number=6 or 1
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Nevertheless, a simple permutation in a variety of two-dimensional memory composed of two lines 
in finite geometry can be very effective.  
	 Permuting memory constructed by finite geometry can easily be generalized by interleaving 
several different codes of the same length.   The decoding efficiency depends on the decoding 
capacity required by different codes. 

3.2	 Computational complexity

	 Although the parity check matrix for EG codes forms a sparse matrix, the decoding algorithm 
can use a sum-product algorithm to achieve good decoding error probabilities.  EG codes with 
SPA algorithms suffer a disadvantage in decoding complexity in high-dimensional space.   This 
study proposed a way of improving the issue of decoding algorithms using subconstruction over 
EG(m, 2s).  If the EG(m, 2s) is large, the dimension of the plane is still sufficiently small to enable 
low-complexity decoding.  The parity check sums can also be found using the constructions of the 
lines in the plane. 
	 The method proposed in this study can reduce the decoding complexity more than other 
decoding algorithms.  The number of parity check sums for MLD decides the complexity 
associated with the line construction in EG(m, 2s).  The decoding in some points for MLD needs (2ms 
− 1)/(2s − 1) lines, and therefore MLD can be capable of correcting [(2ms − 1)/(2s − 1)/2] bits.  The 
number of check sums is also equal to [(2ms − 1)/(2s − 1)/2].  The complexity of GPD is required 
to locate the check sums of two dimensions.  However, the GPD algorithm requires providing 
C(2ms−1)/(2s−1)

2  check sums of two dimensions to locate the error patterns.  The number for finding 
the check sums for the MLD algorithm is 

	 CMLD(m, s) = (2ms − 1)2/(2s − 1).	 (11)

For the GPD algorithm, the complexity is 

Fig. 10.	 Implementation of two-dimensional decoding.
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	 CGPD(m, s) = 2s+1C(2ms−1)/(2s−1)
2 .	 (12)

	 Moreover, the proposed method can also be decoded using iteration decoding procedures.  After 
the partial received sequence is decoded using the GPD algorithm, we can choose the decoding 
plane again to decode based on the GPD algorithm.  A GPD with an iterative procedure not only 
further improves the decoding error probability but also controls the complexity of the GPD 
algorithm.

4.	 Simulation Results

	 The experimental results demonstrate how the decoding performance for the GPD algorithm 
in a wireless sensor network works.  Consider a wireless sensor network consisting of 16 clusters 
uniformly dispersed over a field to continuously monitor the environment, as drawn in Sect. 2.  
The sink is located in the center of the field.  These sensor nodes are location-unaware and have 
the same capabilities and resources.  Each node in the field also has a unique identifier.  Nodes can 
act in inactive node or sleep mode.  First, when three events occur in the field at the same time, 
the sensor node closest to these events transmits bit data to the CH node.  All CHs broadcast their 
data to other CHs.  Then, each CH has the data of the remaining CHs.  The CHs can evaluate the 
collected data using the GPD algorithm and decode them.  Thus, the processor in the CH is capable 
of decoding these three error patterns resulting in the channel.  This study uses a simplified mode, 
as noted in Ref. 9, for communication energy consumption.  This study works at the bit level 
instead of packet level.  A network of 100 sensor nodes deployed uniformly over an area of size (100 
× 100 m2) with a sink located at position (50, 50) is designed.  For simplification, an ideal MAC 
layer and binary symmetric channel are considered.  The environmental parameters are listed in 
Table 2.
	 In the simulation, we assume a wireless sensor network consisting of number nodes and cluster 
nodes.  The cluster members use a single point to communicate with the CH node.  Figure 11 
shows that the number of dead nodes per round increases as the number of rounds increases. 

Table 2
Propagation characteristics of simulation parameters.
Parameter Value Unit
Location of sink (50,50) m
N 100 number
Eelec 0.05 µJ/bit
d0 86 m
εfs 10 pJ/bit/m3

εtr 1.3 nJ/bit/m4

Er 0.05 µJ/bit
Eori 500 mJ Fig. 11.	 Number of dead nodes per round.
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	 Here, we only simulate the energy consumption of the proposed decoding method for our sensor 
network, and the other environment parameters are the same as those of the general set.  This work 
can achieve the network lifetime until close to 1500 rounds when performing the simulation for the 
GPD algorithm.  Figure 12 shows that the energy consumption of one CH node runs down until it 
is dead.  The energy consumption of a cluster node may be different depending on the topology. 
	 In the second experiment, the first task was to address the complexity problem of constructing 
finite geometry codes with GPD decoding, as shown in Table 3.   In the experiment, the GPD 
algorithm was compared with the MLD algorithm.  The operator of check sums for the GPD 
and MLD algorithms is given by 22s × C(2ms−1)/(2s−1)

2  and (2ms − 1)2/(2s − 1), respectively.   The 
simulation results are shown in Table 3.
	 The functions of m and s determine the code size.  When the size of finite geometry is m > 
4 and s > 3, the experimental results are difficult to simulate and implement owing to their high 
complexity.  Table 3 shows that the check sums of the GPD algorithm are similar to those of the 
MLD algorithm, i.e., both complexities are comparable.  The second task was to demonstrate 
simulation results using the finite geometry code.  Let m = 2, s = 2, and μ = 0.  The finite field F2

22 
may be regarded as the EG(2, 22) over F22, and the generator polynomial of the finite geometry 
code of length 15 is g(x) = 1 + x4 + x6 + x7 + x8.  This code is an (15, 7) Bose Ray-Chaudhuri 
Hocquenghem (BCH) code and the two-dimensional EG code is the simplest finite geometry code.  
This code has a minimum distance of 5 and rate R = 0.4667.  The error performance with the 
MLD and GPD algorithms is shown in Fig. 13.  We see that MLD and GPD provide for less coding 
gain over the binary channel but require the least decoding complexity.  With GPD, this code is 
capable of correcting 3 or fewer errors.  The MLD gives less error performance than the GPD.  In 
fact, the GPD can use iteration decoding to enhance the error performance.  This method offers a 
good trade-off between error performance and decoding complexity.  From Fig. 13, we see that the 
GPD achieves about 0.2 dB coding gain over the MLD at various bit error rates (BERs) with some 
additional computational complexity. 

Table 3
Comparison of computational complexity between 
MLD and GPD.

m s GPD MLD
2 2           80           75
2 3         576         567
2 4       4352       4335
2 5     33792     33759
4 2       1680       1323
4 3     42048     37303
4 4 1188096 1117935
5 2     28560     21675
5 3 2733120 2395575

Fig. 12.	 Energy consumption of one node as a 
function of number of rounds.
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5.	 Conclusions

	 In this report, we propose a novel decoding method based on partial geometry construction for 
error control coding in a grid-based sensor network.  Generally, the WSNs transmit data using a 
packet form.  In this study, the proposed method was used in bit level, and the simulation of energy 
consumption was run using bit streams.  We used 2-flat construction and two-dimensional check 
sums to locate error patterns.  The proposed method has not only low decoding complexity but also 
good error efficiency for hard decoding.  An iterative decoding procedure was used in this work.  
Moreover, the proposed methods reduced the operational complexity for error control coding and 
provided superior BER performance in comparison with other decoding algorithms.
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