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Abstract

Information-theoretic methods are a powerful tool in communication com-
plexity, providing, in particular, elegant and tight lower bounds on disjointness
in the number-in-the-hand (NIH) model. In this paper, we study the applicabil-
ity of information theoretic methods to the multi-party number-on-the-forehead
model (NOF). The lower bound on disjointness in the NIH model has two parts:
a direct sum theorem and a lower bound on the one-bit AND function using a
beautiful connection between Hellinger distance and protocols [BYJKS04]. In-
spired by this connection, we introduce the notion of Hellinger volume which
lower bounds the information cost of multi-party NOF protocols. We provide
tools for manipulating and proving lower bounds on Hellinger volume, and use
these tools to obtain a lower bound on the information complexity of the ANDk

function in the NOF setting. Finally, we discuss the difficulties of proving a
direct sum theorem for information cost in the NOF model.

Keywords: communication complexity, informational complexity, Hellinger
volume, number-on-the-forehead.

1 Introduction

One of the most important research areas in communication complexity is proving
lower bounds in the multi-party number-on-the-forehead (NOF) model. The NOF
model was introduced in [CFL83], where it was used to prove lower bounds for
branching programs. Subsequent papers revealed connections of this model to circuit
complexity [BT94, HG90, Nis94, NW91] and proof complexity [BPS05]. In particular,
an explicit function which requires super-polylogarithmic complexity in the NOF
model with polylogarithmically many players would give an explicit function outside
of the circuit complexity class ACC0.
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Essentially all lower bounds on the general NOF model have been shown us-
ing the discrepancy method following [BNS92]. This method has been able to show
lower bounds of Ω(n/2k) for explicit functions [BNS92, CT93, Raz00, FG05]. For the
disjointness function, the plain discrepancy method shows poor bounds and a more
sophisticated application of discrepancy is needed known as the generalized discrep-
ancy method [Kla07, Raz03, LS07, She11]. The generalized discrepancy method

was initially used to show lower bounds of the form n1/k/22
k
[LS09, CA08] and

2Ω(
√
logn/

√
k)−k [BHN09] on the k-player NOF complexity of disjointness. Recent

work of Sherstov in [She12] and [She13] improved the lower bounds to Ω((n/4k)1/4)
and Ω(

√
n/(2kk)), respectively. A very recent paper of Rao and Yehudayoff [RY14]

gives a simplified proof of the latter lower bound and also gives a nearly tight Ω(n/4k)
lower bound for deterministic protocols. An upper bound of O(log2(n)+k2n/2k) for
the disjointness function follows from a beautiful protocol of Grolmusz [Gro94].

In this paper we are interested in how information-theoretic methods might be
applied to the NOF model. Information-theoretic methods have been very successful
in the number-in-the-hand (NIH) multi-party model, in particular giving tight lower
bounds on the disjointness function. The first use of information theory in communi-
cation complexity lower bounds can be traced to [Abl96]. In [CSWY01] the notions
of information cost and informational complexity were defined explicitly. Building on
their work, a very elegant information-theoretic framework for proving lower bounds
in NIH communication complexity was established in [BYJKS04].

In [BYJKS04] a proof of the linear lower bound for two-party disjointness was
given. The proof has two main stages. In the first stage, a direct-sum theorem
for informational complexity is shown, which says that the informational complexity
of disjointness, DISJn,2(x, y) =

∨n
j=1 AND2(xj , yj), is lower bounded by n times the

informational complexity of the binary AND2 function. Although it is not known how
to prove such a direct-sum theorem directly for the classical randomized complexity,
Bar-Yossef et al. prove it for the informational complexity with respect to a suitable
distribution. A crucial property of the distribution is that it is over the zeroes of
disjointness. At this point we should point out a remarkable characteristic of the
method: even though the information cost of a protocol is analyzed with respect to
a distribution over zeroes only, the protocol is required to be correct over all inputs.
This requirement is essential in the second stage, where a constant lower bound is
proved on the informational complexity of AND2. This is achieved using properties of
the Hellinger distance for distributions. Bar-Yossef et al. reveal a beautiful connection
between Hellinger distance and NIH communication protocols. (More properties of
Hellinger distance relative to the NIH model have been established in [Jay09].)

In this work we provide tools for accomplishing the second stage in the NOF
model. We introduce the notion of Hellinger volume of m ≥ 2 distributions and
show that it can be useful for proving lower bounds on informational complexity in
the NOF model, just as Hellinger distance is useful in the NIH model. However,
as we point out in the last section, there are fundamental difficulties in proving a
direct-sum theorem for informational complexity in the NOF model. Nevertheless,
we believe that Hellinger volume and the related tools we prove, could be useful in
an information-theoretic attack on NOF complexity.

Since this paper was submitted in 2011 there has been some overlapping indepen-
dent work by Beame, Hopkins, Hrubeš and Rashtchian [BHHR14], including lower
bounds for the information complexity of the AND function similar to those we give
in Section 5 but for restricted settings, and 0-information protocols in the “random-
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ness on the forehead” model, of the type we give in Section 6 but in a more general
setting.

2 Preliminaries and notation

Hellinger volume To transfer the information-theory framework of [BYJKS04] in
the NOF model we seek a generalization of Hellinger distance that carries the same
useful properties: it lower-bounds mutual information, allows one to prove lower
bounds for simple functions, and has properties such as the cut-and-paste property
and triangle inequality (see [BYJKS04] for these properties) of Hellinger distance
that allow one to manipulate several terms of this quantity in meaningful ways with
respect to the NOF model. In particular, recall the following expression for (the
square of) Hellinger distance.

h2(p, q) = 1−
∑

ω

√
p(ω)q(ω).

It was the product structure in this expression which allowed for the cut-and-paste
property. Inspired by this observation we introduce the notion of Hellinger volume of
m distributions. In the next section we show that it has properties similar in flavor
to the ones of Hellinger distance.

Definition 1. The m-dimensional Hellinger volume of distributions p1, . . . , pm over
Ω is

hm(p1, . . . , pm) = 1−
∑

ω∈Ω

m
√
p1(ω) · · · pm(ω).

Notice that h2(p1, p2) in the case m = 2 is the square of the Hellinger distance
between distributions p1 and p2.

The following fact follows from the arithmetic mean-geometric mean (AM-GM)
inequality.

Fact 1. For any distributions p1, . . . , pm over Ω, hm(p1, . . . , pm) ≥ 0.

Random variables and distributions We consider discrete probability spaces
(Ω, ζ), where Ω is a finite set and ζ is a nonnegative valued function on Ω summing
to 1. If (Ω1, ζ1), . . . , (Ωn, ζn) are such spaces, their product is the space (Λ, ν), where
Λ = Ω1 × · · · × Ωn is the Cartesian product of sets, and for ω = (ω1, . . . , ωn) ∈ Λ,
ν(ω) =

∏n
j=1 ζj(ωj). In the case that all of the (Ωi, ζi) are equal to a common space

(Ω, ζ) we write Λ = Ωn and ν = ζn.
We use uppercase for random variables, as in Z, D, and write in bold those

that represent vectors of random variables. For a variable X with range X that is
distributed according to a probability distribution µ, i.e. Pr[X = x] = µ(x), we write
X ∼ µ. If X is uniformly distributed in X , we write X ∈R X .

Information theory Let X,Y, Z be random variables on a common probability
space, taking on values, respectively, from finite sets X ,Y,Z. Let A be any event.
The entropy of X, the conditional entropy of X given A, and the conditional entropy

3



of X given Y are respectively (we use log for log2)

H(X) = −
∑

x∈X
Pr[X = x] · log Pr[X = x],

H(X |A) = −
∑

x∈X
Pr[X = x |A] · log Pr[X = x |A],

H(X |Y ) =
∑

y∈X
Pr[Y = y] ·H(X |Y = y).

We will need the following facts about the entropy. (See [CT06, Chapter 2], for
proofs and more details.)

Proposition 2. Let X,Y, Z be random variables.

1. H(X) ≥ H(X |Y ) ≥ 0.

2. If X is the range of X, then H(X) ≤ log |X |.

3. H(X,Y ) ≤ H(X)+H(Y ) with equality if and only if X and Y are independent.
This holds for conditional entropy as well. H(X,Y |Z) ≤ H(X |Z) +H(Y |Z)
with equality if and only if X and Y are independent given Z.

The relative entropy or divergence of distributions P and Q over Ω is

D(P ||Q) =
∑

x∈Ω
P (x) log

P (x)

Q(x)
.

The mutual information between X and Y is

I(X;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X).

Notation We write [n] = {1, 2, . . . , n}. For a sequence (a1, . . . , an) we let, for
j ∈ [n], a<j = (a1, . . . , aj−1), and a

−j = (a1, . . . , aj−1, aj+1, . . . , an). We will denote
subsets of {0, 1}k as follows: I = {0, 1}k; for j ∈ [k], Ij is the set of points in I such
that the j-th coordinate is set to zero, i.e. Ij = {z ∈ I | zj = 0}; IOZ (resp. IEZ) is
the set of points in I with an odd (resp. even) number of zeros.

Communication complexity In this work we will be dealing with the multi-party
private-coin randomized number-on-the-forehead communication model, introduced
by [CFL83]. There are k players, numbered 1, . . . , k, trying to compute a function
f : Z → {0, 1}, where Z = Z1 × · · · × Zk. On input z ∈ Z, player j receives input
zj (conceptually, placed on his forehead), but he has access only to z−j . They wish
to determine f(z), by broadcasting messages according to a protocol Π. Let the
random variable Π(z) denote the transcript of the communication on input z (where
the probability is over the random coins of the players) and Πout(z) the outcome of
the protocol. We call Π a δ-error protocol for f if, for all z, Pr[Πout(z) = f(z)] ≥ 1−δ.
The communication cost of Π is max |Π(z)|, where the maximum is over all inputs
z and over all coin tosses of the players. The δ-error randomized communication
complexity of f , denoted Rδ(f), is the cost of the best δ-error protocol for f . (See
[KN06] for more details.)
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Communication complexity lower bounds via information theory The in-
formational complexity paradigm, introduced by [CSWY01], and used in [SS02,
BYJKS02, CKS03, BYJKS04, JKS03], provides a way to prove lower bounds on
communication complexity via information theory. We are given a k-party function
f and we want to show that any δ-error randomized NOF protocol Π for f requires
high communication. We introduce a probability distribution over the inputs to the
players. We then analyze the behavior of Π when run on inputs chosen randomly
according to the distribution. The informational complexity is the mutual informa-
tion of the string of communicated bits (the transcript of Π) with the inputs, and
provides a lower bound on the amount of communication.

More precisely, let Ω = (Ω, ζ) be a probability space over which are defined
random variables Z = (Z1, . . . , Zk) representing the inputs. The information cost
of a protocol Π with respect to ζ is defined to be I(Z; Π(Z)), where Π(Z) is a
random variable following the distribution of the communication transcripts when
the protocol Π runs on input Z ∼ ζ. The δ-error informational complexity of f with
respect to ζ, denoted ICζ,δ(f), is minΠ I(Z; Π(Z)), where the minimum is over all
δ-error randomized NOF protocols for f . The relevance of informational complexity
comes from the following proposition.

Proposition 3. Rδ(f) ≥ ICζ,δ(f).

Proof. For any protocol Π, ICζ,δ(f) ≤ I(X,Y; Π(X,Y)) = H(Π(X,Y))−H(Π(X,Y)|X,Y).
Applying in turn parts (1) and (2) of Proposition 2 gives ICζ,δ(f) ≤ H(Π(X,Y)) ≤
Rδ(f).

For a collection of distributions η = {ζ1, . . . , ζk}, we define the δ-error informa-
tional complexity of f with respect to η, denoted ICη,δ(f), to be Ej [ICζj ,δ(f)], where
j is uniformly distributed over [k].

Remark. This definition of information cost as an average, is equivalent to the
(standard) conditional information cost. We choose this definition, because we think
it makes the exposition cleaner.

3 An upper bound on the difference between the arith-

metic and geometric mean.

For a nonnegative real sequence α = (α1, . . . , αm), let A(α) and G(α) denote its
arithmetic and geometric mean respectively. That is

A(α) =
1

m

∑
αj and G(α) = m

√∏
αj .

Theorem 1. For any distribution p over [m],

A(p)−G(p) ≤ ln 2 ·D(p||u),

where u is the uniform distribution over [m].

Proof. Let xj = mp(j), x = (x1, . . . , xn), and define

f(x) =
∑

xj lnxj + m

√∏
xj .
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Theorem 1 is equivalent to showing that, for x1, . . . , xn ≥ 0, if
∑
xj = m, then

f(x) ≥ 1.
We proceed using Lagrange multipliers. We first need to check that f(x) ≥ 1

when x is on the boundary, i.e. xj = 0 for some j ∈ [n]. Without loss of generality,
assume x1 = 0. By the convexity of t ln t, the minimum is attained when x2 = · · · =
xm = m/(m− 1). Thus,

f(x) ≥ (m− 1)
m

m− 1
ln

m

m− 1
> m

(
1− m− 1

m

)
= 1.

According to [Lue03, Theorem on page 300], it suffices to show that f(x) ≥ 1 for any
x that satisfies the following system of equations.

∂f/∂xj = 1 + lnxj + σ/(mxj) = λ, for j ∈ [m], (L)

where σ = m
√
x1 · · ·xm 6= 0. Without loss of generality, since

∑
xj = m, we may

assume xm ≤ 1. The system (L) implies

m−1∑

j=1

xj(∂f/∂xj) = m− xm +
m−1∑

j=1

xj lnxj + σ(m− 1)/m = λ(m− xm),

(m− 1)xm(∂f/∂xm) = (m− 1)(xm + xm lnxm + σ/m) = (m− 1)λxm.

Subtracting the second from the first we get

m−1∑

j=1

xj lnxj − (m− 1)xm lnxm = m(λ− 1)(1− xm).

We also have ∑
xj(∂f/∂xj) = m+ f(x) = mλ.

Suppose x = (x1, . . . , xm) satisfies the system (L). Since xm ≤ 1, we have xm lnxm ≤
0, and using the last two equations we have

f(x) = m(λ− 1) ≥
∑m−1

j=1 xj lnxj

1− xm
≥

∑m−1
j=1 xj(1− 1/xj)

1− xm
= 1.

This completes the proof.

Remark. The proof actually shows that the inequality of the theorem holds when
the right hand side is divided by m ln m

m−1 , which is strictly bigger than 1 for any
fixed m > 1.

Corollary 2. For any nonnegative real sequence α = (α1, . . . , αm),

A(α)−G(α) ≤
∑

αj ln
αj

A(α)
.

Proof. Apply Theorem 1 with p(j) = αj

/∑
j αj .

Remark. Let α̂ to be a normalized version of α, with α̂j = αj

/∑
αj . Let also u

denote the uniform distribution on [m]. Then, the right-hand side takes the form∑
αj ln(mα̂j) = mA(α)

∑
α̂j ln(α̂j/uj), and the above inequality becomes

A(α)−G(α)

A(α)
≤ m ln 2 ·D(α̂||u).
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4 Properties of Hellinger volume

Hellinger volume lower bounds mutual information The next lemma shows
that Hellinger volume can be used to lower bound mutual information.

Lemma 3. Consider random variables Z ∈R [m], Φ(Z) ∈ Ω, and distributions Φz,
for z ∈ [m], over Ω. Suppose that given Z = z, the distribution of Φ(Z) is Φz. Then

I(Z; Φ(Z)) ≥ hm(Φ1, . . . ,Φm)

m ln 2
.

Proof. The left-hand side can be expressed as follows (see [CT06, page 20]),

I(Z; Φ(Z)) =
∑

j,ω

Pr[Z = j ] ·Pr[Φ(Z) = ω |Z = j ] · log Pr[Φ(Z) = ω |Z = j ]

Pr[Φ(Z) = ω ]

=
∑

j,ω

1

m
Φj(ω) log

Φj(ω)
1
m

∑
j Φj(ω)

,

and the right-hand side

hm(Φ1, . . . ,Φm) =
∑

ω

(
1

m

∑

j

Φj(ω)−
(∏

j

Φj(ω)
) 1

m

)
.

It suffices to show that for each ω ∈ Ω,

∑

j

1

m
Φj(ω) log

Φj(ω)
1
m

∑
j Φj(ω)

≥ 1

m ln 2

(
1

m

∑

j

Φj(ω)−
(∏

j

Φj(ω)
) 1

m

)
.

Let s =
∑

j Φj(ω), and ρ(j) = Φj(ω)/s, for j ∈ [m]; thus, for all j, ρ(j) ∈ [0, 1],
and

∑
j ρ(j) = 1. Under this renaming of variables, the left-hand side becomes

ln 2 · s
m

∑
j ρ(j) log(mρ(j)) and the right one s

m · ( 1
m − m

√∏
ρ(j)). Thus, we need to

show

ln 2 ·
∑

j

ρ(j) log(mρ(j)) ≥ 1

m
−
(∏

j

ρ(j)
) 1

m
.

Observe that the left-hand side is ln 2·D(ρ||u), and the inequality holds by Theorem 1.

Symmetric-difference lemma Let P = {Pz}z∈Z , where Z is an arbitrary set of
indices, be a collection of distributions over a common space Ω. For A ⊆ Z, the
Hellinger volume of A with respect to P , denoted by ψ(A;P ), is

ψ(A;P ) = 1−
∑

ω∈Ω

(∏

z∈A
Pz(ω)

)1/|A|
.

The collection P will be understood from the context and we’ll say that the Hellinger
volume of A is ψ(A). Note that, from Fact 1, ψ(A;P ) ≥ 0.

The following lemma can be seen as an analog to the weak triangle inequality
that is satisfied by the square of the Hellinger distance.

Lemma 4 (Symmetric-difference lemma). If A,B satisfy |A| = |B| = |A∆B|, where
A∆B = (A \B) ∪ (B \A). Then

ψ(A) + ψ(B) ≥ 1

2
· ψ(A∆B).
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Proof. By our hypothesis, it follows that A \B, B \A and A∩B all have size |A|/2.
Define u, v, w to be the vectors in R

Ω defined by

u(ω) =
(∏

z∈A\B
Pz(ω)

)1/|A|
,

v(ω) =
(∏

z∈B\A
Pz(ω)

)1/|A|
,

w(ω) =
(∏

z∈A∩B
Pz(ω)

)1/|A|
.

By the definition of Hellinger volume,

ψ(A) = 1− u · w,
ψ(B) = 1− v · w,

ψ(A∆B) = 1− u · v.
Thus the desired inequality is

2− (u+ v) · w ≥ (1− u · v)/2,
which is equivalent to

3 + u · v ≥ 2(u+ v) · w. (1)

Since

ψ(A \B) = 1− u · u,
ψ(B \A) = 1− v · v,
ψ(A ∩B) = 1− w · w,

it follows that ‖u‖, ‖v‖ and ‖w‖ are all at most 1. Thus 2(u+ v) ·w ≤ 2‖u+ v‖, and
so (1) follows from

3 + u · v ≥ 2‖u+ v‖.
Squaring both sides, it suffices to show

9 + 6u · v + (u · v)2 ≥ 4(‖u‖2 + ‖v‖2 + 2u · v)
Using the fact that ‖u‖ ≤ 1 and ‖v‖ ≤ 1 this reduces to

(1− u · v)2 ≥ 0,

which holds for all u, v.

Let sℓ, sr be two disjoint subsets of [k]. Let Isℓ ⊆ I (resp., Isr) be the set of
strings with odd number of zeros in the coordinates indexed by sℓ (resp., sr). Let
sp = sℓ ∪ sr and Isp = Isℓ∆Isr . It is not hard to see that Isp is the set of strings with
odd number of zeros in the coordinates indexed by sp. By the symmetric-difference
lemma,

ψ(Isℓ) + ψ(Isr) ≥
ψ(Isp)

2
. (2)

Note that the above expression (and similarly others that follow) makes sense for
any distributions indexed by subsets of {0, 1}k.

For each j ∈ [k], let Ij ⊆ I be the set of strings where the j-th coordinate is
set to zero. Applying the above observation inductively, we can obtain the following
lemma.
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Lemma 5. Let s ⊆ [k] be an arbitrary non-empty set and let Is ⊆ I be the set of
strings with odd number of zeros in the coordinates indexed by s. Then,

∑

j∈s
ψ(Ij) ≥

ψ(Is)

2⌈log |s|⌉
.

Proof. We prove the claim via induction on the size of s. If s is a singleton set, it
trivially holds. Otherwise, assume that for any subset of [k] of size less than |s|, the
claim is true.

Partition s into two non-empty subsets sℓ, sr with the property that |sℓ| = ⌈|s|/2⌉
and |sℓ| = ⌊|s|/2⌋. Then ⌈log |s|⌉ = 1 + max{⌈log |sℓ|⌉, ⌈log |sr|⌉}. By the inductive
hypothesis,

∑

j∈sℓ
ψ(Isℓ) ≥

ψ(Isℓ)

2⌈log |sℓ|⌉
and

∑

j∈sr
ψ(Isr) ≥

ψ(Isr)

2⌈log |sr |⌉
.

Thus,

∑

j∈s
ψ(Isℓ) =

∑

j∈sℓ
ψ(Isℓ) +

∑

j∈sr
ψ(Isr)

≥ ψ(Isℓ)

2⌈log |sℓ|
+

ψ(Isr)

2⌈log |sr |⌉
by the Inductive Hypothesis,

≥ 1

2⌈log |s|⌉−1
[ψ(Isℓ) + ψ(Isr)] by the choice of sℓ and sr,

≥ 1

2⌈log |s|⌉
ψ(Is) by Equation (2).

Let IOZ ⊆ I be the set of strings which have odd number of zeros. The next
corollary is an immediate consequence of Lemma 5 when s = [k]. In our application
it will play a role analogous to that of triangle inequality for the square of Hellinger
distance in the two-party setting.

Lemma 6.
k∑

j=1

ψ(Ij) ≥
ψ(IOZ)

2⌈log k⌉
.

NOF communication complexity and Hellinger volume It was shown in
[BYJKS04] that the distribution of transcripts of a two-party protocol on a fixed
input is a product distribution. The same is true for a multi-party NOF protocol.

Lemma 7. Let Π be a k-player NOF communication protocol with input set Z =
Z1 × · · · × Zk and let Ω be the set of possible transcripts. For each j ∈ [k], there is
a mapping qj : Ω×Z−j → R, such that for every z = (z1, . . . , zk) ∈ Z and ω ∈ Ω,

Pr[Π(z) = ω ] =
k∏

j=1

qj(ω; z
−j).
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Proof. Suppose |Π(z)| ≤ l. For i = 1, . . . , l, let Πi(z) denote the i-th bit sent in an
execution of the protocol. Let σi ∈ [k] denote the player that sent the i-th bit. Then

Pr[Π(z) = ω ] = Pr[Π1(z) = ω1, . . . ,Πℓ(z) = ωℓ ]

=
l∏

i=1

Pr[Πi(z) = ωi |Π<i(z) = ω<i ],

=
l∏

i=1

Pr[Πi(z
−σi ;ω<i) = ωi ],

because every bit send by player j depends only on z−j and the transcript up to that
point. We set

qj(ω; z
−j) =

∏

i:σi=j

Pr[Πi(z
−j ;ω<i) = ωi ]

to obtain the expression of the lemma.

As a corollary, we have the following cut-and-paste property for Hellinger vol-
ume. This is analogous to the cut-and-paste property of Hellinger distance that was
introduced in [BYJKS04].

Lemma 8. Let IOZ ⊆ I be the set of inputs which have odd number of zeros, and let
IEZ = I \ IOZ . Then

ψ(IOZ) = ψ(IEZ).

Proof. Using the expression of the previous lemma, we have that for any ω ∈ Ω,

∏

v∈IOZ

Pv(ω) =
∏

v∈IOZ

k∏

j=1

qj(ω; v
−j) =

∏

u∈IEZ

k∏

j=1

qj(ω;u
−j) =

∏

u∈IEZ

Pu(ω).

The middle equality holds, because for each j ∈ [k] and v ∈ IOZ there is a unique
u ∈ IEZ such that v−j = u−j .

Lower bounding Hellinger volume Eventually, we will need to provide a lower
bound for the Hellinger volume of several distributions over protocol transcripts. In
the two-party case, one lower bounds the Hellinger distance between the distribution
of the transcripts on an accepting input and the distribution of the transcripts on
a rejecting input. The following lemma will allow for similar conclusions in the
multi-party case.

Lemma 9. Let A ⊆ I be of size t ≥ 2. Suppose there is an event T ⊆ Ω, a constant
0 ≤ δ ≤ 1 and an element v in A such that Pv(T ) ≥ 1 − δ and that for all u ∈ A
with u 6= v, Pu(T ) ≤ δ. Then

ψ(A) ≥
(
2− 4

√
δ(1− δ)

)
· 1
t
.

Proof. We need to show

1−
∑

ω∈Ω

∏

u∈A
Pu(ω)

1

t ≥
(
2− 4

√
δ(1− δ)

)
· 1
t
.
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Let a = Pv(T ) =
∑

ω∈T Pv(ω) and b =
∑

ω∈T
1

t−1

∑
u 6=v Pu(ω). Notice that by

assumption a ≥ 1− δ and b ≤ δ.
Recall Hölder’s inequality: for any nonnegative xk, yk, k ∈ m,

m∑

k=1

xkyk ≤
( m∑

k=1

xtk

) 1

t
( m∑

k=1

y
t

t−1

k

) t−1

t
.

We first treat the sum over ω ∈ T .
∑

ω∈T

∏

u∈A
Pu(ω)

1

t =
∑

ω∈T
Pv(ω)

1

t

∏

u 6=v

Pu(ω)
1

t

≤
(∑

ω∈T
Pv(ω)

) 1

t
(∑

ω∈T

∏

u 6=v

Pu(ω)
1

t−1

) t−1

t

≤
(∑

ω∈T
Pv(ω)

) 1

t
(∑

ω∈T

1

t− 1

∑

u 6=v

Pu(ω)
) t−1

t

= a
1

t b
t−1

t ,

where we first used Hölder’s inequality and then the AM-GM inequality. We do the
same steps for the sum over ω 6∈ T to find

∑

ω 6∈T

∏

u∈A
Pu(ω)

1

t ≤ (1− a)
1

t (1− b)
t−1

t .

Hence, ∑

ω∈Ω

∏

u∈A
Pu(ω)

1

t ≤ a
1

t b
t−1

t + (1− a)
1

t (1− b)
t−1

t .

Let g(a, b, x) = axb1−x+(1−a)x(1−b)1−x. We will show that under the constraints
a ≥ 1− δ and b ≤ δ where δ < 1/2, for any fixed 0 ≤ x ≤ 1/2, g(a, b, x) is maximized
for a = 1− δ and b = δ. The partial derivatives for g(a, b, x) with respect to a and b
are

ga(a, b, x) = x[ax−1b1−x − (1− a)x−1(1− b)1−x] = x
[( b
a

)1−x
−
( 1− b

1− a

)1−x]

gb(a, b, x) = (1− x)[axb−x − (1− a)x(1− b)−x] = (1− x)
[( b
a

)−x
−

( 1− b

1− a

)−x]

Under our constraints, b
a < 1 < 1−b

1−a , 1− x > 0 and −x ≤ 0, thus, ga(a, b, x) < 0 and
gb(a, b, x) ≥ 0 for any such a, b, and x. This implies that for any fixed b, g(a, b, x)
is maximized when a = 1 − δ and similarly for any fixed a, g(a, b, x) is maximized
when b = δ. Therefore, for all a, b, and 0 ≤ x ≤ 1, g(a, b, x) ≤ g(1− δ, δ, x).

For 0 ≤ x ≤ 1/2, let

f(δ, x) = 1− g(1− δ, δ, x) = 1− (1− δ)xδ1−x − δx(1− δ)1−x.

Since f(δ, x) is convex for any constant 0 ≤ δ ≤ 1,

f(δ, x) ≥ f(δ, 1/2)− f(δ, 0)

1/2− 0
· x = 2

(
1− 2

√
δ(1− δ)

)
· x.
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5 An application

In this section we show how to derive a lower bound for the informational complexity
of the ANDk function. Define a collection of distributions η = {ζ1, . . . , ζk}, where,
for each j ∈ [k], ζj is the uniform distribution over Ij . Recall that Ij ⊆ I = {0, 1}k
for j ∈ [k] is the set of k-bitstrings whose j-th bit is 0. We prove the following lower
bound on the δ-error informational complexity of ANDk with respect to η.

Remark. The choice of the collection η is not arbitrary, but is suggested by the way
the direct-sum theorem for informational complexity is proved in [BYJKS04] for the
two-party setting. In particular, two properties of η seem crucial for such a purpose.
First, for each j ∈ [k], ζj is a distribution with support only on the zeroes of ANDk.
Second, under any ζj , the input of each player is independent of any other input.

Theorem 10.

ICη,δ(ANDk) ≥ log e ·
(
1− 2

√
δ(1− δ)

)
· 1

k2 4k−1
.

Proof. Let Π be a δ-error protocol for ANDk. By Lemma 3 we have that,

I(Z; Π(Z)) ≥ 1

2k−1 ln 2
· ψ(Ij),

where Z ∼ ζj , for any j ∈ [k], Thus, by the definition of ICη,δ(ANDk),

ICη,δ(ANDk) ≥
k∑

j=1

1

k 2k−1 ln 2
· ψ(Ij).

Applying in turn Lemmas 6, 8, and 9 we have

ICη,δ(ANDk) >
ψ(IOZ)

k2 2k ln 2
=

ψ(IEZ)

k2 2k ln 2
≥ log e ·

(
1− 2

√
δ(1− δ)

)
· 1

k2 4k−1
,

where the application of Lemma 9 is with A = IEZ , t = 2k−1, T the set of transcripts
that output “1”, and v the all-one vector in I.

It is of interest to note, that

ICη,δ(ANDk) ≤
1

k
·H(1/2k−1) = O(1/2k).

This is achieved by the following protocol. The players, one by one, reveal with one
bit whether they see a 0 or not. The communication ends with the first player that
sees a 0. The amount of information revealed is H(1/2k−1) under ζ1 and 0 otherwise.

6 Difficulties in proving a direct-sum theorem

There seem to be fundamental difficulties in proving a direct-sum theorem on infor-
mational complexity in the NOF model. The reader familiar with the techniques of
Bar-Yossef, Jayram, Kumar & Sivakumar [BYJKS04], should recall that in the first
part of the method a direct-sum for informational complexity of disjointness is proved.
In particular, it is shown that with respect to suitable collections of distributions η
and ζ for DISJn,2 and AND2 respectively, the information cost of DISJn,2 is at least

12



n times the informational complexity of AND2 : ICη,δ(DISJn,2) ≥ n · ICζ,δ(AND2).
This is achieved via a simulation argument in which the players, to decide the AND2

function, use a protocol for disjointness by substituting their inputs in a special copy
of AND2 and using their random bits to generate the inputs for the rest n− 1 copies
of AND2. In the NOF model the players can no longer perform such a simulation.
This is because, with private random bits, they cannot agree on what the input on
the rest of the copies should be without additional communication. This problem
can be overcome if we think of their random bits as being not private, but on each
player’s forehead, just like the input. However, In such a case, although the direct-
sum theorem holds, it is useless. This is because ICζ,δ(ANDk) = 0, as is shown by
the protocol we describe in the next paragraph.

We describe a protocol that computes ANDk on every input, with one-sided error.
It has the property that for any distribution over the zeroes of ANDk, no player learns
anything about his own input. We give the details for three players. Let x1, x2, x3
denote the input. Each player has two random bits on his forehead, denoted a1, a2,
a3 and b1, b2, b3. The first player does the following: if x2 = x3 = 1, he sends a2⊕a3,
otherwise he sends a2 ⊕ b3. The other two players behave analogously. If the XOR
of the three messages is ‘0’, they answer ‘1’, otherwise they know that the answer
is ‘0’. Notice that any player learns nothing from another player’s message. This is
because the one-bit message is XOR-ed with one of his own random bits, which he
cannot see.
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