
Improved Matchmaking Algorithm for Semantic Web Services Based on

Bipartite Graph Matching

Umesh Bellur, Roshan Kulkarni

Kanwal Rekhi School of Information Technology, IIT Bombay

umesh@it.iitb.ac.in, roshan@it.iitb.ac.in

Abstract

The ability to dynamically discover and invoke a

Web Service is a critical aspect of Service Oriented

Architectures. An important component of the discovery

process is the matchmaking algorithm itself. In order

to overcome the limitations of a syntax-based search,

matchmaking algorithms based on semantic techniques

have been proposed. Most of them are based on an

algorithm originally proposed by M. Paolucci, et al. [19].

In this paper, we analyze this original algorithm and

identify some correctness issues with it. We illustrate

how these issues are an outcome of the greedy approach

adopted by the algorithm. We propose a more exhaustive

matchmaking algorithm, based on the concept of matching

bipartite graphs, to overcome the problems faced with the

original algorithm. We analyze the complexity of both the

algorithms and present performance results based on our

implementation of both these algorithms. We show that

the complexity of our algorithm is equivalent to that of the

original algorithm in spite of the improvements we have

made to address the correctness issues.

1. Introduction

Today’s implementations of the Publish-Find-Bind

paradigm that underlies Service Oriented Architectures are

centered around syntactic descriptions of service access

protocols. Service providers create WSDL [7] descriptions

and publish them to UDDI [6] registries. The WSDL is

a specification of the messaging syntax between the client

and the provider.

The search capabilities of UDDI are limited to a syntax-

based search. A client can search the registry for a string

in the service description or it can perform a search using a

service classification hierarchy (like NAICS [3]) defined in

the TModel. The WSDL is compiled into client-stubs and

the service is invoked. The issues apparent in this approach

arise from the use of syntax in descriptions as well as in the

matchmaking since syntactic approaches limits the scope of

the search to an exact match of the strings that make up

the client query. Another important downside is the tight

coupling between the invoker and provider of a service that

this results in since the client is usually only prepared to

invoke a service for which it has a precompiled stub. This

approach precludes the client from dynamically invoking

an equivalent service but whose signature is now slightly

different than what it is prepared for.

A solution to this involves upgrading syntactic

descriptions to semantic ones and using Ontologies rather

than strings as the basis for search and matchmaking. Many

techniques for semantic description and matchmaking

of services have been proposed in recent l iterature.

In this paper we analyze the semantic matchmaking

algorithm proposed by Paolucci, et al. [19]. We have

considerable interest in this algorithm because it has been

cited extensively in recent literature and several subsequent

proposals ([10], [20], [14], [11]) are based on it. We

show that the matchmaking algorithm suffers from some

shortcomings and we propose an improved version of it.

The rest of the paper is laid out as follows: First, we

discuss the many efforts at semantic matchmaking that

have been published and present the algorithm by Paolucci

[19] in some detail that is necessary for our analysis. We

then present counter-examples where this algorithm does

not generate correct outcomes. We describe our own

matchmaking algorithm which overcomes these correctness

issues. Finally, we analyze the complexity of the two

algorithms and present some experimental results in order

to compare their performance.

2. Background and related work

An Ontology models domain knowledge in terms of

Concepts and Relationships between them. OWL [9] has

evolved as a standard for representation of ontologies on

the Web. OWL-S [16], formerly DAML-S [8], defines an

ontology for semantic web services.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

86

Both, Advertisements and search Queries are expressed

in terms of OWL-S descriptions. The OWL-S Service

Profile defines a service in terms of its Inputs, Outputs,

Pre-conditions and Effects (IOPE). The Inputs and Outputs

in this tuple contain references to concepts in ontologies

published on the Web.

The semantic matchmaking process makes use of several

reasoning operations provided by an Ontology Reasoner. A

reasoner can infer additional information that has not been

explicitly asserted in an ontology and can support reasoning

operations like equivalence, disjointness, subsumption,

concept satisfiability etc. Ontology reasoners and DAML-S

are based on a logic formalism called Description Logics

(DL) [13] and [17]. Racer [5] and Pellet [21] are some

implementations of DL-Reasoners.

Several semantic matchmaking algorithms are based on

the matching of Inputs and Outputs of the Service Profiles.

One such algorithm has been proposed by M. Paolucci, et

al., in [19]. Various extensions to this algorithm have been

subsequently proposed by [10] [20] [14] and [11].

Phatak [20] adds ontology mappings and QoS constraints

to the algorithm from [19]. Choi [10] expands the search

scope of [19] by the use of analogous terms from an

ontology server. It also makes use of a rule-based search

in order to apply user restrictions and to rank search

results. It computes fine-grained rankings by the use

of concept similarity (horizontal and vertical closeness

between concepts). Jaeger [14] extends the work from [19]

by using matching over the properties and over the Service

Profile hierarchy. It offers a better (fine-grained) ranking

scheme as compared to [19].

2.1. Semantic matchmaking algorithm

This section briefly describes the matchmaking

algorithm by Paolucci [19]. The input to the algorithm is

a OWL-S Query from the client and the output is a set of

matching OWL-S Advertisements sorted according to the

degree of match. The algorithm iterates over every OWL-S

Advertisement in its repository in order to determine a

match for the given Query. An Advertisement and a Query

match if their Outputs and Inputs, both, match.

Let Queryout and Advtout represent the list of output

concepts of the Query and an Advertisement respectively.

Matching of outputs is defined as:

∀c ∈ Queryout, ∃d ∈ Advtout,

s.t. match(c, d) 6= Fail

Let Queryin and Advtin represent the list of input

concepts of the Query and Advertisement respectively.

Matching of inputs is defined as:

∀c ∈ Advtin,∃d ∈ Queryin,

s.t. match(c, d) 6= Fail

The match(c, d) function returns the degree of match

between the two concepts. For concepts outQ ∈ Queryout

and outA ∈ Advtout the match(outQ, outA) function is

defined as:

Table-1
Condition match(outQ, outA)

outA Equivalent to outQ Exact

outA SuperClass of outQ Exact

outA Subsumes outQ Plugin

outQ Subsumes outA Subsume

None of the above Fail

These degrees of match are ranked as: Exact > Plugin

> Subsumes > Fail where x > y indicates that x is ranked

higher (is a more desirable match) than y.

The algorithm adopts a greedy approach for matching

the concept-lists. For example, in the case of output

matching, for each concept c ∈ Queryout, it determines

a corresponding concept d ∈ Advtout to which it has a

maximum degree of match. Once all such max-matchings

are computed, the minimum match amongst them is

the overall degree of match between the Query and the

Advertisement.

3. Analysis

In this section we analyze the algorithm [19] from the

perspective of correctness and present counter-examples

where the algorithm does not generate correct outcomes.

3.1. Degree of match

Algorithm [19] assumes that if an advertisement claims

to output a certain concept, it commits itself to output

every SubClass of that concept. This is manifested by

the condition: { outA SuperClass of outQ ⇒ Exact } in

Table-1 above. We believe that such an assumption is

detrimental to the effectiveness of the matchmaker because

of the following reasons:

• In a real-world scenario, a provider for, say Vehicle, is

likely to sell some types of Vehicle, but not every type

of vehicle.

• This assumption encourages the advertisers to

advertise more generic concepts. For instance, an

advertiser claiming to output Everything (owl:Thing)

will have a Plugin match with every Query. A

malicious advertiser can exploit this fact to poison the

search results. The genuine advertisements will be

overwhelmed by the large number of such malicious

advertisements.

• In the present architecture, semantic notions exist only

in the matchmaking layer. Subsequent stages, like

grounding or service invocation, deal with syntax.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

87

Consider an advertisement A, which claims to output

a Vehicle and a query Q is searching for a service

which offers a StationWagon. Let us assume that

the ontology defines StationWagon as a subclass of

Vehicle and the algorithm returns ‘A’ as an Exact match

to ‘Q’, using the rules presented earlier. Now, the

service provider Grounds the concept, V ehicle, to

a concrete XML message. However, there does not

exist an invocation mechanism by which the client

can automatically express to the provider that it wants

a Station Wagon instead of a generic Vehicle in the

output.

To overcome the above limitations, we subscribe to

an alternative Algorithm-1 for match() which inverts the

rules for Plugin and Subsume degree of match. A similar

approach has also been proposed in [10]. In this section, we

have offered stronger arguments in favour of this approach.

Algorithm 1 PROCEDURE match(outA, outQ)

1: if outA = outQ then

2: return Exact

3: else if outQ SuperClass of outA then

4: return Plugin

5: else if outQ Subsumes outA then

6: return Plugin

7: else if outA Subsumes outQ then

8: return Subsumes

9: else

10: return Fail

11: end if

3.2. False positives and false negatives

The algorithm from [19] iterates over the list of output

concepts of the Query and tries to find a max-match to

an output concept in the Advertisement. Initially, every

output concept of the Advertisement is a candidate for

such a match. We call this set of output concepts of the

Advertisement as a candidate list. The original algorithm

does not specify whether a concept from the candidate list

is removed once it has been matched. We consider both the

scenarios – with and without the removal of concepts – and

illustrate counter-examples where the algorithm [19] yields

incorrect results. These examples use the original rules

(Table-1) to define the degree of match between concepts.

False positives: Suppose a concept from the

Advertisement is not removed from the candidate list

after it has been matched.

Consider an Advertisement for a travel-agent who books

Accomodation for its customers at the specified travel

destination. The Advertisement has the following Output

concepts: {Accommodation, Cost}. Fig-1 illustrates a

part of the travel ontology which defines these concepts.

Figure 1. Travel Ontology

Consider a Query from a client who wants to make

reservations for a Hotel and a Campground at the

specified destination. The client Query has the following

Outputs: {Hotel, Campground}, where Hotel and

Campground, both, are subclasses of Accomodation.

The matchmaking algorithm behaves as follows:

• The initial candidate list from the Advertisement

outputs is: {Accommodation, Cost} and the list of

Query output concepts is: {Hotel, Campground}.
• The algorithm tries to compute a max-match for

Hotel. Using the rule “outA Superclass of outQ”

from Table-1 this will be flagged as an Exact match

with Accommodation.

• The algorithm tries to compute a max-match for

Campground. Using the same rule, this will be

flagged as an Exact match with Accommodation

Accommodation is matched with two concepts from

the Query: Hotel and Campground. The client expects

reservation for both – Hotel and Campground – whereas

the Advertisement offers only a single reservation for an

Accommodation. This match is a false positive result since

the cardinality of the client’s request is not being honoured.

Guo [12] also asserts that an Input or Output parameter can

be used at most once in the matching.

This problem is partially resolved if we adopt the

alternative match() procedure from Algorithm-1. In that

case, the outcome is a Subsume match. A Subsume match,

while ranked lower than an Exact or Plugin match, indicates

that the provider may help the client achieve its goal. We

still consider this to be a false positive outcome.

False positive outcomes, like the one illustrated in

this example, can be expected whenever two or more

concepts from the Query match a single concept in the

Advertisement.

False negatives: We now consider a scenario where a

concept is removed from the candidate list after it has been

matched with a concept from the Query.

Consider an Advertisement for a travel-agent who

reserves tickets for two kinds of activities at a holiday

destination. The Outputs of the Advertisement are:

{Entertainment, Sport}.
A client who is planning a vacation desires to make

reservations for two activities - Bowling and MovieShow.

The Outputs of the client Query are: {Bowling,

MovieShow}.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

88

The concepts used above are defined in the travel

ontology (Fig-1). The solid lines indicate the explicitly

asserted relationships (SubClass). The dotted lines indicate

the relationships inferred by the reasoner (Subsume). Now,

Advtout = {Entertainment, Sport}
Queryout = {Bowling, MovieShow}

• The algorithm will first attempt to compute a max-

match for Bowling. The following matches are

inferred:

Entertainment SuperClass of Bowling⇒ Exact

Sport Subsumes Bowling⇒ Plugin

• Bowling has a max-match with Entertainment.

Entertainment is removed from the candidate list.

• The algorithm now attempts to match the next concept:

MovieShow. Since match(MovieShow, Sport) = Fail,

the final outcome is a Fail match.

We now transpose the order of concepts in Queryout and

analyse the behaviour of the algorithm. Consider,

Advtout = {Entertainment, Sport}
Queryout = {MovieShow, Bowling}

• The algorithm first computes a max-match for

MovieShow.

Entertainment SuperClass MovieShow⇒ Exact

match(MovieShow, Sport) = Fail

• MovieShow is matched with Entertainment and

Entertainment is removed from the candidate list.

• The algorithm now attempts a match for Bowling.

Since Sport Subsumes Bowling, it is a Plugin match.

The final outcome is thus a Plugin match.

We see that the outcome of the matchmaker depends

on the order of the concepts in the Query. Semantic

matchmaking should be agnostic of the syntactic ordering

of the concepts in the OWL-S Advertisements and

Queries. We therefore believe that a more exhaustive

matchmaking process is desired, instead of the greedy

approach adopted by this algorithm.

4. Proposed algorithm

In this section, we propose our matchmaking algorithm

based on the notion of matching bipartite graphs.

4.1. Bipartite graphs and matching

• Bipartite Graph: A Bipartite Graph is a graph G =
(V,E) in which the vertex set can be partitioned into

two disjoint sets, V = V0 ∪ V1, such that every edge

e ∈ E has one vertex in V0 and the other in V1. Fig-2

shows a weighted bipartite graph G.

Figure 2. Bipartite Graph of Output Concepts

• Matching: A matching of a bipartite graph G =
(V,E) is subgraph G′ = (V,E′), E′ ⊆ E, such that

no two edges e1, e2 ∈ E′ share the same vertex. We

say that a vertex v is matched if it is incident to an edge

in the matching. Fig-2 also shows one such matching

G′ for the graph G.

Given a bipartite graph G = (V0 + V1, E) and its

matching G′, the matching is complete if and only if

all vertices in V0 are matched.

4.2. Modelling semantic matchmaking as
bipartite matching

Consider a Query Q and Advertisement A. We model the

problem of matching their outputs as a problem of matching

over a bipartite graph. This involves two steps:

• Constructing a bipartite graph: Let Qout and Aout

be the set of output concepts in Q and A respectively.

Construct graph G = (V0 +V1, E), where, V0 = Qout

and V1 = Aout.

Consider two concepts a ∈ V0 and b ∈ V1. Let R

be the degree of match (Exact, Plugin, Subsume, Fail)

between them - computed using Algorithm-1. If R 6=
Fail, we define an edge (a, b) in the graph and label it

as R.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

89

• Defining a matching criteria: We compute a

complete matching of this bipartite graph. A complete

matching will ensure that every concept in the output

of the Query is matched to some concept in the output

of the Advertisement. We consider two cases:

– Complete matching does not exist ⇒ Query and

Advertisement do not match.

– Multiple complete matchings exist⇒We should

choose a complete matching which is optimal.

Optimal matching: We now need to define an

optimality criteria from the perspective of a semantic match.

We first assign a numerical weight, wi, to every edge in the

bipartite graph. The weight of an edge, e = (a, b), is a

function of the degree of match between concepts a and b.

Degree of Match Weight of edge

Exact w1

Plugin w2

Subsumes w3

w1 < w2 < w3

Fig-2 illustrates a bipartite graph G and its complete

matching G′. Let max(wi) denote the maximum weighted

edge in G′. The maximum weighted edge represents the

worst degree of match between the two vertex sets in G′.

Similar to the notion of global degree of match in [19],

we say that max(wi) denotes the overall degree of match

for G′. If several different matchings exist for the given

bipartite graph, an optimal matching is a complete matching

in which max(wi) is minimized. For example, in Fig-2, G′

and G′′ are two complete matchings of G. We can now infer

the following:

Matching max(wi) Overall Match

G′ w3 ⇒ Subsume

G′′ w2 ⇒ Plugin

Since w2 < w3, G′′ (Plugin) is chosen over G′

(Subsume) as the optimal match.

The process of matching input concepts is similar to the

process of matching output concepts. Since every concept

in the input of the advertisement needs to be matched, we

construct a bipartite graph where V0 = Ain and V1 = Qin.

Here, Ain is the set of input concepts in the Advertisement

and Qin is the set of input concepts in the Query.

So far we have constructed the graph and defined the

matching criteria. In the next section, we shall see how the

matching is actually computed.

4.3. Computing the optimal matching

The Hungarian algorithm ([15], [18]) computes a

complete matching of the bipartite graph such that the sum

of weights of the edges in the matching, Σwi, is minimized.

The use of Hungarian algorithm for matching bipartite

graphs is desired due to its strong polynomial time bound

compared to the combinatorial complexity of a brute-force

algorithm. If |V | is the number of vertices in the graph, the

time complexity of the Hungarian algorithm is O(|V |
3
).

In our current problem, we wish to compute a matching

such that max(wi) is minimized. This optimization criteria

is different from that of the hungarian algorithm. This

difference is illustrated in the example from Fig-2. Consider

the assignment of weights as: w1 = 1, w2 = 2, w3 = 3.

G′ and G′′ are the two matchings of the graph. We can now

compute the following:

Matching max(wi) Σwi

G′ 3 (Subsume) 5

G′′ 2 (Plugin) 6

Our optimization criteria would choose G′′, whereas

the hungarian algorithm would choose G′, as the optimal

match. The hungarian algorithm cannot be directly used to

compute the matching that we desire. We hence propose a

different technique for the assignment of edge weights such

that the following lemma holds true:

Lemma: A matching in which Σwi is minimized, is

equivalent to a matching in which max(wi) is minimized.

If the above lemma holds true, we can use the hungarian

algorithm to compute the desired optimal matching. We

first look at the technique for assignment of edge weights

and then prove that the above lemma holds true for the

proposed assignment.

In G = (V0 + V1, E), the edge weights are computed as

shown in the table below:

Table-2
Degree of Match: match(a,b) Weight

Exact⇒ w1 = 1
Plugin⇒ w2 = (w1 ∗ |V0|) + 1
Subsume⇒ w3 = (w2 ∗ |V0|) + 1

|V0| = Cardinality of set V0

We take note of the following properties which will be

used in the subsequent proof:

• The maximum number of edges in any complete

matching of the graph G will be equal to |V0|

• The following relation holds true: w1 < w2 < w3

• The above computation of weights enforces that a

single edge of a higher weight will be greater than a

set of |V0| edges of lower weights taken together:

wi > wj × |V0|,∀i > j (1)

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

90

Proof of lemma: (Proof-by-contradiction)

• Given a graph G, let M be a complete matching in

which Σwi is minimized. Let (d1, d2, d3, ...) denote

the set of edges in M .

• Let M ′ be a complete matching in which max(wi) is

minimized. Let (e1, e2, e3, ...) be the set of edges in

M ′ and emax be the maximum weight edge in this set.

• Assume that the lemma is untrue and hence M 6= M ′.

Since M is not a matching in which max(wi) is

minimized, there will be at least one edge, dM ∈ M ,

such that w(dM) > w(emax). Now,

w(dM) > w(emax)⇒ w(dM) > w(ei),∀ei ∈M ′

• The maximum number of edges in M ′ is bounded by

|V0|. Using previous results and Equation-(1):

w(dM) > w(ei),∀ei ∈M ′

⇒ w(dM) > Σw(ei)
⇒ Σw(dj) > Σw(ei)

Here Σw(ei) and Σw(dj) denote the sum of weights

of all edges in M and M ′ respectively.

• Σw(di) > Σw(ei) contradicts our assumption that

M is a matching having the minimal sum of weights.

The contradiction holds as long as we assume that

M 6= M ′. We can hence infer that M and M ′ will be

equivalent if weights are assigned as given in Table-2.

4.4. Our algorithm

The search() procedure in Algorithm-2 accepts a

Query as input and tries to match it with each

Advertisement in the repository. If the match is not a Fail,

it appends the advertisement to the result set. Finally the

sorted result set is returned to the client.

The matchLists() procedure in Algorithm-3 accepts

two concept-lists and constructs a bipartite graph using

them. It then invokes a hungarian algorithm to compute

a complete matching on the graph. The matchLists()
procedure is invoked twice in search(). The order

of Query and Advertisement in each call is however

swapped.

The computeWeights(|V0|) function computes the

values of w1, w2, w3 as illustrated in Table-2 of the previous

section. The match() function computes the degree of

match between two concepts as defined in Algorithm-1.

4.5 Complexity analysis

Let N denote the number of advertisements in the

repository. The average number of input and output

concepts in the Query are denoted by |Qi| and |Qo|
respectively. The average number of input and output

concepts in the Advertisement are denoted by |Ai| and |Ao|
respectively. The complexity analysis follows:

• Search iterates over N Advertisements.

• Weights w0, w1, w2 are computed based on |V0|. This

is an O(1) operation.

• The graph is constructed by comparing every pair of

concepts (a, b), a ∈ Qo, b ∈ Ao. This operation has a

complexity of O(|Qo|×|Ao|). The time complexity of

hungarian algorithm is bounded by |Qo|
3

The above steps are executed twice - once for output and

once for input - of each Advertisement. Hence the time

complexity of the search is:

N ×
{

(|Qo| × |Ao|+ |Qo|
3) + (|Ai| × |Qi|+ |Ai|

3)
}

Algorithm 2 search(Query)

1: Result = Empty List

2: for each Advt in Repository do

3: outMatch = matchLists(Queryout, Advtout)

4: inMatch = matchLists(Advtin, Queryin)

5: if (outMatch = Fail OR inMatch = Fail) then

6: Skip Advt. Take next Advt.

7: else

8: Result.append(Advt, outMatch, inMatch)

9: end if

10: end for

11: return sort(Result)

Algorithm 3 matchLists(List1, List2)

1: Graph G = Empty Graph (V0 + V1, E)
2: V0 ← List1, V1 ← List2
3: (w1, w2, w3)← computeWeights(|V0|)
4:

5: for each concept a in V0 do

6: for each concept b in V1 do

7: degree = match(a, b)

8: if degree 6= Fail then

9: Add edge (a, b) to G

10: if (degree = Exact) then w(a, b) = w1

11: if (degree = Plugin) then w(a, b) = w2

12: if (degree = Subsume) then w(a, b) = w3

13: end if

14: end for

15: end for

16:

17: Graph M = hungarianMatch(G)

18: if (M = null) then

19: No complete matching exists. return Fail.

20: end if

21:

22: Let (a, b) denote Max-Weight Edge in G

23: degree← match(a, b)

24: return degree

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

91

We approximate, |Qo| = |Ao| = |Qi| = |Ai| = m.

Here, m is independent of the number of advertisements

in the repository and is likely to take small integer values

(usually 1 to 15). We can hence consider m to be a constant

and the time complexity of search is simplified:

O
(

N × 2× {m2 + m3}
)

= O
(

N
)

(2)

The algorithm from [19] iterates over all the

advertisements in the repository and performs matching

over both, inputs and outputs. If we assume that concepts

are not removed from the candidate-list after a match, the

time complexity of the algorithm can be expressed as:

N ×
{

(|Qo| × |Ao|) + (|Ai| × |Qi|)
}

Using simplifications similar to the above, we get:

O
(

N × 2× {m2}
)

= O
(

N
)

(3)

We also consider a Brute-Force algorithm which

exhaustively computes every possible matching of the

bipartite graph and chooses an optimal matching amongst

them. The Brute-Force algorithm has a combinatorial

growth and its worst-case time complexity is:

O
(

N × 2×m!
)

= O
(

N
)

(4)

It is important to note that although the asymptotic

complexity of (2), (3) and (4) are identical, the multiplying

constants for the Brute-Force algorithm can be quite higher

as (m!≫ m3) for m > 6.

5. Implementation

The following algorithms were implemented in Java in

order to compare their correctness and performance:

• Our Bipartite Matching algorithm

• Greedy matchmaking algorithm by Paolucci [19]

• A Brute-Force matching algorithm

The Brute-Force algorithm is exhaustive nature. It was

implemented in order to serve as a reference model to

compare the correctness of the Greedy and the Bipartite

algorithms. This implementation of the Brute-Force

algorithm removes concepts from the candidate-list after a

match.

Our implementation is illustrated in Fig-3. We load

the OWL ontologies into the KnowledgeBase defined by

the Mindswap OWL-S API [2]. This API is also used to

parse the OWL-S Queries and Advertisements. We use

the Pellet reasoner [21] to classify the loaded ontologies.

The Jena API [1] is used to query the reasoner for concept

relationships. In order to compute matchings for bipartite

graphs, we use an implementation of the Munkres-Kuhn

(Hungarian) algorithm by [18].

OWL-S

Advt.

Repository

 Pellet

Reasoner Knowledge Base

 OWL

Ontologies

Matchmaking

 Engine
Client

OWL-S

Query

 Results

Figure 3. Implementation

6. Correctness and performance comparison

We load 7 ontologies (2449 concepts) and about 350

advertisements from the OWLS-TC (service retrieval test

collection from SemWebCentral) [4] in our test setup. The

three matchmaking algorithms that are compared here use

match() from Algorithm-1 to define the degree of match.

6.1. Correctness

False Positives: We use a greedy algorithm which does

not remove concepts from the candidate list. A Query from

OWLS-TC is matched against the advertisement repository.

This Query defines the concept Book as Input and the

following concepts as Output: {TaxedPrice, Price}. The

number of matches flagged by the algorithms are:

- Exact Plugin Subs. Fail Total

Greedy 1 0 5 344 350

Brute F. 1 0 0 349 350

Bipartite 1 0 0 349 350

The results of the Bipartite and the Brute-Force

algorithm are identical. The Greedy algorithm has flagged

5 subsume matches. These matches are the false positive

outcomes and they have conditions identical to those

illustrated in section 3.2 earlier.

False Negatives: Here, we use a greedy algorithm

which removes concepts from the candidate list. First,

we construct 3 Queries using the ontologies in OWLS-TC.

Then, an additional 3 Queries were constructed by merely

swapping the order of output concepts in the first 3 Queries.

Since we search for 6 Queries over 350 advertisements,

there would be a total of 6 x 350 = 2100 matchings. Ideally,

we expect all the 6 queries to match their corresponding

advertisements. As seen in the actual results below, the

Bipartite algorithm matches all 6 Queries. The Greedy

algorithm however generates 3 false negatives.

- Exact Plugin Subs. Fail Total

Greedy 0 0 3 2097 2100

Brute F. 0 0 6 2094 2100

Bipartite 0 0 6 2094 2100

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

92

We have thus tested that the Greedy algorithm indeed

generates false positive and negative outcomes. On the

other hand, the outcomes of Bipartite matching are identical

to that of the Brute Force reference model.

6.2. Performance

Fig-4 shows the search-time of the three algorithms w.r.t.

the number of advertisments in the repository. The search

time of Bipartite matching is higher than that of the Greedy

algorithm but lower than that of the Brute force algorithm.

The search time is linear w.r.t. the number of advertisements

in the repository. This observation is consistent with the

complexity analysis presented earlier. In our test data there

were a maximum of four concepts in the input or output

of any OWL-S advertisement. Thus m was bounded to

four. However, in real-world repositories this number is

expected to be much higher. The performance of the Brute

force algorithm would be hence much worse than the one

observed here.

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

S
e
a
rc

h
 T

im
e
(m

s
)

Number of Advertisements

Brute Force
Bipartite
Greedy

Figure 4. Query Search Time

7 Conclusion

In this paper we identified some problems with the

matchmaking algorithm from [19] and offered an alternative

algorithm to resolve these problems. Our algorithm offers

a correct outcome - equivalent to that of the Brute force

reference model. Moreover, the time-complexity of our

algorithm is equivalent to that of the Greedy technique.

Guo [12] has also proposed a matchmaking algorithm

based on bipartite graph matching. Their proposal however

uses a continuous-valued similarity function to define the

edge-weight between two concepts. Our proposal flags

discrete degrees of matches using formal logic concepts

of equivalence, subclass etc. and thus lends itself to an

automated invocation of the discovered web service. We

argue that a match flagged by [12], due to its use of

continuous-valued similarity, cannot be used in formal

logic and automated invocation.

Our future work is focused on improving the efficiency

of our algorithm by reducing the time required for

construction of Bipartite graphs.

References

[1] JENA: Java framework for building semantic web

applications. http://jena.sourceforge.net/.

[2] MINDSWAP: Maryland Information and Network

Dynamics Lab Semantic Web Agents Project, OWL-S API.

http://www.mindswap.org/2004/owl-s/api/.

[3] North American Industry Classification System (NAICS).

http://www.naics.com/.

[4] OWL-S service retrieval test collection. version 2.1.

http://projects.semwebcentral.org/projects/owls-tc/.

[5] RacerPro: OWL reasoner and inference server for the

semantic web. http://www.racer-systems.com/.

[6] Universal Description Discovery and Integration (UDDI).

http://uddi.org/.

[7] Web Services Description Language (WSDL).

http://www.w3.org/TR/wsdl.

[8] A. Ankolekar et al. DAML-S Coalition. DAML-S: Web

service description for the semantic web. ISWC, 2002.

[9] S. Bechhofer et al. OWL Web Ontology

Language reference. W3C Recommendation:

http://www.w3.org/TR/owl-ref/, 2004.

[10] O. Choi et al. Extended semantic web services model for

automatic integrated framework. NWESP, 2005.

[11] R. Guo et al. Capability matching of web services based

on OWL-S. Proceedings of 16th International Workshop on

Database and Expert Systems Applications, 2005.

[12] R. Guo et al. Matching semantic web services across

heterogeneous ontologies. International Conference on

Computer and Information Technology, 2005.

[13] I. Horrocks. Reasoning with expressive Description Logics:

Theory and practice. 18th International Conference on

Automated Deduction, 2002.

[14] M. Jaeger et al. Ranked matching for service descriptions

using DAML-S. Proceedings of CAiSE’04 Workshops,

2004.

[15] H. Kuhn. The Hungarian method for the assignment

problem. Naval Research Logistic Quarterly, 1955.

[16] D. Martin et al. OWL-S: Semantic markup for web

services. Technical Report, Member Submission, W3C

http://www.w3.org/Submission/2004/07/, 2004.

[17] D. McGuinness et al. The Description Logic handbook:

Theory, implementation and applications. Cambridge

University Press, 2003.

[18] K. Nedas. Implementation of Munkres-Kuhn (Hungarian)

algorithm. http://www.spatial.maine.edu/ kostas, 2005.

[19] M. Paolucci et al. Semantic matching of web service

capabilities. Springer Verlag, LNCS, International Semantic

Web Conference, 2002.

[20] J. Phatak et al. A framework for semantic web services

discovery. WIDM, 2005.

[21] E. Sirin et al. Pellet: An OWL DL reasoner. Journal of Web

Semantics, http://pellet.owldl.com/, 2005.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

93

