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We demonstrate that a pattern spectrum can be decomposed into the union of hit-or-miss transformswith
respect to a series of structure-element pairs. Moreover we use a Boolean-logic function to express the
pattern spectrum and show that the Boolean-logic representation of a pattern spectrum is composed of
hit-or-miss min terms. The optical implementation of a pattern spectrum is based on an incoherent
optical correlator with a feedback operation. © 1996 Optical Society of America
1. Introduction

Mathematical morphology provides a particular ap-
proach to image processing and analysis. On the
basis of morphological transforms, Matheron1 and
Serra2 introduced the initial form of the pattern spec-
trum. Matheron1 first put forward the size-
distribution function. Serra2 demonstrated its form
for a continuous and binary image. Maragos3 ex-
tended Serra’s studies and set up the concept of a
pattern spectrum. A pattern spectrum is a shape–
size descriptor that describes shapes by a series of
structure elements that increase step by step.
Therefore, pattern spectra have been utilized in im-
age analysis and feature extraction.4 In contrast,
the hit-or-miss transform detects image features or
shapes from both the foreground and background.
So the hit-or-miss transform can also be used to de-
pict image shape and size distributions correspond-
ing to structure-element pairs. From the shape–size
distribution point of view, the question of interest is
what is the relation between the pattern-spectrum
approach and the hit-or-miss transform?
In this paper, we demonstrate that a pattern spec-

trum can be decomposed into a hit-or-miss represen-
tation. Maragos5 provides the basis decomposition
for morphological opening and closing transforms and
also gives the basis structure elements for the opening-
transform decomposition. In addition Maragos
shows the constraints on the minimal basis structure
elements for the closing-transform decomposition.
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Then, on the basis of the framework of the closing-
transform decomposition by Maragos,5 Svalbe6 dem-
onstrates a complex algorithm on the extraction of the
minimal basis structure elements related to the
closing-transform decomposition. The algorithm pro-
vides some insight into the constraints on the forma-
tion of the closing-transform basis structure elements
for a two-dimensional structure element. By means
of the decomposition of the opening and closing trans-
forms, we demonstrate that a pattern spectrum can be
decomposed into the union of a hit-or-miss transform.
On the other hand, from the Boolean-logic repre-

sentations for two basic morphological transforms—
dilation and erosion7—we give concrete expressions
for Boolean-logic functions ~BLF’s! of the morpholog-
ical opening and closing transforms. Then we pro-
vide the BLF’s of a pattern spectrum and write them
in the canonical sum-of-product form. Each min
term in the canonical sum of product corresponds to
a hit-or-miss transform. Therefore, from the BLF
point of view, we also show that a pattern spectrum
can be decomposed into hit-or-miss transforms. On
this basis, a pattern-spectrum analysis can be carried
out by means of optical hit-or-miss implementation
architecture.7–10 However, the decomposition of a
pattern spectrum includes too many hit-or-miss min
terms, so it is not convenient to implement a pattern
spectrum by the use of an optical hit-or-miss archi-
tecture. Therefore we utilize an incoherent optical
correlator with a feedback operation to carry out the
pattern-spectrum analysis, and some proof-of-
principle experimental results are given.

2. Pattern Spectrum of a Discrete Binary Image and
Its Hit-or-Miss Representation

Let X # Z2 be a finite-extent discrete binary image.
S is a subset of Z2 and denotes a discrete binary



structure element. The two basic morphological
transforms, dilation, indicated by the direct sum sym-
bol ~Q!, and erosion indicated by the symmetric dif-
ference symbol ~C!, ofX by S, as well as their relation,
are denoted as5,11

X % S 5 $z: X ù ~Š 1 z! Þ A% 5 ø
s[S

X 1 s,

X * S 5 $z: S 1 z # X% 5 ù
s[S

X 2 s,

X % S 5 ~Xc * Š!c, (1)

where the symbols ~ø! and ~ù! denote the union and
intersection operations, respectively, ~. . .!c repre-
sents the complement operation, and Š is the reflec-
tion of S. The other two important morphological
transforms5,11 of X by S are opening, denoted by the
symbol ~X!, and closing, denoted by the symbol ~Y!,
and are defined as

X X S 5 ~X * S! % S,

X Y S 5 ~X % S! * S. (2)

The opening and closing transforms have the relation
given by

X X S 5 @Xc Y Š#c. (3)

The hit-or-miss transform of X by a discrete binary
structure-element pair @S1, S2# can be denoted as5,11

X ^ @S1, S2# 5 ~X * S1! ù ~Xc * S2!, (4)

where the operator ~R! denotes the hit-or-miss trans-
form, S1 and S2 correspond to the X foreground and
background, respectively, and S1 ù S2 5 A. Let B
represent the basis structure element of the pattern
spectrum PS for B # Z2. Then the pattern spectrum
of X with B is defined as3

PS~1n, B! 5 A@X X nB\X X ~n 1 1!B#, n $ 0,
(5)

PS~2n, B! 5 A@X Y nB\X Y ~n 2 1!B#, n $ 1,
(6)

where nB 5 @B Q B Q B Q . . . Q B#n times, 0B 5 ~0, 0!,
the backslash denotes the set difference, and A@. . .# is
the set cardinality. According to Eqs. ~5! and ~6!, the
key operations in pattern-spectrum analysis are the
opening and closing transforms.
Maragos5 gives the basis decomposition of the

opening transform corresponding to X by S, which
can be described as

X X S 5 ø
i
X * Si,

$Si% 5 $S 2 s : s [ S%, $Si% # $S % Š%, (7)

where Si denotes the basis structure element related
to the decomposition of the opening transformandSi is
the structure element S translated to the reflected lo-
cation of a point inside S. Thus the maximum of i is
equal to the number of points within S. Also, Mara-
gos5 provides the basis decomposition of the clos-
ing transform and demonstrates the following con-
straint for the formation of theminimal basis structure
element Sk corresponding to the decomposition of the
closing transform, denoted as

X Y S 5 ø
k
X * Sk,

$Sk% 5 $Sk #S% Š : 0[ ~Sk Y S!%, Sk is minimal,

(8)

where Sk is composed of the origin $0% and spans the
region of support S Q Š. The number of Sk depends
on the shape and size of S. Then, from Eqs. ~3! and
~5!–~8!, the pattern spectrum PS can be expressed as

PS~1n, B! 5A{ø
i

ø
k

$@X* nBi# ù @Xc * ~n1 1!B̌k#%},

$nBi% 5 $nBi 2 b : b[ nBi%, $nBi% # $nB% nB̌%,

$~n1 1!B̌k% 5 $~n1 1!B̌k # ~n1 1!B

% ~n1 1!B̌ : 0[ @~n1 1!B̌k

Y ~n1 1!B̌#%, ~n1 1!B̌k is minimal,
(9)

PS~2n, B! 5A{ø
i

ø
k

$@X* nBk# ù @Xc * ~n2 1!B̌i#%},

$~n2 1!B̌i% 5 $~n2 1!B̌2 b : b[ ~n2 1!B̌%,

3 $~n2 1!B̌i% # $~n2 1!B% ~n2 1!B̌%,

$nBk% 5 $nBk # nB % nB̌ : 0 [ ~nBk Y nB!%,

nBk is minimal. (10)

Note that, if the structure-element pair @nBi, ~n 1
1!B̌k# keeps $nBi% ù $~n 1 1!B̌k% Þ A, we then have @X
C nBi# ù @Xc C ~n 1 1!B̌k# 5 0. So the intersection
of nBi with ~n 1 1!B̌k has no effect on the pattern
spectrum and can be eliminated. Thuswe define the
structure-element pair @nBi, ~n 1 1!B̌kk# to satisfy the
following conditions: $~n 1 1!B̌kk% # $~n 1 1!B̌k%,
$nBi% ù $~n 1 1!B̌kk% 5 A, and @X C nBi# ù @Xc C ~n 1
1!B̌kk# Þ 0.
For the same reason, we define the structure-

element pair @nBkl, ~n 2 1!B̌i# to keep @X C nBkl# ù

@Xc C ~n 2 1!B̌i# Þ 0, where $nBkl% # $nBk% and $nBkl%
ù $~n 2 1!B̌i% 5 A. The expressions @X C nBi# ù @Xc

C ~n 1 1!B̌kk# and @X C nBkl# ù @Xc C ~n 2 1!B̌i# are
just the hit-or-miss transformR ofX by the structure-
element pairs @nBi, ~n 1 1!B̌kk# and @nBkl, ~n 2 1!B̌i#,
respectively, according to Eq. ~4!. Therefore @X C
nBi# ù @Xc C ~n 1 1!B̌kk# 5 X R @nBi, ~n 1 1!B̌kk#,
where nBi and ~n 1 1!B̌kk correspond to the X fore-
ground and background, respectively, and @X C nBkl#
ù @Xc C ~n 2 1!B̌i# 5 X R @nBkl, ~n 2 1!B̌i#. Thus
the pattern spectrum PS can be written in the form
of the union of the hit-or-miss transforms with re-
spect to different structure-element pairs: @nBi,
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~n 1 1!B̌kk# and @nBkl, ~n 2 1!B̌i#, denoted as follows:

PS~1n, B! 5A$ ø
i

ø
kk
X^ @nBi, ~n1 1!B̌kk#%, (11)

$~n1 1!B̌kk% # $~n1 1!B̌k%, $~n1 1!B̌kk% ù $nBi% 5 A,

(12)

PS~2n, B! 5 A$ ø
i

ø
kl
X ^ @nBkl, ~n 2 1!B̌i#%, (13)

$nBkl% # $nBk%, $nBkl% ù $~n2 1!B̌i% 5 A, (14)

From the basis decomposition of the opening and
closing transforms we demonstrate that a pattern
spectrum can be decomposed into the union of hit-or-
miss transforms. The decomposition of a pattern
spectrum not only demonstrates the relation of the
pattern spectrum with the hit-or-miss transform but
also makes the interpretation of the pattern spec-
trum more understandable.

3. Pattern Spectrum of a Discrete Gray-Tone Image
and Its Hit-or-Miss Representation

Let f ~x, y!, g~x, y!, ~x, y! [ Z2 be discrete gray-tone
images. The erosion and dilation of f ~x, y! by a bi-
nary structure element S are defined as5

f ~x, y! * S 5 min$ f ~x 1 s! : s [ S%,

f ~x, y! % S 5 max$ f ~x 2 s! : s [ S%, (15)

respectively. The opening and closing transforms of
f ~x, y! by S can be expressed as5

f X S 5 ~ f * S! % S,

f Y S 5 ~ f % S! * S. (16)

Corresponding to the hit-or-miss transform of a bi-
nary image X by a binary structure-element pair @S1,
S2#, the extended hit-or-miss transform definition for
f ~x, y! by a structure-element pair @S1, S2# can be
written as

f ~x, y! ^ @S1, S2# 5 @ f ~x, y! * S1# ` @ f c~x, y! * S2#,

(17)

where the upward wedge symbol ~`! denotes the min
operation in a gray-tone image-processing system by
a binary structure element. The pattern spectrum
of f ~x, y! with a binary basis-structure element B can
be denoted as5

PSf~1n, B! 5 A@ f X nB 2 f X ~n 1 1!B#, n $ 0,
(18)

PSf~2n, B! 5 A@ f Y nB 2 f Y ~n 2 1!B#, n $ 1,
(19)

whereA~ f ! 5 •~x,y! f ~x, y! and p~x! 2 q~x! denotes the
pointwise difference between the gray-tone images
p~x! and q~x!. The morphology-processing function
of a binary image can be extended to that of a gray-
tone image on the basis of threshold decomposition
and sum superposition.5,7,12 Let cfp denote a paral-
lel and cascaded operator of erosion ~C!, dilation ~Q!,
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the min ~`!, the max ~~!, and the complement ~. . .!c

for processing a gray-tone image f ~x, y! by a binary
structure element, and let ctp be a parallel and cas-
caded operator to a threshold image Ta@ f ~x!#. Then
the threshold decomposition of a gray-tone processing
function cfp to the threshold image-processing func-
tion ctp can be denoted as7

Z~x, y! 5 cfp$ f ~x, y! : * , % , ~ , ` , ~· · ·!c%

5 (
a51

M

Za~x, y!,

Za 5 ctp$Ta@ f ~x, y!# : * , % , ù , ø , ~· · ·!c%, (20)

where a is a threshold level, and the summation op-
eration denotes a sum superposition. Let H denote
the maximum value of the threshold, then f ~x, y! can
be thresholded into a stack of binary images fa~x, y!,
denoted as

f ~x, y! 5 (
a51

H

fa~x, y!,

fa~x, y! 5 1, ~x, y! [Ta@ f ~x, y!# 5 $~x, y! : f ~x, y! $ a%,

fa~x, y! 5 0, ~x, y! [y Ta@ f ~x, y!#. (21)

The complement of f ~x, y!, f c~x, y! 5 H 2 f ~x, y!, does
not obey the threshold-decomposition rule, but it can
be thresholded into the sum of a binary image
f H2a11
c ~x, y!, denoted as

f c~x, y! 5 (
a51

H

f H2a11
c ~x, y!,

f a
c~x, y! 5 f H2a11

c ~x, y!, (22)

Thus the dilation, erosion, max, and min of f ~x, y! by
S, commuted with the threshold decomposition, can
be expressed as

f ~x, y! * S 5 (
a51

H

@ fa~x, y! * S#,

f ~x, y! % S 5 (
a51

H

@ fa~x, y! % S#,

f ~x, y! ~ g~x, y! 5 (
a51

H

fa~x, y! ø ga~x, y!,

f ~x, y! ` g~x, y! 5 (
a51

H

fa~x, y! ù ga~x, y!. (23)

The basis decompositions of the opening and closing
transforms for fa~x, y! with nB can be expressed as
follows:

fa~x, y! X nB 5 ø
i
fa~x, y! * nBi,

$nBi% 5 $nB 2 b : b [ nB%, $nBi% # $nB % nB̌%,

fa~x, y! Y nB 5 ø
k
fa~x, y! * nBk,

$nBk% 5 $nBk # nB % nB̌ : 0 [ ~nBk Y nB!%,

nBk is minimal. (24)



Then the pattern spectrum PS of f ~x, y! with B can be
derived as

PSf~1n, B!

5 AH(
a51

H

@ fa~x, y! X nB\ fa~x, y! X ~n 1 1!B#J
5 A{(a51

H

$ ø
i

ø
k

@ fa~x, y! * nBi# ù @ f H2a11
c ~x, y!

* ~n 1 1!B̌k#%}
5 A{ ~

i
~
k

$@ f ~x, y! * nBi# ` @ f c~x, y! * ~n 1 1!B̌k#%},

(25)

To eliminate the redundant part from the structure-
element pairs @nBi, ~n 1 1!B̌k# and @nBk, ~n 2 1!B̌i#,
which give no contributions to the pattern spectrum of
f ~x, y! with B, we specify that the structure-element
pair @nBi, ~n 1 1!B̌kk#, $~n 1 1!B̌kk% # $~n 1 1!B̌k% keeps
the relations $nBi% ù $~n 1 1!B̌kk% 5 A and

PS~2n, B!

5 AH(
a51

H

@ fa~x, y! Y nB\a~x, y! Y ~n 2 1!B#J
5 A{(a51

H

ø
i

ø
k

$@ fa~x, y! * nBk# ù @ fH2a11
c ~x, y!

* ~n 2 1!B̌i#%}
5 A{ ~

i
~
k

$ f ~x, y! * nBk# ` @ f c~x, y! * ~n 2 1!B̌i#%}.

(26)

Here, @ fa~x, y! C nBi# ù @ fH2a11
c ~x, y! C ~n 1 1!B̌kk#

Þ 0, and, in addition, the structure-element pair
@nBkl, ~n 2 1!B̌i# keeps the relation @ fa~x, y! C nBkl# ù

@ fH2a11
c ~x, y! C ~n 2 1!B̌i# Þ 0, where $nBkl% # $nBk%

and $nBkl% ù $~n 2 1!B̌i% 5 A. Therefore the expres-
sions @ fa~x, y! C nBi# ù @ fH2a11

c ~x, y! C ~n 1 1!B̌kk#
and @ fa~x, y! C nBkl# ù @ fH2a11

c ~x, y! C ~n 2 1!B̌i# are
the hit-or-miss transforms of fa~x, y! for a binary-
image foreground and fH2a11

c ~x, y! is its background
by the structure-element pairs @nBi, ~n 1 1!B̌kk# and
@nBkl, ~n 2 1!B̌i#, respectively. Then @ f ~x, y! C nBi#
` @ f c ~x, y! C ~n 1 1!B̌kk# can be denoted as the
hit-or-miss transform of f ~x, y! by the structure-
element pair @nBi, ~n 1 1!B̌kk#, and the expression
@ f ~x, y! C nBkl# ` @ f c~x, y! C ~n 2 1!B̌i# can also be
denoted as the hit-or-miss transform of f ~x, y! by the
structure-element pair @nBkl, ~n 2 1!B̌i#. Thus a
pattern spectrum can be decomposed into the union
of hit-or-miss transforms, denoted as follows:

PSf~1n, B! 5A$ ~
i

~
kk
f ~x, y! ^ @nBi, ~n1 1!B̌kk#%, (27)
PS~2n, B! 5A$ ~
i

~
kl
f ~x, y! ^ @nBkl, ~n2 1!B̌i#%, (28)

$~n1 1!B̌kk% # $~n1 1!B̆k%, $~n1 1!B̌kk% ù $nBi% 5 A,

$nBkl% # $nBk%, $nBkl% ù $~n2 1!B̌i% 5 A, (29)

Thus the pattern spectrum of a discrete gray-tone
image f ~x, y! with a binary structure element B can
also be represented by the gray-tone image’s hit-or-
miss transforms.
In the discussion in Section 4 below, we demonstrate

the BLF of a pattern spectrum. We also show that a
pattern spectrum can be decomposed into a hit-or-miss
representation from another point of view.

4. Boolean-Logic Representation of a Discrete Binary
Image’s Pattern Spectrum

The BLF can be used to represent the morphological
transform of a discrete binary image X with a discrete
binary structure element S.7 A morphological pro-
cessing function transforms the array data of a two-
dimensional binary image into new arrays. The
value of each pixel in the new array is determined by
the old values of the pixels in the neighborhood indi-
cated by a structure element. So aBLF can be used to
evaluate the new array of data in a neighborhood de-
termined by a structure element. Thus BLF’s at the
coordinate origin in a neighborhood can be utilized to
express the morphological transforms.7 Let x0 be a
state variable at the coordinate origin x0, whose neigh-
borhood is determined by a structure element S and
containsN 2 1 pixels. S is the subset in the space Z2

that connects the pixels in it to the pixel at x0. The
state x0 is determined by the BLF, F, on the state xn at
all xn belonging to S. Thus we have the output state
z0 at the coordinate origin x0, denoted by7

z 5 F~xnuxn[S!. (30)

Then the BLF’s of the basic morphological trans-
forms, erosion zCS and dilation zQS, of X to S can be
denoted as7

zCS 5 x0x1x2 · · · xN21,

zQS 5 x̌0 1 x̌1 1 x̌2 1 · · · 1 x̌N21, (31)

where S 5 $x0, x1, x2, . . . , xN21% and Š 5 $x̌0, x̌1,
x̌2, . . . , x̌N21% denotes the neighborhoods S and
Š, respectively, x0. Now, the solid circle symbol ~Y!
represents the pointwise AND operation, and the plus
symbol ~1! denotes the pointwise OR operation.
Therefore the BLF of erosion is the AND operation of
the neighborhood states at the coordinate origin,
where the neighborhood is defined by S; the BLF of
dilation is the OR operation of the neighborhood states
at the coordinate point, where the neighborhood is
defined by the reflection of S, Š. The morphological
transforms with the set intersection, union, and com-
plement can be represented by a similar parallel com-
bination of the corresponding BLF’s with logic
AND, OR, and COMPLEMENT. A parallel combination of
morphological transforms can be described by the
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parallel combination of morphological BLF’s. So the
hit-or-miss transform of X with a structure-element
pair @S1, S2# can be expressed as

zRS
w 5 ~zCS1!~zCS2

c !

5 x0x1 · · · xL21xq
c xq11

c · · · xq1K21
c , (32)

where Sw 5 S1 ø S2, S1 5 $x0, x1, . . . , xL21%, S2 5
$xq, xq11, . . . , x~q1K21!%, S1 ù S2 5 A, and the neigh-
borhoods S1 and S2 have L 2 1 and K 2 1 pixels,
respectively. In a cascaded combination7 of morpho-
logical transforms, if z0,1 represents the BLF of the
first morphological transform at the coordinate origin
and z0,2 denotes the BLF of the subsequent morpho-
logical transform at the coordinate origin, then we
have the combined BLF, z0, at the coordinate origin as

z0,1 5 F1~xkuxk[S1!,

z0,2 5 F2~xluxl[S2!,

z0 5 F2@z0,1~xm!uxm[S2~xm [ Š2!#, (33)

where z0,1~xm! denotes the BLF of the first morpho-
logical transform at the coordinate point xm, for
which the neighborhood at xm is achieved by S1 at the
coordinate origin x0 translated by xm, which belongs
to S2 or to the reflection of S2, Š2, according to a
morphological transform. The opening and closing
transforms of X to S are the cascaded combination of
two basic morphological transforms: dilation and
erosion. Thus the BLF’s of the opening transform
zXS and the closing transform zYS can be expressed as

zXS 5 @zCS#QS 5 zCS~ x̌0! 1 zCS~ x̌1! 1 · · · 1 zCS~ x̌N21!

5 ~x0x1x2 · · · xN21!ux̌0 1 ~x0x1x2 · · · xN21!ux̌1 1 · · ·

1 ~x0x1x2 · · · xN21!ux̌N21
,

zYS 5 @zQS#CS 5 zQS~x0!zQS~x1!· · · zQS~xN21! (34)

5 ~ x̌0 1 x̌1 1 x̌2 1 · · · 1 x̌N21!ux0~ x̌0 1 x̌1 1 x̌2 1 · · ·

1 x̌N21!ux1 · · · ~ x̌0 1 x̌1 1 x̌2 1 · · · 1 x̌N21!uxN21
,

where zCS~x̌i! 5 ~x0x1x2 . . . xN21!ux̌i, ~i 5 0, 1, 2, . . . ,
N 2 1!, denotes an output state of zCS at the coordi-
nate point x̌i that is the AND of the neighborhood
states at the coordinate point x̌i, where the neighbor-
hood at x̌i can be obtained by S 5 $x0, x1, x2, . . . ,
xN21% at x0 translated by x̌i. The expression zQS~xi!
5 ~ x̌0 1 x̌1 1 x̌2 1 . . . 1 x̌N21!uxi denotes an output
state of zQS at the coordinate state xi that is the OR of
the neighborhood states at xi; the neighborhood at xi
is achieved by the Š 5 $x̌0, x̌1, x̌2, . . . , x̌N21% at x0
translated by xi. Based on the BLF’s of the opening
and closing transforms, the BLF’s of the pattern spec-
tra zPS~1n,B! and zPS~2n,B! can be deduced as

zPS~1n,B! 5A$zXnB̌zY~n11!B̌
c

% 5A$@~x0x1 · · · xJ!ux̌0
1 ~x0x1 · · · xJ!ux̌1 1 · · ·1 ~x0x1 · · · xJ!ux̌J#

3 @~x0
c 1 x1

c 1 · · ·1 xM
c !ux̌0~x0

c 1 x1
c 1 · · ·1 xM

c !

3 ux̌1 · · · ~x0
c 1 x1

c 1 · · ·1 xM
c !ux̌M#% (35)
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zPS~2n,B! 5A$zYnBzX~n21!B̌
c

% 5A$@~x̌0 1 x̌1 1 · · ·1 x̌J!

3 ux0~x̌0 1 x̌1 1 · · ·1 x̌J!ux1 · · ·

3 ~x̌0 1 x̌1 1 · · ·1 x̌J!uxJ#

3 @~x̌0
c x̌1

c · · ·x̌MM
c !ux0 1 ~x̌0

c x̌1
c · · · x̌MM

c !ux1
1 · · ·1 ~x̌0

c x̌1
c · · · x̌MM

c !uxMM
#%, (36)

where J is defined as the number of pixels contained
in the neighborhood nB,M is the number of pixels in
~n 1 1!B, and MM is the number of pixels in ~n 2
1!B. All BLF’s can be written in the canonical sum-
of-product form. The canonical sum-of-product form
of a pattern-spectrum BLF with L variables can be
written into

zPS~6n,B! 5 A$P1x0x1x2 · · · xL21 1 P2x0
c x1x2 · · · xL21

1 · · · 1 Pkx0
c x1

cx2
c · · · sL21

c %, (37)

where Pj [ $0, 1%, and, if a min term exists, Pj 5 1,
otherwise Pj 5 0. In Eq. ~37! each min term can be
divided into two groups: one group including the
positive variables, and the other group containing the
complement variables. Then if the coordinate
points corresponding to all the positive variables in a
min term are denoted by S1, S1 5 $all positive cells%,
and the coordinate points corresponding to all the
complement variables are denoted by S2, S2 5 $all
complement cells%, then S1 ù S2 5 A and S1 ø S2 5
Sw, and each min term is a hit-or-miss transform by
the structure-element pair Sw. Therefore the canon-
ical sum-of-product form of a pattern spectrum is the
union of hit-or-miss min terms corresponding to dif-
ferent structure-element pairs Sw. Comparison of
the canonical sum-of-product form of a pattern-
spectrumBLFwith the hit-or-miss representation for
the pattern spectrum from Eqs. ~11! and ~13! shows
that the expression Sw 5 @S1, S2# corresponds to
the structure-element pair @nBi, ~n 1 1!B̌kk# or @nBkl,
~n 2 1!B̌i#. From the BLF of the pattern spectrum,
we demonstrate that a pattern spectrum can be de-
composed into the union of hit-or-miss transforms by
different structure-element pairs.
On the basis of the above discussion, each of the

structure-element pairs in the hit-or-miss min terms
for the nth order of the pattern spectrum PS~6n, B!
can be calculated with the BLF’s of the pattern spec-
trum and will be fixed for each basis structure ele-
ment B. For example, Fig. 1~a! shows a basis
structure element B with three points: the origin 0,
the east 1 and west 2, and B Q B̌, in addition to 2B Q
2B̌. Figure 1~b! denotes the basis structure element
for the opening-transform decomposition correspond-
ing to B, and Fig. 1~c! shows the basis structure ele-
ment for the closing-transform decomposition with
respect toB and 2B̌, deduced from the canonical sum-
of-product form of the closing-transform BLF, sepa-
rately. Therefore the opening-transform BLF of X
with B is zXB 5 x0x1x2 1 x0x1x3 1 x0x2x4, and of X
with 0B̌ is zX~0B̌! 5 x0. The closing-transform BLF of
X with B is zYB 5 x0 1 x1x4 1 x1x2 1 x2x3, and of X

c

with 2B̌ is zY2B̌
c 5 x0

c 1 x1
cx2

c 1 x2
c x3

c 1 x2
c x5

c 1 x2
c x7

c 1



Fig. 1. ~a! Basis structure element B, the dilation of B by the reflection B̌ of B, and the dilation of 2B by the reflection 2B̌ of 2B. ~b! The
basis structure elements for the opening-transform decomposition of B. ~c! The minimal structure elements for the closing-transform
decomposition of B and 2B̌.
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c . The first-order pattern spectrum can
be derived as zPS~1,B! 5 A@x0x1x2x3
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Fig. 2. Structure-element pairs @Bkl, 0B̌j# and @Bj, 2B̌
kk# of hit-or-miss min terms for the decomposition of pattern spectra PS~11, B! and

PS~21, B!. The plus signs ~1! mark the center of B, and the minus signs ~2! mark blank spaces.
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x0x2x4x1
cx12

c 1 x0x2x4x3
cx10

c 1 x0x2x4x3
cx12

c #. Similarly,
zPS~21,B! 5 A~x0

cx1x4 1 x0
cx1x2 1 x0

cx2x3!. Thus Fig. 2
shows the structure-element pairs @Bi, 2B̌

kk# and @Bkl,
0B̌i# that correspond to the hit-or-miss min terms in
the zPS~1,B! and zPS~21,B! pattern spectra.
Moreover through the threshold decomposition and

sum superposition,6,10 a discrete gray-tone image can
be thresholded into a stack of binary images. The
morphological transforms of a discrete gray-tone im-
age from a discrete binary structure element com-
mute with thresholding, and then the pattern
spectrum of a discrete gray-tone image with a dis-
crete binary structure element can be turned into the
sum superposition of the pattern spectrum that cor-
responds to each of the threshold binary images with
the discrete binary structure element. The pattern
spectrum of a threshold binary image can be repre-
sented by the BLF shown in Eqs. ~35! and ~36!, which
can be written as the union of hit-or-miss min terms.

Fig. 3. Schematic diagram of the incoherent optical correlator
utilized to implement the pattern spectrum.
Thus the pattern spectrum of a discrete gray-tone
image with a discrete binary image can also be de-
composed into the union of hit-or-miss transforms
from the BLF point of view.

5. Optical Implementation of a Pattern Spectrum

From the definition of the pattern spectrum we see
that the main operations in pattern-spectrum analy-
sis are the opening and closing transforms that are
the cascaded combination of dilation and erosion.
Dilation and erosion can be implemented by an inco-
herent optical correlator.13 Thus we utilize an inco-
herent optical correlator with a feedback operation to
execute a pattern spectrum. Figure 3 shows a sche-
matic diagram of the incoherent optical correlator
used. The optical implementation of a pattern spec-
trum is outlined below: Spatial light modulator 1
~SLM1! shows a binary image, SLM2 shows a struc-
ture element, a lens implements the incoherent opti-
cal correlation, a CCD camera detects the correlation
results, and then a PC, acting as a threshold and
latch gate, thresholds the correlation results to obtain
the dilation or erosion. The dilation or erosion pat-
tern is next fed back to SLM1, the CCD camera de-
tects the new correlation results, and the PC
thresholds the correlation pattern, thus obtaining the
opening and closing transforms. By changing the
structure elements in the pattern spectrum in SLM2
sequentially, we can get the pattern spectrum of a
discrete binary image. Figure 4~a! demonstrates an
image X, whereas Figs. 4~b!–4~d! show the opening
transform of X by B that is shown in Fig. 1~a!, the
Fig. 4. ~a! Input image X, ~b! the opening transform of X by B @Fig. 1~a!#, ~c! the closing transform of X by B, ~d! the opening transform
of X by 2B 5 B Q B̌, ~e! the patterns related to pattern spectrum PS~1, B!, ~f ! the patterns related to pattern spectrum PS~0, B!, and ~g!
patterns related to pattern spectrum PS~21, B!.

6894 APPLIED OPTICS y Vol. 35, No. 35 y 10 December 1996



closing transform of X by B @Fig. 1~b!#, and the open-
ing transform of X by 2B @Fig. 1~c!#. Figures 4~e!–
4~f ! correspond to the patterns of PS~1, B!, PS~0, B!,
and PS~21, B!, respectively.
Considering an optical implementation of the pat-

tern spectrum for a gray-tone image, we first thresh-
old the gray-tone image into a stack of binary
images14 and then add all the pattern spectra related
to each binary image to obtain the gray-tone image’s
pattern spectrum.

6. Conclusion

We have demonstrated that the pattern spectra of a
discrete binary and a gray-tone image with a discrete
structure element can be decomposed into hit-or-miss
representation. First we use the basis decomposi-
tion of the opening and closing transforms to demon-
strate that pattern spectra can be represented by the
union of hit-or-miss transforms. We then give a con-
crete expression for the BLF’s of the morphological
opening and closing transforms; moreover we dem-
onstrate the Boolean-logic representation for a pat-
tern spectrum, which can be written in the canonical
sum-of-product form, and each min term is shown to
be a Boolean-logic representation of the hit-or-miss
transform. Therefore, from the point of view of the
BLF, we show that pattern spectra can be decom-
posed into the union of hit-or-miss transforms. We
also describe an optical implementation architecture
for pattern spectra that is based on an incoherent
optical correlator with a feedback operation. Some
proof-of-principle experimental results are also given.
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