
University of Wollongong
Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences

2006

SeamCAD: object-oriented modeling tool for
hierarchical systems in enterprise architecture
Lam-Son Le
Ecole Polytechnique Fédérale de Lausanne, lle@uow.edu.au

Alain Wegmann
Ecole Polytechnique Fédérale de Lausanne

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Le, L. & Wegmann, A. (2006). SeamCAD: object-oriented modeling tool for hierarchical systems in enterprise architecture. Hawaii
International Conference on System Sciences (pp. 1-10). Piscataway, New Jersey, USA: IEEE.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/infopapers
http://ro.uow.edu.au/eis

SeamCAD: object-oriented modeling tool for hierarchical systems in
enterprise architecture

Abstract
Enterprise Architecture (EA) requires modeling enterprises across multiple levels (from markets down to IT
systems). Providing tool support for such models is a challenge (e.g. model containment hierarchy, navigation
difficulties, problems to relate elements between different diagrams). In this paper, we identify the
requirements that a CAD tool needs to satisfy to manage such hierarchical models. We then propose a
solution to meet these requirements: SeamCAD - a tool designed to manage hierarchical models. We present
the key features of SeamCAD and an overview of the modeling language it uses. The benefit of the proposed
solution is tool support for managing enterprise models.

Disciplines
Physical Sciences and Mathematics

Publication Details
Le, L. & Wegmann, A. (2006). SeamCAD: object-oriented modeling tool for hierarchical systems in
enterprise architecture. Hawaii International Conference on System Sciences (pp. 1-10). Piscataway, New
Jersey, USA: IEEE.

This conference paper is available at Research Online: http://ro.uow.edu.au/infopapers/3685

http://ro.uow.edu.au/infopapers/3685

SeamCAD: Object-Oriented Modeling Tool
for Hierarchical Systems in Enterprise Architecture

Lam-Son Lê, Alain Wegmann

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
{LamSon.Le, Alain.Wegmann}@epfl.ch

Abstract

Enterprise Architecture (EA) requires modeling
enterprises across multiple levels (from markets down to
IT systems). Providing tool support for such models is a
challenge (e.g. model containment hierarchy, navigation
difficulties, problems to relate elements between different
diagrams). In this paper, we identify the requirements
that a CAD tool needs to satisfy to manage such
hierarchical models. We then propose a solution to meet
these requirements: SeamCAD - a tool designed to
manage hierarchical models. We present the key features
of SeamCAD and an overview of the modeling language
it uses. The benefit of the proposed solution is tool
support for managing enterprise models.

Keywords: CAD tool, Enterprise Architecture, Service
Engineering, Living System Theory, RM-ODP, UML,
Requirement Engineering, Business Thinking, Systemic
Enterprise Architecture Methodology

1. Introduction

The goal of enterprise architecture is to align the
business systems and the IT systems in order to improve
enterprise’s competitiveness [1]. Enterprise architecture
(EA) deals with hierarchical systems that typically span
from business entities (e.g. market, company,
department…) down to IT components (e.g. applications,
applets, servlets, beans…). During an EA project, the EA
team – typically a multi-disciplinary team - develops an
enterprise model that represents the enterprise and its
environment. Working with a model is important; when
making the model, the team develops an agreed
representation of the enterprise, of its environment and of
what the project needs to achieve.

Modeling hierarchical systems is challenging for the
modelers and for the Computer Aided Design (CAD) tool
designers. In EA, the model represents multiple systems.
Each system has its functionality represented at different

levels of detail. The modeler can easily get lost while
navigating in such a model. In addition, the modeler
needs to be able to represent the relationships between the
elements shown in these different levels. This is called
traceability.

Computer Aided Software Engineering (CASE)
tools, that are developed for software development,
usually focus only on one system - the system to design.
It is thus difficult to use them to design multiple
hierarchical systems. For example, quite frequently, these
CASE tools provide only one name space and problems
appear if a same identifier is used in more than one
context. Most of them use the Unified Modeling
Language (UML) [2]. UML provides different kinds of
diagrams to express various aspects of an IT system (e.g.
use-case diagrams for the requirements, class diagrams
for the design, activity diagrams for the implementation
etc…). Each diagram has specific model elements that
can be graphically connected. Putting model elements
created in all the diagrams into a single data model with
an explicit containment hierarchy, while preserving
relations between these elements, is a major challenge.
Generic modeling frameworks and domain-specific tools
take new approaches and can express the system
hierarchy to some degree. Unfortunately, their model
navigation and their notation are not designed to visually
show the containment hierarchy (e.g. the notation rarely
provides nested graphical elements).

In this paper, we define the requirements for a CAD1
tool for modeling hierarchical systems in EA (Section 2).
We then present a solution that fulfills these requirements
(Section 3). Our solution, SeamCAD, is a CAD tool
specifically designed to model hierarchical systems.
Next, we present the related work in CAD tools for
hierarchical system design (Section 4). Section 5 draws
some conclusion and outlines our future work.

1 We call our tool a CAD tool because its scope is mainly towards

marketing and business process modeling rather than software
modeling (even if software modeling is possible). CASE (Computer
Aided Software Engineering) tools are used for modeling software.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10-7695-2507-5/06/$20.00 (C) 2006 IEEE

2. Requirements for a CAD Tool

In this section, we first give an example of an
enterprise model and describe some of its important
features (Section 2.1). We then present the requirements
for a CAD tool managing such an enterprise model
(Section 2.2).

We focus on requirements related to the
representation of functionality across hierarchical
systems. We do not consider other requirements which
are not specific to functional modeling of hierarchical
systems (e.g. quality attribute or nonfunctional
requirements modeling, version management…).

2.1. Example

The example describes a bookstore whose
management decides to provide the company’s services
via the Internet. The management creates an EA team
who is in charge of this project. Figure 1 presents a
simplified representation of the environment of the
enterprise and of its organization. To fully analyze the
impact of this project, the EA team has to reason about
the multiple levels shown in Figure 1: i.e. the market
level, the business system level, the company level, the
department level, and the IT level. For each level, we
describe the kind of analysis made by the EA team.

The market level represents the business systems (i.e.
group of companies) active in the market. This level is
useful to reason about the overall customer experience,
regardless of the companies’ responsibilities in providing
the services to the customer.

The business system level represents companies or
individuals that work together to achieve a commercial
goal. In our example, the business system of the
bookstore (BookCoBis) is composed of the book
publisher (PubCo), of the company itself (BookCo), of
the shipping company (ShipCo) and of the bank. The
business system of the customer (CustomerBis) is
composed of the customer, the bank and the shipping
company that delivers the books. This level is useful to
reason about the company’s responsibilities (e.g.
outsourcing strategies in BookCoBis or purchasing
decision making unit in CustomerBis).

The company level represents the departments
operating inside the company. In our example, BookCo
has a purchasing department (PurchasingDep) that
collaborates with the warehouse department
(WarehouseDep) for the processing of customer orders.
This level is useful to reason about business processes
and department’s responsibilities.

The department level represents employees and IT
systems. In our example, the purchasing department
(PurchasingDep) consists of a clerk and of an order

processing application (OpApp). One of the main goals of
the project is to redesign OpApp; but the project also
needs to redefine the responsibilities of the employees
and of the departments. So, this level is useful to specify
the business processes together with the IT systems’
requirements and the employees’ job descriptions.

It is possible to have additional levels for describing
the IT system implementation (e.g. IT level, server level,
component level and Java class level).

In summary, enterprise models need to describe the
enterprise’s environment and the enterprise’s
organization. This is done through a hierarchy of systems
(e.g. market, business system, company, department, IT
system…).

Figure 1. Informal representation of the systems
described in the example of the online bookstore

The enterprise models need to capture the

functionality of all the relevant systems, at different
levels of details. In our example, the EA team needs to
express that BookCo as a company (at the business
system level) performs an action called Market in which
books are sold. At the company level, the BookCo’s
Market action becomes collaboration between the
BookCo’s departments. Each department has its own
responsibility in this collaboration.

In summary, enterprise models need to describe the
functionality of all relevant systems (from market down
to IT) at different levels of details. Our experience has
shown that such models, even if they do not describe all
aspects of an enterprise, are useful to define the
functional responsibilities of the company, of the
departments/employee and of the IT systems. This is
especially useful when a company needs to change its
strategies. Based on this common functional model, the
multiple specialists (e.g. finance, security...) can develop
their own models. [3] presents how this kind of model
was used in a concrete industrial project.

2.2. Tool Requirements

Let us consider a CAD tool that would manage the
enterprise models described in Section 2.1. Figure 2

BookCoBis CustomerBis

ShipCo BookCo PubCo

PurchasingDep WarehouseDep

OpApp Clerk

Market level

Company level

Department level

IT level

 Business system level

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

2

describes the tool and the people who would use it, the
EA team members. The universe of discourse (UoD)
represents the perceived reality of the team members. In
the UoD, the team members perceive entities. Examples
of entities are markets, business systems, or actions
performed by them. These entities are represented as
model elements in the enterprise model.

Figure 2. The context of the CAD tool

In the EA team, there are specialists such as

marketers, business process designers, and IT designers.
They are responsible for managing specific entities. For
instance, the marketers reason about business systems
and markets. The business process designers manage
business processes. All of them use the CAD tool to build
the common enterprise model. In general, each specialist
is in charge of a specific level in the model. The
enterprise architect coordinates the specialists. Her goal is
to insure the alignment between all levels. The CAD tool
can help her validate this alignment.

The CAD tool should allow the different specialists
to work within the same enterprise model at the level for
which they are responsible. It is thus essential that the
tool shall explicitly manage an organizational hierarchy
that represents the enterprise’s environment and
organization. This is the first requirement.

We have seen in Section 2.1 that a system's
functionality needs to be modeled at different levels of
details that make up the functional hierarchy. This is the
second requirement. Note that one of the challenges for
the tool designer is to provide an ergonomic way to
manage these two hierarchies (i.e. enterprise’s
environment/organization and levels of details in the
functionality). If this is not achieved, the modeler might
get confused between these two hierarchies.

The members of the EA team expect to reason on
graphical representations of the enterprise model. In
addition, graphical models are well adapted to represent
systems as they make relations between systems more
intuitive [4]. This leads to the third requirement that
includes the following three characteristics:

- The notation should be systemic. This means that it
should be well adapted to represent hierarchical systems.
For example, all systems could be modeled in a uniform
way regardless of their nature2. The notation should also
emphasize concepts related to systems like traceability
between levels, relations between a system and its
environment, containment hierarchy of systems…

- The notation should be discipline-specific, so that
the specialists can visually recognize what they are
responsible of. Although the systems are represented in a
uniform manner (e.g. all systems have properties and
participate to actions), the visual elements that represent
the different kinds of systems can change between
organizational levels. For example, IT people might want
to use UML subsystems to represent IT systems.
Business people might want to use the Porter arrow rather
than UML subsystems to represent companies [6].

- The notation should be close to UML [2] whenever
possible, so that UML practitioners can have an intuitive
feeling of what the notation represents.

Figure 3. Diagrams are extracted from the model

We also need to specify the way the CAD tool

manages the model and the diagrams. In most of the
modeling tools, diagrams are normally listed and
organized into folders. Quite often, a graphical element
such as a class or actor is created in one diagram and will
appear in other diagrams. Sometimes, the synchronization
between these diagrams creates problems. This
synchronization is crucial when modeling hierarchical
systems in EA. It is very frequent that elements appear in
multiple diagrams. For instance, a company will appear
in multiple diagrams. If the name of the company
changes, all diagrams need to change. For this reason,
diagrams should be generated by extracting the relevant
elements and their relationships from a common model

2 This is one of the key features of a systemic approach. A systemic

approach is based on system theory. The Cambridge Dictionary of
Philosophy [5] defines “system theory” as the “trans-disciplinary
study of the abstract organization of phenomena, independent of their
substance, type, or spatial or temporal scale of existence”.

obj1

obj3

obj2

action1

Enterprise
Model

extractions

View

rel1

rel2

CAD Tool

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

3

(see Figure 3) in a similar way that domain-specific
modeling tools such as GME [7] work. In addition, the
traceability between model elements shown in different
diagrams need to be stored in the common model too.
This common model is organized according an ontology
designed to support the modeling of hierarchical systems.
This is the fourth requirement.

To summarize the requirements, the CAD tool shall:
i. manage an explicit organizational level

hierarchy that represents the enterprise’s
environment and organization;

ii. manage an explicit functional level hierarchy for
the systems that represent the systems’
functionality at different levels of detail;

iii. have a notation which is systemic, discipline-
specific, understandable by UML practitioners;

iv. have a common ontology-like model from which
the diagrams are generated

3. Modeling Hierarchical Systems with

SeamCAD

Our solution for the requirements defined in Section
2.2 is SeamCAD: a CAD tool for SEAM (Systemic
Enterprise Architecture Methodology) that is specifically
designed for modeling hierarchical systems. An overview
of SEAM is available in [8].

In Section 3.1 we give a short overview of the
SEAM modeling language used in SeamCAD. The
complete presentation of the modeling language can be
found in [9]. In Section 3.2 we present the tool itself.

3.1. SEAM Modeling Language Overview

The key feature of our modeling language is its
capability to systematically represent systems at different
levels of detail. We call organizational level hierarchy
the levels in the model that describe the enterprise’s
environment and its organization. We call functional level
hierarchy the description of the systems functionality at
multiple levels of details. The SEAM modeling language
explicitly defines these two hierarchies.

The SEAM modeling language is comparable to
approaches such as the Unified Modeling Language
(UML) Profile for Business Modeling [2], Catalysis [10],
KobrA [11], Systems Modeling Language [12] and
Object Process Methodology (OPM) [33]. The main
differences between SEAM and these approaches lie in
the fact that the SEAM modeling language is systemic
(i.e. it represents hierarchical systems across
organizational levels and functional levels in a systematic
and explicit manner) and can represent multiples systems
in details.

In this subsection, we first present the SEAM
language definition (Section 3.1.1) followed by the
SEAM notation (Section 3.1.2). To make this section
more concrete, Figure 4 provides a simplified
representation of the enterprise model described in
Section 2.1. We use Figure 4 to illustrate the concepts
introduced in this section.

3.1.1. SEAM Language Definition. In each
organizational level (e.g. market level, business system
level, company level, etc...) we represent systems with
model elements called computational objects. These
computational objects can be seen as whole (i.e. showing
their functionality) or as composite (i.e. showing their
construction).

Computational objects participate in joint actions.
For example, in Figure 4 (a), BookCo, PubCo and ShipCo
participate in the joint action mfg_sale. For each
computational object participating in a joint action, there
is a transaction and a localized action. For instance,
BookCo takes part in mfg_sale and has the localized
action Market and the transaction MarketTxn. The
localized action represents the local responsibility of the
computational object with respect to a given joint action.

The state of the computational object is modified by
the joint actions and by the localized actions. The state is
captured with information objects that belong to the
computational object. Joint actions and localized actions
change the state of the information objects (not visible in
Figure 4). The transaction is a special kind of information
object that exists only when a localized action is
performed. The transaction is useful to represent the
behavioral context in which information objects exists.
For example, within a transaction, it is possible to
represent parameters and temporary information objects
that exist during the occurrence of the corresponding
localized action.

The joint action, the localized action, and the
transaction can be viewed either as whole or as
composite. The composite view is useful to see the details
of the functionality. For example, in Figure 4 (b), the
joint action market, the localized actions Market and the
transactions MarketTxn (of WarehouseDep as well as of
PurchasingDep) are all seen as whole. They are however
composite in Figure 4 (c). This enables the modeler to
understand the details of the joint action market that is
actually refined into three smaller ones: select, order and
pack. In both PurchasingDep and WarehouseDep, she
can also see the details of the localized action Market and
of the transaction MarketTxn.

Note that in Figure 4, 3-dot symbols stand for
additional organizational levels the modeler may want to
express in the enterprise model. They are linked together
with Figure 4 (a), (b) and (d) by dashed lines to show the
traceability along the organizational level hierarchy.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4

Figure 4. SEAM model of the on-line bookstore: a) Business system organizational level, b) & c) Company

organizational level at two functional levels and d) Department organizational level

The SEAM modeling language takes its foundation
from Miller’s “Theory of Living Systems” (LST) [13]
and from the ITU/ISO standard “Reference Model of
Open Distributed Computing” (RM-ODP) [14]. In the
Living System Theory, the concept of level is used for
reasoning about any living system, from individual cells
to supranational organizations such as the United Nations
Organization. We borrow that concept of level and call it
the organizational level. In SEAM, we reason from Java
classes (and not from individual cells) to supranational
organization (like LST). Within these organizational
levels, we use RM-ODP to represent what is perceived in
the reality. All the systems in Figure 4 are RM-ODP
computational objects. The state of the computational
objects is captured by RM-ODP’s information objects.
The RM-ODP concept of action has been specialized by
taking the concepts of “joint action” and “localized
action” from Catalysis [10]. In short, the SEAM
modeling language has four main concepts:
computational objects, information objects, joint actions,
and localized actions. All these model elements can be
viewed either as whole or as composite. This way of
interpretation comes from the concepts of composite and
atomicity defined in RM-ODP.

Our synthesis of LST and of RM-ODP was done in
the following way: first we formalized the foundations of
RM-ODP (basic terms such as objects, actions, etc…) in
Alloy - a light-weight specification language based on set
theory [15]. The result of this formalization is available in
[16]. Then we improved these definitions to add the
concepts of organizational levels (from LST) and

functional levels [17], which resulted in the SEAM
modeling language [9]. SeamCAD is built based on this
modeling language.

3.1.2. SEAM Notation. In order to match the different
notations used by different specialists within the EA
team, the computational objects (i.e. the systems) can
have custom graphical pictograms. To represent markets,
business systems and companies, the modeler can decide
to use Porter arrows [6] (visible in Figure 4 (a) and (b)).
The Porter arrow takes its origins in the representation of
the value systems and the value chains that were made
popular by Porter. For departments, IT systems and
software components, the modeler can decide to use the
UML subsystem graphical element (visible in Figure 4
(b) and (d)). In future versions of the tool, additional
pictograms for computational objects will be added to
reflect other systems that may appear in enterprise
models.

The SEAM modeling language has 4 main concepts:
computational object, information object, joint action and
localized action. We already discussed how the
computational objects are represented. The representation
of the other three model elements is borrowed from
UML:

- The SEAM joint action (dashed ellipses in Figure
4) represents the participation to an action of a set of
computational objects. It can be represented by the UML
collaboration.

- The SEAM localized action (rounded rectangles in
Figure 4) represents the behavior of a particular

market

Market

MarketTxn

Market

MarketTxn

PurchasingDep

MarketTxnSelf

Select

select order

Order

SelectTxn OrderTxn

WarehouseDep

pack

MarketTxnSelf

Pack Order

PackTxn OrderTxn

PurchasingDep

Clerk operate

OPApp

WorkTxn Work

BookCo

(b)

(c)

BookCatalog

(a)

BookCoBis

BookCo

market
PurchasingDep

MarketTxn

Market

mfg_sale

MarketTxn

Market

BookCo

WarehouseDep

MarketTxn

Market

(d)

MarketTxn

Market

PubCo

MarketTxn

Market

ShipCo

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

5

computational object. So it can be drawn using UML
“action state” - the graphical element used in activity
diagrams.

- The information objects (rectangles in Figure 4),
that represent properties of computational objects, are
drawn using the UML classes (without operations).

As discussed in Section 2.2, one of the challenges is
to visually show model containment in diagrams. This
can be achieved by nesting our graphical elements, which
are actually 2D pictograms (e.g. rectangle, ellipse…).
Dashed lines are used to render composite elements (with
the exception of the joint action which is always dashed
to be closer to UML). In this way, nesting can be made to
as many levels as the modeler wants in the diagram.

The SEAM modeling language takes graphical
elements from UML whenever possible, so that
practitioners can recognize the elements. However,
SEAM is a research language that we target for
hierarchical modeling. For this reason, our meta-model
and notation are optimized for modeling hierarchical
systems. This is one of our main originalities compared to
UML 1.x [2]. Graphical elements of UML 1.x are rarely
designed to be nested; the composition is, in general,
represented via a composite aggregation relation.
Domain-specific modeling tools like GME [7] or
MetaEdit++ [18] do not support visual containment
neither. In UML 2.0 the situation has improved. For
instance, the Superstructure Specification extends the
meta-class “Class” with the capability to have internal
structure and ports [2]. For a general comparison between
SEAM and UML, the reader can refer to [19] that
presents how the UML meta-model could be simplified if
it was based on RM-ODP (as SEAM does).

3.2. Key Features of SeamCAD

We show in this section the way SeamCAD3

addresses the requirements identified in Section 2.2. The
tool features are explained using the example introduced
in Section 2.1 and illustrated in Figure 4.

3.2.1. Explicit Hierarchy that Represents the
Enterprise’s Environment and Organization.
SeamCAD allows the modeler to work on multiple
organizational levels. The tool has a main window that
shows the organizational level hierarchy of the model in a
tree view. This main window enables the user to open
modeling windows in which specific parts of the model
can diagrammatically be edited.

Figure 5 shows a modeling window. The tree view of
a modeling window looks the same as the one in the main
window. The modeler can interact with it to generate the
diagram she wants to display. Selecting a computational

3 SeamCAD is available at http://seamcad.epfl.ch.

object in the tree node will generate a diagram on the
right panel of the modeling window. For example, in
Figure 5, the tree node of BookCoBis is selected. The
modeler can see in both the tree view and in the diagram
that, at the business system level, BookCoBis consists of
BookCo (purchasing and management), PubCo
(providing books) and ShipCo (delivering books) that
collaborate together. Note that Figure 5 corresponds to
Figure 4 (a).

Figure 5: BookCoBis and its companies seen as
wholes (business system organizational level)

Each modeling window is dedicated to a particular

organizational level. There is no limit on the number of
modeling windows opened at the same time. For instance,
the modeler can open 3 modeling windows and select
BookCoBis, BookCo and PurchasingDep to see the
organizational levels described in the example. The tool
ensures the consistency among all modeling windows.
Changes made in a window will propagate to the others.

In the tree view, the top node represents the model
(BookCoProject in our example). Its only child node
stands for the first computational object of the
organizational hierarchy. Below this node, the
organizational level hierarchy is visible as described in
Section 2.1.

Figure 6. BookCo and its departments at company

organizational level, functional level 1.

The most frequent user interactions are selecting and

expanding/collapsing a tree node. If the modeler expands
a computational object, it is equivalent to changing to a
subsequent organizational level. For example, the
modeler expands and selects the tree node of BookCo in

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6

Figure 5, which is at the business system level.
SeamCAD then displays a window shown in Figure 6
expressing the departmental structure of BookCo - the
company level. At this level, there are two departments:
PurchasingDep responsible for IT management of
customer orders and books, WarehouseDep responsible
for inventory processing and packaging. In Figure 6, the
modeler has chosen to hide BookCo’s environment. In
contrast, collapsing a computational object is equivalent
to changing to a precedent organizational level.

Figure 5 and 6 illustrate what we mean by
traceability. The localized action Mfg_Sale in BookCo as
a whole (in Figure 5) is realized by the joint action
market in BookCo as composite (in Figure 6). In Figure 6,
the role of PuchasingDep is purchasingDep / Market.
This role is also visible as the Market localized action and
the MarketTxn transaction in PurchasingDep. All these
relationships are kept in the common model managed
automatically by the tool. The user only needs to enter
once the name of the joint action (market), the name of
the system (PurchasingDep), the name of the localized
action (Market) and visually setting Market’s means to
market. The tool will manage the generation of the note
(means of Mfg_Sale) and role names (purchasingDep /
Market).

Figure 7. Multi-level representation covering

BookCoBis, BookCo, PurchasingDep and OpApp.

It is possible to see multiple organizational levels in

one window. Figure 7 shows a modeling window in
which the business system level, the company level and
the department level are represented in one diagram. The
user can obtain such a diagram by expanding, in the tree
view of Figure 5, the tree nodes BookCo and
PurchasingDep. Figure 7 is a combination of Figure 4
(a), (b) and (d).

3.2.2. Explicit Functional Level Hierarchy. Navigating
through the functional level hierarchy without confusing
the modeler is a challenge. Two preliminary versions of
SeamCAD were developed until we found adequate
solutions to this challenge. These preliminary versions of
the SeamCAD implemented organizational level and
functional level as completely separate concepts. For
each computational object, the user could select the
functional levels and organizational levels she wanted to
display. This lead to problems as it was possible to see
diagrams with multiple objects shown at different levels
of functionality.

Figure 8. Example of functional level refinement:

same organizational level and systems as Figure 6
but behaviors described at functional level 2.

We found a solution by enforcing a given level of

functionality in all objects shown in the diagram. All
computational objects participating in this joint action are
displayed at the same level of functionality. This is
achieved by giving to the modeler the choice to view the
joint actions as whole or as composite. This feature
considerably simplifies the navigation in the functional
levels as the concept of functional level is hidden in the
notion of joint action as whole or as composite. It also
keeps separate the navigation through functional levels
(done by selecting how joint actions are represented)
from the navigation through organizational levels (done
by selecting how computational objects are represented).

Figure 6 and Figure 8 illustrate this point. They
correspond to Figure 4 (b) and (c), respectively. The
market joint action is seen as a composite making the
select, order and pack component joint actions visible. So
the information viewpoints of PurchasingDep and
WarehouseDep are seen as composite. Note that these
joint actions have their equivalence in the participating
computational objects. For example, the select joint
action becomes the Select localized action that represents
the responsibility of PurchasingDep. In this purchasing
department, there is a special information object called

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

7

SelectTxn that represents the transaction corresponding to
the localized action. It is useful when the modeler needs
to model information objects related to the execution of
the Select localized action. There is also an information
object called BookCatalog representing the list of books
available to the customer from the perspective of
PurchasingDep. SeamCAD ensures the synchronization
between the joint actions, the localized actions and the
transactions of the objects participating in the joint action.

3.2.3. Notation which is Systemic, Discipline-Specific,
Understandable by UML Practitioners. As presented
in Section 3.1.2, SeamCAD uses discipline-specific
graphical elements to represent the computational objects.
For instance, in Figure 7, a Porter arrow represents the
company and the UML subsystem represents the
departments. To make the notation even more concrete,
the modeler can attach pictures to a computational object.
For example, in Figure 7, the plant picture is associated
with the BookCo model element, or the cubicle picture
with PurchasingDep. This feature helps the modeler to
recognize what she is looking at.

The systemic notation has multiple features. The
exhaustive presentation of these features is out of the
scope of this paper. We can still mention few of them:

- Explicit context representation: model elements
such as localized actions, information objects and joint
actions are always represented within a computational
object. The computational object makes explicit the
system in which these elements are defined. In a similar
way, component actions are always represented within
the composite action that contains them. This makes the
behavioral context in which actions are explicitly defined.
For instance, in Figure 8, the Select, Order and Pack
actions are within Market making it visible that they
define what Market means. Note that this feature is
implemented thanks to our visually nested notation. The
tool automatically resizes an enclosing pictogram
whenever the modeler moves nested ones.

- Multiple system representations: As multiple
computational objects are shown in a same diagram, the
modeler can look simultaneously at the specification of
multiple systems at the same time. For instance, in Figure
8, it is possible to analyze the behavior of both
PurchasingDep and WarehouseDep.

- Holistic representation of state and behavior: In a
computational object seen as whole, information objects
and localized actions can both be visible. Work currently
under way investigates how to graphically represent pre
and post conditions between the localized actions and the
information objects. Thanks to this, the diagram can fully
describe actions without requiring additional information
such as Object Constraint Language code.

The SeamCAD notation is strongly inspired by
UML. Many graphical elements come from UML. The

main differences are that SeamCAD notation permits
putting all kinds of model element in any diagrams and
that SEAM graphical elements are designed to be nested
to visually show the containment hierarchy. Note that
UML 2 does propose Composite Structure but with only
one nesting level [2].

3.2.4. Common Model from which the Diagrams are
Generated. SeamCAD has a common model that is
outlined in the tree view of multiple modeling windows
and of the main window. The modeler has filtering
options to control the diagram generation. Three ways of
filtering exists:

- It is possible to filter out a specific computational
object or joint action. The element that is filtered out is
hidden in all diagrams. In the tree view, the
corresponding tree node is grayed. The synchronization
between diagrams will make this element disappear in all
diagrams. For instance, WarehouseDep is hidden and its
tree node is grayed in Figure 9.

Figure 9. Example of information hiding: same

organizational level and functional level as Figure 8
but PurchasingDep’s behavior and the entire

WarehouseDep computational object are hidden.

- The modeler can decide to hide the environment of

a computational object. This is done when the modeling
window is created. For example, Figure 7 makes
BookCo’s environment visible whereas Figure 8 hides it.
Making the environment visible is a powerful feature as it
allows the modeler to make the knowledge of the system
of its environment explicit. SeamCAD enables drawing a
“trace” relationship between an information object in a
computational object and a model element in the
computational object’s environment to represent the fact
that there is a relation between a system and its
environment.

- A last feature allows the modeler to filter out the
information objects or localized actions, or both, of a
particular computational object. With this feature, the
modeler can obtain diagrams that are close to UML

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

8

diagrams. For example, in Figure 9, it is possible to see a
UML class diagram inside the PurchasingDep
computational object by hiding its actions. This capability
illustrates that SeamCAD could be considered as a UML-
like tool in which the context can be systematically
represented.

The challenge of maintaining the traceability
between elements shown in different diagrams (Section
3.2.1) and the synchronization within diagrams (Section
3.2.2) can be resolved by carefully designing relations in
the common ontology-like model.

4. Related Work

Today, there exist quite a large number of object-
oriented modeling tools and generic modeling
frameworks. The object-oriented modeling tools can be
roughly categorized into two main groups: software
modeling and enterprise modeling. The former aims at
providing UML diagrams and some functions to
automate the development process (e.g. reverse
engineering, code generation, report generation…). The
latter provides the modeler with some extra diagrams
(may not be UML-compatible) for modeling business
processes, organizational units, etc... There are also
generic modeling frameworks that allow modelers to
quickly define a domain-specific modeling tool.

Rational Software [20], Visual UML [21], UML
Studio [22], UML Suite [23], Poseidon [24], Objecteering
UML Modeler [25], Object Domain [26], Microsoft Visio
with UML template [27] etc… can be considered as
software modeling tools. They support a wide range of
UML diagrams that are generally organized into folders
or views. These folders and views are typically originated
from UML taxonomy on diagrams such as static
structure, use-case, implementation etc. This taxonomy is
unfortunately not suitable for the representation of the
hierarchy of organizational and functional levels. To
model a hierarchical system with these tools, the modeler
builds several diagrams with the assumption that each of
them corresponds to an organizational level. As a
consequence, the modeler sees neither the hierarchy of
the organizational level nor the traceability between
diagrams. In short, we find that the modeler cannot
effectively navigate her hierarchical models with these
tools.

Enterprise Architect [28], System Architect [29],
Mega [30], Arc Styler [31], etc… can be considered as
enterprise modeling tools. They either provide extra
modeling diagrams (beyond UML) or allow the modeler
to customize UML diagrams. For example, with
Enterprise Architect it is possible to draw any UML
element in a specific diagram. The modeler can use UML
collaborations, UML actors and UML classes to represent
business systems and people collaborating together.

However, these tools are still diagram-based. The same
comments about model navigation which we made about
software modeling tools also apply to enterprise
modeling tools.

OpCat [32], the tool for OPM [33], is more suitable
for modeling hierarchical systems because it supports
zoom-in/zoom-out operations. In addition, OpCat is a
model-based tool. Its diagrams can be created on-demand
when the user zooms-in to a process or an object.
However, since OpCat does not natively address
hierarchical systems, its navigation panel is not used for
browsing the hierarchy. It lists diagrams instead.

MetaEdit+ [18] is considered as a generic modeling
tool. The basic rationale behind MetaEdit+ is, at the
meta-level, most of modeling tools essentially defines
different kinds of objects having some properties and
relationships between them. Its main advantage is the
ability to quickly define a tool for a given modeling
language. Nevertheless, in the aspect as a generalized
diagram-based modeling tools, MetaEdit+ also shares the
shortcomings with software modeling tools regarding
hierarchical systems analyzed above.

GEF [34] allows developers to create a graphical
editor for an existing application model. This framework
can be used on top of EMF [34], another framework for
data storage, to build a particular modeling tool for
hierarchical systems. The main drawback is that the tool
built in this way can only be executed within Eclipse and
apparently requires quite heavy programming burden.
Additionally, the tool graphical pictogram must depend
on 2D engineering of GEF, which does not natively
support nested notation.

GME is a configurable tool suite that facilitates
domain-specific modeling [7]. In GME meta-model, the
concept Model can contain other Models, allowing the
modeler to establish containment hierarchy in her project.
We notice that the tree-view navigation and the way of
generating modeling diagrams in SeamCAD are similar
to those in GME. The main difference lies in the fact that
our tool specifically addresses hierarchical systems in EA
by having two model containment hierarchies (functional
and organizational) whereas GME was motivated from
control systems and integrated circuits (notation is not
nested, lack of collaboration modeling).

5. Conclusion

In this paper we presented the requirements for a
CAD tool for enterprise architecture. Considering
enterprises as hierarchical systems, we analyzed what
requirements EA CAD tools need to satisfy the modeling
of such systems. We identified four needs: 1. the
capability to manage organizational level hierarchy (to
represent systems’ context and construction); 2. the
capability to manage the functional level hierarchy (to

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

9

describe the systems behavior at multiple levels of
details); 3. the use of a systemic, discipline-specific
notation, understandable by UML practitioners; 4. the use
of a common model from which diagrams are extracted.

The paper then presents an implementation of these
requirements: SeamCAD. It is a tool specifically
designed to manage hierarchies. Its originalities lie in the
navigation tree that presents the organizational hierarchy
and in the capability to see joint actions between systems
as wholes or as composite (which hides the complexity of
the functional hierarchies) as well as the nested notation.
Thanks to the theoretical foundations of the supported
modeling language, SeamCAD can provide complete
traceability between the diagrams. It manages a central
model that can be viewed and edited through multiple
modeling windows. Special care has been taken on
selecting the graphical notation in order to help the
modeler to recognize in which level she works while
keeping a uniform way of reasoning about all levels (as
all levels use the same systemic meta-model to define the
model elements).

SeamCAD has been used in one project in industry
involving business process reengineering and in a 2-year
construction project for a new building for our school. In
this last project, an enterprise model of the school was
made. This model was useful to specify how the building
should be equipped and what IT system should be
installed in the building.

Future work includes the definition of an operational
semantics for the SEAM language [35]. With these
semantics we will be able to perform model checking
(e.g. to compare two representations of a same system,
represented in two different organizational levels or at
two different functional levels) and model simulation.
Additional research and development directions include
the development of course material for marketing,
requirement engineering and enterprise architecture based
on SeamCAD.

References

[1] Schekkerman, J., How to Survive in the Jungle of Enterprise
Architecture Framework: Creating or Choosing an Enterprise
Architecture Framework: Trafford, 2004.
[2] OMG, Unified Modeling Language, http://www.uml.org/
[3] Wegmann, A., Regev, G., and Loison, B., "Business and IT
Alignment with SEAM," presented at REBNITA / 13th IEEE
RE workshop, Paris, September 2005.
[4] Durand, D., Que sais-je? La Systémique. Paris: Presses
Universitaires de France, 1979.
[5] Audi, R., The Cambridge Dictionary of Philosophy:
Cambridge University Press, 1999.
[6] Porter, M. E., Competitive Advantage: Free Press, 1985.
[7] Karsai, G., Maroti, M., Ledeczi, A., Gray, J., and
Sztipanovits, J., "Composition and cloning in modeling and

meta-modeling," IEEE Transactions on Control Systems
Technology, vol. 12, pp. 263-278.
[8] Wegmann, A., "On the Systemic Enterprise Architecture
Methodology (SEAM)," presented at 5th ICEIS, Angers,
France, April 2003.
[9] Lê, L. S. and Wegmann, A., "Definition of an Object-
Oriented Modeling Language for Enterprise Architecture,"
presented at 38th Hawaii International Conference on System
Sciences, Hawaii, USA, January 2005.
[10] D'souza, D. F. and Wills, A. C., Object, Components and
Frameworks with UML, The Catalysis Approach: Addison-
Wesley, 1999.
[11] Atkinson, C., Paech, B., Reinhold, J., and Sander, T.,
"Developing and applying component-based model-driven
architectures in KobrA," presented at 5th IEEE EDOC, Seattle,
USA, September 2001.
[12] Systems Modeling Language (SysML),
http://www.sysml.org/
[13] Miller, J. G., Living Systems: University of Colorado Press,
1995.
[14] OMG, "ISO/IEC 10746-1, 2, 3, 4 | ITU-T
Recommendation, X.901, X.902, X.903, X.904, Reference
Model of Open Distributed Processing," 1995-1996.
[15] MIT, The Alloy Constraint Analyzer, http://alloy.mit.edu/
[16] Naumenko, A., Wegmann, A., Genilloud, G., and Frank,
W. F., "Proposal for a formal foundation of RM-ODP
concepts," presented at WOODPECKER / 3rd ICEIS workshop,
Setúbal, Portugal, July 2001.
[17] Lê, L. S. and Wegmann, A., "An RM-ODP Based
Ontology and a CAD Tool for Modeling Hierarchical Systems
in Enterprise Architecture," presented at WODPEC / 9th EDOC
workshop, Enschede, The Netherlands, September 2005.
[18] MetaCase, MetaEdit+, http://www.metacase.com
[19] Naumenko, A. and Wegmann, A., "A Metamodel for the
Unified Modeling Language," presented at <<UML>> 2002,
Dresden, Germany, September/October 2002.
[20] IBM Rational Software, http://www-
306.ibm.com/software/rational/
[21] Visual UML, http://www.visualobject.com/
[22] UML Studio, http://www.pragsoft.com/
[23] UML Suite, http://www.telelogic.com/
[24] Poseidon, http://www.gentleware.com/
[25] Objecteering UML Modeler, http://www.objecteering.com/
[26] Object Domain, http://www.objectdomain.com/
[27] Microsoft, Microsoft Visio, http://www.microsoft.com
[28] Enterprise Architect, http://www.sparxsystems.com.au
[29] System Architect, http://www.popkin.com/
[30] Mega, http://www.mega.com/
[31] Arc Styler, http://www.io-software.com/
[32] Dori, D., Reinhartz-Beger, I., and Sturm, A., "OPCAT - A
Bimodal CASE Tool for Object-Process Based System
Development," presented at 5th ICEIS, Angers, France, April
2003.
[33] Dori, D., Object-Process Methodology, A Holistic Systems
Paradigm: Springer Verlag, 2002.
[34] Eclipse Platform, http://www.eclipse.org
[35] Wegmann, A., Balabko, P., Lê, L. S., Regev, G., and
Rychkova, I., "A Method and Tool for Business-IT Alignment
in Enterprise Architecture," presented at 17th CAiSE Forum,
Porto, Portugal, June 2005.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10

	University of Wollongong
	Research Online
	2006

	SeamCAD: object-oriented modeling tool for hierarchical systems in enterprise architecture
	Lam-Son Le
	Alain Wegmann
	Publication Details

	SeamCAD: object-oriented modeling tool for hierarchical systems in enterprise architecture
	Abstract
	Disciplines
	Publication Details

	SeamCAD: Object-Oriented Modeling Tool for Hierarchical Systems in Enterprise Architecture

