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BIFURCATION OF NONLINEAR EQUATIONS: I.

STEADY STATE BIFURCATION∗

TIAN MA† AND SHOUHONG WANG‡

Abstract. We prove in this article some general steady state bifurcation theorem for a class
of nonlinear eigenvalue problems, in the case where algebraic multiplicity of the eigenvalues of the
linearized problem is even. These theorems provide an addition to the classical Krasnoselskii and
Rabinowitz bifurcation theorems, which require the algebraic multiplicity of the eigenvalues is odd.
For this purpose, we prove a spectral theorem for completely continuous fields, which can be consid-
ered as a generalized version of the classical Jordan matrix theorem and the Fredholm theorem for
compact operators. An application to a system of second order elliptic equations is given as well.
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1. Introduction. One of important topological tools for studying bifurcation of
nonlinear partial differential equations is the classical Krasnoselskii and Rabinowitz
bifurcation theorems; see among others L. Nirenberg [3]. The key assumption in
these theorems is the oddness of the algebraic multiplicity of the eigenvalue of the
linearized problem. To handle problems without the oddness assumption of the al-
gebraic multiplicity of the eigenvalue, Krasnoselski studied bifurcations for potential
operator equations [2]. Unfortunately, in many application problems, the eigenvalue
of the linearized problem has even multiplicity, and the theorems are, in general, not
applicable.

This article, which is Part I of a series of two articles, studies steady state bifurca-
tion of nonlinear equations, and Part II is on dynamic bifurcations of time-dependent
equations. The main objective of these articles is to establish corresponding theorems
for the case where the eigenvalue has even multiplicity. Our main theorems include a
general bifurcation theorem, Theorem 3.1, its global version, Theorem 3.2, and their
special cases with more detailed count on the bifurcation branches, Theorems 4.2 and
5.1.

These theorems are proved by calculating the topological degree of the equation,
and the bifurcation is obtained when the degree changes as the parameter crosses
a critical value. In the classical Rabinowitz and Krasnoselskii theorems, when the
eigenvalue of the linear problem has odd multiplicity at the critical parameter, the
degree, which are either +1 or −1, changes sign as the parameter crosses the critical
value, leading to bifurcation. This is essentially a linear theory as the degree is
calculated, using the homotopy property of the degree, by calculating the degree of
the linearized operator.

When the eigenvalue has even multiplicity, there is no change of the degree for
the parameter on the two side of the critical value. The key idea in this article is
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based on the observation that for a class of nonlinearities, called k-th (k ≥ 2) order
nondegenerate singularities, the degree at the critical parameter is even, creating the
discrepancy of the degree, and leading to bifurcation. To carry out this idea, we need
to introduce a spectral theorem, Theorem 2.3, which can be considered as a unified
version of the Jordan theorem for matrices and the Fredholm theorem for compact
operators.

The main results obtained can be easily applied to bifurcation problems in partial
differential equtions from science and engineering. To demonstrate the applications,
we present an example of a system of two second order elliptic equations. Bifurcation
is obtained at the first eigenvalue, which has multiplicity 2.

This article is organized as follows. In Section 2, we introduce a spectral theorem,
which is useful for the bifurcation study in the rest part of the article, together with
genericity and density theorems for the spectrum of linear completely continuous
fields, which may be useful in other contexts. Section 3 states and proves our general
bifurcation theorem, and its global version. Two special cases are studied in Sections 4
and 5, and an example of applications is given in Section 6.

2. Linear Completely Continuous Fields. In this section, we shall address
some properties on the spectrum of linear completely continuous fields, some of which
are useful for the bifurcation study addressed in this article.

2.1. Notations. Let H and H1 be two Hilbert spaces, and H1 →֒ H be a dense
and compact inclusion. A linear mapping L = −A+B : H1 → H is called a completely
continuous field if A : H1 → H is a linear homeomorphism, and B : H1 → H is a
linear compact operator.

A number λ = α+ iβ ∈ C is called an eigenvalue of a linear operator L : H1 → H
if there exist x, y ∈ H1 with x 6= 0 such that

(2.1) Lz = λz (z = x+ iy),

and the space

Eλ = {x, y ∈ H1 | (L − λ)nz = 0, z = x+ iy, for some n ∈ N}

is called the eigenspace of L corresponding to λ, and x, y ∈ Eλ are called eigenvectors
of L.

Definition 2.1. A linear mapping L∗ : H1 → H is called the conjugate operator
of L : H1 → H, if

< Lx, y >H=< x,L∗y >H , ∀x, y ∈ H1.

A linear operator L : H1 → H is called symmetric if L = L∗.

Definition 2.2. A linear operator L : H1 → H has a complete eigenvalue
sequence {λk} ⊂ C if each eigen-space Ek corresponding to λk is finite dimensional,
and all eigenvectors of L constitute a basis of H.

It is clear that eigenvalues λ(a) of L(a) = −A+ aI +B are given by

λj(a) = λj + a, a ∈ R,
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where I : H1 → H is the inclusion mapping, λj the eigenvalues of L = −A + B.
Hence, for the eigenvalue problem, without loss of generality we always assume that
L has a compact inverse given by

(2.2) L−1 = −I · A−1(id −BA−1)−1 : H → H.

Therefore, the eigenvalue problem of L = −A+B can be equivalently written as the
following form

(2.3) (L−1 − βk)mψk = 0, βk = λ−1
k , for some m ≥ 1.

Let H ⊗ C be the complexified space of H given by

H ⊗ C =

{
∑

k

akuk | uk ∈ H, ak ∈ C

}
,

with inner product

< u, v >Ĥ= (< u1, v1 >H + < u2, v2 >H) + i(< u2, v1 >H − < u1v2 >H).

2.2. A spectral theorem. We begin with finite dimensional linear operators.
Let M be an n × n matrix, and M∗ its conjugate matrix. Let βj (j = 1, . . . , n) be
all eigenvalues of M (counting multiplicities). Vectors ξj ∈ Rn (1 ≤ j ≤ n) are called
eigenvectors of M if there exist 1 ≤ kj ≤ mj with mj being the multiplicity of βj ,
such that

(2.4) (M − βj)
kj ξj = 0,

when βj are real numbers, and

(2.5)

{
(M − βj)

kj (ξj + iξj+1) = 0,

(M − βj+1)
kj (ξj − iξj+1) = 0,

when βj = βj+1 are complex numbers, with βj+1 being the complex conjugate of βj .
Let ξj = (ξj1, · · · , ξjn)t be eigenvectors of M such that

(2.6) MP = PJ,

where J is the Jordan form of M , and

(2.7) P =




ξ11 ξ21 · · · ξn1

ξ12 ξ22 · · · ξn2

...
...

...
ξ1n ξ2n · · · ξnn


 .

Then it is easy to see that

(2.8) M t(P−1)t = (P−1)tJ t,

where J t is the transpose of J , which is also the Jordan form of conjugate matrix
(transpose) M∗ = M t. Hence if we set

(P−1)t = (ξ̃1, · · · , ξ̃n),
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then ξ̃1, · · · , ξ̃n are eigenvectors of M∗,

(2.9) P−1 =



ξ̃t
1
...

ξ̃t
n


 ,

and

(2.10) I = P−1P =



ξ̃t
1
...

ξ̃t
n




(
ξ1 · · · , ξn

)
=




ξ̃t
1ξ1 ξ̃t

1ξ2 · · · ξ̃t
1ξn

ξ̃t
2ξ1 ξ̃t

2ξ2 · · · ξ̃t
2ξn

...
...

...

ξ̃t
nξ1 ξ̃t

nξ2 · · · ξ̃t
nξn



.

We note that equations (2.6) and (2.8) are equivalent to the classical Fredholm
alternative theorem. Therefore, from (2.10) we get a theorem as follows, which is
considered as a unified version of the Fredholm alternative theorem and the Jordan
theorem.

Theorem 2.3. Let L = −A + B : H1 → H be a linear completely continuous
field. Then the following assertions hold true.

(1) If {λk | k ≥ 1} ⊂ C are eigenvalues of L, then we can take the eigenvectors
of {φk} ⊂ H1 of L and eigenvectors {φ∗k} ⊂ H1 of the conjugate operator L∗

such that

(2.11) < φi, φ
∗
j >H= δij , δij the Kronecker symbol.

(2) H can be decomposed into the following direct sum

(2.12)






H = E1 ⊕ E2,

E1 = the closure of span{φk | k ≥ 1} in H,

E2 = {v ∈ H | < v, φ∗k >H= 0, ∀k ≥ 1}.

(3) E1 and E2 are invariant spaces of L−1, and

||L−nv||
1/n
H → 0 as n→ ∞, ∀v ∈ E2.

(4) Let β1, · · · , βk ∈ C be eigenvalues of L−1 (counting multiplicities) in the
order of |β1| ≥ |β2| ≥ · · · ≥ |βk|, ψ∗

1 , · · · , ψ
∗
k ∈ H ⊗ C be the corresponding

eigenvectors of (L−1)∗ = (L∗)−1, and let E∗
k = span {ψ∗

1 , · · · , ψ
∗
k} (E∗

k = ∅
as k = 0). If

(2.13) ρk+1 = sup
u∈H

N
C

||u||=1,u⊥E∗

k

lim
n→∞

| < L−nu, u >Ĥ |1/n > 0,

then there is an eigenvalue βk+1 ∈ C of L−1 with |βk+1| = ρk+1, and |βk+1| 6

|βk|.
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Remark 2.4. By (2.11) and (2.12), for any u ∈ H , we have the generalized
Fourier expansion

(2.14) u =
∑

k

ukφk + v, v ∈ E2, uk =< u, φ∗k >H .

In particular, if the operator L = −A + B : H1 → H has a complete eigenvalue
sequence λk ⊂ C with eigenvector sequence {φk} ⊂ H1, then we have the following
complete Fourier expansion

u =

∞∑

k=1

ukφk, uk =< u, φ∗k >H .

Remark 2.5. Let X be a Banach space, X∗ its dual space, and B : X → X a
compact linear operator with its conjugate operator B∗ : X∗ → X∗. Then the above
spectral theorem holds true as well for the eigenvalue problem Bx = λx. Assertions
(1) and (2) in Theorem 2.3 can be considered as a generalized version of the classical
Fredholm Alternative theorem and Jordan theorem.

Proof of Theorem 2.3. We proceed in several steps as follows.

Step 1. It is known that the space H can be decomposed into direct sums of
invariant spaces of L−1 as follows

(2.15)





H = E1 ⊕ E2, H = E∗
1 ⊕ E∗

2 ,

E1 = the closure of span {φk | k ≥ 1} in H,

E∗
1 = the closure of span {φ∗k | k ≥ 1} in H.

By the spectral radius theorem, we have

(2.16)

{
||L−nv||

1/n
H → 0 as n→ ∞, ∀v ∈ E2,

||L∗−nv||
1/n
H → 0 as n→ ∞, ∀v ∈ E∗

2 .

Assertion (3) follows.

Step 2. Let {ξ1, · · · , ξm} ⊂ H1 ⊗ C be the eigenvectors of L corresponding to
an eigenvalue λ ∈ C, and {η∗1 , · · · , η

∗
M} be the eigenvectors of L∗ corresponding to an

eigenvalue ρ ∈ C. Set

ξl = ξl1 + iξl2, η∗j = η∗j1 + iη∗j2, 1 ≤ l ≤ m, 1 ≤ j ≤M.

We shall prove that if λ 6= ρ,

< ξlk, η
∗
jr >H= 0, ∀k, r = 1, 2, 1 ≤ l ≤ m, 1 ≤ j ≤M,(2.17)

< v, φ∗k >H= 0, < v∗, φk >H= 0, ∀k ≥ 1, v ∈ E2, v
∗ ∈ E∗

2 ,(2.18)

< ξlk, ξ
∗
jr >H= δlj · δkr .(2.19)

For simplicity, we consider only the case where m = M = 2, and the geometric
multiplicities of λ and ρ are one; while the general case can be proved in the same
fashion. Then we have

L−1ξ1 = λ−1ξ1, L−1ξ2 = λ−1ξ2 + ǫξ1, ǫ ∈ R,(2.20)

L∗−1η∗2 = ρ−1η∗2 , L∗−1η∗1 = ρ−1η∗1 + γη∗2 , γ ∈ R.(2.21)
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As λ 6= ρ̄, it follows from (2.20) and (2.21) that

< ξ1, η
∗
2 >Ĥ =< ξ11 + iξ12, η

∗
21 − iη∗22 >H

= λ < L−1ξ1, η
∗
2 >Ĥ

= λ < ξ1, L
∗−1η∗2 >Ĥ

= λρ̄−1 < ξ1, η
∗
2 >Ĥ

= 0,

< ξ1, η̄
∗
2 >Ĥ = λρ−1 < ξ1, η̄

∗
2 >Ĥ

= 0,

which imply that

< ξ1k, η
∗
2r >H= 0, k, r = 1, 2.

Similarly, we can induce from (2.20) and (2.21) that

< ξi, η
∗
j >Ĥ= 0, < ξi, η̄j

∗ >Ĥ= 0, 1 ≤ i, j ≤ 2.

Thus, we have proved (2.17), and (2.18) can be obtained in the same fashion from
(2.3) and (2.16).

Step 3. Now, we shall prove (2.19) when λ = ρ̄ = complex number; while the
case where λ = ρ = real number can be proved in the same fashion. Let λ = α + iβ,
η∗k = ξ∗k = ξ∗k1 + iξ∗k2. From (2.20) and (2.21) with γ = ǫ, we get

(2.22) Lξ = ξJ,

(2.23) L∗ξ∗ = ξ∗J∗.

Here L is an infinite matrix induced by L−1 under a canonical orthogonal basis {hk}
of H ,
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L =



a11 a12 · · ·
a21 a22 · · ·
· · · · · · · · ·


 ,

L∗ = (aij)
t =



a11 a21 · · ·
a12 a22 · · ·
· · · · · · · · ·


 ,

ξ =



ξ111 ξ112 ξ121 ξ122
ξ211 ξ212 ξ221 ξ222
...

...
...

...


 ,

ξ∗ =



ξ1∗11 ξ1∗12 ξ1∗21 ξ1∗22

ξ2∗11 ξ2∗12 ξ2∗21 ξ2∗22
...

...
...

...


 ,

J =




α −β ǫ 0
β α 0 ǫ
0 0 α −β
0 0 β α


 ,

J∗ = J t =




α β 0 0
−β α 0 0
ǫ 0 α β
0 ǫ −β α


 ,

where

aij =< L−1hj , hi >H ,

ξj
kr =< ξkr , hj >H ,

ξj∗
kr =< ξ∗kr , hj >H .

It is clear that (2.19) is equivalent to

(2.24) ξ∗t · ξ = I,

where I is the 4 × 4 identity matrix.

It is known that for each pair of indices (k, r) there exist ζ∗kr ∈ H and ζkr ∈ H
which are unique as the functionals on H , such that

(2.25)





< ζ∗kr , ξkr >H= 1,

< ζ∗kr , φj >H= 0, ∀φj 6= ξkr ,

< ξ∗kr , v >H= 0, ∀v ∈ E2,

and

(2.26)






< ζkr , ξ
∗
kr >H= 1,

< ζkr , φ
∗
j >H= 0, ∀φ∗j 6= ξ∗kr ,

< ξkr , v
∗ >H= 0 ∀v∗ ∈ E∗

2 .
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Therefore, the matrices

ζ∗1 =




ζ∗111 ζ∗211 · · ·
ζ∗112 ζ∗212 · · ·
ζ∗121 ζ∗221 · · ·
ζ∗122 ζ∗222 · · ·


 , ζ∗j

kr =< ζ∗kr, hj >H ,

ζ1 =




ζ1
11 ζ2

11 · · ·
ζ1
12 ζ2

12 · · ·
ζ1
21 ζ2

21 · · ·
ζ1
22 ζ2

22 · · ·


 , ζj

kr =< ζkr , hj >H ,

are the left inverses of ξ and ξ∗ respectively. Hence, it follows from (2.22) and (2.23)
that

ζ∗Lξ = J,(2.27)

ζL∗ξ∗ = J∗.(2.28)

The transpose of (2.28) implies that

(2.29) (ξ∗)tLζt = J.

Since ζ∗ and ζ satisfy (2.25) and (2.26) respectively, by

ζ∗ = ξ∗t, ζ = ξt,

which yield (2.24). Thus, Assertions (1) and (2) are derived from (2.15) and
(2.17)−(2.19).

Step 4. Proof of Assertion (4). It is clear that the numbers defined by
(2.13) satisfy 0 ≤ ρ ≤ ||L−1||. By the spectral radius theorem, if ρ > 0 then L−1 must
have at least an eigenvalue β ∈ C. Let βj ∈ C (j ≥ 1) be the eigenvalues of L−1 in
the order

(2.30) |β1| ≥ |β2| ≥ · · · ≥ |βj | ≥ |βj+1| ≥ · · ·

and {ψj} ⊂ H ⊗ C be the eigenvectors of L−1 (counting multiplicities), then by
Assertions 1)-3), for any u ∈ H ⊗ C with u ⊥ E∗

k (k ≥ 0), u can be expressed as

u =
∑

j=k+1

ujψj + v, uj =< u,ψ∗
j >Ĥ∈ C,

lim
n→∞

||L−nv||1/n = 0.

For simplicity, we assume that the eigenvalues βj are simple, and other case can
be proved in the same fashion. Then we have

(2.31)

| < L−nu, u >Ĥ | = | <
∑

j≥k+1

βn
j ujψj + L−nv,

∑

i≥k+1

ūiψ̄i + v̄ >H |

= |
∑

j≥k+1

ajβ
n
j + < L−nv, ū >H |,

where

aj =
∑

i≥k+1

ujūi < ψj , ψ̄i >H +uj < ψj , v̄ >H .

Then by (2.30) and (2.31), we obtain that |βk+1| = ρk+1.
The proof of the theorem is complete.
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2.3. Density of complete spectrum. The spectral completion is a very in-
teresting and difficult problem. It is known that if a completely continuous field
L : H1 → H is symmetric sectorial operator, then L has a complete eigenvalue se-
quence. But, for general sectorial operators, we don’t know if the spectral completion
theorem holds true. For this purpose, we prove in this section a density theorem of
complete spectrum.

To proceed, we first recall that A : H1 → H is a sectorial operator if the sector

Sa,φ =
{
λ ∈ C | φ < | arg(λ − a)| ≤ π, 0 < φ ≤

π

2

}

for some a ∈ R is in the resolvent set of A, and

||(A− λI)−1|| ≤
M

|λ− a|
, ∀λ ∈ Sa,φ,

for some M ≥ 1. Then we can define fractional Hilbert spaces Hα = D(Aα) with
induced norm denoted by ||u||α. We know that H0 = H,Hα = H1 as α = 1, and
Hα →֒ Hβ is a compact inclusion for all α > β.

Now consider a linear completely continuous field L = −A + B : H1 → H such
that

(2.32)





A : H1 → H is sectorial,

A has a complete eigenvalue sequence {λk},

Reλk > 0, ∀k ≥ 1,

and the linear operator B : H1 → H satisfies

(2.33) B : Hγ → H is bounded for some γ < 1.

By (2.32) and (2.33), we know that the operator L = −A+B : H1 → H is also a
sectorial operator, and if L has no eigenvalues with nonnegative real parts, then we can
define a fractional power operator Lα (α ∈ R) with domain D(Lα) = D(Aα) = Hα,
and the norm of Hα is equivalent to ||Lαu||0 for u ∈ Hα.

Let

S(H1, H) = {−A+B : H1 → H satisfies (2.32) and (2.33)},

SA(H1, H) = {L = −A+B ∈ S(H1, H) | A : H1 → H is fixed}.

Then we have the following density theorem for complete spectrum.

Theorem 2.6. There exists a dense set D ⊂ S(H1, H) (resp. D ⊂ SA(H1, H))
such that each operator L ∈ D has a complete eigenvalue sequence.

Remark 2.7. In fact, it is reasonable to conjecture that each L ∈ S(H1, H)
satisfying (2.32) and (2.33) has a complete eigenvalue sequence.

Proof of Theorem 2.6. Let L = −A + B ∈ S(H1, H), and {φk} ⊂ H1 be eigen-
vectors of A. By (2.14), for any u ∈ H , u =

∑∞
i=0 uiφi. Let Pn : H → H be the

canonical projection defined by

Pnu =

n∑

i=1

uiφi.
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As PnB : H1 → H is finite rank, the operator Ln = −A + PnB has a complete
eigenvalue sequence for any n ∈ N. In addition, B : H1 → H is compact, we have

lim
n→∞

||B − PnB||S(H1,H) = 0.

Thus we obtain

lim
n→∞

||L− Ln||S(H1,H) = ||B − PnB||S(H1,H) = 0.

Therefore, the proof of the theorem is complete.

2.4. Genericity of simple eigenvalues. An eigenvalue λ ∈ C of L : H1 → H
is called simple if the eigenspace Eλ of L has dimension

dimEλ =

{
1 as λ = real,

2 as λ = complex.

Let the eigenvalues {λk} of a linear operator L ∈ S(H1, H) be given in the
following order

|λ1| ≤ |λ2| ≤ · · · |λk| ≤ |λk+1| ≤ · · · .

The following is the genericity theorem for simple eigenvalues.

Theorem 2.8. For any integer m ≥ 1, there is an open and dense set O ⊂
S(H1, H) (resp. O ⊂ SA(H1, H)), such that each L ∈ O has at least m eigenvalues,
and the first eigenvalues {λj | j = 1, · · · ,m} are simple.

Proof. By the classical theory of linear operators, each isolated eigenvalue depends
continuously on the operators; see [1]. Therefore, by Theorem 2.6, we obtain that

the set Õ of all linear operators having at least m eigenvalues is open and dense in
S(H1, H) (resp. in SA(H1, H)).

Let O ⊂ Õ be the set of all linear operators whose first m eigenvalues are simple.
Obviously, O is an open set. We shall prove that for any L = −A+ B ∈ Õ, there is
a sequence Ln = −A+Bn ∈ O, which converges to L in S(H1, H).

Let {φk} be the eigenvalues of L. Without loss of generality, we assume that the
first eigenvalues of L have multiplicity two, i.e. λ1 = λ2, and

(2.34) Lφ1 = λ1φ1, Lφ2 = λ1φ2 + φ1.

By (2.14), for any u ∈ H , u =
∑

k ukφk + v, v ∈ E2. We define a linear operator
Tn : H1 → H by

Tnu =
1

n
u1φ1.

Them we infer from (2.34) that the first two eigenvalues λ1 and λ1 + 1
n of the operator

Ln = −A+B + Tn are simple, i.e.

Ln(φ2 − nφ1) = λ1(φ2 − nφ1),

Lnφ1 = (λ1 +
1

n
)φ1.

Obviously, B + Tn satisfies (2.33), and Ln → L in S(H1, H) as n → ∞. We can
prove in the same fashion that for each n ∈ N there exists an Bn : H1 → H such that
(2.33) holds true, Bn → B in S(H1, H) as n → ∞, and the first m eigenvalues of
Ln = −A+Bn are simple.

The proof is complete.
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3. Steady State Bifurcation from Higher-Order Non-degenerate Sin-

gularities. As mentioned in the Introduction, the Krasnoselskii bifurcation theorem
asserts that steady state bifurcation occurs at an eigenvalue with odd multiplicity,
and there is no general result for bifurcations at an eigenvalue with even multiplicity.
In this section, we shall give some bifurcation theorems at such eigenvalues with even
multiplicities.

3.1. Main theorems. Consider a parameter family of nonlinear operator equa-
tions

(3.1) Lλu+G(u, λ) = 0,

where u ∈ H is the unknown function, λ ∈ R the parameter, for each λ, Lλ : H1 → H
is a completely continuous field, and G(·, λ) : H1 → H is a Cr (r ≥ 1) mapping,
depending continuously on the parameter λ ∈ R. We always assume that G has the
following Taylor expansion near u = 0:

(3.2) G(u, λ) = G1(u, λ) + o(‖u‖k
1),

for some integer k ≥ 2, where G1 : H1 × · · · ×H1 → H is a k−multilinear mapping
given by

(3.3) G1(u, λ) = G1(u, · · · , u, λ).

Let the eigenvalues (counting multiplicity) of Lλ be real and be given by
{β1(λ), β2(λ), · · · } with βk(λ) ∈ R such that

βi(λ)






< 0, λ < λ0,

= 0, λ = λ0, ∀1 ≤ i ≤ m,

> 0, λ > λ0,

(3.4)

βj(λ0) < 0, ∀ m+ 1 ≤ j.(3.5)

Let {e1, · · · , er} and {e∗1, · · · , e
∗
r} ⊂ H1 be the eigenvectors of Lλ and L∗

λ at
λ = λ0 respectively:

(3.6) Lλ0
ej = 0, L∗

λ0
e∗j = 0, 1 ≤ j ≤ r.

Here r ≤ m is the geometric multiplicity of the eigenvalue β1(λ0).
We let

ai
j1···jk

=< G1(ej1 , · · · , ejk
, λ), e∗i >H .

Definition 3.1. Assume (3.2)-(3.5). The steady state solution u = 0 of (3.1) is
called k-th order nondegenerate at λ = λ0, if x = (x1, x2, · · · , xr) = 0 is an isolated
singular point of the following system of r-dimensional algebraic equations

(3.7)
r∑

j1,··· ,jk=1

ai
j1···jk

xj1 · · ·xjk
= 0, 1 ≤ i ≤ r and λ = λ0.

The following two theorems prove bifurcation from higher-order nondegenerate
singular points.
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Theorem 3.2. Let the operator Lλ +G : H1 → H satisfy (3.2)-(3.5). If there is
an even number k ≥ 2 such that u = 0 is a k-th order nondegenerate singular point of
(3.1) at λ = λ0, then (u, λ) = (0, λ0) must be a bifurcation point of (3.1), and there
is at least one bifurcated branch on each side of λ = λ0.

In this theorem, the condition that k is even is needed. For example, the following
system

{
x1 − x3

2 = 0,

x2 + x3
1 = 0,

which corresponds to the case where m = 2, r = 2, and k = 3 odd, has no bifurcation.
This theorem establishes the existence of transcritical bifurcation, and the follow-

ing is its global version, in the same spirit of the Rabinowitz global theorem. Let

Σ+ = {(u, λ) ∈ H1 × R | Lλu+G(u, λ) = 0, u 6= 0, λ > λ0},

Σ− = {(u, λ) ∈ H1 × R | Lλu+G(u, λ) = 0, u 6= 0, λ < λ0}.

Theorem 3.3. Let L : H1 → H satisfy (2.32) and (2.33) G(·, λ) : H1 → H be
compact, and assume the conditions of Theorem 3.2 hold true. Let Σ ⊂ Σ̄+ (resp.
Σ ⊂ Σ̄− ) be the connected component of Σ̄+ (resp. Σ̄−) containing (0, λ0). Then one
of the following assertions hold true.

(1) Σ is unbounded;
(2) Σ contains points (0, λ1) with λ1 > λ0 (resp. λ1 < λ0) such that there are

some eigenvalues βj(λ) of Lλ at λ = λ1, i.e. βj(λ1) = 0;
(3) there exists a point (v0, µ) ∈ H1 × R with µ > λ0 (resp. µ < λ0) such that

Σ ∩H1 × {λ} =






∅, λ > µ (resp. λ < µ),

(v0, µ), λ = µ,

Γ1(λ) + Γ2(λ), λ0 ≤ λ < µ (resp. λ0 ≥ λ > µ),

where Γ1(λ0) = (0, λ0), (0, λ0) /∈ Γ2(λ0), Γ1(λ) 6= ∅, and
Γ2(λ) 6= ∅.

3.2. Proof of Theorem 3.2. We proceed with the Lyapunov-Schmidt method,
together with the Brouwer degree theory.

Step 1. Consider (3.1). Let {w1(λ), · · · , wm(λ)} ⊂ H1 and
{w∗

1(λ), · · · , w
∗
m(λ)} ⊂ H1 be the eigenvectors of Lλ and L∗

λ respectively, correspond-
ing to eigenvelues given by (3.4), i.e.

(Lλ − βi(λ))
niwi(λ) = 0, (L∗

λ − βi(λ))
miw∗

i (λ) = 0,

for some ni,mi ≥ 1 (1 ≤ i ≤ m).
By Theorem 2.3, near λ = λ0, the spaces H1 and H can be decomposed into the

following direct sums

H1 = Eλ
1 ⊕ Eλ

2 , dimEλ
1 <∞,

H = Ẽλ
1 ⊕ Ẽλ

2 ,

Eλ
1 = span{w1(λ), · · · , wm(λ)},

Eλ
2 = {u ∈ H1 | < u,w∗

i (λ) >= 0, i = 1, · · · ,m},

Ẽλ
2 = closure of Eλ

2 in H,
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and Lλ can be decomposed into Lλ = Lλ
1 ⊕ Lλ

2 such that for any λ near λ0,

Lλ
1 = Lλ|Eλ

1
: Eλ

1 → Eλ
1 ,

Lλ
2 = Lλ|Eλ

2

: Eλ
2 → Ẽλ

2 .

Thus, near λ0, (3.1) can be equivalently written as

Lλ
1v1 + P1G(v1 + v2, λ) = 0,(3.8)

Lλ
2v2 + P2G(v1 + v2, λ) = 0,(3.9)

where P1 : H → Eλ
1 and P2 : H → Ẽλ

2 are the canonical projections, u = v1 + v2,

v1 ∈ Eλ
1 , and v2 ∈ Ẽλ

2 .

By (3.5), the mapping Lλ
2 : Eλ

2 → Ẽλ
2 is a linear homeomorphism near λ0. By

the implicit function theorem, there exists a solution v2 = f(v1, λ) for (3.9). Then
the bifurcation equation (3.1) is reduced to the following equation

(3.10) Lλ
1v + P1G(v + f(v, λ), λ) = 0, v ∈ Eλ

1 .

It follows from (3.2) and (3.9) that

(3.11) f(v, λ) = o(‖v‖), ∀λ ∈ R.

Therefore, by (3.2) and (3.11), the nonlinear operator gλ = P1G : Eλ
1 → Eλ

1 can be
expressed as

(3.12) gλ = P1G(v + f(v, λ), λ) = P1G1(v, λ) + g̃(v, λ),

where

g̃(v, λ) = o(‖v‖k).

Since the eigenvalues of Lλ
1 are given by βi(λ) (1 ≤ i ≤ m) satisfying (3.4), we

have the following index formula

(3.13) ind(Lλ
1 + gλ, 0) =

{
(−1)m, λ < λ0,

1, λ > λ0.

To complete the proof of the theorem, it suffices to show that

(3.14) ind(Lλ0

1 + gλ0
, 0) = even.

We proceed in three steps to prove (3.14).

Step 2. We first consider the case where Lλ0

1 = 0, i.e. r = m, the geometric
multiplicity equals to the algebraic multiplicity at λ0.

By assumptions, P1G1 : Eλ0

1 → Eλ0

1 is a nondegenerate k-th order multilinear
mapping. There exists a number β > 0 such that

(3.15) ‖P1G1(αv, λ0)‖ ≥ β|α|k, ∀v ∈ Eλ0

1 , ‖v‖ = 1.

It follows from (3.12) and (3.15) that for any R > 0 sufficiently small,

P1G1(v, λ0) + tg̃(v, λ0) 6= 0, ∀v ∈ Eλ0

1 , ‖v‖ = R, 0 ≤ t ≤ 1.



168 T. MA AND S. WANG

By the homotopy invariance property of the Brouwer degree, we have

ind(Lλ0

1 + gλ0
, 0) = deg(Lλ0

1 + gλ0
, BR, 0)(3.16)

= deg(P1G1(·, λ0), BR, 0),

where BR = {v ∈ Eλ0

1 | ‖v‖ < R}.
When k is even in (3.3), the degree in (3.16) must be even. In fact, by the Sard

theorem, there exists a w ∈ Eλ0

1 with ‖w‖ 6= 0 sufficiently small such that w is a
regular value of P1G1. Thus, the equation

P1G1(v, λ0) = w

has either no solution, or even number of solutions

±v1, · · · ,±vn ∈ BR.

Notice that the Jacobian of P1G1 is odd, i.e.

JP1G1(−v, λ) = −JP1G1(v, λ), ∀v ∈ Eλ0

1 .

Then we have

deg(P1G1(·, λ0), BR, 0)(3.17)

=
n∑

j=1

sign detJP1G1(±vj , λ0)

=





0, as m = odd,

2

n∑

j=1

sign detJP1G1(vj , λ0), as m = even.

Hence, (3.14) follows from (3.16) and (3.17).

Step 3. The case where m = 3, r = 2 and k = 2. To present the main idea
of the proof, we proceed with the special case where the algebraic multiplicity m = 3
and the geometric multiplicity r = 2 at λ = λ0.

Let

Eλ0

1 = span{w1, w2, w3},

Lλ0

1 w1 = 0,

Lλ0

1 w2 = 0,

Lλ0

1 w3 = w2.

By (2.22) and (2.23) in the proof of Theorem 2.3, we see that the dual eigenvectors
of {w1, w2, w3} satisfying < wi, w

∗
j >= δij are given by

L
∗λ0

1 w∗
1 = 0,

L
∗λ0

1 w∗
2 = w∗

3 ,

L
∗λ0

1 w∗
3 = 0.
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Therefore, we have the following

(3.18) e1 = w1, e2 = w2, e∗1 = w∗
1 , e∗2 = w∗

3 .

Under the basis {w1, w2, w3}, we have

(3.19) Lλ0

1 v =




0 0 0
0 0 1
0 0 0








x1

x2

x3



 , v =
3∑

i=1

xiwi =




x1

x2

x3



 ,

and, by k = 2,

(3.20) P1G1(v) =




3∑

i,j=1

b1ijxixj

3∑

i,j=1

b2ijxixj

3∑

i,j=1

b3ijxixj




, blij =< G1(wi, wj), w
∗
l >H .

Let T : Eλ0

1 → Eλ0

1 be a linear homeomorphism defined by

Tv =




1 0 0
0 0 1
0 1 0








x1

x2

x3



 ,

TLλ0

1 v = x3w3 =




0
0
x3



 .

Then we derive from (3.19), (3.20) and (3.12) that

T (Lλ0

1 + gλ0
)(v) = T (Lλ0

1 + P1G1)(v) + T g̃(v, λ0),(3.21)

T (Lλ0

1 + P1G1)(v) =




3∑

i,j=1

b1ijxixj

3∑

i,j=1

b3ijxixj

x3 +
3∑

i,j=1

b2ijxixj




,(3.22)

T g̃(v, λ0) = o(

3∑

i=1

x2
i ).(3.23)

By assumption, v0 = x1e1 + x2e2 = 0 is an isolated singular point of the following
equations

2∑

i,j=1

al
ijxixj = 0, l = 1, 2,
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where

a1
ij =< G1(ei, ej), e

∗
1 >H= b1ij ,

a2
ij =< G1(ei, ej), e

∗
2 >H= b3ij .

Thus we infer from (3.22) and (3.23) that for any 0 ≤ t ≤ 1, v =
∑3

i=1 xiwi = 0 is an
isolated zero point of the equation

(3.24)




2∑

i,j=1

a1
ijxixj + tx3

2∑

i=1

(b1i3 + b13i)xi + tb133x
2
3

2∑

i,j=1

a2
ijxixj + tx3

2∑

i=1

(b3i3 + b33i)xi + tb333x
2
3

x3 + t

3∑

i,j=1

b2ijxixj




+ tT g̃(v, λ0) = 0.

Based on the homotopy invariance property of the Brouwer degree theory, it
follows from (3.21)-(3.24) that

(3.25) deg(T (Lλ0

1 + gλ0
), BR, 0) = deg(K,BR, 0),

where R > 0 is sufficiently small, and

K(v) =




2∑

i,j=1

a1
ijxixj

2∑

i,j=1

a2
ijxixj

x3



.

According to the multiplication theorem and the dimension reduction theorem of the
Brouwer degree theory, it follows from (3.21)-(3.24) that

deg(T (Lλ0

1 + gλ0
), BR, 0) = ind(T, 0) · deg(Lλ0

1 + gλ0
, BR, 0)(3.26)

= (−1)deg(Lλ0

1 + gλ0
, BR, 0),

and

(3.27) deg(K,BR, 0) = deg(K̃, BR ∩ E, 0),

where E = span{e1, e2}, and

K̃(v0) =




2∑

i,j=1

a1
ijxixj

2∑

i,j=1

a2
ijxixj



, v0 = x1e1 + x2e2 = (x1, x2)

t.

By assumption, v0 = 0 is an isolated singular point of K̃. Hence we can prove in the
same fashion as in Step 2 that

(3.28) deg(K̃, BR ∩E, 0) = even.
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Finally, the index formula (3.24) follows from (3.25)-(3.28).

Step 4. The general case. Let the operator Lλ0

1 : Eλ0

1 → Eλ0

1 have the
following Jordan form

Lλ0

1 =




0 0 · · · 0
0 J1 · · · 0
...

...
...

0 0 · · · Jn


 , Ji =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0



.

The space Eλ0

1 can be decomposed into

Eλ0

1 = E ⊕ V, E = span{e1, · · · , er},

and V ⊂ Eλ0

1 is the complement of E.
It is known that there exists a linear homeomorphism T : Eλ0

1 → Eλ0

1 such that

TLλ0

1 |E = 0, TLλ0

1 |V = Im−r the identify matrix,(3.29)

PTP1G1|E : E → E,(3.30)

< G1(ej1 , · · · , ejk
, λ0), e

∗
i >H(3.31)

=< PTP1G1(ej1 , · · · , ejk
, λ0), w

∗
i >H ,

for 1 ≤ i ≤ r, where P : Eλ0

1 → E is the projection, {w∗
1 , · · · , w

∗
r} are the dual

eigenvectors of {e1, · · · , er}, i.e.

< ei, w
∗
j >H= δij .

As in the proof of (3.25)-(3.28), we infer from (3.29)-(3.31) that

deg(Lλ0

1 + gλ0
, BR, 0) = (−1)m−rdeg(T (Lλ0

1 + gλ0
), BR, 0)(3.32)

= (−1)m−rdeg(TLλ0

1 + TP1G1, BR, 0)

= (−1)m−rdeg(PTP1G1, BR ∩E, 0).

As for (3.17), we can show that

(3.33) deg(PTP1G1, BR ∩ E, 0) = even,

and (3.14) follows.
The proof of the theorem is complete.

3.3. Proof of Theorem 3.3. It is easy to see that the Leray-Schauder degree
theory is valid for the completely continuous fields Lλ +G : H1 → H , provided that L
satisfies (2.32) and (2.33). We know that the eigenvalues βj(λ) of Lλ with Reβj(λ) ≥ 0
are finite, and if Lλ : H1 → H is invertible, then

(3.34) ind(−(Lλ +G), 0) = deg(−(Lλ +G), Br, 0) = (−1)n,

where n is the sum of all algebraic multiplicities of the real eigenvalues βj(λ) > 0 of
Lλ, Br = {u ∈ H1 | ‖u‖H1

< r}, and r > 0 sufficiently small.
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By similar properties for the Leray-Schauder degree theory as those for the
Brouwer degree used in the proof of Theorem 3.2, we can show that under the condi-
tions of Theorem 3.3, the topological degree of Lλ +G at λ = λ0 is an even number,
i.e.

deg(−(Lλ +G), Br, 0) = (−1)mdeg(TP1G1, Br ∩ E, 0)(3.35)

= even,

where E, TP1G1 are the same as in (3.33), and n ≥ 0 is defined as in (3.34).
Then the rest of the proof of the theorem is routine using (3.34) and (3.35). The

proof is complete.

Remark 3.4. In fact, in the proof of Theorem 3.2 and 3.3, we have shown the
following result for the Leray-Schauder degree.

Let Lλ +G : H1 → H be a completely continuous field, and Lλ satisfy (2.32) and
(2.33). If there are {w1, · · · , wm} ⊂ H1 such that

Lni

λ0
wi = 0, 1 ≤ i ≤ m, ni ≥ 1,

and u = 0 is a k-th order nondegenerate singular point of Lλ0
+ G(·, λ0) for some

k ≥ 2, then

deg(−(Lλ0
+G(·, λ0)), Br, 0) = (−1)ndeg(Lλ0 + g,Br ∩ E, 0),

where n is the sum of all algebraic multiplicities of the real eigenvalues βj(λ0) > 0
of Lλ0

, E = span{w1, · · · , wm}, Lλ0 = −Lλ0
|E : E → E, g = −PG|E : E → E, and

P : H → E the canonical projection.

4. Bifurcation at geometric simple eigenvalues: r = 1. In this section, we
address the case where the geometric multiplicity of the eigenvalue is one, i.e. r = 1
in (3.6).

Definition 4.1. Let Γ(λ) ⊂ H1 be a branch bifurcated from (u0, λ0) of (3.1).
Γ(λ) is called regular if for any |λ − λ0| > 0 sufficiently small each singular point
vλ ∈ Γ(λ) of (3.1) is nondegenerate.

The main result in this section is as follows.

Theorem 4.2. Assume the conditions (3.2)- (3.5) and r = 1 in (3.6). If the
number

(4.1) α =< G1(e1, λ0), e
∗
1 >H 6= 0,

where G1 is given by (3.3), then the following assertions hold true.
(1) For the case where k is even in (3.3), there exists a unique bifurcated branch

of (3.1) on each side of λ0.
(2) For the case where k is odd and m is even, if α < 0, then (3.1) has no

bifurcation from (0, λ0), and if α > 0, then there are exactly two branches
bifurcated from (0, λ0) on each side of λ0.

(3) For the case where k is odd and m is odd, (3.1) has no bifurcated branch on
λ < λ0 (resp. on λ > λ0) and has exactly two branches on λ > λ0 (resp. on
λ < λ0) if α < 0 (resp. α > 0).

(4) Each branch Γ(λ) bifurcated from (0, λ0) for (3.1) is regular, and the singular
points uλ ∈ Γ(λ) can be expressed as
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uλ = ±|α−1β1(λ) · · · βm(λ)|1/(k−1)e1(4.2)

+ o(|α−1β1(λ) · · ·βm(λ)|1/(k−1)).

Proof. Let {w1, · · · , wm} and {w∗
1 , · · · , w

∗
m} ⊂ H1 satisfy

(4.3)

{
Lλ0

w1 = 0, Lλ0
w2 = w1, · · · , Lλ0

wm = wm−1,

L∗
λ0
w∗

m = 0, L∗
λ0
w∗

m−1 = w∗
m, · · · , Lλ0

w∗
1 = w∗

2 .

From the proof of Theorem 2.3, we see that

(4.4) < wi, w
∗
j >H= δij .

Applying the Lyapunov-Schmidt method as in the proof of Theorem 3.2, the bifurca-
tion of (3.1) is equivalent to the following equation




β1(λ) 1 0 · · · 0
0 β2(λ) 1 · · · 0
...

...
...

...
0 0 0 · · · βm(λ)






x1

...
xm


(4.5)

+ P1G(v + f(v, λ), λ) = 0,

where v =
∑m

i=1 xiwi(λ), and f(v, λ) is given by (3.11).
We see from (4.3) that e1 = w1(λ0), and e∗1 = w∗

m(λ0). By (3.1), (3.2) and (4.4),
we infer from (4.5) that

(4.6)






x2 = −β1(λ)x1 +O(|x|k),

...

xm = −βm−1(λ)xm−1 +O(|x|k),

α(λ)xk
1 = −βm(λ)xm +O(

k−1∑

i=0

m∑

j=2

|x1|
i|xj |

k−i),

where α(λ0) = α. It follows from (4.6) that near

(4.7) α(λ)xk−1
1 = (−1)mβ1(λ) · · · βm(λ) + o(|β1(λ) · · · βm(λ)|).

Thus, Assertions (1)-(3) and (4.2) follows from (3.4), (4.1) and (4.7).
Assertion (4) can be derived from the following determinant of the first order

approximation of the Jacobian of (4.5):

det




β1(λ) 1 0 · · · 0
0 β2(λ) 1 · · · 0
...

...
...

...

αkxk−1
1 0 0 · · · βm(λ)




= β1 · · ·βm − (−1)mkαxk−1
1

= β1 · · ·βm + o(|β1(λ) · · · βm(λ)|) (by (4.7))

6= 0 for λ 6= λ0 (by (3.4)).

The proof of the theorem is complete.
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5. Bifurcation with r = k = 2. Let r = 2 in (3.6), G1 is bilinear (i.e. k = 2),
and

a11 =< G1(e1, e1, λ), e
∗
1 >H ,

a22 =< G1(e2, e2, λ), e
∗
1 >H ,

a12 =< G1(e1, e2, λ), e
∗
1 >H + < G1(e2, e1, λ), e

∗
1 >H ,

b11 =< G1(e1, e1, λ), e
∗
2 >H ,

b22 =< G1(e2, e2, λ), e
∗
2 >H ,

b12 =< G1(e1, e2, λ), e
∗
2 >H + < G1(e2, e1, λ), e

∗
2 >H .

We have the following bifurcation theorem.

Theorem 5.1. Let the conditions (3.1)-(3.5) and r = 2 in (3.6) hold true. If
u = 0 is a second-order nondegenerate singular point of Lλ + G at λ = λ0, and the
two vectors (a11, a12, a22) and (b11, b12, b22) are linearly independent, then we have the
following assertions.

(1) There are at most three bifurcated branches of (3.1) bifurcated from (0, λ0)
on each side of λ = λ0.

(2) If the bifurcated branches on λ > λ0 (resp. on λ < λ0) are regular, then the
number of branches on this side is either 1 or 3.

(3) On any given side, if the number of of branches is 3, then these 3 branches
must be regular.

Proof. We proceed in several steps as follows.

Step 1. We only have to prove the case where m = r = 2. For the case where
m > r = 2, as in the proof of Theorem 4.2, the m−dimensional bifurcation equations
(3.10) can be treated as if it is two-dimensional equations, and the proof given below
for the case where m = r = 2 can then be applied as well.

As m = r = 2 in (3.4) and (3.6), the bifurcation equations (3.10) can be written
as follows

(5.1)

{
β1(λ)x1 + a11x

2
1 + a12x1x2 + a22x

2
2 + o(|x|2) = 0,

β2(λ)x2 + b11x
2
1 + b12x1x2 + b22x

2
2 + o(|x|2) = 0,

where x = (x1, x2)
t.

Step 2. We now show that there is an ǫ > 0 such that for any function
(f1(x), f2(x)) with |f1(x)| + |f2(x)| small near x = 0, the following equations

a11x
2
1 + a12x1x2 + a22x

2
2 + f1(x) + o(|x|2) = 0,(5.2)

b11x
2
1 + b12x1x2 + b22x

2
2 + f2(x) + o(|x|2) = 0,(5.3)

have at most four solutions in |x| < ǫ.

Since the second order terms in (5.2) and (5.3) are non-degenerate, at least one of
the coefficients a11, a22, b11, and b22 is not zero. Without loss of generality, we assume
that a22 6= 0. Then we obtain from (5.2) that

(5.4) x±2 = −
a12

2a22
x1 ±

1

2a22

√
(a2

12 − 4a11a22)x2
1 − 4a22f1(x) + o(|x|2),
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which, by the implicit function theorem, implies that

(5.5) x±2 = −
a12

2a22
x1 ±

1

2a22
△,

where

△ =
√

(a2
12 − 4a11a22)x2

1 + g(x1) + o(|x1|2),

g(x1) → 0 as f1(x) → 0.

Inserting (5.5) into (5.3), we have

(5.6) αx2
1 + b22g(x1) + 4a2

22f2(x) + o(|x|2) = ∓βx1△,

where

α = 4a22(a22b11 − a11b22) + 2a12(a12b22 − a22b12),

β = 2(a22b12 − a12b22).

We infer then from (5.5) and (5.6) that

(5.7) ρx4
1 + h1(x1)x

2
1 + h2(x1) + o(|x|4) = 0,

where

ρ = α2 − β2(a2
11 − 4a11a22),

h1(x1), h2(x1) → 0 as f1(x), f2(x) → 0.

It is easy to see that the condition ρ 6= 0 is equivalent to the following conditions

(5.8) b22z
2
± + b12z± + b11 6= 0, z± =

−a12 ±
√
a2
12 − 4a11a22

2a22
.

By the assumptions of this theorem, conditions in (5.8) are valid. Therefore, ρ 6= 0,
which implies that (5.7) has at most four real solutions satisfying that x1 → 0 as
f1(x), f2(x) → 0.

On the other hand, each solution of (5.7) corresponds to one of the signs ± in
(5.5) and (5.6). Hence equations (5.2) and (5.3) have at most four real solutions near
x = 0. Namely, Assertion (1) is proved.

Step 3. Proof of Assertion (2). Let Fλ : R2 → R2 be defined by

Fλ(x) =

(
β1(λ)x1 + a11x

2
1 + a12x1x2 + a22x

2
2 + o(|x|2)

β2(λ)x2 + b11x
2
1 + b12x1x2 + b22x

2
2 + o(|x|2)

)
.

It is clear that the regularity of the bifurcated branches of (3.1) is equivalent to the
regularity of singular points of (5.1). Hence for the singular points z(λ) near x = 0,
we have

(5.9) ind(Fλ, z(λ)) = ±1,

for |λ− λ0| 6= 0 sufficiently small. In addition, we know that

(5.10) ind(Fλ, 0) = signβ1(λ)β2(λ) = 1,
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as λ 6= λ0, and by (3.14), we have

(5.11)
∑

|zi|<ǫ

ind(Fλ, zi(λ)) = even,

for any ǫ > 0 small. Hence Assertion (2) follows from (5.9)-(5.11) and Assertion (1).

Step 4. Proof of Assertion (3). It suffices to show that the bifurcated
singular points of (5.1) are regular. Let zi(λ) ∈ R

2 (i = 1, 2, 3) be the bifurcated
singular points of (5.1).

Suppose that z1(λ) is degenerate, i.e.

(5.12) detJFλ(z1(λ)) = 0,

where JFλ stands for the Jacobian matrix of Fλ.
By (5.12), under suitable coordinate system, the function Fλ can be expressed

near z1(λ) as

(5.13) F̃λ(y) =

(
αλy2 + c11y

2
1 + c12y1y2 + c22y

2
2 + o(|y|2)

d11y
2
1 + d12y1y2 + d22y

2
2 + o(|y|2)

)
,

where y = x− z1(λ). Hence the singular points of F̃λ(y) near y = 0 are given by

y1 = 0, y2 = z2 − z1, y3 = z3 − z1, y4 = −z1.

Let r > 0 be sufficiently small such that

y2, y3, y4 /∈ B2r = {y ∈ R
2 | |y| < 2r}.

We take a C∞ cut-off function ρr : R2 → R as follows

ρr(y) =

{
1, as y ∈ Br,

0, as y ∈ R
2/B2r.

By assumption, the quadratic form in Fλ(x) is nondegenerate. Hence the

quadratic form in F̃λ(y) is also nondegenerate. Now we consider the perturbation
equation

(5.14) F̃λ(y) + ρr(y)(ǫ1y1, ǫ2y2)
t = 0,

for ǫ1, ǫ2 small.
It is clear that yi (1 ≤ i ≤ 4) are also solutions of (5.14). When αλ = 0 in (5.13),

by Theorem 3.2, for ǫ1, ǫ2 small, equation (5.14) has at least five solutions near y = 0.
When αλ 6= 0, we take ǫ1 = 0 and ǫ2 = δ, then equation (5.14) can be rewritten as

αλy2 = −(c11y
2
1 + c12y1y2 + c22y

2
2) + o(|y|2),(5.15)

δy1 = −(d11y
2
1 + d12y1y2 + d22y

2
2) + o(|y|2).(5.16)

By the implicit function theorem, we obtain from (5.15) a function y2 = f(y1). Then
(5.16) implies that

(5.17) δy1 + d11y
2
1 + d12y1f(y1) + d22(f(y1))

2 + o(|y1|
2) = 0.
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By the second-order nondegeneracy of Fλ(x), there exist a 6= 0 and k ≥ 2 such that
(5.17) becomes

(5.18) δy1 + ayk
1 + o(|y1|

k) = 0.

We infer then from (5.18) that equations (5.15) and (5.16) have two solutions in Br:
(0, 0) and (ỹ1, f(ỹ1)), where

ỹ1 = (−δ/a)1/k−1 + o(|δ/a|),

and δ is taken such that δ · a < 0. Hence (5.14) has five solutions near y = 0.
On the other hand, by Step 2, we know that (5.14), which can be expressed

equivalently in the form of (5.2) and (5.1), has at most four solutions. This is a
contradiction. Therefore, Assertion (3) is proved.

The proof of Theorem 5.1 is complete.

Remark 5.2. The condition that (a11, a12, a22) and (b11, b12, b22) are linearly
independent is necessary; otherwise Theorem 5.1 is not true.

6. An Application. Consider the following system of elliptic equations

(6.1)

{
−△u1 = λu1 + au2 + g1(u1, u2),

−△u2 = λu2 + g2(u1, u2),

supplemented with the Dirichlet boundary conditions

(6.2) u = (u1, u2)
t = 0 on ∂Ω.

Here the domain Ω ⊂ Rn (n ≤ 3) is a smooth and bounded domain, α1, α2 are real
parameters, a > 0 a constant, and g1, g2 smooth functions given by

g1 =
∑

i+j=2

aiju
i
1u

j
2 + o(|u|2),

g2 =
∑

i+j=2

biju
i
1u

j
2 + o(|u|2).

Let λ1 > 0 and h1 be the first eigenvalue and eigenvector of the Laplacian operator
with the Dirichlet boundary conditions:

−△h1 = λh1,

h1|∂Ω = 0.

Let

H = L2(Ω,R2), H1 = H2
0 (Ω,R2),

and let Lλ = −A+Bλ = H1 → H , and G = H2 → H be defined by

−Au = (△u1,△u2)
t,

Bλ(u) =

(
λ a
0 λ

) (
u1

u2

)
,

G(u) = (g1(u), g2(u))
t.
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We consider two cases as follows.

Case a = 0. In this case, we have β1(λ) = β2(λ) = λ − λ1, and both the geometric
and algebraic multiplicities are 2. The corresponding eigenfunctions are given by

e1 = e∗1 = (h1, 0)t, e2 = e∗2 = (0, h1)
t.

Let G1 be the 2nd order homogeneous term of G :

(6.3) G1(u) =




∑

i+j=2

aiju
i
1u

j
2,

∑

i+j=2

biju
i
1u

j
2




t

Then by Theorem 3.1, if x = (x1, x2)
t = 0 is an isolated singular point of

(6.4)





∑

i+j=2

aijx
i
1x

j
2 = 0,

∑

i+j=2

bijx
i
1x

j
2 = 0,

then the problem (6.1) and (6.2) bifurcates at least one nontrivial branch from the
trivial solution u = 0 on each side of λ = λ1. We remark here that the eigenvalue
λ = λ1 has even multiplicity 2, and the classical Krasnoselskii bifurcation theorem
does not appear to be applicable.

Case a 6= 0 and a11 6= 0. In this case, we have β1 = β2(λ) = λ− λ1, λ0 = λ1, and

e1 = (h1, 0)t, e2 = (0, a−1h1)
t,

Lλ0
e2 = e1,

e∗1 = (0, h1)
t, e∗2 = (a−1h1, 0)t,

L∗
λ0
e∗1 = e∗2.

Hence we have the geometric multiplicity r = 1, and the algebraic multiplicity is still
2. The algebraic equations (3.7) become in this case

(6.5) a11x
2 = 0.

When a11 6= 0, x = 0 is nondegenerate zero of (6.5). Namely, we obtain in this
case, the problem (6.1) and (6.2) bifurcates at least one nontrivial branch from the
trivial solution u = 0 on each side of λ = λ1. Again, as the eigenvalue λ = λ1 has
even algebraic multiplicity 2, the classical Krasnoselskii bifurcation theorem does not
appear to be applicable.
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