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ABSTRACT
Making appropriate environmental policy decisions requires

considering various sources of uncertainty. An air pollution ex-
ample is formulated as a design optimization problem with prob-
abilistic constraints, also referred to as reliability-based design
optimization (RBDO). Environmental applications with a large
number of constraints and significant model complexity present
special challenges. In this paper an efficient active set strategy
is integrated with a reliability contour surface approach to solve
probabilistic problems with non-normal variable probability dis-
tributions. Discrete random parameters, which result in Bayesian
probability, are also present and they are incorporated using delta
function approximations. Joint constraint reliability that con-
siders satisfying all regulatory constraints is also discussed. A
demonstration example of setting the optimal vehicle speed limit
while maintaining high reliability for CO and NOx standards of
a residential area near two highway systems is included.

∗Corresponding author, Phone/Fax: (734) 647-8401/8403
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1 Introduction
Design for the environment aims to achieve design perfor-

mance with minimal environmental, health, and safety impact
over the product life cycle. Such design decisions are subject to
large sources of uncertainty. Uncertainty in environmental ve-
hicle design arises from life cycle emissions variables and from
ambient parameters that dictate pollutant concentrations in the
environment and are outside the influence of the designer. In
Fig.1 we illustrate a specific situation of an airshed within which
a population is subject to vehicle pollutants generated by two
nearby roads. We assume that the airshed is subject to fre-
quent violations of the National Ambient Air Quality Standards
(NAAQS) for both Carbon Monoxide (CO) and Nitrogen Oxides
(NOx) and that these two roads are the exclusive sources of the
emissions. We further assume that we are interested in regulat-
ing CO and NOx from these roads such that the NAAQS con-
centrations for these pollutants are met with a known reliability
(e.g., 90%). It is evident that the actual pollution concentrations
in the airshed depend on numerous factors, such as the combus-
tion and emissions control systems of the vehicles on the road,
driver responses to posted speed limits, traffic density, location of
roads and receptors, wind speed and direction, and atmospheric
mixing conditions that depend on temperature and season. In
Copyright c© 2006 by ASME



this system, only the vehicle design, combustion conditions, and
emissions control systems of individual vehicles are under the
direct influence of product designers.

The policymaker, whose role is to simultaneously promote
human health and economic development, must consider how
the uncertainty arising from vehicle emissions comes together
with the uncertainty from the ambient environment to impact in-
dividuals living in the airshed. The policymaker has numerous
regulatory options to bring the airshed into compliance with the
NAAQS, including fuel economy standards and incentives [1,2],
pollutant emissions standards [3], progressive taxation on pollut-
ing vehicles [4], reducing traffic density using tolls [5, 6], and
modifying vehicle speed limits [7]. Regardless of the policy
mechanism, the goal is to achieve stricter environmental targets
with a given reliability while minimizing impact on the economy,
consumer choice, safety, and transportation time.

The policy design problem described above can be consid-
ered within the class of Reliability-Based Design Optimization
(RBDO) problems described in the literature [8, 9], even though
this problem has a number of features which distinguish it from
problems previously investigated. Specifically, RBDO research
to date has primarily focused on engineering design variables
that are continuous, time-invariant, and with symmetric distribu-
tions. Extensions to problems with ecosystem variables requires
consideration of random parameters that are non-gaussian [10],
skewed [11], time and season dependent [12], and sometimes
discrete [13]. This paper considers these extensions in the con-
text of Fig.1. It also considers an issue that has received little at-
tention in the literature: namely the joint reliability of constraint
satisfaction. This issue is critical in environmental policymak-
ing as the goal is not to independently establish a 90% reliabil-
ity of complying with the CO standard and a 90% reliability for
complying with the NOx standard, but rather to establish a 90%
probability of not violating either standard. In other words, the
number describes the probability that any constraint is violated.
This issue increases in importance as the number of receptors
and pollutants to be regulated increases, to the extent that this
increases the likelihood of a higher number of active constraints
at the optimum.

In contrast to RBDO approaches, previous research consid-
ering uncertainty in the impact of engineering design decisions
on environmental quality has focused on the use of simulation
techniques and/or sensitivity analysis (e.g., see [14–16]). These
techniques typically utilize models of remote sensing data from
environmental parameter observations created by either Taylor
series expansions or sampling techniques such as Monte Carlo
Simulation (e.g., [17–22]). However, these models are not ap-
plicable to analytical formulations, such as RBDO, that would
hold several advantages for the problem posed in Fig.1. For in-
stance, one can consider the airshed problem as a basic building
block that could be extended to analyze an entire city. As ad-
ditional roads, road segments [23], and receptors are applied to
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Figure 1. Optimal speed limit considering the compliance of the receptor
air quality under wind, traffic, ambient conditions uncertainties

the basic formulation, the use of sampling techniques to eval-
uate probabilistic constraints would require too many computa-
tions for practical application. Even if the computations could
be completed in a reasonable amount of time, finding a means to
integrate the sampling techniques into an optimization algorithm
would pose significant challenge and greatly increase computa-
tion. A simulation-based approach would also be less amenable
to post-optimality analysis of the solution produced.

Here we propose to investigate environmental quality prob-
lems from a policy perspective as RBDO formulations, by ex-
tending the method developed in [24] and [25]. With respect
to modeling uncertain environmental parameters using analyti-
cal probability distributions, a significant amount of research has
been performed. For instance, Dabberdt et al. [26] used proba-
bilistic uncertainty to access the impact levels of a 3-hour H2SO4
release accident on a neighborhood. Zhang et al. [11] calcu-
lated the skewness and kurtosis of on-road CO and HC emis-
sions and concluded that these emissions can be modelled well
as Γ-distributions. Despite these efforts, very little effort has
been made so far to utilize these models within a policy design
optimization framework. The closest research is that of Liu et
al. [27], which used a linear chance-constrained programming
method to study the impact of regional air quality under un-
certainty. Although this method considers both fuzzy and ran-
dom variables/parameters in an optimization framework, linear
chance-constrained formulation has only limited application to
environmental problems, which tend to be highly nonlinear.

Eq.(1) is a generalized single-objective RBDO formulation
that can be applied to the airshed problem with random design
variables X, random parameters P, deterministic design variables
x and deterministic parameters p. The objective f is a function
of deterministic quantities, namely the mean values of all random
Copyright c© 2006 by ASME



quantities in the formulation and K is the constraint set.

min
µµµX,x

f (µµµX,µµµP,x,p)

Pr[g j(X,P,x,p) > 0]≤ Pf, j ∀ j ∈K (1)

Constraints with random variables are formulated so that the
probability of constraint violation is less than or equal to an ac-
ceptable failure limit Pf, j. Deterministic constraints (i.e., con-
straints that are not functions of any random quantities) are con-
sidered in the probabilistic form as a special case with the failure
probabilities Pf, j being zero. Equality constraints are not explic-
itly included in this formulation.

Applying existing RBDO solution methods to Eq.(1) is not
possible due to the existence of discrete random parameters (e.g.,
atmospheric mixing conditions). In addition, existing solution
methods for handling non-normal variables would slow the so-
lution process, such that adding additional constraints (as re-
quired to model large urban areas) would not be practical (e.g.,
see [28–30]). A further development required is the consider-
ation of joint constraint violation probabilities. At the solution
point to Eq.(1), the probability of violating any given constraint
is determined by Pf, j. Alternatively, a joint constraint reliabil-
ity formulation is provided in Eq.(2).This type of constraints are
often referred to system reliability in the literature. Mathemat-
ically system reliability and joint reliability are the same, how-
ever, in practice system reliability related to the overall reliability
of mixed parallel and series systems. Joint reliability on the other
hand is a statistical term which used to represent general concept
as in Eq.(2)

min
µµµX,x

f (µµµX,µµµP,x,p)

Pr

[S
j
g j(X,P,x,p) > 0

]
≤ Pf ∀ j ∈K (2)

This paper solves the problem of Eq.(2) in a computation-
ally efficient manner as would be needed to scale the problem
to large urban systems. Section 2 discusses methods for han-
dling non-normal random variables/parameters, discrete random
probabilities, and joint constraint reliability within the active set
strategy for design optimization detailed in [25]. The application
of these methods to the problem at hand is described in Section
3 with results and discussion provided in Section 4.

2 Methodology
2.1 Optimization Algorithm

A sequential linear programming (SLP) algorithm with ac-
tive set strategy is used as developed in [24, 25]. In this algo-
rithm, constraint activities at each design iteration are identified.
Only the probabilities of the set of active and potentially active
constraints (the working set) is calculated with high accuracy.
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Figure 2. Algorithm Concept

Approximations of failure probability with lower accuracy (and
hence computational cost) are satisfactory for constraints that are
not in the working set. A flowchart for the method is given in
Figure 2.

Feasibility of design µµµk
X considers all m constraints. Once

all constraint activities are identified, the upper bound of the joint
constraint reliability is calculated. This upper bound is used as
the feasibility of the current design point and the information is
sent back to the optimizer where the working set is updated. The
optimizer generates a new design point and working set, until
convergence.

2.2 Random and Discrete Parameter Uncertainty
During optimization, values of design variables change with

each iteration while parameters remain fixed. Eq.(3) shows a
constraint g of random design variables X and random design
parameters P.

Pr[g(X,P) > 0] =
Z
· · ·

Z
g(X,P)>0

fXP(x,p)dxdp (3)

Since at a given design point the nominal values of X (i.e.,
µµµX) are fixed, one can treat a random design parameter as a ran-
Copyright c© 2006 by ASME
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Figure 3. Probability Mass Function of X2 and Its Approximations

dom design variable with a fixed nominal value. When treating
parameters as design variables a new design vector X′ = [X,P]
is created. Given the ability to treat parameters as “unchanging
variables” in an optimization routine, random parameters P will
be included within X in the rest of this paper for notational sim-
plicity.

Consider the example of g(X) = X1 +X2. Let X1 have a stan-
dard normal distribution and let X2 have the following discrete
distribution:

X2 =


1, 10%
2.5, 40%
3, 50%

(4)

The probability of constraint violation is calculated using total
reliability theory as:

Pr[g(X) > 0] = Pr[g(X) > 0|x2 = 1]×10%
+ Pr[g(X) > 0|x2 = 2.5]×40% (5)
+ Pr[g(X) > 0|x2 = 3]×50%

To represent X2 in a continuous optimization algorithm, a
scaled Gaussian distribution, which works as a delta function ap-
proximation, is used to approximate each function value in the
probability mass function (PMF) plot.

The PMF of X2 can then be approximated as a continuous
PDF via Eq.(6) where φ is the normal PDF.

fX2 ≈ φ(1,σ)×10%+φ(2.5,σ)×40%+φ(3,σ)×50% (6)

The accuracy of this approximation depends on the value of σ.
The smaller σ is, the better approximation it becomes.

2.3 Non-Gaussian Uncertainty
The calculation of probabilistic constraints in Eq.(1) repre-

sents the majority of function evaluations during optimization.
Several methods have been proposed to improve the efficiency
and accuracy of calculating constraint probabilities [31]. Impor-
4

tantly, each of these methods has essentially focused on Gaussian
distributed variables. The presence of non-Gaussian distributions
makes calculating constraint Eq.(3) more challenging. Methods
for dealing with non-gaussian distributed random quantities have
been discussed in the literature [28, 30, 32], but they are compu-
tationally expensive and not well-suited for large problems, such
as the present air quality policy-setting problem.

Significant advantages in computing probabilities follow
from the rotational symmetry of a Gaussian distribution. Due
to this symmetry, no matter which direction a linear constraint
is with respect to the current design point, the shortest distance
from the design point to the constraint can be used to calculate
the constraint probabilities. The first order reliability method
(FORM) and the second order reliability method (SORM) use
this characteristic of a normal distribution by first converting a
normal distribution U ∼N(µU ,σ2

U ) into a standard normal distri-
bution Y ∼ N(0,12) via

Y =
U −µU

σU
. (7)

After this conversion, FORM states that a constraint proba-
bility can be approximated as Φ(−β) where β is the shortest dis-
tance from the origin to the constraint function in Y -space. The
point that lies on the constraint boundary (also called the limit
state function) having the shortest distance to the origin is called
the most probable point (MPP), denoted as xM

j . Each constraint
has its own MPP and therefore the number of MPPs is the same
as the number of limit state functions (constraints), m. SORM
provides a more accurate estimation of constraint probabilities
by considering the principal curvatures κκκ of a constraint.

Pr[g j(X) > 0]≈Φ(−β j)∏
i

(1+β jκi)−1/2 (8)

For independent non-normal random variables, a transfor-
mation T is applied to X such that

Yi = T (Xi). (9)

Several such transformations are available in the literature [30],
the simplest form given by Eq.(10) requires that the cumulative
distribution function (CDF) of the ith random variable Xi at xi
should be the same as the CDF of a standard normal variable at
yi.

Φ(yi) = FXi(xi)→ yi = Φ
−1(FXi(xi)) (10)

Due to the nonlinearity of the transformation, a linear constraint
in the X-space will become nonlinear in the Y -space. Applying
a first order Taylor series expansion to Eq.(10) around a point xe

i ,
one can get the following result.

yi ≈ Φ
−1[FXi(x

e
i )]+

∂

∂x
{Φ

−1[FXi(xi)]}(xi− xe
i )

=
xi−{xe

i −Φ−1[FXi(x
e
i )]φ{Φ−1[FXi(x

e
i )]}/ fXi(x

e
i )}

φ{Φ−1[FXi(x
e
i )]}/ fXi(x

e
i )

(11)

If the following assignments are made as the equivalent mean
Copyright c© 2006 by ASME



and equivalent standard deviation of Xi, respectively,

µµµe
X = xe

i −Φ
−1[FXi(x

e
i )]φ{Φ

−1[FXi(x
e
i )]}/ fXi(x

e
i ) (12)

σσσ
e
X = φ{Φ

−1[FXi(x
e
i )]}/ fXi(x

e
i )

then the standard FORM and SORM techniques can be extended
to non-normal variables [30, 32].

The typical solution approach for non-normal random vari-
ables then involves finding MPPs and equivalent normal parame-
ters. This process may have convergence difficulties and is com-
putationally intensive since calculating the location of the MPP
for a nonlinear function is by itself an optimization process. The
conversion of constraints from X-space to Y -space via the non-
linear relationship of Eq.(10) is also computationally intensive.

To reduce the number of required calculations in Eq.(3), we
start by applying an active set strategy which reduces the number
of constraints that must be considered during any iteration of the
optimization process. Following the approach detailed in [25], a
working set of constraints G k is established at each design itera-
tion k which includes constraints that are active or likely active.
For constraints inside the working set, we propose here a means
to improve the efficiency of calculating Eq.(3) relative to the ap-
proach represented by Eqs.(11) and (12).

Before describing this alternative solution approach for non-
normal distributions, let us define a reliability contour surface
Ψ = 0. For standard normal random variables Y, we define a
reliability contour surface as a contour satisfying

Ψ(µµµY,y) = 0 ∀µµµY : {Pr[l(µµµY) > 0] = Pf} (13)

for any linear constraint l. FORM states that the shortest distance
from the origin to limit states l must be β = Φ−1(Pf). Hence a
contour with radius β around the origin is formed. When design
variables are not normal, this common radius contour only exists
in the standard Y -space. By mapping this common radius contour
from Y -space to X-space, a reliability contour surface in the X-
space is created.

We propose to use this X-space reliability contour surface
Ψ(µµµX,x) = 0 to identify probabilistic constraint feasibility. A
constraint g j is active if it has a common tangent with the relia-
bility contour surface; it is inactive if µµµX is feasible and does not
intersect with Ψ = 0; it is infeasible if µµµX is infeasible or µµµX is
feasible but it has more than one intersection with Ψ = 0. In the
following, we will first describe how the Ψ = 0 contour can be
found directly in the X-space. Then we will describe how to use
this reliability contour surface within an active set strategy.

In the Y -space, the reliability contour surface is a β radius
contour around the origin as Eq.(14).

n

∑
i=1

y2
i = β

2. (14)

Eq.(10) shows the relationship between Yi and a non-normal vari-
able Xi. Combining Eq.(10) and (14) we obtain the reliability
5

contour surface in the X-space, Eq.(15).
n

∑
i=1

(
Φ
−1(FXi(xi))

)2
= β

2 (15)

Obtaining Eq.(15) only requires that all CDFs are analytical,
which was also necessary using the method of finding equivalent
normal distributions. However, the reliability contour method
has an advantage since the calculation need be performed only
one time, as a pre-processing step, rather than at each design it-
eration.

As an example consider a constraint Pr[g(X1,X2) > 0] ≤ Pf
where both design variables have Weibull distributions, their
PDF being

fX1(x) = fX2(x) = αη
αxα−1e−( x

η
)α

where η = 1, α = 1.5. This two dimensional Weibull reliability
contour can be written as Eq.(16).

Ψ :
[

Φ
−1
(

e−(
x1−µX1

η1
)α1
)]2

+
[

Φ
−1
(

e−(
x2−µX2

η2
)α2
)]2

−
[
−Φ

−1(Pf)
]2

(16)

Figure 4 shows this Weibull reliability contour with Pf = 1%. The
accuracy of using the reliability contour surface approach is the
same as using FORM. At every design point, the limit state func-
tion is transferred from the X-space to the U-space. In FORM,
if the U-space limit state function, gU

j , is tangent to the β-sphere,
the tangent point is the MPP and the probability is equivalent to
the probability of its linearization at the MPP point. The trans-
formation in Eq.(10) ensures that when the MPP in U-space is
mapped back to the X-space it will still be the tangent point be-
tween the reliability contour surface and the X-space limit state,
g j. Let the linearization of the limit state at the MPP in X-space
be ĝ j and in the U-space be ĝU

j . The probability of violating
the constraint in X-space is approximated as the probability of
violating ĝ j which translates to ĝU

j in U-space. Hence, using
the reliability contour surface method, we can obtain the same
accuracy as FORM. In the optimization routine, the number of
required computations is reduced significantly because the reli-
ability contour method is integrated with an active set strategy,
such that only constraints in the working set are considered. The
point that lies on the reliability contour with the minimal distance
to a constraint is called an MPP estimate. The MPP estimate will
be the actual MPP for an active constraint, and will be an es-
timate of the actual MPP for an inactive constraint. Although
the MPP estimate and the actual MPP can be significantly dif-
ferent for an inactive constraint, the constraint value at the MPP
estimate will always provide correct feasibility information (i.e.,
“yes” or “no”) for the probabilistic constraint it considers.

The relationship between actual MPP values and MPP esti-
mates is illustrated in Figure 5 with two constraints g1 and g2.
Constraint g1 is active at the current design point µµµX while g2 is
inactive. Actual MPPs, denoted as xMPP j , are shown as triangles;
Copyright c© 2006 by ASME



X1

X2

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

Figure 4. 99% Reliability Contour for Weibull Distributions

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x1

x2

g1 = 0

g2 = 0

µX

Ψ = 0

xt

Ψ̂ = 0

xMPP1

xMPP2

x̂MPP2

x̂MPP1

ρ

Actual MPP

MPP Estimate

Maximum Radius Point

Reliability Contour

Safe Zone

Ψ

Ψ̂

Figure 5. Relationships between MPP values and MPP estimates

MPP estimates, x̂MPP j are shown as circles. The actual MPPs
are on the constraint boundary and the MPP estimates are on the
reliability contour. Since g1 is active, xMPP1 = x̂MPP1 .

The location of the MPP estimate on the reliability contour
is found by matching the normal vectors (Eq.(17a)) and values
(Eq.(17b)) of the reliability contour and constraint boundary.

Ψ(µµµX,xMPP j) = g j(xMPP j) (17a)

∂

∂x
Ψ(µµµX,x)|xMPP j

=
∂

∂x
g j(x)]

∣∣
xMPP j

(17b)

To reduce the computational burden in solving Eq.(17a) and
(17b), we propose the following. For inactive constraints, the ex-
act locations of MPP estimates are not critical as long as they pro-
vide the correct feasibility information. Therefore a “safe zone”
of feasibility is created that is computationally less intensive than
finding the MPP estimate directly on the reliability contour. This
safe zone is created with a common radius emanating from the
design point that is constant in all directions and equal to the
6

maximum distance from the design point to the reliability con-
tour (radius = ρ in Fig.5). If the constraint is found to intersect
the safe zone reliability contour, then the constraint is included
in the active set and the MPP estimate for that constraint is calcu-
lated on the actual reliability contour to determine feasibility of
the constraint. The radius of safe zone reliability contour is ob-
tained by solving Eq.(18), with the point xt serving as the maxi-
mal radius point.

max
x

ρ = ‖x−µµµk
X‖ (18)

s.t. Ψ(µµµk
X,x) = 0

The safe zone reliability contour is centered at the current design
point and shown in Figure 5.

For highly skewed distributions, the actual reliability con-
tour surface will be very asymmetric and therefore using a con-
stant radius safe zone will be conservative. This conservative
estimate may result in additional constraints in the active set,
but the net computational burden will still be significantly lower
given that considerable gains are made by avoiding unnecessary
MPP calculations on the actual reliability surface. Overall, the
method has significant speed advantages with equivalent accu-
racy to existing methods.

The solution approach of using a reliability contour surface
and its safe zone reliability contour can be summarized as fol-
lows:

Step.1 At the current point µµµk
X, find the gradient of each constraint;

Step.2 Form the reliability contour given all random quantities;
Step.3 Find the safe zone reliability contour radius using Eq.(18);
Step.4 For each constraint, use the constraint gradient to find the

MPP estimate on the safe zone reliability contour;
Step.5 For inactive constraints, the safe zone reliability contour is

used for calculating MPP estimates;
Step.6 For active constraints, the actual reliability contour surface

is used to locate the MPP estimates;
Step.7 Constraint feasibilities are determined via comparison to

their values at the MPP estimates.

Consider constraint g j. The first two steps require calcu-
lating ∇g j and Ψ(µµµk

X,x) = 0 at µµµk
X. In Step 3 ρ is calculated via

Eq.(18) and the safe zone reliability contour is formed as Eq.(19).

Ψ̂ρ(µµµk
X,x) =

n

∑
i=1

(xi−µXi)
2−ρ

2 = 0 (19)

The MPP estimate xMPP j is calculated as Eq.(20) in Step 4.

x̂MPP j = µµµX +ρ
∇g j

‖∇g j‖
(20)

In Step 5 if g j(x̂MPP j) < 0, g j is inactive. Otherwise it is active
and the actual xMPP j needs to be calculated in Step 6 via Eq.(17a-
17b). If g j(xMPP j)≤ 0, the current design point µµµk

X is feasible to
Eq.(1). Otherwise it is infeasible and the feasibility results are
sent back to the optimizer.
Copyright c© 2006 by ASME



2.4 Joint Constraint Reliability
Constraints in standard RBDO formulations are written such

that the probability of violating each constraint does not exceed
an acceptable limit.

Pr[gi(X) > 0∩g j(X) > 0] = /0 ∀i, j ∈K (21)

In an hypothetical RBDO formulation with 100 independent con-
straints (whose constraint sets are mutually exclusive) and a re-
liability target of 99% in Eq.(21), the expected number of con-
straint violations out of the 100 constraints is actually one. Even
though so many constraints are unlikely to be independent, the
example demonstrates the need for considering joint reliability.

In the airshed problem it is most relevant to consider the
probability of ANY constraint being violated, whether that con-
straint corresponds to a receptor point being considered in Fig.1
or whether multiple pollutants are considered such as CO and
NOx. If we consider the probability that any constraint is vio-
lated, then we must consider a union of events. Let Fj be the
infeasible (failure) domain of constraint g j. The problem is then
written as Eq.(22):

min
µµµX

f (µµµX)

s.t. Pr

[ S
j∈K

Fj

]
≤ Pf (22)

Calculating the constraint feasibility in Eq.(22) is challenging.
In the simplest case with only linear constraints and normally
distributed random variables, the probability of union of failure
events results in a multivariate normal integral as in Eq.(23) [32].

Φm(h,R) =
1

(2π)m/2‖R‖1/2

Z hm

−∞

· · ·
Z h1

−∞

e−
1
2 xT R−1xdx1 · · ·dxm

(23)
Calculating the exact solutions of Eq.(23) is impractical in most
cases. Ditlevsen proposed using an upper and lower bound of
Eq.(23) to approximate its true value [33]. He calculates the gen-
eral upper and lower bounds as

Pr

[[
j

Fj

]
≤

m

∑
j=1

Pr[Fj]−
m−1

∑
j=2

max
k< j

(Pr [Fj ∩Fk]) (24)

Pr

[[
j

Fj

]
≥ Pr[F1]+

m

∑
j=2

max

(
Pr[Fj]−

j−1

∑
k=1

Pr [Fj ∩Fk]

)
(25)

The union of multiple failure domains becomes increasingly dif-
ficult to calculate with an increasing number of constraints. One
advantage of using the upper and lower bounds is that they are
calculated from unions of any two failure domains. Once the
relationship between two failure surfaces is known, Eq.(24) and
(25) are much easier to calculate.

We use a conservative approach by stating that as long as
the upper bound in Eq.(24) is less than or equal to an acceptable
failure probability Pf, then the overall system has feasible relia-
bility (i.e., it is probabilistically feasible for the joint constraint
7

case). To incorporate this approach within the active set strat-
egy, the upper bound of the joint constraint reliability Eq.(24) is
calculated only for constraints in the working set G k. For con-
straints that do not have the potential to be violated, it is assumed
that their contribution to joint reliability is negligible. The over-
all process of considering joint constraint reliability in the active
set strategy is as follows:

1. Obtain the working set G k at the kth iteration from the opti-
mizer;

2. Calculate individual constraint violations for j /∈ G k;
3. Calculate the upper bound of joint constraint reliability for

j ∈ G k;
4. Return all constraint results to the optimizer.

2.5 Example with non-normal random variables and
joint constraint reliability

The importance of considering the joint constraint reliability
depends on how much the failure domains of active constraints
overlap with each other. For problems with a large portion of
overlapping failure domains, considering joint reliability might
not make a significant difference. However, for problems without
overlapping failure domains of active constraints, joint reliability
can change the results quite significantly.

Figure 6 shows a problem with two variables and two linear
constraints, Eq.(26), where the random variables X1 and X2 have
both Weibull distributions with shape and scale parameters being
1.

min
µX1 ,µX2

f (µµµX) = µX1 +µX2

s.t. Pr[X1 > 6]≤ 10% (26)
Pr[X2 > 6]≤ 10%

If the probability of failure for each constraint is set at
10%, as in Eq.(26), the optimum is computed to be Eq.(26) is
[4.697,4.697]. In this case, the probability of violating both con-
straints is negligible, i.e., Pr[g1 > 0∩g2 > 0] = 0. The probability
of violating either constraint becomes

Pr[g1 > 0∪g2 > 0] = Pr[g1 > 0]+Pr[g2 > 0]−Pr[g1 > 0∩g2 > 0]
(27)

and it is actually 20%, making the joint constraint reliability at
this design point only 80%. Considering the joint constraint reli-
ability, the problem is reformulated as Eq.(28).

min
µX1 ,µX2

f (µµµX) = µX1 +µX2

s.t. Pr[X1 > 6∪X2 > 6]≤ 10% (28)

The optimum is now [4.004,4.004] with a joint reliability
being 90%. The failure probability of each constraint in this case
is 5%. Figure 6 shows the reliability contours for the two prob-
lems. The probability of being in the joint failure domain of both
Copyright c© 2006 by ASME



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

!18

!16

!16

!14

!14

!14

!12

!12

!12

!10

!10

!10

!10
!8

!8

!8

!8

!6

!6

!6

!4

!4

!2

µX2

µX1

optimum without 
joint reliability

optimum 
considering 

joint reliability

Figure 6. Example of non-normal random variables considering joint
constraint reliability

constraints is small. Therefore, to achieve a high joint reliabil-
ity the reliability contour becomes larger and the design becomes
more conservative.

3 Air Pollution Case Study Model Development
In this case study, we are interested in reducing tailpipe

emissions from vehicles on the highways to bring the area into
compliance with the NAAQS by reducing speed limits. Vehi-
cle operational speed has significant impact on tailpipe emis-
sions [34] and fuel consumption [35]. These relationships are
highly nonlinear and subject to inter-vehicle variability as well
as operational uncertainties. Setting an appropriate speed limit is
inherently a trade-off between driver safety, time savings, vehi-
cle emissions, and fuel economy [36]. In what follows, we first
describe the objective function and constraints and then apply
the methods developed above. We validate the optimum using
Monte Carlo simulation.

3.1 Objective Function
Several studies have focused on the effects of regulatory

speed limits on safety and other economic metrics (e.g., see [37]).
Eq.(29) describes an objective that considers safety and time sav-
ings as a function of speed limit [38].

f (v) = 1000×D(v)+ c(v) (29)

where

D(v) = 2.11×10−6v4 − 5.03×10−4v3 +0.0454v2

− 1.838v+32.2189 (30)
8

Here D(v) is a measure of safety in terms of property damage (in
thousand dollars) per 100 million vehicle-miles and is defined
as the probability of being involved in a crash multiplied by the
severity of each crash at different speeds. Solomon [7, 39] found
that the probability of being involved in a crash per vehicle-mile
as a function of on-road vehicle speeds follows a U-shaped curve.
Speed values around the median speed have the lowest proba-
bility of being in a crash. Crash severity is measured by speed
differences before and after the crash [40]. Assuming the final
speed after the crash is zero, this crash severity measure is pro-
portional to the speed before the crash. Fitting the data from [7],
we obtain the safety measure given in Eq.(30) as the overall price
society is willing to pay for each accident.

The measure c(v) reflects the value of time savings associ-
ated with increased vehicle velocity. Assuming the average wage
is w (dollars per hour), c(v) is used as the cost of an hour spent
travelling without working. The overall travelling time for a trip
of length s (in kilometers) is

t = s/v (31)

where v(km/hr) is the speed of an on-road vehicle. The overall
cost (dollars) for trip s is then

c = w× t. (32)

Combining the societal costs of property damage (medical and
social welfare) and cost of time spent on travelling, the objective
function represents an economic measure of the pros and cons of
driving at a specific speed.

3.2 Constraint Functions
The constraints are that the overall emissions of carbon

monoxide (CO) and nitrogen oxides (NOx) from on-road vehicle
tailpipe emissions cannot lead to a local violation of the values
set by the National Ambient Air Quality Standards (NAAQS).
Here we will consider only the one-hour standard. The current
NAAQS states that the one-hour concentration of CO cannot ex-
ceed 40 mg/m3 and the annual average concentration of NOx
cannot exceed 100 µg per cubic meter. The NAAQS does not
state one-hour limit of NOx, and therefore in this example the
one-hour ambient air quality standard for NOx (470 µg/m3) in
California is implemented. For the building block problem of
Fig.1, we use the infinite line source dispersion model Eq.(33) as
described by [13] while recognizing that this simplistic infinite
line source can be readily replaced with more complex modelling
approaches such as found in CALINE4 [23].

g j(x) =
2

∑
i=1

2qi√
2πσziUhi

(33)

In Eq.(33) the index i represents highway systems, j represents
different pollutants, q is the emission rate, which is the product
of emission factor (EF) of the vehicles and the vehicle traffic
Copyright c© 2006 by ASME
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Figure 7. Traffic Modeling

density T in Eq.(34):

q(gram/second) = EF(gram/vehicle)×T (vehicle/second)
(34)

We assume that the vehicles on both highway systems are mid-
size gasoline-powered passenger vehicles that are identical to
each. The Advanced Vehicle Simulator (ADVISOR) [41] is used
to obtain emission factors for the vehicle at different speeds. In
the highway driving cycle cruise speed is set at the maximum
speed limit, and so a relationship between speed and emissions
factors for CO and NOx is found as in Eq.(35) and (36) with
the sum of the squares of the deviations (R2) being 0.9943 and
0.8935 respectively.

EFCO(v) =−7.01×10−9v5 +2.86×10−6v4−4.48×10−4v3

+3.39×10−2v2−1.256v+20.88 (35)

EFNOx(v) =2.00×10−10v5−5.36×10−8v4 +5.13×10−6v3

−1.80×10−4v2−4.10×10−4v+0.48 (36)

Although emission rates may differ between vehicles due to
operational variation and maintenance, these uncertainties were
not considered in this example. Highway traffic is modelled as
constant flow per second with each highway having four lanes
in each direction. The constant-flow traffic is shown Fig.7 and
modeled as Eq.(37).

T (v) = v(meter/second)÷ (3+15)(meter/vehicle) (37)

3.3 Quantification of Uncertainties
Uncertainty in Eq.(33) comes from four sources : wind

speed and direction, dispersion coefficient and driver speed re-
sponses to posted speed limits.
Wind Speed and Direction

The probability density functions of wind speed and wind
directions are modelled based on McWilliams et al. [10,42]. Un-
like the method of Ramirez which uses a two-parameter Weibull
distribution [43], McWilliams et al. decompose wind speed into
two components: one along the prevailing wind direction and
one perpendicular to it. We assign the actual wind speed as Uh,
the prevailing wind direction as ψ, the wind speed along the pre-
vailing wind direction as Uy, and the speed perpendicular to the
prevailing wind direction as Ux. Figure 8 illustrates the relation-
ship between the wind components. McWilliams et al. [10] used
9
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Figure 8. Ambient Wind Direction

the model with the wind speed distributions Uy and Ux being nor-
mally distributed as Eq.(38).

Uy ∼ N(µ,σ), Ux ∼ N(0,σ) (38)

According to McWilliams [42], the distributions for the ob-
served wind speed Uh and wind direction θ can then be calculated
since Uh =

√
U2

x +U2
y and θ = tan(Uy/Ux). Eq.(39) is the result-

ing PDF for Uh and θ, where I0 is the modified Bessel function
of the first kind.

fUh(v) =
[

1
σ2 ve−

v2

2σ2

]
· e−

µ2

2σ2 · I0

( µ
σ2 v

)
(39)

fθ(θ) =
1

2π
e−

µ2

2σ2

[
1+

µ
σ

√
2πsin(θ) ·Φ

(
− µ

σ
sin(θ)

)
· e

1
2 (

µ
σ

sin(θ))2
]

Using the method described in [42], the data obtained from
the National Climatic Data Center (NCDC) [12] indicates that
the prevailing wind direction during the summer in Detroit,
Michigan, during rush hour (5pm to 6pm) is at 215 degrees with
µ = −0.825 and σ = 3.177 in Eq.(39). Rush hour is selected as
it is expected for the situation in Fig.1 that this is the time period
when the constraints are most likely to be violated. Figures 9a
and 9b indicate acceptable agreements between data histograms
and the PDF predictions using Eq.(39).
Dispersion Coefficient

In a Gaussian dispersion model, the dispersion coefficients
σz for both roads are a function of the distance from the site to
the line source L. The dispersion coefficient σz is typically rep-
resented by three parameters c,d, f [44].

σz = cLd + f (40)

Values of c,d, f depend on an ambient atmospheric condition
called ‘stability class’. Stability class describes the effective ver-
tical mixing of a parcel of air existing in the airshed and is com-
monly determined as shown in Table 1. Table 2 shows the values
of c,d, f for different stability classes [13]. Solar insolation from
NCDC data is quantified as cloudiness or sky cover, which is
Copyright c© 2006 by ASME
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0
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6

measured from 0/8 to 8/8 with 0/8 being clear sky and 8/8 be-
ing overcast. 0/8 to 3/8 is considered as strong insolation, 3/8 to
6/8 is considered as moderate insolation, and above 6/8 is con-
sidered considered as slight insolation. The data for the Detroit
area reveal that solar insolation in summer says is independent of
wind speed and adequately modelled as a uniform distribution.

Table 1. Atmospheric Stability Classifications [13]

Surface
Wind Speed
(m/s)

Day solar insolation Night cloudiness

Strong Moderate Slight Cloudy Clear

< 2 A A-B B E F

2−3 A-B B C E F

3−5 B B-C C D E

5−6 C C-D D D D

> 6 C D D D D

Given distributions of solar insolation and wind speed, dis-
tributions of c,d, f can be obtained from Table 1 and they are
discrete. The existence of discrete variables in the Gaussian dis-
persion model means that a probabilistic constraint will be for-
mulated as Bayesian conditional probability such that continuous
distributions are used to approximate the distributions of c,d, f
as discussed in Section 2.2. The dispersion coefficient σz is cal-
culated as shown in Eq.(41).

fσz ≈
7

∑
i=1

φ(µzi , .1
2)× pi% (41)

where µµµzzz = [15.96,25.87,32.44,42.69,51.37,100.08,124.07],
p = [18.00,4.64,27.19,13.05,21.83,10.93,4.36].

The dispersion coefficient can be modeled as continuous
10
Table 2. Values of the constants a,c,d and f in Eq.(40) [13]

L≤ 1 km L≥ 1 km

Stability a c d f c d f

A 213 440.8 1.941 9.27 459.7 2.094 -9.6

B 156 106.6 1.149 3.3 108.2 1.098 2.0

C 104 61.0 0.911 0 61.0 0.911 0

D 68 33.2 0.725 -1.7 44.5 0.516 -13.

E 50.5 22.8 0.678 -1.3 55.4 0.305 -34.

F 34 14.35 0.740 -0.35 62.6 0.180 -48.

blending functions rather than discrete. Turner’s model [45] as
shown in Table 2 is used in the context of this paper due to the
absence of such a blending function. In addition, Turner defined
Table 1 based on the cloudiness in summer or based on the angle
of the sun above the horizon. The example is focused on summer
days, therefore the need to calculate the sun angle is suppressed.
Vehicle Speed

A Federal Highway Administration report [46] indicates that
for highways with speed limit 55 MPH, an average speed of 56.9
MPH and 85th percentile speed 64.0 are observed. Based on this
study, we assume that vehicle speed is normally distributed with
mean equaling to the speed limit and a standard deviation σV = 7
MPH.

4 Results and Discussion
Solving the problem deterministically, the results show that

none of the air quality constraints are active and the optimum
is v∗ = 70.26 MPH (31.41 m/s). At this speed limit, pollution
concentration during rush hour at the receptor location of Fig.1
Copyright c© 2006 by ASME



are 0.9 mg/m3 for CO and 200 µg/m3 for NOx. Interestingly,
however, after random design variables/parameters are consid-
ered, this deterministic optimum is more than 99% reliable with
respect to the CO standard but only 80% reliable with respect to
the NOx standard. Without changing the speed limit, the NOx
standard would need to be set at 1410µg per cubic meter to sat-
isfy a 90% reliability level. The example demonstrates that when
significant variability in system parameters exists, constraint vi-
olations can occur even when constraints are not active deter-
ministically. Therefore, without incorporating uncertainty into
design optimization, the compliance of NAAQS using determin-
istic optimization is not sufficiently reliable.

Letting the desired compliance reliability be 90% without
considering joint reliability, results in an optimum speed limit
reduced to 54.56 MPH (24.34 m/s). The overall societal cost
increases from $597,910 to $792,040, an approximately 32.47%
increase. The example demonstrates that extensions of the active
set reliability contour approach to probabilistic problems can be
made to realistic policy optimizations without a large concern
regarding computational burden.

By considering joint constraint reliability at 90%, the opti-
mal speed limit is further reduced to 53.79 MPH (24.05 m/s).
Table 3 compares the results with and without considering joint
constraint reliability. The previous probabilistic optimum using
Eq.(1) has reliability to comply to current NAAQS of NOx and
CO as 89.70% and 99.23% respectively. The actual joint relia-
bility at this speed limit is 89.10%. The probabilistic optimum
considering joint constraint reliability in the optimization formu-
lation (Eq.(2)) has the desired joint reliability (90.02%).

The change of reliability contour surfaces with and without
considering joint reliability constraint is shown in Fig.10 with
results from Table 4. Figure 10 illustrates the design space with
respect to vehicle speed and wind speed. The constraint bound-
aries with different NOx regulations (470 and 1410 µg/m3) and
a single CO regulation (40 mg/m3) are plotted. From the figure,
it is seen that with the original regulation, the reliability con-
tour surface must move to 53.79MPH (24.04 m/s). The NOx
constraint (470 µg/m3) dominates the CO constraint, and there-
fore the differences with and without considering joint constraint
reliability in Table 3 is relatively small. To demonstrate more
clearly the difference a joint reliability calculation can make, we
assume that the one-hour NOx constraint was actually set at 1470
µg/m3. Results in Table 4 show that in this case, without consid-
ering joint reliability, there is a 88.2 % reliability of violating any
constraints. The enlarged reliability contour indicates the 1.9 %
joint reliability difference from Table 4. In this case, the joint re-
liability needs to be considered because points that do not violate
NOx might violate CO.

The complexity of the CDFs and PDFs of the uncertainties
makes sampling methods impractical. Typically, random sam-
ples are created by generating N random samples ξi from [0,1]
uniformly. Inverse CDFs are then used to find the corresponding
11
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Figure 10. Reliability contour surfaces before and after considering joint
constraint reliability

random sample via Eq.(42).

xi = F−1
Xi

(ξi) (42)

Obtaining the inverse of CDF is computationally intensive and a
large number of random samples need to be generated to main-
tain high accuracy. Our experience in this example shows that
the computational requirement for generating random samples
prohibit many sampling techniques from being plausible.

Overall, the method is straightforward. One issue to con-
sider is that calculating the maximum radius in Eq.(18) appears
to be dependent on the algorithm used. For a gradient-based
algorithm, a good starting point must be selected such that the
problem can converge while satisfying the equality constraint.
On the other hand, non-gradient algorithms have difficulties sat-
isfying the equality. Here we suggest that a combination of both
algorithms be used. A non-gradient based algorithm is first ap-
plied and the optimum is selected as the starting point for the
gradient based algorithm. Although it is a process requiring sig-
nificant effort, Eq.(18) needs only to be executed once for the
entire problem. This modest amount of pre-processing opens the
door to rapid calculation of design optima for large scale prob-
lems with non-normal variables/parameters and joint reliability.

In addition, to implement the proposed method for discrete
random variables, the converted continuous distributions might
have some impacts numerically in practice. The selection of the
standard deviation for each Gaussian distribution in Eq.(6) will
affect the approximation accuracy directly. Appropriate standard
deviation values need to be determined by conducting sensitiv-
ity analysis. The highly asymmetric approximated distribution
will increase the computation complexity to find the reliability
contour and safe zone.

The results of this case study depend highly on the assump-
tions made in the model, but they should motivate future stud-
Copyright c© 2006 by ASME



Table 3. Probabilistic Results with and without Considering Joint Reliability

consider individual reliability consider joint reliability

optimal speed limit 54.56 MPH (24.34 m/s) 53.79 MPH (24.05 m/s)

NOx compliance reliability† 89.7% 90.0%

CO compliance reliability† 99.2% 99.5%

Joint constraint reliability† 89.1% 90.0%

†: using Monte Carlo Simulation with 1 million samples

Table 4. Probabilistic results with and without considering joint reliability for the new NOx standard (1410 µg/m3)

consider individual reliability consider joint reliability

optimal speed limit 70.26 MPH (31.41 m/s) 69.53 MPH (31.09 m/s)

NOx compliance reliability† 89.4% 92.1%

CO compliance reliability† 90.7% 91.9%

Joint constraint reliability† 88.2% 90.1%

†: using Monte Carlo Simulation with 1 million samples
ies using more complex constitutive models. In this case study,
we assumed that highway traffic is modeled as the constant flow
shown in Fig.7 and both highway systems have identical traffic
characteristics; vehicles on the highways are identical and they
are modeled via ADVISOR as compact vehicles ; driving cy-
cles of highway vehicles follow the ADVISOR highway driving
cycle with the speed limited to the allowable maximum speed;
solar insolation is independent with wind speed; distributions of
observed vehicle speeds follow a normal distribution with the
standard deviation being constant; weather data from NCDC can
represent 5-6pm, the peak hours, in summer adequately; high-
way vehicles are the exclusive source of pollution acting on the
area; all other uncertainties are assumed negligible.
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