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0 Introduction 

The problem of classification in terms of a finite list of invariants is a fundamental 
question of knot  theory. In 1970, Levine I-L] gave an algebraic classification of 
n-dimensional knots in S n+2 bounding r-connected Seifert surfaces, where 
2 r+  1 = n, n>  3. Levine showed that the only invariant which determines the 
isotopy type of such knots is the homology Seifert pairing considered up to 
S-equivalence. In the mid 1970's, Kearton [K]  and Trot ter  [Tr 1; Tr  2] obtained 
the same classification in terms of the Blanchfield pairing. In 1980, Farber  I-F] 
extended this classification in homotopy theoretic terms to n-knots that bound 
r-connected Seifert surfaces, where 3r > n + 1. 

Suppose V" § 1 ~ S" + 2 is a Seifert surface for an n-knot. Farber  introduces a map 
6): V^  V ~ S  "§ 1, called the homotopy Seifert pairing of V, which induces the usual 
Seifert pairing on homology. He shows that the isometry class of ~ determines the 
isotopy class of V as a submanifold of S" § 2 in a certain range of dimensions and 
connectivities: 

0.1 Theorem (Farber). Let V 1 and V 2 be two compact oriented (n + 1)-dimensional 
submanifolds of  the sphere S n+2 with dV1 and dV 2 homotopy spheres. Let Oi: V~ ̂  V~ 
~ S  "+ ~, i= 1,2, be the corresponding homotopy Seifert pairings. Suppose that the 
manifolds V 1 and V 2 are r-connected, where 3r > n + 1, n ~ 5. I f  there is a homotopy 
equivalence f :  V 1 ~ V 2 for which 02  o ( f  A f )  is homotopic to 0 1, then there exists an 
isotopy of  the sphere S n + 2 transferring V 1 on V 2 with a preservation of orientations. 

Farber  then treats the situation in which non-isotopic Seifert surfaces bound 
isotopic knots IF, Theorem 2.4], so a single knot may have several pairings 
associated to it. However, if the knots are assumed to be fibred, they have 
canonical Seifert surfaces up to isotopy, and consequently, canonical homotopy 
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Seifert pairings. Hence, Theorem 0.1 gives a complete classification of fibred 
n-knots with r-connected fibres in the range 3r > n + 1. 

W. Richter (1982, unpublished; see also [K1]) established that 0.1 is still true in 
one dimension better: the "stable" range 3r > n. The natural question then was: Do 
there exist inequivalent fibred knots having the property that their homotopy 
Seifert pairings are isometric? 

In this paper we answer this question in the affirmative, thus showing that the 
statement of Farber's theorem is false outside of the range 3r > n. Our main result is 

8.7 Theorem. For each integer n> 9, there exist infinitely many pairs (Li, Li) of 
fibred n-knots such that 

(1) Li and L i have isometric homotopy Seifert pairings; 
(2) the exterior of L~ is homotopically distinct from the exterior of Lj for i *j ,  

and also from the exterior of L i for all j;  
(3) the knots L l and L l have 1-connected fibres if n >_ 9, 2-connected fibres if 

n > 22, and 5-connected fibres if n >__ 25. 

Our examples reside in the range r/n < 115, two ranges away from the stable 
range 1/3 < r/n < 1/2. Therefore it is still an open question as to what happens in the 
metastable ranges 1/5 < r/n < 1/3. 

The construction we use to provide these examples is a generalization of the 
frame-spinning construction of Roseman JR], as elaborated upon by the second 
author in I-Su]. We call this new construction diff-spinning. The distinction 
between the two constructions is that we twist the framed submanifold by a self- 
diffeomorphism as we spin. 

Diff-spinning takes fibred knots to fibred knots. The diff-spun fibre is the same 
as the frame-spun fibre, but the diff-spun monodromy is a twisted version of the 
frame-spun monodromy. If the diffeomorphism is chosen carefully, the homotopy 
Seifert pairing remains the same, but the homotopy type of the knot exterior 
changes. 

We now turn to the organization of this paper. Section 1 starts with the basic 
definitions used throughout the paper. In Sect. 2 we establish the results we need 
about fibred knots. As a starting point for our constructions, we exhibit simple 
fibred(2m- 1)-knots having mon'odromy of finite homotopy order. In Sect. 3 we 
define the homotopy Seifert pairing and show that for a fibred knot the isometry 
class of the'pairing is determined by the stable homotopy class of its monodromy 
rel boundary. In Sect. 4 we outline the frame-spinning construction and identify its 
effect on the monodromy of a fibred knot. As an application, we give examples of 
fibred 11-knots having isometric homology Seifert pairings but non-isometric 
homotopy Seifert pairings. In Sect. 5 we introduce diff-spinning and establish its 
basic properties. In Sect. 6 we coinpare frame-spinning with diff-spinning and 
show that, under certain conditions, the homotopy Seifert pairings are the same 
(6.3), but the exteriors are homotopically distinct (6.5). In Sect. 7 we construct self- 
diffeomorphisms of S p x S ~ whose m-fold suspensions have finite homotopy order, 
yet which are stably homotopic to the identity. In Sect. 8 we prove our main 
theorem by diff-spinning the knots of Sect. 2 with the diffeomorphisms of Sect. 7, 
where the diffeomorphisms are chosen so that their m-fold suspensions have 
homotopy orders coprime to the homotopy orders of the knot monodromies. 
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1 Definitions and notation 

1.1. We work in the category of spaces which have the homotopy type of C W  
complexes. All manifolds contained herein are assumed to be compact, orientable 
and smooth. Diffeomorphisms are denoted by --, homotopy equivalences by ~-, 
embeddings by ~, the connect sum by # ,  and the boundary connect sum by ~. S" is 
the n-sphere, D" is the n-disk, R is the real line, and I is the unit interval [0,1]. D~ 
(resp. D"_) is the northern (resp. southern) hemisphere of S". The symbol * denotes 
the basepoint. 

For  pointed spaces X and Y, the wedge X v Y of X and Y is the subspace 
of X • Y whose points are of the form (x, *) and (*, y) for all x e X and y e Y Set 
X + = X v S ~ The smash product X ^ Y of X with Y is the quotient space of X x Y by 
X v Y. The join X * Y of X and Y is the topological space obtained from the union 
of X, Y, and X x Y x I by identifying (x, y, 0) with x and (x, y, 1) with y, for x ~ X and 
y~ Y. Taking the join of a space X with the ( r -  1)-sphere yields the space Z ' X  
= X * S r- t, called the r-fold suspension of X (alternatively, E ' X  = X A St). Two 
spaces X and Y are said to be stably homotopy equivalent, denoted X-~s Y, if 
~rX~-ZrY for some non-negative integer r. We let {X, Y} denote the group of 
stable homotopy classes of maps from X to Y 

A self-map f : X ~ X  is said to have homotopy order d, if the d-fold composition 
o f f  with itself, fd, is homotopic to the identity, and moreover, d is the smallest such 
integer. We will write maps from spheres to spheres as fb: Sa~Sb, emphasizing the 
target dimension. The r-fold suspension of fb will then be denoted by fb+,. 

If f :  X x Y--}Z is a map of topological spaces, then the Hopf construction 

H ( f ) : X  * Y ~ X Z  

is defined by sending (x, y, s) to the point (f(x, y), 2s) if s<  1/2, and to the point 
(f(x, y), 1 -2s )  ff s > 1/2 (cf. [Whl). Note that H ( f ) =  Efo  H(idx • r). If f :  X • Y ~ Z  
factors through * x Y, then H( f )  factors through {*} * Y, which is contractible, 
and thus H(f )  is null homotopic. If = : X x Y ~ X  ^ Y is the quotient map then 
H(~): X * Y ~ Z X  ^ Y is a homotopy equivalence. In particular, we have natural 
equivalences S p + q + 1 ~ S p , S~ ~ 2;Sp ̂  S ~. 

1.2. We say that a submanifold Mk~_S "+k is framed if its unit normal bundle 
vu_-3 S" +k is provided with a trivialization q~ : M x D"~vu.  We shall always assume 
that M is closed, i.e., compact, connected and without boundary. Using the 
trivialization, we may identify a tubular neighborhood of M with M x D". The 
Thom-Pontryagin collapse of (M,4~) is the map u:Sn+k--*M+ ^ S n given by the 
composite 

S"+k ~s"+k/(s  "+k - in t (M X D"))= M x O"/M x S"- x = M+ ^ S". 

2 Fibred knots 

2.1. An n-knot is an embedding K:Sn~_S n+2 (we often abuse terminology by 
identifying the embedding with its image). Two n-knots K and K' are equivalent 
(K ~- K') if there is a diffeomorphism of S" + 2 taking the image of K to the image 
of K'. 
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Each knot  K has a tubular neighborhood of the form Sn• n+2. The 
exterior of K is 

X(K) = S "+2 - S" • int(D2). 

Thus X(K) is an (n+2)-manifold with 0X(K)= S"x S 1. Equivalent knots have 
diffeomorphic exteriors. The meridian of K is the circle * x S 1. The inclusion of the 
meridian in the exterior is a homology equivalence. We let ~(K)  denote the 
universal abelian cover of X(K). 

By a Seifert surface V" + ~ for an n-knot K, we mean a codimension one oriented 
submanifold of S" + 2 whose boundary is the image of K. If K has a Seifert surface 
V" + 1 which is r-connected, then K is said to be r-simple. If n = 2r + 1, or if n = 2r + 2, 
then K is said to be simple. If K is a non-trivial simple n-knot, then V is homotopy 
equivalent to a wedge of (r + 1)-spheres if n = 2r + 1, or to a complex with cells in 
dimensions r + 1 and r + 2 if n = 2r + 2. 

An n-knot K is said to be fibred if there is a smooth fibration p:X(K) -~S  1 
whose restriction to the boundary is the second coordinate projection pr2:S" 
x S 1 ~ S  ~. If K is fibred then the fibre V= p -  1(, ) is a canonical choice of Seifert 
surface for the knot  K (where we abuse notation and identify the knot K with its 
pushoff into the boundary of its tubular neighborhood). 

Using the clutching construction, a fibred knot  determines a monodromy map 
0: V-~ V of its canonical Seifert surface. This is a diffeomorphism such that 

(m0 the restriction of 0 to S"=OV is isotopic to the identity; 
(me) the map ( id -0 , ) : /~ . (V) -o /~ . (V)  is an isomorphism; 
(m3) the set { x - 0 ,  X(x)lx ~ nl(V)} normally generates nl(V). 

[Note that condition (m3) is trivially satisfied if V is 1-connected.] 
On the other hand, if 0: V--.V is a diffeomorphism satisfying the above 

conditions, then 0 and a choice ofisotopy h : S" x I ~ S "  x I from 0is, to the identity 
determines a fibred knot Ko:S"~_ S "+ 2. The construction of Ko is as follows: 

Let Xo = Vx 0S1 be the mapping torus of 0. Then OXo = S" x o S~ is the boundary 
of the manifold T =  (S" x I) x hS 1 wS" x D 2 ( - S" x D z) where the union is taken over 

(S"x 1) x ~ S t  = S " x  Stz=S"x D 2. 

Let 2;" + 2=  Xow~xeT. A Van-Kampen and Mayer-Vietoris calculation shows that 
2:" + 2 is a homotopy n + 2-sphere. Moreover, the core of T provides an embedding 
ko : S" s ~" + 2. The desired knot Ko : S" ~_ S" + 2 is then defined to be the knot  obtained 
from ko by changing if necessary the smooth structure of ~" + 2 on an embedded ball 
in the exterior of ko(S"). 

2.2. A necessary condition for two fibred knots to have homotopy equivalent 
exteriors. Suppose K~:S"~_S "+2 are fibred knots, i--1,2,  whose associated 
monodromies are 0~: V~--* V~. We say that 0n is homotopically conjugate to 02 if there 
exists a homotopy equivalence f :  V1 ~ V2 such that f o  01 o f -  1 ~ 02 , where f -  t is a 
homotopy inverse of f. 

2.3 Lemma. I f  K x and K 2 have homotopy equivalent exteriors, then O~ is 
homotopieally conjugate to 02. 

Proof. The exterior of Ki is the space Vi xo, S 1. Let g: V1 xo, SX ~ V2 xo~S 1 be a 
homotopy equivalence. Then g lifts to an equivariant map of universal abelian 
covers ~:V~ x R ~ V 2  x R .  Let f :  V1--*V2 be the composition prl ogoio, where 
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p r l : V 2 x R - * V  2 is the first coordinate projection and i o : V l - + V l x R  is the 
inclusion of V 1 x 0. Then f is the desired homotopy conjugation from 01 to 0 2. [] 

2.4. Construction of  odd dimensional simple f ibred knots witti monodromy of  f inite 
homotopy order. Let a and b be coprime integers greater than one. Let Ko, b" $1 -~ $3 
be the (a, b) torus-knot. Then Ka. b is a fibred knot with fibre homotopy equivalent 
to a /~-fold wedge of circles, where # = ( a - 1 ) ( b - 1 ) .  With respect to this 
identification, the monodromy %.b: v "$1-~ v "S 1 has homotopy order ab [HI. 

Let m > 1 be an integer. Consider the homotopy equivalence 

~_rn-- lZa, b : V PS m----~ V PS m . 

By the proof of Lemma 17 in Wall [W], there is a thickening of this map to a 
diffeomorphism 

Za, b : ~ a S m •  Dra+ l . - - ~ s r n •  D m +  l " 

Note that T~,b induces the same homomorphism on H m as Za, b on H r Restricting 
T~,b to the boundary we have a diffeomorphism 

O a, b : :~ # S m x s m  --.~ :~ It s m  X S m , 

which by isotoping if necessary, may be assumed to preserve an embedded disk 
D TM. Then the restriction OfOa, b t o  Va, b = :~:ttsm X S m - - D  TM satisfies conditions ( m l )  
and (m3) trivially, and (m2) by Lefschetz duality. Consequently, we obtain 

2.5 Proposition. For each integer m > 1, there exist infinitely many simple f ibred 
(2m-1) -kno t s  whose monodromies have distinct f ini te  orders. Moreover, the 
exteriors of  these knots are pairwise homotopy inequivalent. 

Proof  Choose pairs (a, b) whose products ab are all distinct. Then the simple fibred 
knots Ka, b associated to the monodromy Oa, b by 2.1 are the desired knots. By 2.3, 
X(Ka, b) is not homotopy equivalent to X(K. ,  b, ) for (a',b')4:(a,b). [] 

3 The homotopy Seifert pairing and its dual 

3.1. S-duality. Suppose that K _~ S ~ is a finite subcomplex whose dimension is less 
than n. If C ~ S  ~ is the exterior of a regular neighborhood N of K, then one may 
naturally associate a Spanier-Whitehead duality map 

d: K * C-*S  n 

as follows: Fix a basepoint * in S~-(K_LLC) and think of F, n as being S " -  * via 
stereographic projection. We will henceforth consider K and C as being embedded 
in this R ". Let 6 : K x C - ,  S ~ - 1 be given by the rule (5(k, c) = (k - c)/[I k - c []. The map 
d: K * C ~ S  ~ is then defined to be the Hopf construction of the map (~. 

It is well-known that the map d induces the Alexander duality between K and C 
upon taking homology in dimension n and utilizing the Kiinneth splitting of 
K * C ~- F.K n C. What seems to be less well known is that there is also a natural 
duality map going in the other direction, 

d* : S " - , C  . K , 

defined as follows: Let N be the regular neighborhood of K given above and 
choose a retraction r: N - * K .  The orientation of N induces an orientation of the 
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normal bundle of ON. The Thom-Pontryagin construction then yields a degree one 
map (the normal invariant of ON), 

u: S ~ ~ Zc3N. 

Let j:ON--* C ^ K be the map induced by smashing the inclusion ic:ON ~_ C with 
rloN: O N , K ,  i.e.,j(n) = ic(n) ^ r(n). Suspendingj and composing with u gives a map 
(,F,j) o u: S" ~ ZC A K. The identification C * K "~ ZC ^ K of Sect. 1 then defines the 
desired duality map d* : S " ~ C  * K. 

For any spaces X and Y, let 

Ua(X, Y): {X, C* Y} =~ {K * X, S ~ * Y}, 

and 
Vd,(X, Y): { Y* C ,X} '~  { Y* S" ,X  *K} 

be the S-duality isomorphisms defined by d and d*, respectively. These are given by 
the formulas 

Ua(X, Y) ( f )  = (d * idy) o (idx *f )  and Va,(X, Y) ( f )  = ( f *  idr) o (idr * d*). 

3.2 Proposition. Ua(S ~, K)(d*)= + ids., K and V~,(S ~, K)(d)= + ids., K, i.e., d and d* 
are S-duals of one another up to sign. 

Proof. (Sketch). By construction the proposition is true when K is a sphere or disk. 
As the S-duality isomorphism can be shown to commute with amalgamated 
unions, the proposition follows by induction on the number of cells of K (see e.g. 
Is]). [] 

3.3. The homotopy Seifert pairing and its dual. Suppose V"+~ ~_S n+2 is a Seifert 
surface for a knot  S ~ ~_ S" + 2. Identify a tubular neighborhood of V with V • [ -  1,1] 
in such a way that the orientation on V together with the usual orientation of the 
interval agree with the standard orientation of the sphere S ~+z. Let C = S  ~+2 
- Vx ( -  1, 1) be the exterior of V. Then the constructions of 3.1 provide Spanier- 
Whitehead duality maps, 

d : V * C ~ S  n+2, and d*:sn+2---~C*V. 

Define maps p • : V~ C by the formulas p • (v) = (v, _ 1) ~ V x + 1 _c C (p + and p_ are 
the maps which push V along its outward unit normal frames). Let 

O : V * V ~ S  "+2 and ~ : S " + 2 ~ C * C  

be the maps obtained by precomposing d with the map id v * p+ : V* V--* V* C, and 
by composing the map idc*p_  :C*  V ~ C *  C with d*. 

The map O : V* V~ S" + 2 was defined by Farber  IF]  and is called the homotopy 
Seifert pairing of the Seifert surface V.* By analogy, we call 71: S" + 2 ~ C * C the dual 
homotopy Seifert pairing of the Seifert surface V. The justification of this 
terminology is provided by the following: 

3.4 Lemma. The map ~[I : Sn+ 2- '~C * C is the Spanier-Whitehead dual of the map 
O: F* F ~ S  "+2 up to sign. 

* Actually, Farber's pairing is a map O:V^ V--,S "§ 1. Our map is obtained from Father's by 
suspending and using the natural equivalence V* V~--,Y, VA V of Sect. 1 
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Proof. By 3.2, d* is the Spanier-Whitehead dual of d up to sign. By duality it is 
sufficient to prove that id c * p_ :C * V--*C * C is the Spanier-Whitehead dual of 
idv * p+ :V* V---} V* C. But this will be true if p_ : V ~ C  is the dual of p+ : V~C.  

To see this, let C • =Cup•  • 1Vx [0, 1] be the mapping cylinder of p• [C • is 
the collar of C obtained by attaching onto C the (+)-half  of the tubular 
neighborhood of V in S" § 2]. Note that C • naturally embeds in S" § 2, extending the 
inclusion of C. Moreover, the composition 

V p~ , CC=C • 

is isotopic to the inclusion of V into C • as Vx 0. Note that the exterior ofp• in 
S "+2 is C ~=, and the exterior of C • in S "+2 is Vx 0. Furthermore, the inclusion of 
exteriors, V x 0 = C ~, is identical to the map 

V ~ , Cc-_C ~ , 

Consequently, the Spanier-Whitehead dual of p+:V--*C is homotopic to 
p_ : V ~ C .  [] 

Suppose Ox : X * X ~ S  j and Or : Y* Y ~ S  i are arbitrary maps. Then Ox is said 
to be isometric (resp. s-isometric) to O r if there is an equivalence (resp. stable 
homotopy equivalence) f :  X ~  Y such that Or ~ ( f ' f )  is homotopic (resp. stably 
homotopic) to Ox. There is also the corresponding notion of isometry for maps 
7~x : S J ~ X  * X and 7~r: S ~ Y *  Y which go in the opposite direction. 

3.5 Proposition. Let V and W be Seifert surfaces in the sphere S ~+2 with associated 
homotopy Seifert pairings 0 v : V* V---}S ~ + 2, Ow : W* W---}S" + z, and dual homotopy 
Seifert pairings ~v  : sn+ 2-'-I'Cv * Cv, IPW : Sn+ 2"-'~Cw * CW" Then Ov and Ow are 
s-isometric if and only if ~Pv and ~Pw are s-isometric. 

Proof. Let f :  V-o W be an s-isometry from Ov to Ow. Then the S-dual of f, 
f * : C w ~ C v ,  provides an s-isometry from ~v to ~w by 3.4. []  

3.6. Monodromy and s-isometry. Suppose K:S"c=s "+2 is a fibred knot  whose 
associated monodromy is 0: V--, V. Let C be the exterior of V in S" +2. Then 
p • : V-o C are homotopy equivalences. Moreover, 0 ~- p_~ 1 o p _. Using the identifi- 
cation p+ of V with C, we may think of the dual homotopy Seifert pairing as a map 
7J :S"+2~V* E 

There is another description of ~ given as follows: Let O(V• I)_~S "+2 be the 
boundary of a tubular neighborhood of V. Define a map b : O(V• I ) ~  V^  V by the 
composite 

O ( V x I ) C V x I  prl AV idvx0 ~ = , V , Vx V Vx V V^ V. 

Then 7 ~ : S" + 2___, V * V is given by the composite of Sb: EO( V x I)--, Z V^  V with the 
normal invariant u: S "+ 2~2;0(Vx I). 

Suppose now that 01 : V~  V and 0 2 : V--* V are two monodromies. We shall give 
sufficient conditions for the associated dual homotopy Seifert pairings to be 
s-isometric. 

3.7 Proposition. Let T1 : S"+2--*V* V and ~u 2 : S"+2~V* V be the dual homotopy 
Seifert pairings associated with the monodromies 01 and 02 respectively. Then ~1 is 
stably homotopic to ~2 if 01 is stably homotopic to 02 relOV. In particular, the 
identity map of V provides an s-isometry of the pairings. 
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Proof. For i=1,2 ,  let ~i:~(Vx [ - 1 ,  1])~ Vx V be the map given by the formula 
zi(v, t) = (v, Oi(v)), if t = 1, and z~(v, t) = (v, v), if v ~ ~ V or if t = - 1. 

We claim that z 1 and z 2 are stably homotopic. To see this, note that up to 
homotopy, ~(Vx [ -  1,1]) is the space obtained from Vv V by attaching an (n + 1)- 
cell using the map 

S" P" -~ ,SnvS"  ~ W , V v V ,  

where ct: S '~  V is the inclusion of the boundary of V, and pt, _ 1 : S"~S" v S" is the 
"anti-pinch" map (which is characterized up to homotopy by the fact that it 
induces the map x ~ x~) - x  upon taking n-dimensional homology). The restric- 
tion of z~ to the subspace Vv  V is the map 

(idv v idv, idv v Oi) : Vv  V-~ Vx V. 

Since 01 and 02 are stably homotopic rel S ", (idv v idv, idv v 01) is stably homotopic 
to (idv v idv, idv v 02) relS" v S ~. This shows that the stable homotopy can be 
extended to the top cell of 0(V x [ -  1, t]), proving the claim. 

Now let u~:S~+2--,Zd(Vx[-1,1]) be the degree one Thom-Pontryagin 
collapses associated to the two framed embeddings of Vin S ~ + 2. By the uniqueness 
of embeddings in large codimensions, the normal invariant is stably unique up to 
homotopy. Consequently, the maps ul and u2 are stably homotopic, and hence 
t~ o ul :S*+2-~F.(Vx V) is stably homotopic to t 2 o U 2 :Sn+2--*Z,(V• V). Finally, 
retracting from S(Vx V) to V* V yields a stable homotopy from ~1 to ~P2, 
establishing the proposition. []  

The importance of 3.7 is embodied in the following corollary: 

3.8 Corollary. Let 01: V* V ~ S  n+ z and 02:  V* V ~ S  ~+ 2 be the homotopy Seifert 
pairings associated with the monodromies 01 and 0 z, respectively. Then 191 is 
isometric to 192 if 01 is stably homotopic to 02 relOV. 

Proof. By 3.5 and 3.7, idv: V ~ V  is a stable isometry from 191 to 0 2. But the 
homology of V* V vanishes above dimension 2n + 1, so O t and 02 are in the stable 
range. Hence 192o( f^ f )  is homotopic to 191 if and only if it is stably 
homotopic. [] 

Finally, we give a necessary condition for the homotopy Seifert pairings of two 
fibred knots to be s-isometric. 

3.9 Proposition. Let Or: V ~  V and Ow : W ~  W be monodromies, and let 

O v : V * V ~ S  ~§ and 1 9 w : W * W ~ S  "+2 

be their associated homotopy Seifert pairings. I f  f :  V-* W is an s-isometry from 19v 
to Ow, then f stably conjugates Ov to 0 w. 

Proof. Let g+ =q• ofop~l  : Cv_,Cw, where p• : V ~ C v  and q• : W--.C w are the 
push maps along the positive/negative unit normals. As f is an s-isometry, 
deo(idv*p+) is stably homotopic to dwo(f*g+)o(idv*P+), where dv: V*Cv 

S . + 2 and dw:W * C w-*S" + 2 are the canonical S-duality maps. By [K1; 5.8], the 
same relation holds if plus is replaced by minus, i.e., dvoOdv*p_) is stably 
homotopic to dwo( f*g_)o( idv*p_  ). Since p+ and p_ are homotopy equiva- 
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lences, it follows that d v is stably homotopic to both dw o ( f *  g+) and dw o ( f*  g-).  
However, 

dw ~ ( f  * g+) = dw ~ (idv * g+) o ( f ,  idcv), 

and consequently, dw o (idv * g+) is stably homotopic to dr/o (idv * g_). S-duality 
now implies that g + is stably homotopic to g_. Hence, 

f oOvo f - l " ~  f o(p+ a op_)o f - X = ( f  op+~)o(p_ o f  -1) 

=qT, l og+ ogZX oq_"%q~l oq_"~Ow . [] 

4 Frame-spinning 

4.1. Outline of the construction. Suppose M k c s  n+k is a framed submanifold of 
codimension n, whose framing we denote by ~b. We shall associate a function 

aM,~: n-knots /~ ~ ( n +  k)-knots/~ 

defined as follows (cf. JR; Su] for details): If K:  S"_~ S" + 2 is a knot, we can assume 
by a standard isotopy that the restriction of K to the southern hemisphere of S" is 
the standard inclusion of D"_ in S" + 2, and we may also assume that K maps the 
northern hemisphere of S" to the northern hemisphere of S" + 2. Restricting K to the 
northern hemisphere, we in this way obtain an embedding 

(D"+,S,- X)K_ (D"++ Z,s "+1) 

which is standard on S"- 1. Taking the product of this embedding with the identity 
map of M, we obtain an embedding 

eM,~(K): M x D~_ _ m x O~_ + z 

which is standard on M x S"- 1 
Identifying a tubular neighborhood of M in S "+k with M x D" via the framing 

~, we have an embedding M x D"~_S "+k. By including S "+k into S "+k+z in the 
standard way, we obtain the standard inclusion of tubular neighborhoods, 
M x D"~_M x D "+2. 

Let C be the exterior o f M  x D" in S" + k, and let C' be the exterior o f M  x D" + 2 in 
S" + k + 2. Then the standard inclusion S" + k ~ S" + k + 2 decomposes as 

S "+k = M x D "  u C  

S "+k+2=M x D  "+2UC'. 
We modify this inclusion by replacing the standard inclusion 

M • D"_~ M x D" + 2 with the map eM,~(K). This provides us with a new embedding 
s"+k~_s "+k+2, which we call the frame-spin of K with respect to the framed 
embedding (M, ~b) ~ S" + k, and which we denote by aM.~(K). The procedure clearly 
depends only on the isotopy class of K, since the choices used to define it vary in an 
isotopic way. In the case M = S k with trivial framing, this is just the superspinning 
construction of Cappell [C]. 

It can be shown [Su] that the exterior of aM.4,(K) in S "+k+2 is precisely the 
manifold 

X(OM,§ = (D" + k + 1 _ int (M x D" x I)) x Sl UM • a- • S' M x X ,  

where X =X(K),  S t ~_X is the meridian, and M x D"x  0 x S t is identified with 
M x D~ x S t. As the space D "+k+ 1 - i n t ( M  x D" x / )  is contractible, one easily sees 
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that X(trM,#(K)) is homotopy equivalent to the mapping torus 

( M  + ^ )7)  x tdM~ ^t s l  , 

where ~ is the universal abelian cover of X and t : ~ ) 7  is the generator of the 
group of covering translations corresponding to the meridian. 

4.2. Frame-spun Seifert surfaces. If V"+I~_S "+z is a Seifert surface for a knot 
K:S"~_ S "+ 2, then a relative version of the above construction provides us with a 
Seifert surface for aM,~,(K ), which is unique up to isotopy. This procedure carries 
isotopy classes of Seifert surfaces for K into isotopy classes of Seifert surfaces for 
tru,~(K). 

Define 

aM,4~(V)=(Dn+k+ 1 - - int(M x D" x I))UM • x V. 

Then nu, , (V)  is the Seifert surface for aM,,(K). The homotopy type of this Seifert 
surface is given by the following lemma. 

4.3 Lemma. There is a homotopy equivalence trM,4,(V)~--M+ ̂  E With respect to 
this identification, the inclusion Oa u, , (  V) ~_ a u, ~,( V ) corresponds to the composite 

(ida+ ^ot)ou:S"+k~m+ ^ V, 

where ~:S"s is the inclusion, and where u : S " + k ~ M + ^ S "  is the Thom- 
Pontryagin collapse of the framed embedding (M, 49) c= S" + k. 

Proof Since D " + k + l - i n t ( M x D " x I )  is contractible, au . , (V ) is homotopy 
equivalent to M x V/M x * = M +  ^ E The inclusion OaM,,(V)s ) is by 
definition 

S"+k=(S"+k--int(M x D" x O))uM• x D" 

_~ (O" + k +1 _ int(M x D" x I))wM • D,M x V, 

which, under the identification aM,o(V)~--M+ A V is the map 

s"+k-4s"+k/(s"+k--int(M • D" x 0 ) )=M x D"/M x S"- 1 

~_M x VIM x D " " M +  ^ V. 

AS M x D"/M x S"- 1 ~_ M x VIM x D" is equated with the inclusion 

M+ ^ S"~M+ ^ V, 

we are done. [ ]  

Finally, we remark that if K:S"~_ S "+ 2 is a fibred knot with fibreing p:X(K)  
--.S 1, with fibre V and monodromy O:V~V, then aM,r is a fibred knot with 
fibration 

pr2u p opr2 : (D "+k+l - i n t ( M  x D" x I)) x SauM • • ~M x X ~ S  1 , 

with fibre tru.~(V) and monodromy aM,~,(O):trM,c,(V)--~aM.4,(V) given by 

idu(id x 0): (O" + k + 1 _ int(M x D" x 1))uM • o.M x V 

--*(D" +k +1 _ int(M x D" x I))WM • o.M x V. 

Up to homotopy (Lemma 4.3), this is the map idu§ ^ O:M+ ^ V ~ M +  ^ V. 
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4.4. Knots with isometric homology Seifert pairings but non-isometric homotopy 
Seifert pairings. We use frame-spinning to give an example of a pair of 1-simple 
fibred knots whose exteriors are not homotopy equivalent, whose homotopy 
Seifert pairings are not isometric (in fact, not even s-isometric), yet whose 
homology Seifert pairings are isometric. 

Let SU(3) be the 8-dimensional Lie group of 3 x 3 Hermitian matrices with 
determinant one. Construct a framed embedding e:SU(3)~_ S 11 as follows: Let 
e o :SU(3)~SSx S 5 be the embedding given by sending a matrix to its last two 
column vectors. Then e is defined to be e o followed by the standard inclusion 
S 5 x S 5 _~ S 11. Since the normal bundle of e 0 is codimension two and oriented, it is 
trivial, hence the normal bundle of e is also trivial. 

Let K: $3~_S 5 be any non-trivial simple fibred 3-knot with fibre V and 
monodromy 0: V~ E Let K 1 = trs3 • s3(K), the frame-spin of K with respect to the 
trivial framed embedding S a x S s ~ S 11, and let K 2 = trsvta)(K ) the frame-spin of K 
with respect to the framed embedding e:SU(3)~_ S 11. 

4.5 Theorem. The 1-simple fibred l l -knots  K 1 and K 2 satisfy the following: 
(1) the homology Seifert pairings of K 1 and K 2 are isometric; 
(2) the homotopy Seifert pairings of K1 and K 2 are not s-isometric; 
(3) the exteriors of K 1 and K 2 have non-isomorphic stable homotopy groups. 

Proof. (1) From the Gysin sequence of the principal fibration Sa-~SU(3)~S 5, it 
follows that SU(3) and Sax S 5 have isomorphic homology. Let 4 :  H,(Sa x S 5) 
-~H,(SU(3)) be this isomorphism. The Kiinneth formula then implies that 

4 + | tv) : H ,((S 3 x SS) + ̂  V)--* H ,(SU(3) + ̂  V) 

is an isomorphism. As the homology monodromy of K1 is id~/,tsvt3)§174 and 
that of K2 is idH ts3 •247174 follows that r | tv) conjugates the former to 
the latter. Henc~ the homology Seifert pairings of K1 and K2 are isometric. 

(2) and (3): To show that the homotopy Seifert pairings of KI and K2 are not 
s-isometric, it is sufficient to show by 3.9 that the monodromies of KI and K 2 are 
not stably homotopy conjugate. But this will be true if the fibres of K1 and K2 have 
non-isomorphic stable homotopy groups, and this will also prove (3). 

As Visa wedge of 2-spheres, the stable homotopy group r~6((S 3 x S5)+ ^ V) is a 
direct sum of copies of rc~(S3 x SS)+,and an elementary computation shows that this 
last group is isomorphic to Z 2. Similarly, ~6(SU(3)+ ^ V) is a direct sum of copies 
of n~4(S U(3)+ ). But n~(S U(3)+) is trivial by the Gysin sequence in stable homotopy. 
Hence the fibres of K1 and K2 have different stable homotopy groups. [] 

As a final remark, we note that varying the choice of the simple 3-knot K (as in 
2.5), we obtain infinitely many pairs of knots in dimension 11 satisfying the 
conclusions of 4.5. By superspinning these knots, we obtain infinitely many pairs of 
1-simple fibred n-knots, n> 11, satisfying the conclusions of 4.5. 

5 Diff-spinning 

5.1. The construction. In this section we modify the frame-spinning construction 
by twisting the framed submanifold by a self diffeomorphism as we spin. This 
modification does not change the universal abelian cover of the frame-spun knot, 
but composes the action of the meridian on the universal abelian cover with a 
certain diffeomorphism. 
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Let (M k, tlp) be a framed submanifold of S* § k, and let M x D" be identified with a 
tubular neighborhood of M via t#. Assume that we are given a diffeomorphism 
r I : M ~ M  satisfying the following properties: 

(d l) there is a diffeomorphism F/:S n + k o S n + k such that ~lM • On = ~ X idD.; 
(d2) f/is isotopic to the identity; 
(d3) ~I.:H.(M)~H.(M) is the identity. 

Note that condition (da) is certainly implied by the condition 

(d~) the map t l : M ~ M  is stably homotopic to the identity. 

Given such ~/, we fix the extension ~/and its isotopy to the identity as part of the 
data. Considering S n+k as the boundary of the disk D n+k+l, we obtain an 
embedding of M x O n x I in D n+k+ 1. By (dl) and (d2), the diffeomorphism ~/has a 
preferred extension to a diffeomorphism ~:Dn+~+I~D n+~+1 that preserves 
M x D n x I .  

Given a knot  K:  S n ~ S n + 2, a framed submanifold (M k, c~) C__ S n + k, and a 
diffeomorphism r/: M-*M as above, we define the ~l-modification of au, , (K)  by first 
forming the "twisted" exterior, 

rl .X(trM,,(K))=(Dn+k+ t - - int(M x D n x I)) x~SIU(M •215 M x~X,  

where M x~X is the space M Xz~,  with 71 acting on M via the diffeomorphism ~/ 
and on 37 via the covering translation t. Note  that r/~ X(aM, ~(K)) has the homotopy 
type of the mapping torus 

(M+ ^ J~) x~+ ^tS 1 . 

5.2 Lemma. (1) The manifold t 1 .X(aM,,(K)) is a homology circle. 
(2) The fundamental group of ~l �9 X(r is the same as the fundamental 

group of X(K). 

Proof. (1) Follows from the Wang sequence of the fibration (M + ^ .~) x ~ + ̂  ,St -* S 1 
and condition (da). 

(2) As D"+k+l - in t (MxD n x I) is contractible, tloX(~u.,(K)) is homotopy 
equivalent to the space * x SIuM• The projection onto the second 
coordinate gives a map 

P 2 : *  X SlUM• •  

The Van-Kampen theorem then shows that P2 induces an isomorphism of 
fundamental groups. [ ]  

By definition, the boundary of the twisted exterior is ~I.~X(aM.,(K)) 
=Sn+kx~S 1. Using the give isotopy of ~/ to the identity, Sn+kx~S 1 becomes 
identified with S n + k X S 1. Gluing on a copy S n + k X D2 to r/�9 X(au. ~(K)), we obtain a 
knot in a homotopy sphere S n + k + 2 by 5.2. Changing the smooth structure of Z if 
necessary to get a standard (n+k+2)-sphere ,  we obtain a knot 
r I ~162 n+k+2. 

5.3 Definition. The r/-modified frame-spun knot, ~/* aM.,(K): S n + k ~ S n + k + 2, will be 
called the diff-spin of K:  S n ~ S n + 2 with respect to the pair ((M, ~), ~/). 

5.4. The cliff-spun monodromy. Let K ' S n _ ~ S  n+2 be a fibred knot  with fibre V "+ 1 
and monodromy 0. Then the diff-spun knot ~/�9 O'M,~(K) is also fibred. It has the 



Inequivalent fibred knots 695 

same fibre as aM,,(K), i.e., 

rl .aM,c,(V)=(D,+k+ 1 --int(M x D" x I))• M •  x V. 

However, r/. aM,,(K) has monodromy 

~/. au,~(0) = 6Ur/X 0. 

Using the identification aM, ~(V) = M + ^ V (Lemma 4.3), the diff-spun monodromy 
q "aM,~(O) is identified with the map q+ ^ O:M+ ^ V-OM+ ^ V. 

5.5. Frame-spinning the diff-spin construction. Let (M k, 4) be a framed submanifold 
of D" + k~ S" +k, and let M x D" be identified with a tubular neighborhood of M via 
~b. Assume that we are given a diffeomorphism q : M - O M  satisfying the conditions 
(dl)-(d3). Suppose further that (N j, W)-c S" +k +j is a framed submanifold, and let 
N x D" § k be identified with a tubular neighborhood of N via ~o. The composition 
N x M E _ N x M x D " ~ _ N x D " + ~ c _ S  *+k+j is an embedding with framing lp| 
= ~o o (idN • ~b). 

Consider the diffeomorphism qN=idN x ~/:N x M - O N  x M. 

5.6 Lemma. With (N j x M k, ~p | c~) c= S" + k + j as above, the diffeomorphism qN : N x M 
- o N  x M satisfies conditions (d0-(d3). I f  q : M--* M satisfies (d~), then so does qs. 

Proof. Conditions (dl) and (d2): Let 7/t: S"+k-oS "§ be the isotopy of the identity to 
~/, the extension of ~/to S ~+k. Then qt determines a diffeomorphism F:  D "+k+ ~ 
-oD,+k+ 1 whose formula in polar coordinates is F(t .  x) = t.  77t(x), for x e S "§ and 
t e I (note that the derivative of F at the origin is the identity). Consider the isotopy 
g/N, of sn+k+J'=-O(D n+k+l x D j) defined by the formula 

glN,(Xl . . . . .  X,+k+ j+ 1)=(Xl . . . . .  Xj, F( t .  (Xi+ l . . . .  , X.+k+j+ O)/t) " 

Then g/No=ids,+~+j and gIN,:S"+k+J--*S "+k+~ is an extension of q N : N x M  
-oN x M. Conditions (d3) and (d~): These are trivial. [] 

The lemma above shows that the qN-modification of aN • M. r| is defined. In 
fact it is easy to see that the knot qNoON• to| is equivalent to the knot 
ON, ~(r/�9 aM, ,(K)). 

6 Comparison of frame-spinning to diff-spinning 

6.1. We now compare the two constructions, frame-spinning and diff-spinning. 
We shall consider the case of fibred knots only. 

Let K : S" ~_ S" § 2 be a fibred knot with fibre V" § 1 and monodromy 0. Let (M k, 4)) 
be a framed submanifold of S" § k, and let t /be a diffeomorphism of M satisfying 
conditions (d0, (d2), and (d~) of Sect. 5. Consider the (n+ k)-knots Kl  = au,#(K) 
and K2 = ~/" au.#(K). By the remarks of Sects. 4 and 5, both knots are fibred, with 
fibre au,~(V) and monodromies 01 =aM,~(O) and 02 = q .  au.~(O), respectively. 

The following proposition shows that the monodromy of K1 is stably 
homotopic to the monodromy of K2 relative to S" + k = daM,~(V). 

6.2 Proposition. The monodromies 01 and 0 2 are stably homotopic rel boundary. 

Proof. Using the identification aM,~(V)"~M+ ^ V of 4.3, we must show that 

idu+ ^ O : M +  ^ V-*M+ ^ V 
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is stably homotopic to r/+ ^ O : M +  A V - * M +  A V relative to the map (1):8 n+k 

-*M+ A V, given by the Thom-Pontryagin construction u: S"+k-*M+ A S ~ fol- 
lowed by the inclusion M + h S*~ M + h V. 

Consider the space M + A Vu,o D ~ § k + 1 obtained by attaching an (n + k + 1)-cell 
to M+ A V along 09. Consider also the space M+ h (Vu~,D "+ x), where 0t: S"~ V is 
the inclusion of the boundary. There is then a natural "collapse" map from the 
cofibre of 09 to the cofibre of e, denoted by 

c : M + A Vuo~D "+k + 1-* M + ^ (Vu~D" + 1). 

The map c has a stable homotopy retraction arising from the facts 

O) M+ A Vu ,  oD "+k+ t ~_s(M + A V) v S "+k+ 1, 

(ii) M+ A (Vu~D "+ 1)-"~s(M + ^ V) v (M+ A S "+ 1),. 

and (iii) the Thom-Pontryagin map u:S"+k-*M+ A S "+ 1 is a homotopy retract. 
The collapse map is natural in the following sense: For any map f :  M-* M, there is 
a commutative diagram 

M +  A Vk.)coD n+k+ l (f + A0)uid~ M +  A Vuo~D n+k+ l 

M +  A(VL.)~D n+l) f+ ^(Ouid)' M +  A(VLJ~Dn+I).  

Since q : M - * M  is stably the identity by (d~), the map r/+ A (0wid) is stably 
homotopic to ida+ A (0uid). By naturality, c o ((r/+ ^ 0)uid) = (q + h (0uid)) o c is 
stably homotopic to 

(idM + A (0uid)) o c = c o ((id M + ̂  0)wid). 

As c has a stable retraction, it follows that (idM+ A 0)uid is stably homotopic to 
(t/+A0)uid. Since stable homotopy is excisive, it now follows that 
idM+ A 0 : M +  A V - * M +  A V is stably homotopic to ~/+ A0 :M+ ^ V - * M +  ^ V 
relative to the map co : Sn+k--.M+ A V. [] 

Combining 3.8 with 6.2, we deduce the following theorem. 

6.3 Theorem. The frame-spun knot  K1 and the diff-spun knot  K 2 defined above have 
isometric homotopy Seifert pairings. 

6.4. Conditions which guarantee that the frame-spun and dill-spun complements are 
homotopically inequivalent. Assume that K : S"~_ S ~ + 2 is a non-trivial simple fibred 
n-knot with n = 2 m - 1 .  Then the fibre V is homotopy equivalent to a wedge of 
m-spheres. Assume further that the monodromy 0: V-* V satisfies [in addition to 
(m0-(m3) of Sect. 2], the condition 

(m4) 0 has homotopy order c > 1. 

Suppose also that the diffeomorphism q : M - * M  satisfies [in addition to 
(dl)-(d3) of Sect. 5], the condition 

(d4) Z " q : Z ' M - * Z ' M  has homotopy order d >  1. 

We then have the following theorem. 

6.5 Theorem. I f  the integers c and d are coprime, then the exteriors o f  K 1 = aM.~(K ) 
and K 2 = r I �9 crM,c,(K ) are not homotopy equivalent. 
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Proof. By 2.3, it is sufficient to show that the monodromies 01 of Kt  and 02 of K 2 
are not homotopically conjugate. By Sects. 4 and 5, the fibres of K1 and K2 are 
homotopy equivalent to M+ ^ V, and with respect to these identifications, 
01 =idM§ ^ 0  and 02=r/+ ^0.  

Suppose there existed a homotopy equivalence f :  M+ ^ V ~ M +  ^ V such that 
f o  01 o f - 1 ~ - 0 2 .  Then fo  ~ of-l___~. As 0~-idv, by assumption, we get 

C " , - ~ a "  r/+ A l d v - l d M +  ^v.  

Choose a homotopy F from rf+ ^ idv to idM+ ̂ v. Let z: S m - , V  be the inclusion of 
one of the factors of the wedge decomposition of V, and let rr: V--,S m be the 
projection on that factor. Then the composite 

(M+ AS m) x I  0d..+ ^,)• , M +  ^ V , M +  ^ S  ~ , (M + ^ V) x I r i d M  + ^ .  

is a homotopy between q% ^ ids,, and idu + ̂  s,-. Consequently, 

Z"q~ ~- idx,,~t. 

On the other hand, we have by assumption 27"qa-~idx,,u. As (c, d)= 1, it follows 
that zmq-idx.,u,  which contradicts (d4). [] 

7 Diffeomorphisms of  S ~ • S ~ 

7.1. In this section we construct self-diffeomorphisms of S p x S q that have a 
suspension of finite non-trivial homotopy order, yet which are stably homotopic to 
the identity. Let SO(k) be the Lie group of k x k orthogonal matrices with 
determinant one. The basepoint is the identity matrix Ik. Let �9 denote the linear 
action of SO(k) on S k-  1 and ik.l:SO(k)~_SO(l ) the standard inclusion. 

Suppose 2 : S v ~ S O ( q  + 1) is a pointed map, where p and q are positive. The 
adjoint of 2 is the map ~-:S p x S q ~ S  ~ given by X(x , y )=2(x ) . y .  We let the map 
J(2): S p + q + 1 ~ S q + 1 be the Hopf construction of 2-, H(~): S p * S q ~ ZS ~. If fl: S k-* S p 
is a map, then the following hold: J(2ofl)=J(2)oZq+lfl  and J(i~+l,q+no2) 
=27-1J(2). The assignment 2~--~J(2) is well-known to induce the 
J-homomorphism np(SO(q + 1))~nv+q+ 1(S ~+ 1) (cf. [Wh]). 

Associated to 2: Sv--.SO(q + 1), there is a diffeomorphism g(2): S p x S ~ S  p x S ~ 
given by 

g(2) (x, y) = (x, X(x, y)). 

The maps 3(2) and g(2) are related by the formula J(2)=H(pr2 o g(2)), where 
pr2 : S p x Sq- .S  q is the second coordinate projection. 

7.2 Proposition. For a positive integer n, Zng(;t): Z~(SV x Sq)-~Zn(S p x S q) is homo- 
topic to the identity if  and only i f  Z ~- 13(2): S V + q + ~ S  q+~ is null-homotopic. 

Proo f  We calculate the obstruction for Z'g(2) to be homotopic to the identity and 
show that it is precisely 27- IJ(2). Consider the restriction of g(2) to S p v S *. This 
restriction is equal to the inclusion S p v S * _~ S p x S *, since 

g(2)(x, * )=(x ,2 (x )  . * )=(x ,  . ), and g(2)( * , y ) = (  * ,2( * ). y ) = (  * ,Iq+ l . y ) = (  * , y). 

Consequently, Z'g(2) restricted to Z~(S p v S q) is equal to the inclusion 

~ ( S  p v S q) _s ~:~(S p x S~). 
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To  complete the proof it will be sufficient to show that the only obstruction to 
extending the homotopy to the top cell of 2~(S p • S e) is the homotopy class of 
~.- 1J(2). 

This obstruction lives in the group rcp + e +,(~"( Sj' • Se)) �9 By the Blakers-Massey 
excision theorem (see [Wh, p. 366]), this group is naturally isomorphic to the 
direct sum 

~p + e + . ( s ~ s p )  �9 ~ + e + . ( z " s e )  �9 ~ + ~ + ~( s ~ s p  ^ se)  �9 

As may be readily calculated, the projection of the obstruction onto the first 
group is just the homotopy class of the map 

S p + e +, ... T." - 1(S p . S q) ~" - ln(id~ ~"prl , T,"(S p x S e) , ~,"S p , 

where id is the identity of S p x S q. By 7.1, this map is 

2~"- I(Z pr 1 o n(id)) = S"-  1n(pr0 ,  

which is null homotopic, since prl  factors through S p x . .  
The projection of the obstruction onto the second group is similarly the 

homotopy class of the map 

S p+q+ , , .~ ~-,"- 1( Sp  �9 sq)  pa- IH(id) ~ ~_,"(S p x S q) "~'n(Pr2~ ) ~-,nsq. 

By 1.1 and 7.1, this map is 

S"-  l(Z(pr2 o g(2)) o n(id)) = S n- l(n(pr2 o g(2)) = 2f ~- 1J(2). 

Lastly, the projection of the obstruction onto the third group is the difference 
between the identity map of S p + e +, and the composite 

Sp + q + n .~ z~n - 1 ( S  p , S q) Zn -1 HOd) , ~_/l(S p x S q) zn~t , ~,"(S p A Sq) .  

By 1.1, this map has degree one, and so the difference in question is null- 
homotopic. This completes the proof of the proposition. [] 

We consider pointed maps ; ~ : S P ~ S O ( q + I )  which satisfy the following 
condition: 

(rl) for some integer n > 1, the composite i~ + 1,e+n ~ 2 : S P ~ S O ( q  + n) is null- 
homotopic. 

Decompose S p+a+" into the union of two solid tori S p x Dq+"uDP+~ x S e+"- 1, 
with S p • S q embedded standardly inside S p x D e+". We then have: 

7.3 Proposition. I f  2 : SP--*SO(q+ 1) sat is f ies  condit ion (r 0, then the associa ted  
diffeoraorphism g(2): S p • Se--* S p x S e sat is f ies  conditions (d 0, (d2), and (d~) o f  Sect.  5. 

Proof .  We first extend g(;t) to S p § e +,, and then prove that the extension is isotopic 
to the identity. This will establish (d 1) and (d2). Condition (d~) follows immediately 
from the equation d(ie+ 1,q+n o 2)= Z"-1j(2)  and 7.2. 

For  the first part, choose a pointed null-homotopy 

F : D P + I ~ S O ( q + n )  of ie+l.e+~o2, 

as guaranteed by (r 1). Define an extension 7: S p + a + " ~ S  p + ~ + n of g(2) by the formula 

~(x, o) = (x,  F ( x ) .  o), i f  (x, v) ~ S p x D q +" or if (x, v) e D ~ + 1 x S e + "-  1. 
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The isotopy y~: SP+~+"~SP+q+" from y to the identity is given by the formula 
7t(x,v)= (x,F((1-t)x)-v). [] 

Finally, we shall consider pointed maps 2 : S ~ S O ( q  + 1) which satisfy 

(r2) for some integer r e > l ,  the m a p ~ I - 1 J ( 2 ) : Z " - I S P * S ~ Z ' - x S  q+~ 
is essential. 

7.4 P r o p o s i t i o n .  If  the map 2:SP~SO(q+ I) satisfies condition (r2) , then the 
diffeomorphism g(2): S p x S~ ~ S  p x S q satisfies condition (d,,) of Sect. 6. 

Proof By 7.2, ~'g(2) is not homotopic to the identity. The homotopy class of 
Z m- 1J(2) is an element of ~p+~+m(Sq+"~), which, by a theorem of Serre, is a finite 
group, unless m = p - q -t- 1 with p odd. In that case, the homotopy class of Z m- 2J(2) 
is an element of the finite group ~2p(SP), and consequently the homotopy class of 
27"-~J(2) =~7,2"-2J(2) is of finite order. Hence, the homotopy class of ~m-1j(2) 
always has finite order. Thus by 7.2 again, 2;"g(2) has finite homotopy order. [ ]  

We now exhibit maps 2:SP~SO(q+ 1) satisfying conditions (r 0 and (r2). 
Notice that for these conditions to be satisfied simultaneously, we must have q > 1, 
re<n, and m<=p-q. 

Recall that the fibre bundle SO(q)~SO(q+I)~S q has a section #~:S q 
-~SO(q + 1) if q -- 1, 3, or 7. Moreover, J (#0 = q2" Sa ~$2, J(#a) = v4: $7-~$4, and 
J(#7)  = a s  : SiS ~ S  8 are the Hopf fibrations. 

7.5 Example. With p =4,  q = 2, n = 3, and m= 2. Let ~ :$3~S0(3) be the universal 
cover. We define 2:$4~S0(3) to be the composite 

S 4 ~3,S 3 ~,S0(3). 

Condition(r1). The composite i3,s ~ is null-homotopic, since the 
homom..~rphism i3,5. :~4(S0(3))~n,,(S0(5)) is zero (see [Wh, p. 200]). 

Conditi~ n (r2). We have J(2) = J(z o ~/a) = J(z) o zaq3 = v' o ~/6, where v' is the clutch- 
ing map for the principal bundle Sa~Sp(2)~S 7. Then ~J(2) = Xv' o ~/7, and this has 
homoto!~y order 2 IT, p. 42-43]. 

7.6 Example. With p = 10, q = 7, n = 5, and m = 3. We define 2 : $1~ to be the 
composate 

S 1~ " , S  7 ~ , S 0 ( 8 ) .  

Condition (r0. We must show that ia, 12 ~ 2: $1~ is null-homotopic. By 
stability, ~ o(SO(12)) ~ n~ o(SO). By Bott periodicity, nl o(SO)-~ 7t2(SO) = 0. 

Condition (r2). We have J(2)=J(/.t 7 o v7 ) =.J(/.tT) o z~av7 --- o- 8 o v15. Then ~2j(,~.) 
=trloo vtT, and this has even homotopy order by Toda [T, p. 66]. 

7.7 Example. With p=10,  q=4 ,  n = l l ,  and m=6.  Let o:Sp(2)~S0(5) be the 
universal cover [Wh, p. 715]. Let o:S~~ be the clutching map for the 
principal bundle Sp(2)-~Sp(3)~S 11. We define 2:$1~ to be the composite 

S ~o_~Q Sp(2) o S0(5). 

Condition (rl). We must show that is, ~ o 2:$I~ is null-homotopic. This 
follows from the fact that 1rlo(SO(11)) has order 2 (see [Ke]), and the formula is, 9 o 

0oQ~2i8.9o#7 ov 7 from [O]. 
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Condition (r2). F rom [O],  we have J(2)= vs o as. Then ZsJ(2)= v l0 o a l 3, and this 
map has even homotopy order IT, p. 66-72]. 

8 The examples 

8.1. Let K=Ka,~,:sn~_s n+z be the simple fibred n-knot, n = 2 m - 1 ,  whose 
monodromy has homotopy order c = ab given by Proposition 2.5. Set M equal to 
S p x S ~, standardly embedded in S p+q+". Let L = tL~K ) be the frame-spin of K with 
respect to the trivial framing. Let 2:SP~SO(q+I) satisfy (rj) and (r2). Set 

= g(;t): SP x Sq~S p x S ~. By 7.3 and 7.4, the diffeomorphism ~/satisfies conditions 
(dl), (d2), (d~), and (d4). Let L = r/�9 au(K) be the diff-spin of K. Applying 6.3 and 6.5 
to this situation, we have the following theorem. 

8.2 Theorem. The (m--1)-simple fibred (p+q+2m-1)-knots L and F. have 
isometric homotopy Seifert pairings, but if c and d are coprime, then the exteriors of L 
and L are not homotopy equivalent. 

We now spin the knots of 8.2 to obtain a more general result. For  t > 0, let M ~~ 
= S p x S q x S t ___ S p + ~ + t + 2,,- 1 with trivial framing, and let q(t) = g(2) x idst: S p x S q 
x S t~S p x S ~ x S t. By 5.6, the diffeomorphism r/(t) satisfies conditions (dl), (d2), 

and (d~). Clearly, it also satisfies (d4). Let /3  ̀) = O'M~t)(K ) and 1U)= rl(t) aM(o(K). 

8.3 Theorem. The ( m -  1)-simple fibred (p + q + t + 2 m -  1)-knots/30 and 1U) have 
isometric homotopy Seifert pairings, but if c and d are coprime, then the exteriors of 
13/) and ]~t) are not homotopy equivalent. 

Applying the computations of Sect. 7 to 8.2, we obtain the following 
examples. 

8.4 Example. With p = 4, q = 2, n = 3, m = 2, and 2 : $4-,S0(3) as in 7.5. Then d = 2, 
so choose a 1-simple fibred 3-knot K whose monodromy has odd homotopy order 
c. We obtain 1-simple fibred 9-knots L and L having isometric homotopy Seifert 
pairings, but whose exteriors are not homotopy equivalent. 

8.5 Example. With p = 10, q = 7, n = 5, m = 3, and ;t: S~~ as in 7.6. Then d is 
even, so choose a 2-simple fibred 5-knot K whose monodromy has homotopy 
order c coprime to d. We obtain 2-simple fibred 22-knots L and L having isometric 
homotopy Seifert pairings, but whose exteriors are not homotopy equivalent. 

8.6 Example. With p = 10, q = 4, n = 11, m = 6, and 2: S ~ 0 ~SO(8) as in 7.7. Then d is 
even, so choose a 5-simple fibred 11-knot K whose monodromy has homotopy 
order coprime to d. We obtain 5-simple fibred 25-knots L and L having isometric 
homotopy Seifert pairings, but  whose exteriors are not homotopy equivalent. 

We assemble all of  the above into the following theorem. 

8.7 Theorem. For each integer n>__9, there exist infinitely many pairs (L i, L~) of 
fibred n-knots such that 

(1) L i and r, i have isometric homotopy Seifert pairings: 
(2) the exterior of L~ is homotopically distinct from the exterior of L~ for i=l:j, 

and also from the exterior of Lj for all j; 
(3) the knots Lt and L i are 1-simple if n >= 9, 2-simple if n >= 22, and 5-simple if 

n>25.  
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Proof. Choose infinitely many pairs (as, hi) such that as is coprime to bi, and aib~ 
4=asb~ for i4:j. For n = 9  (resp. n=22;  n=25), let L i and E~ be the n-knots of 8.4 
(resp. 8.5; 8.6), obtained from the 1-simple 3-knots (resp. 2-simple 22-knots; 
5-simple 25-knots) Ka,.b,. [This imposes further conditions on the possible pairs 
(ai, hi), but we can still choose infinitely many of them.] For 9 < n < 22 (resp. 22 < n 
< 25; n > 25), define L~ and L~ to be the knots/3~) and F.~) of 8.3 with t = n -  9 (resp. 
t = n - 2 2 ;  t = n - 2 5 ) .  Then L~ and [,~ are the desired knots. []  

8.8. Concluding remarks. By the remarks after 7.4, the knots of 8.2 reside in the 
connectivity/dimension range 

m - 1  m - 1  m - 1  1 < < - - <  
p+q+2m- -1  = 2 q + 3 m - 1  = 3(re+l)  3" 

We conjecture that for any positive number s <  1/3, there exist integers n and r, 
with r/n > s, and r-simple fibred n-knots L and E, having isometric homotopy 
Seifert pairings and non-homotopy equivalent exteriors. Theorem 8.7 verifies this 
conjecture for s = 1/5. 
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