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WAVE PROPAGATION IN EXCITABLE MEDIA THROUGH RANDOMLY
DISTRIBUTED HETEROGENEITIES : SIMULATIONS AND COMPARISON TO
THE EFFECTIVE MEDIUM THEORY *

SERGIO ALONSO! AND MARKUS BAR!

Abstract. The propagation of traveling waves in excitable media with randomly distributed diffusion
coefficient is studied. If the characteristic size of the waves is much larger than the heterogeneity size
an effective medium theory based on a self-consistent homogenization approach can be applied. The
random distribution of the medium properties is produced by domains of two phases. In each phase the
values of the diffusion coefficient are different. The characteristic size of the domains of the two phases is
varied in the numerical simulations. The resulting velocities of the traveling waves found by numerical
simulations of the random media are compared with the predictions of the effective medium theory.
For large size of the heterogeneities in comparison with the diffusion length of the reaction-diffusion
system the numerical results show deviations with respect to the predictions.

INTRODUCTION

Nonlinear waves in extended systems can be observed in biological [1] and chemical [2] systems. They result
from the interplay of diffusion and nonlinear reaction in systems kept outside the thermodynamic equilibrium [3].
For example, wave propagation of chemical concentrations have been observed in the Belousov-Zhabotinsky
reaction [4] and in the catalytic oxidation of CO on platinum single crystal surfaces [5]. Similar wave phenomena
are typical in some biological systems : waves of calcium concentration are observed inside many cells [6], signal
waves drive the aggregation processes in populations of collective amoeba Dictyostelium discoideum [7], and
traveling action potentials coordinate the regular beat of the heart [8].

While chemical systems are often homogeneous, many biological systems are highly inhomogeneous, and the
waves can be strongly disturbed. For example, cardiac tissue is highly inhomogeneous and the effect of randomly
distributed dead cells or disconnections among cells have been studied numerically with heterogeneous cardiac
models [9,10]. The propagation velocity depends on the fraction of heterogeneities in the tissue. Cardiac cell
cultures are more inhomogeneous than the tissue, and studies on electric wave propagation in cell cultures show
similar properties [11]. Heterogeneous models have been employed to study calcium waves in cells [12].

The homogeneous assumption in chemical systems can be modified by the use of externally imposed inhomo-
geneities. With this aim the Belousov-Zhabotinsky reaction has been widely employed. The use of masks permits
the introduction of patterned illumination into the photosensitive version of the reaction [13]. Heterogeneities
have been also achieved by confining chemical species in small compartments : reactions in microemulsion sys-
tems [14] and on porous catalytic beads [15]. Another example of heterogeneous chemical pattern formation is
the introduction of nonreactive inclusions in the catalytic oxidation of CO on platinum surfaces [16].
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In some of the examples shown above the heterogeneities are large compared with the characteristic size of
the patterns and an homogenization theory is not possible. However, for the case of small heterogeneities there
are general methods to obtain effective reaction rates and diffusion coefficients for randomly heterogeneous
reaction-diffusion systems with an arbitrary number of chemical species and linear [17] or nonlinear [18, 19]
kinetics. The effective medium theory can be also applied to excitable media [20] and it was able to reproduce
the main characteristics of the patterns formed in the microemulsion system [21]. Other homogenization theories
has been also previously employed for periodically inhomogeneous systems [22].

We consider media supporting wave propagation with random changes in the propagation properties. We
apply a homogenization approach to obtain effective diffusion and reaction properties of a random heterogeneous
system [17,18] and compare the analytical predictions with the results of numerical simulations in excitable
systems [20] and with experiments [21]. Here, we employ a model of excitable media as in [20], however, we
restrict the study to 1D and increase the characteristic size of the heterogeneities to evaluate the limits of the
theory, originally developed for small heterogeneities [20].

1. THEORY

Chemical species u and v undergo reaction dynamics in the system. Particles of specie u can diffuse throughout
the system, however, their reaction rate and diffusion coefficient depend on the position :

= K)Ru(uv) + V- (D(IVu: )
ov
% = R, (u,v). (2)

We consider a binary heterogeneous medium composed of a random distribution of two types of phases,
domains of phase 2 are dispersed in a medium of phase 1. The diffusion coefficient and the reaction rate may
differ in the different phases. We assume that the diffusion coefficient and the reaction rate inside domains of
phase 1 and phase 2 are, respectively, Dy, k1 and Ds, ko.

If the characteristic domain size in this heterogeneous system is small compared to the scales of interest, one
may describe the reaction-diffusion dynamics in terms of effective medium equations :

% = keRu((u), (v)) + V- (DeV(u)); (3)
ov) '
OB "

where the angular brackets correspond to a coarse-graining average over a distance that is large compared to
the sizes of the inclusions of phase 2 in phase 1. The values of the effective diffusion coefficient D, and effective
reaction rate k. can be obtained for a particular fraction ¢ of phase 2, see below.

The effective values can be derived under the assumption that the characteristic domain size ¢ is small
compared to the characteristic pattern scale A [17-19]. This means that the predictions of the effective medium
theory described above can be compared to numerical results provided the diffusion lengths of both phases,
associated to Dy and Dy, are larger than the characteristic length of the heterogeneity.

1.1. Effective diffusion coefficient

With a fraction ¢ of phase 2 and (1 — ¢) of phase 1 and following [19] we can define implicitly an effective
diffusion coefficient D, :

Dl_De D2_De

. _¢)D1 +(d—1)D.

=0, (5)
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FIGURE 1. Spatio-temporal plots of the evolution of a traveling wave solution of Egs.(8-9), and
the profile of the activator and inhibitor concentrations during a intermediate state (marked
with a thin white line in the spatio-temporal plot). Three regimes are shown corresponding to
different values of the parameter b : (a) bistable, with b = 0.1; (b) excitable, with b = 0.25,
and (c) nonexcitable, with b = 0.56. Simulations are done in a 1D system L = 160 during time
T = 600. Discretization values are : At = 0.002 and Az = 0.2.

where the parameter d denotes the spatial dimension of the system, here d = 1 corresponding to 1D. It is
interesting to consider two limits of Eq.(5). If Dy ~ Dy the effective coefficient predicts a linear change between
the two values : D.(¢) = D1 — ¢(D1 — Ds). In the opposite case Dy — 0, the theory predicts for d > 1 a
percolation threshold ¢, which produces D.(¢¢p) ~ 0, for more details see [18].

Equation (5) can be solved to obtain the explicit expression of the effective diffusion coefficient on the fraction
of phase 2 for the particular case d =1 :

D;'=Dy'¢+ Dy (1—¢), (6)

which corresponds to the weighted harmonic mean of the diffuse coefficients. For d = 1 the limit Dy — 0
produces D, ~ 0 independently of ¢.

1.2. Effective reaction rate

The effective reaction rate k. is given by the weighted arithmetic mean [19] :

ke(¢) = (1 — ¢)k1 + dka. (7)
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FIGURE 2. Dependence of the velocity of a traveling wave solution of Eqs.(8-9) on the ex-
citability parameter b. The width of the wave is employed to determine the boundary among
bistable, excitable and nonexcitable media.

One uses the fact that reaction terms depend on the local concentrations, are uncorrelated and represent
the reaction rate in a local mean field approximation, see [18,19]. Below, we assume constant reaction rate
k = k1 = ko. The study can be extended to the case of heterogeneous reaction rate using Eq.(7).

2. MODEL

2.1. Reaction-diffusion equations

We consider a generic activator-inhibitor model of active media :

ou
5 = k(u(l—u)(u—a)—v)+V-(DVu); (8)
Ov
% = e(bu —v); (9)

where u and v represents some activator, respectively, inhibitor. The parameter D is the diffusion coefficient,
and k is the reaction rate of the activator (typically we fix the length and time scales keeping D = 1 and k = 1).
The parameter € = 0.02 denotes the ratio of the characteristic time scales of activator and inhibitor, which has
to be small € < 1 to obtain pulses in the excitable regime. Finally, a and b are parameters of the kinetics. We
keep the parameter a = 0.1 and we vary the value of b to obtain different dynamics.

Equations (8-9) are integrated using the explicit Euler method for the temporal evolution and finite differences
for the spatial discretization. These equations admit different types of traveling wave solutions, compare Fig. 1.
The first example corresponds to a traveling front in a bistable medium. The front produces the transition
from the metastable to the stable uniform solution, see Fig. 1(a). The second example shows a traveling pulse
in an excitable medium which corresponds to a nonlinear excitation that after a characteristic refractory time
recovers to the rest state, see Fig. 1(b). The velocity and the spatial profile of the traveling waves are uniquely
defined by the parameters of the system, see Fig. 2.

A bistable and an excitable regime are observed for small respectively large values of b. For values of b above
a certain value the system becomes subexcitable and there is no pulse propagation, see Fig. 1(c). Wave velocity
is calculated from numerical simulations and plotted in Fig. 2. Decreasing the value of the parameter b the
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FIGURE 3. Spatio-temporal plots of the traveling wave solution of Eqs.(8-9) under excitable
conditions (b = 0.25) and the profile of the activator concentration during a intermediate state.
Three realizations are shown corresponding to different values of the parameter : £ = 0.2 and
$»=02(a),{=1and ¢ =04, (b) and £ =4 and ¢ = 0.4 (c). Simulations are done in a 1D
system L = 160 during time T = 600. Discretization values are : At = 0.002 and Az = 0.2.

width of the pulse increases, see Fig. 1(b). For b < b, the system becomes bistable, see Fig. 2, and the front
solution is stable, see Fig. 1(a).

In the limits b — 0 or ¢ — o0, equation Eqgs.(9) is irrelevant and the model reduces to a particular version of
the Schlogl model [23] given by Eq.(8) with v = 0. Then, the velocity of the front reads

Dk
V, = \/7(1—2@, (10)

which depends on the square root of the diffusion coefficient and reaction rate. From a simple dimensional
analysis we keep this dependence for b > 0 (V « v Dk). Using D = D, and Eq.(6) the wave velocity for b > 0
reads :

Di1Dsk
V“\/D1¢+D2<1—¢>’ )
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FIGURE 4. Dependence of the velocity of a traveling wave solution of Egs.(8-9) on the fraction ¢
of phase 2, for different values of the diffusion coefficient in phase 2 (D; = 1). Points correspond
to the average of ten realizations and lines are the predictions of the effective medium theory
Eq.(11). Simulations are done in a 1D system L = 320 during the time necessary to cross the
whole system. The characteristic size of the domains are ¢ = 0.2. Discretization values are :
At =0.002 and Az = 0.2.

where the proportionality constant is obtained from a numerical simulation of the case ¢ = 0. The characteristic
pattern scale corresponds to the front width, which can be estimated from the parameter values by

2D,
A=/ (12)

which, for the values of the parameters employed here, corresponds to A = 5.5. We consider the propagation of
waves in excitable media (b = 0.25), we vary the fraction ¢ and keep the model parameters constant.

2.2. Random heterogeneities

The continuous medium described by Egs. (8-9) is replaced by a discrete grid where each site is connected
by coupling to the nearest neighbors. We employ the parameter D(7) to introduce the heterogeneities in the
numerical simulations [18,19]. Heterogeneous diffusion is introduced by spatially random binary distribution
(D1 and Ds) of the value D between each couple of nodes. We associate the phase 1, corresponding to Dy = 1,
to the unperturbed phase and the phase 2 to the abnormal phase forming the heterogeneities. This allows to
define the fraction of heterogeneities ¢ employed in the numerical simulations.

The flux (f = —DVec in the continuum description) between two nodes of the grid can be calculated in the
discrete description from J;; = —D;;(c; — ¢;)/Ax, where D;; corresponds to the diffusion between the nodes ¢
and j. The value of the diffusion coefficient D;; can take only two different values D; and Dy. We randomly
choose the values of D;; as in [20]. However, we keep the value of D;; constant along a distance ¢ for the
introduction of a characteristic size of the heterogeneities.

3. RESULTS

We study the dynamics of traveling waves in randomly inhomogeneous excitable media. We vary the fraction
and size of the heterogeneites, i.e. fraction of phase 2. The heterogeneities are introduced in the diffusion
coefficient. Typical examples of the dynamics observed in the simulations are shown in the spatio-temporal
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FIGURE 5. Dependence of the velocity of a traveling wave solution of Eqs.(8-9) on the fraction
¢ of phase 2 for different sizes of the domains : £ = 0.6 (a) £ = 2 (b) and ¢ = 10 (c¢). Points
correspond to the average of ten realizations, solid lines are the predictions of the effective
medium theory Eq.(11) and dashed line the prediction for large domains Eq.(13). Simulations
values and conditions as in Fig.4.

plots on Fig.3. Waves propagate almost homogeneously if the size of the heterogeneities is small, see Fig.3(a),
and they propagate less homogeneously if the size is large, see Fig.3(c). For comparison, the relative thickness
of the heterogeneities is shown.

To study the dependence of the velocity of the waves on the fraction of the heterogeneities we consider two
cases depending on the comparison between the size of the heterogeneities (¢) and the characteristic pattern
size (A) : small (¢ < \) and large (¢ > \) heterogeneities.

3.1. Small heterogeneities

In Fig.4, numerical results in 1D are compared with the predictions of the effective medium theory based on
Eq. (11). The heterogeneities are introduced in the discretization level. The theory reproduces the numerical
results for large values of the diffusion coefficient in the second phase, i.e. similar values of the diffusion coef-
ficients in both phases. However, decreasing the diffusion coefficient we reduce the length of the front and the
theory fails when the diffusion coefficients are very different (Do/D; < 0.05) and the characteristic length of
the front is similar to the size of the heterogeneities. However simulations shown in Fig.4 are in good agreement
with the theory.

Numerical simulations in two [18] and three [19] dimensions show the same agreement with the predictions
of the effective medium theory for similar reaction-diffusion systems.

3.2. Large heterogeneities

There is a window of sizes of the heterogeneities (0 < ¢ < X) where the numerical simulations confirm
the predictions of the effective medium theory, see Fig.5(a-b). However, for large heterogeneities the effective
medium theory fails to describe the wave dynamics. For £ > A the wave propagates through large domains
and the average velocity is derived assuming stationary dynamics in each domain. The time required to cross
a distance L is t = LV " and corresponds to the sum of the times employed in phase 1 (t; = (1 — ¢)LV;™})
and in phase 2 (ty = rj)LV{l). Thus, the average velocity corresponds to the weighted harmonic mean of the
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velocities V=1 = Vy 1p + V(1 — ¢), see [13]. Finally, assuming Vi o< /D1k and V o< \/Dok, one obtains :

Vs VD1DyVk
VDi¢+ Dy (1 - )’
with a different dependence on ¢, compared with Eq.(11). In Fig.5(c) this curve is plotted for large domains

and the averaged velocity is well reproduced by this expression. Note also the increase of the dispersion on the
mean value of the velocity, error bars in Fig.5, with the size of the heterogeneities.

(13)

4. CONCLUSIONS

We have compared the velocity of traveling waves obtained by numerical simulations in heterogeneous ex-
citable media with the predictions of an effective medium theory. The effective medium theory for reaction-
diffusion systems predicts the value of the effective diffusion coefficient, which can be calculated from Eq.
(5). This quantity permits the calculation of an effective velocity of the traveling waves which can be directly
compared with the traveling wave obtained by numerical simulations in heterogeneous excitable media. The
comparison of the effective medium theory with simulations shows a good agreement for large diffusion co-
efficients D1 and Dy and small size of the domain of phases 1 and 2. To calculate the velocity we need the
effective diffusion coefficient obtained from the weighted harmonic mean of the diffusion coefficients. For large
domains the numerical results differ from the effective medium theory predictions and the average velocity of
the traveling wave approaches the weighted harmonic mean of the velocities in both phases.
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