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1.  Introduction

Micro-CT is widely used in preclinical studies, and there is substantial interest in using these systems to obtain 
not only anatomical but also functional information such as cardiac function or perfusion information (Badea 
et al 2011a, Sawall et al 2012, Clark and Badea 2014). 4D (3D  +  Time) cardiac micro-CT is challenging in mice 
due to their small heart size (~5 mm diameter) and rapid heart rates (up to 600 beats min−1), thus requiring both 
high spatial and high temporal resolution.

4D cardiac micro-CT aims to produce temporally resolved tomographic volumes over several phases of the 
cardiac cycle. Gating strategies are required for 4D cardiac micro-CT, and can be classified as either prospective 
(Badea et al 2005, 2007) or retrospective (Badea et al 2008c, 2011a). In both prospective gating (PG) and retro-
spective gating (RG), physiological signals such as ECG and respiratory motion are monitored. Prospectively 
gated projections are acquired when certain physiological conditions are met, such as the R-peak of the ECG 
and/or the desired respiratory phase (e.g. inspiration or expiration). After capturing a projection, the subject 
(or the imaging gantry) is rotated through the next step angle and is held there until another projection can be 
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Abstract
Micro-CT is widely used in preclinical studies, generating substantial interest in extending its 
capabilities in functional imaging applications such as blood perfusion and cardiac function. 
However, imaging cardiac structure and function in mice is challenging due to their small size and 
rapid heart rate. To overcome these challenges, we propose and compare improvements on two 
strategies for cardiac gating in dual-source, preclinical micro-CT: fast prospective gating (PG) and 
uncorrelated retrospective gating (RG). These sampling strategies combined with a sophisticated 
iterative image reconstruction algorithm provide faster acquisitions and high image quality in low-
dose 4D (i.e. 3D  +  Time) cardiac micro-CT. Fast PG is performed under continuous subject rotation 
which results in interleaved projection angles between cardiac phases. Thus, fast PG provides a 
well-sampled temporal average image for use as a prior in iterative reconstruction. Uncorrelated 
RG incorporates random delays during sampling to prevent correlations between heart rate and 
sampling rate. We have performed both simulations and animal studies to validate these new 
sampling protocols. Sampling times for 1000 projections using fast PG and RG were 2 and 3 min, 
respectively, and the total dose was 170 mGy each. Reconstructions were performed using a 4D 
iterative reconstruction technique based on the split Bregman method. To examine undersampling 
robustness, subsets of 500 and 250 projections were also used for reconstruction. Both sampling 
strategies in conjunction with our iterative reconstruction method are capable of resolving cardiac 
phases and provide high image quality. In general, for equal numbers of projections, fast PG 
shows fewer errors than RG and is more robust to undersampling. Our results indicate that only 
1000-projection based reconstruction with fast PG satisfies a 5% error criterion in left ventricular 
volume estimation. These methods promise low-dose imaging with a wide range of preclinical 
applications in cardiac imaging.
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acquired. The advantage of PG methodology is that it gives the imaging system control over the angular sampling 
distribution. The resulting projection data is well-sampled and has a regular-angular distribution. Thus, filtered 
back-projection (FBP) reconstruction algorithms such as Feldkamp’s (Feldkamp et al 1984) can be applied to 
provide tomographic data with adequate image quality (Badea et al 2008b). The disadvantage of PG is that it can 
require long scan times and sometimes high radiation doses (Badea et al 2005, Cao et al 2010). An acquisition of 
10 phases of the cardiac cycle can take up to an hour.

To reduce the sampling time while maintaining the image quality, we have also proposed fast PG (Guo et al 
2012). Fast PG combines the regular angular distribution of PG with the fast scan time of RG while performing 
respiratory or cardiac imaging. With fast PG, we acquire multiple projections at the same angle, corresponding to 
all cardiac or respiratory phases to be reconstructed, before the animal (or imaging gantry) is rotated to the next 
angle. Fast PG uses on-the-fly computation of the triggering events, which are delayed from the peaks of the res-
piratory or cardiac signals. Fast PG acquired projection data has been reconstructed with Feldkamp’s algorithm 
(Feldkamp et al 1984). However, when the numbers of projections and the dose are reduced, such analytical 
reconstructions suffer from higher noise and undersampling artifacts. Noise and undersampling artifacts can 
be reduced when reconstruction is performed with more sophisticated iterative algorithms (Sawall et al 2011, 
Ritschl et al 2011) and prior information (Chen et al 2008, Tang et al 2010, Brehm et al 2015).

RG is typically performed by acquiring projections that are not triggered by physiological signals. Instead 
projections are taken at a fixed sampling rate. They are usually acquired more rapidly and with greater sampling 
density than in PG. Physiological signals (e.g. ECG and respiration signals) are recorded and used post-acquisi-
tion to sort projections into their respective cardiac and/or respiratory phases. The benefit of RG is that, unlike 
PG where only specific phases are sampled, projections from many cardiac phases are captured and can be used to 
reconstruct any cardiac phase. RG with our system is performed by rotating the subject slowly while projections 
are acquired (Badea et al 2011a). Other groups have implemented RG on a slip-ring, flat-panel-based micro-CT 
system for cardiac studies in mice (Drangova et al 2007, Bartling et al 2007). Unfortunately, RG produces an 
irregular angular distribution of projections per phase; thus, when using Feldkamp’s reconstruction algorithm, 
streaking artifacts affect the image quality of the tomographic reconstructions. Previously, a few solutions have 
been proposed to alleviate streaking artifacts based on iterative reconstruction with total variation (Song et al 
2007, Ritschl et al 2012), on point spread function deconvolution (Badea et al 2011a), on iterative, multi-dimen-
sional bilateral filter techniques (Sawall et al 2012), and on the use of well-sampled, temporally-averaged prior 
images (Chen et al 2008, Armitage et al 2012, Brehm et al 2015). To improve the reconstruction of RG data, we 
have also introduced sophisticated compressed sensing approaches such as iterative reconstruction algorithms 
using 4D bilateral filtration and rank-sparse kernel regression for regularization (Clark et al 2015). Alternatively, 
we have combined retrospectively and prospectively gated data using deformable registration to achieve the high 
image quality associated with prospectively gated data, but with sampling times similar to retrospectively gated 
acquisitions (Badea et al 2008c). In the end, however, all these solutions for reconstructing RG data are influenced 
by the limited number and angular distribution of phase-specific projections. A more regular-angular distribu-
tion and a sufficient number of projections corresponding to each cardiac phase can improve the image quality 
of the final tomographic images.

The goal of this paper is to propose improvements and compare PG and RG strategies for dual source micro-
CT combined with a sophisticated image reconstruction algorithm to provide faster acquisitions and high image 
quality in low-dose, 4D cardiac micro-CT. We have performed both simulations and animal studies to validate 
the new sampling and reconstruction protocols. We have also compared the results from our novel fast PG and 
RG strategies in 4D cardiac imaging in mice.

2.  Material and methods

A brief description of our micro-CT system is first presented (section 2.1). Summaries of the fast PG and RG 
strategies with their implementations are described (sections 2.2–2.4). Details are then given on the iterative 
reconstruction method employed (section 2.5). Realistic simulations for both gating strategies are described 
(section 2.6), and the application of these strategies in vivo for 4D micro-CT is then set forth (section 2.7).

2.1.  Dual-source micro-CT system
The small-animal imaging system used in this work has been described in detail elsewhere (Badea et al 2008). The 
system incorporates two imaging chains capable of independently triggered acquisitions. The system contains 
two G-297 x-ray tubes (Varian Medical Systems, Palo Alto, CA) with 0.3/0.8 mm focal spot size, two Epsilon 
high-frequency x-ray generators by EMD Technologies (Quebec, Canada), and two CCD-based detectors with 
Gd2O2S phosphors (XDI-VHR 2 Photonic Science, East Sussex, UK) and with 22 µm pixels, which we bin to 
88 µm. The data acquisition is controlled with custom sequencing applications written in LabVIEW (National 
Instruments). We use pulsed x-rays with a short exposure time of 10 ms to limit motion blur. The subject is 
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mounted in a vertical cradle and rotated through all projection angles with a circular scanning trajectory. The use 
of both imaging chains effectively halves imaging time.

2.2.  Fast PG with continuous rotation
Our previously introduced fast PG strategy created identical, regular-angular distributions of projections for 
each cardiac phase; we acquired projections for all phases at each angle before rotating to the next one (Guo et al 
2012). Thus, with angular undersampling (required to reduce radiation dose and scan time), the temporally 
averaged reconstruction could not serve as a high-quality prior for more sophisticated iterative reconstruction 
because each cardiac phase contained the same undersampling artifacts. In this work, we implement a novel 
method of fast PG to address this problem. In contrast to our previous fast PG strategy, here projections are 
acquired while the subject is continuously rotated. Continuous rotation causes sets of projections for different 
phases to be interspersed with one another (see figures 1(A) and 2(A)) and equiangularly distributed. This yields 
high spatial sampling density for a temporally-averaged FBP initialization volume for iterative reconstruction. 
Such an image can also serve as a prior in regularization (see section 2.5).

Note that in figures 1 and 2, we present an angular distribution of projections and each projection is repre-
sented as a radial line (inspired by the representation used to support the Central Slice Theorem (Kak and Slaney 
1988)). In figure 2, the angular distribution of projections for two selected cardiac phases (i.e. systole and dias-
tole) are displayed from the ten phases which were imaged in a mouse. During fast PG, each imaging chain of our 
dual source micro-CT system was set to acquire discrete phases independent of one another.

2.3.  Uncorrelated RG acquisition
In addition to improved fast PG, we propose an improved method for 4D micro-CT with RG in which we prevent 
the correlation that often occurs between the sampling rate of the imaging system and the subject’s heart rate. 
Our method reduces this correlation by implementing random delays into the steady pacing of traditional 
RG. The delay is adjusted on the fly using the subject’s heart rate and is calculated as a random positive integer 
in milliseconds using a uniform distribution. The value of the delay ranges from zero to one R–R interval. By 
implementing the delay as a function of the heart rate, we ensure that cardiac phases are sampled at random 
with any projection having a near-equal chance of representing any given phase (see figures 1(B) and 2(B)). 
Figure 2(B) illustrates the angular distribution of two example cardiac phases (systole and diastole) as sampled 
by uncorrelated RG. Note the random distribution of projections across each phase. Uncorrelated RG addresses 
the consequence of correlation that may appear in practice between the sampling rate and the heart rate which 
usually results in a poor angular distribution and significant artifacts in temporal reconstructions. Figure 3 
contains images which were reconstructed using FBP and were virtually sampled from the MOBY mouse 
phantom (Segars et al 2004) using experimentally acquired ECG signals for angular and phase information (see 
details in section 2.6). Thus, for some cardiac phases, relatively few projections are available for reconstruction, 
and those that are available often have irregular-angular distributions with large gaps of missing projections 
(figure 3(A)). These gaps are larger in cases of correlated RG, as confirmed by a wider and non-uniform spread 
in the histogram of the angular steps between projections (figure 3(B)). Thus, correlated RG gives more artifacts 
in the tomographic reconstruction (figure 3(C)). Consequently, uncorrelated RG was designed to address these 
sampling situations and to ensure a more uniform-angular distribution of projections and less artifacts in the 
reconstruction.

2.4.  Implementation of fast PG and uncorrelated RG
We implemented both improved fast PG and uncorrelated RG in LabVIEW (National Instruments, Austin TX). 
The LabVIEW virtual instruments, or VIs, give control of gating and acquisition parameters and display the 
subject’s ECG and respiratory signals. During our improved fast PG, the ECG signal is used to trigger acquisitions. 
R peaks are detected based on their amplitude crossing a threshold, and triggers are sent after a phase-specific 
delay from the R peak. The current R–R interval is calculated by the VI from a 4 s running average of the heart 
rate. A list of cardiac phases to acquire is entered into the VI as a list of percent R–R interval delays (e.g. 0, 10, 20, 
30, … 90%). Input cardiac phases are cycled for the duration of the scan, each phase being used to trigger a single 
exposure before moving to the back of the queue. A single projection per imaging chain is acquired for every 
cardiac cycle. A diagram of the acquisition process is given in figure 1(A). During sampling respiratory motion 
was not used to control gating in fast PG. Instead respiratory gating was applied retrospectively. This was done to 
reduce the sampling time required for fast PG acquisitions. Because the subject’s heart rate drives the sampling 
rate of the system, the number of projections acquired per rotation is controlled by adjusting the rotational 
velocity of the stage. Prior to the start of a scan, the VI calculates the rotational velocity of the stage based on an 
input number of projections to acquire and the subject’s heart rate using the following equation where TRR refers 
to the R–R period of the cardiac cycle:

Phys. Med. Biol. 63 (2018) 025009 (17pp)
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Figure 1.  Gating strategies for fast PG and uncorrelated RG. Colors represent binned cardiac phases. (A) Fast PG with continuous 
rotation is performed by acquiring projections at pre-determined phases of the cardiac cycle. Trigger timing is calculated as a delay 
from R-peak detection. The subject rotates continuously throughout acquisition; thus, a temporally averaged image will not be 
affected by undersampling artifacts and can be used as a prior for iterative reconstruction. (B) Uncorrelated RG is also performed 
under continuous rotation. Cardiac phases are uncorrelated via a random, zero to one R–R interval, delay between exposures. This 
results in an irregular angular distribution of projections for each cardiac phase.

Figure 2.  Projection angular distribution for fast PG and uncorrelated RG methods obtained in vivo. Colors represent the dual 
imaging chains of our micro-CT system. Two example cardiac phases are shown from the ten which were imaged. The total number 
of projections across all 10 phases for each gating method was 1000. (A) During fast PG each imaging chain was set to acquire 
discrete phases independent of one another. (B) The angular distributions for uncorrelated RG show that each phase is captured by a 
combination of both chains.

Phys. Med. Biol. 63 (2018) 025009 (17pp)
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rotational velocity =
Full scan angle

(TRR)× (number of projections)
.� (1)

A separate VI was programmed for uncorrelated RG. Similar to the PG VI, the RG VI displays the subject’s ECG 
and respiratory signals. It additionally allows control of the system’s sampling rate and rotational velocity. These 
parameters determine the angular density of the projections and the total number of projections acquired per 
stage rotation. To remove possible correlation with the subject’s heart rate, the VI adds a randomly generated 
delay to each x-ray trigger (figure 3(B)). The bounds on this random delay are set from zero to one R–R interval. 
In this implementation, care had to be taken so that the fastest sampling rate did not exceed our hardware image 
acquisition limit of 10 Hz which would result in blank projections. To ensure that this limit was not exceeded 

Figure 3.  Comparison of simulated RG with steady sampling that correlates with subject heart rate and randomized sampling 
which is uncorrelated with heart rate. For each case a total of 1000 projections were used across 10 cardiac phases. (A) The number 
and distribution of projections in correlated and uncorrelated RG for the phase corresponding to 50% R–R. (B) Histograms 
showing the angular spacing between projections in the same phase. The presence of high angular steps indicates gaps in the 
projection distribution. (C) FBP comparisons show how such correlated sampling can negatively affect reconstruction quality.

Phys. Med. Biol. 63 (2018) 025009 (17pp)
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while applying a random delay to each acquisition (i.e. a maximum delay followed by a minimum delay), the 
system was configured to sample with a period at least 100 ms longer than the subject’s R–R interval.

2.5.  Iterative image reconstruction
Figure 4 summarizes the application of the split Bregman method with the add-residual-back strategy (Goldstein 
and Osher 2009, Gao et al 2011) to the problem of temporal CT reconstruction. A similar algorithm has been 
proposed by us for spectro-temporal reconstruction in our previous work (Clark et al 2015). Here we solve the 
problem of temporal reconstruction by minimizing the following penalized, weighted least squares objective 
function:

X =
arg min

X
1

2

∑
t

[
(AXt − y)TQt (AXt − y)

]
+ λ‖X‖BTV.� (2)

Each column of the reconstructed data, X, represents the reconstructed volume at a different time point (cardiac 
phase), indexed by t. The columns of X are related to the acquired projection data, y, through the CT system 
projection matrix, A, and a time-point specific, diagonal weighting matrix, Qt. The weights on the diagonal 
of Qt are repeated for each detector pixel within a single projection. When PG is used, the weights are binary, 
taking on a constant value for all projections associated with the corresponding cardiac phase, and being set to 
zero for all projections associated with other cardiac phases. When RG is used, projection weights are assigned 
based on Gaussian basis functions which are centered on the phase to be reconstructed and which have a full-
width-at-half-maximum equal to the integration time of the projection data, scaled to span the complete cardiac 
cycle. Regardless of the gating strategy, additional multiplicative weights are included to account for respiration. 
Additional details regarding retrospective projection weighting and weight-based respiratory gating can be 
found in our previous work (Clark et al 2015).

In this study, we have used binary weighting on the respiration. For both the in vivo experiments and the 
simulations, the majority of the projections (around 80%) were acquired during, or very close to, the same res-
piratory phase, i.e. end-expiration. The median value of the respiratory signal, representing end-expiration, was 
assigned as the baseline respiratory value. The difference between the baseline value and the value of the respira-
tory signal at the time of each exposure was used to determine which weights to assign projections. To control for 
the effects of respiratory motion, the 20% of projections with the largest differences in value to the baseline were 
assigned zero weights. Note that respiratory gating reduces the number of projections available for each cardiac 
phase and introduces irregularities in the angular distribution, even for fast PG.

Following step 1 in figure 4, iterative reconstruction is initialized with temporally-weighted least-squares 
evaluated for each time point, t, (nt total time points) and with the biconjugate gradient stabilized convex solver 

Figure 4.  4D CT reconstruction algorithm based on 4D, joint bilateral filtration (Clark et al 2015) and the split Bregman 
method with the add-residual-back strategy (Goldstein and Osher 2009, Gao et al 2011). (1) Temporally-weighted least-squares 
initialization for each time point, t, (nt total) solved with the BiCGSTAB method (Van der Vorst 1992). (2) Initialization of the 
regularization residuals, V. (3) Calculation of an appropriate regularization parameter, µ, based on a user-specified scalar parameter, 
α (α ∈ [0.001, 0.01]). (4)–(7) Reconstruction steps iterated until convergence (~3–4 iterations). (4) and (5) Spatiotemporal 
regularization with bilateral filtration (BF). (6) Residual update step. (7) Data fidelity update step solved for each time point using 
BiCGSTAB.

Phys. Med. Biol. 63 (2018) 025009 (17pp)
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(BiCGSTAB (Van der Vorst 1992)). Given this algebraic initialization for the reconstruction of each timepoint, 
Xt, it is possible to analytically estimate an appropriate value for the regularization parameter, µ, which con-
trols the trade-off between spatial domain regularization and projection domain data fidelity (step 3). The value 
of this parameter is derived from the temporally averaged ratio of the magnitude of the temporally weighted 
and unfiltered backprojection (ATQty) and the corresponding reconstruction of each time point (Xt), account-
ing for magnitude scaling differences introduced by the system backprojection matrix (AT) and the temporal 
weights (Qt). The user controls the regularization strength through the scalar parameter α. Combined with the 
data-adaptive regularization scheme described below, appropriate values for α fall within a predictable range 
(i.e. α ∈ [0.001, 0.01]; (Clark and Badea 2017)), reducing the significance of parameter tuning when comparing 
reconstructions performed with different numbers of projections, different noise levels, etc.

Reconstruction is performed subject to a regularity constraint which penalizes bilateral total variation (equa-
tion (2); BTV; (Elad 2002, Farsiu et al 2004)). For temporal reconstruction, we minimize BTV through the appli-
cation of bilateral filtration (BF, (Tomasi and Manduchi 1998); figure 4, step 4). Specifically, following from the 
concept of low rank and sparse matrix factorization, we apply BF to the temporal average reconstruction (gL) and 
the phase-specific temporal contrast (GS,t) (Clark et al 2015):

gL = meantime (X + V) , GS,t = (Xt + Vt)− gL.� (3)

BF is applied independently to gL, to remove noise from the temporal mean, and jointly to gL and GS to remove 
noise from the temporal contrast. For gL, 3D BF is applied as a neighborhood-adaptive convolution operation:

dL(m) =

∑
n C(n)R (gL, m, n) gL (m − n)∑

n C(n)R (gL, m, n)
,� (4)

C(n) =

{
1, ‖n‖2 � b

0, ‖n‖2 > b
,� (5)

R (gL, m, n) = exp

(
− (WKgL (m, n))2

2(hσL)
2

)
,� (6)

WKgL (m, n) := gL (m − n)−
∑

l

K(l)gL(m − l).� (7)

To regularize the intensity of the voxel located at spatial position m (equation (4)), a weighted average is 
performed between the intensities of voxels within the filtration domain, C(n) (equation (5); domain radius, 
b  =  6). Intensity weights are assigned by the Gaussian range kernel, R(gL,m,n), which is parameterized by 
the scalar smoothing parameter, h, and the noise standard deviation measured in the data immediately prior 
to filtration, σL (measured by computing the median absolute deviation; see (Clark and Badea 2017)). The 
magnitudes of the range weights are inversely proportional to the Euclidean distance between the intensities 
of the neighboring voxels, gL(m–n), and the intensity of the central voxel, gL(m), following resampling with the 
smoothing kernel, K(l) (also defined on the domain C(n)). As a consequence of data-adaptive regularization 
strength scaling based on σ within the range kernel, proportionally more regularization is applied to noisy data, 
facilitating calibration of the regularization parameter, µ, and the comparison of reconstructions using different 
numbers of projections. Notably, this regularization strength scaling combined with the µ parameter implicitly 
defines a value for the λ regularization parameter included in the original cost function (equation (2)).

Regularization of the temporal contrast is similar; however, the filtration domain is expanded to include the 
time point proceeding (t  −  1) and following (t  +  1) the time point being filtered. Furthermore, BF is performed 
jointly between gL and each time point, GS,t, by multiplying independently computed range weights at each spa-
tial position, n, within the filtration domain:

DS,t(m) =

∑ j=t+1
j=t−1

∑
n C(n)R (gL, m, n)Rt

(
GS,j, m, n

)
GS,j (m − n)

∑ j=t+1
j=t−1

∑
n C(n)R (gL, m, n)Rt

(
GS,j, m, n

) .� (8)

The range kernel computed from GS,j, Rt, is similar to the range kernel defined in equations (6) and (7):

Rt

(
GS,j, m, n

)
= exp

(
−
(WK,tGS,j (m, n))2

2(hσS)
2

)
� (9)

WK,tGS,j (m, n) := GS,j (m − n)−
∑

l

K(l)GS,t(m − l)� (10)

Phys. Med. Biol. 63 (2018) 025009 (17pp)
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The primary difference is that the resampling operation (equation (10)) is applied only to the time point being 
filtered, t. This intensity is subtracted from each time point (j  =  t  −  1, j  =  t, j  =  t  +  1) during range kernel 
computation (equation (9)).

Computations were performed using a stand-alone computer. The computing resources for the computer 
include an Intel Xeon CPU, 64 GB of RAM, and an NVIDIA GeForce GTX Titan graphics card with 6 GB of dedi-
cated memory. Iterative reconstruction operations and BF were performed on the GPU. Distance-driven opera-
tors for projection and backprojection (Long et al 2010) were coded using NVIDIA’s CUDA libraries.

2.6.  Phantom simulations
We examined the efficacy of 4D cardiac micro-CT with fast PG and uncorrelated RG in simulations using an 
anatomically correct mouse phantom known as the MOBY phantom (Segars et al 2004) (400  ×  400  ×  140 
voxels, 88 µm spacing). We generated 100 MOBY volumes, each representing a unique combination of 10 cardiac 
and 10 respiratory phases. From selections of these phase-specific volumes, we used our distance driven forward 
projector to create 1000 cone beam projections over a 360° rotation. The projections were divided into two sets 
of 500, representing data as it would be collected with our dual source micro-CT system. To better mimic the 
experimental acquisitions, Poisson noise was added to the projections using the poissrnd function in MATLAB 
(MathWorks, Natick, MA). Noise in the reconstructions was quantified using the standard deviation of voxel 
values in water.

For both fast PG and uncorrelated RG, the angles and cardiac and respiratory phases used to create projec-
tions were generated using angles, ECG, respiration, and trigger data recorded during in vivo mouse imaging (see 
section 2.7). By using the information recorded from the in vivo trials to generate projections, we have created 
a more realistic representation of the animal experiment in our simulations. This allows for an assessment of 
image quality for each sampling strategy by comparison with the ground truth. The same image reconstruc-
tion algorithm and regularization parameters employed in the animal experiments were used to reconstruct the 
simulation volumes.

To assess the strength of fast PG and uncorrelated RG combined with the iterative reconstruction method 
described here, simulations were created with varying degrees of undersampling. In addition to reconstructions 
from the full 1000 projections captured in the experimental case, reconstructions were performed using subsets 
of 500 and 250 projections over 360° of rotation. In the undersampled cases, projection subsets were created by 
selecting every other or every fourth projection from the full set of 1000 projections.

We have also simulated the previous strategies for sampling corresponding to conventional RG and fast PG 
without continuous rotation. Conventional RG was simulated by sampling the respiratory and cardiac signals at 
a constant rate (figure 3). The previous fast PG sampling strategy was simulated by sampling 10 cardiac phases, 
along with variations in respiration, at each angle before rotating to the next step. Reconstructions were per-
formed using the same iterative algorithm as the proposed sampling methods, with 1000, 500 and 250 projec-
tions. We compare these results with analogous results produced with our new fast PG and uncorrelated RG 
strategies.

As metrics for image quality, we have used both the root-mean-square error (RMSE) and the structural 
similarity index (SSIM). To adequately assess temporal resolution RMSE was computed in a volume of interest 
around the heart, a slice of which is marked in figure 5(A). For a quantitative measure of reconstruction per-
formance in simulations, we have computed RMSE for each iteration of the reconstruction with the following 
formula:

RMSE =

√
1

N

∑
i,j,k

( f (i, j, k)− b (i, j, k))2,� (11)

where N is the total number of voxels in one 3D volume, and f and b are the two compared volumes, i.e. the true 
and reconstructed volumes.

SSIM quality assessment is a measure of image distortion from the original, or reference, image. It is based on 
the computation of three terms, namely the luminance term, the contrast term, and the structural term (Wang 
et al 2004). The overall index is a multiplicative combination of the three terms. The equation has the following 
form for input images f and b:

SSIM ( f , b) =
(2µf µb + C1)(2σfb + C2)

(µ2
f + µ2

b + C1)(σ2
f + σ2

b + C2)
,� (12)

where µ and σ are the local means and standard deviations, respectively, of images f and b. Constants C1 and C2 

are present to prevent instability when µ2
f   +  µ2

b is close to zero, and are calculated using the dynamic range of 
the images. The calculation of SSIM was performed within the 2D region of interest (ROI) shown in figure 5(A) 
using MATLAB’s Image Processing Toolbox.
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Finally, we have used 3D segmentations of the left ventricle (LV) in diastole and systole for each gating 
method and reconstruction to evaluate cardiac functional metrics, including stroke volume, cardiac output, 
and ejection fraction. Segmentation was performed using ITK-SNAP (Yushkevich et al 2006), an open-source, 
semi-automated segmentation tool. The software allows the user to set threshold windows, to place seeds for 
region growing, and to set 3D growth parameters. For each sampling method, the CT number threshold sep-
arating blood from the myocardium was calculated using Otsu’s threshold selection algorithm (Otsu 1979) 
on a volume containing only blood and myocardium. The threshold was calculated separately for each gating 
method using reconstructions from 1000 projections, and it was applied to all undersampled cases. The seg-
mented ventricles were manually cropped at the mitral and aortic valves using ImageJ (Schneider et al 2012) to 
remove any variability in volume outside of these boundaries. To determine which cardiac phases represented 
systole and end-diastole, segmentations on the reconstructions from 1000 projections were performed for all 
ten cardiac phases, and heart volumes were compared to find minimum and maximum values for systole and 
end-diastole respectively.

Figure 5.  Simulated reconstructions using experimentally derived projection angles and phases. (A) The reference MOBY phantom 
used to create projections is marked with a ROI used for image quality assessment. Reconstructions of 10 phases were performed 
using 1000, 500, and 250 projections. (B) Fast PG and (C) uncorrelated RG reconstructions are shown for systole and diastole. 
Residual images are the absolute value of the difference between the reference phantom and iterative reconstruction. Note that 
residuals around the heart (yellow arrows) increase with undersampling.

Phys. Med. Biol. 63 (2018) 025009 (17pp)
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2.7.  In vivo experiments
We performed the animal study using a C57BL/6 mouse. The study was conducted under the protocol approved 
by the Duke University Institutional Animal Care and Use Committee (IACUC). To provide the necessary blood/
tissue contrast, we used a liposomal blood pool contrast agent (123 mg iodine ml−1) (Mukundan et al 2006) 
delivered by injection via a tail vein catheter at a dose of 0.01 ml g−1 body weight. Post-injection, the contrast 
between the blood and myocardium was approximately 500 HU. The mouse was anesthetized with isoflurane 
(1.5%) mixed with 50% oxygen and balanced with nitrogen. ECG was monitored with electrodes (Blue Sensor, 
Medicotest, UK) taped to the footpads, and body temperature was maintained with heat lamps, a rectal probe, 
and a feed-back controller (Digi-Sense®, Cole Parmer, Chicago, IL). In the mouse study we used a free breathing 
protocol. A pneumatic pillow on the thorax was used to monitor respiration. Both ECG and respiratory signals 
were recorded and used for sorting and weighting projections at the reconstruction level.

We performed cardiac imaging with both improved fast PG and uncorrelated RG to acquire 10 cardiac 
phases. The exposure parameters of the micro-CT scanner were set to 80 kVp and 100 mA for both imaging 
chains. Exposure time was set to 10 ms to minimize cardiac blurring. In both the fast PG and uncorrelated RG 
scans, 1000 projections (500 projections/imaging chain) were acquired over a complete 360° rotation. The total 
acquisition times for fast PG and uncorrelated RG were 2 min and 3 min, respectively. The average heart rates of 
the mouse during the fast PG and RG acquisitions were 301 and 351 beats per minute. Respiratory rates during 
fast PG and RG gating averaged 41.1 breaths per minute and 55.6 breaths per minute. The changes in heart and 
respiratory rates between scans may be due to effects of anesthesia levels over time.

We have estimated x-ray radiation dose based on previous measurements performed in a mouse-like phan-
tom using a Wireless Dosimetry System Mobile MOSFET TN-RD-16, SN 63 (Thomson/Nielsen, Ottawa, ON, 
Canada). The experiments involving the dose measurements have been described previously in (De Lin et al 
2008). The total radiation dose for a study involving 1000 projections with the described exposure parameters is 
approximately 170 mGy. This dose is reduced to one half and one quarter of that number in cases of 500 or 250 
projections, respectively.

To examine the strength of the sampling methods and reconstruction algorithm used here with undersam-
pled data, we reconstructed both acquisitions three times, using 1000, 500, and 250 projections. As was done 
with the simulations, projections were subsampled from the 1000 projection case to create subsets with 500 and 
250 projections (evenly distributed over both imaging chains). By using subsets of data from the same scan, we 
can directly compare reconstructions with one another while de-emphasizing the impact of contrast concen-
tration, heart rate, and respiration. Note that in all cases we reconstructed cardiac phases as 10 volumes of size 
768  ×  768  ×  280 with a voxel size of 88 microns.

We have also performed LV segmentations and the computation of functional metrics of the heart for the in 
vivo experimental data. The segmentation was performed using the same methods and tools described for the 
segmentations of the simulated data (section 2.6). Left ventricle end systolic volume (ESV) and left ventricle 
end-diastolic volume (EDV) were used to calculate metrics such as stroke volume (SV  =  EDV  −  ESV), ejection 
fraction (EF  =  SV/EDV), and cardiac output (CO  =  SV * heart rate) for each reconstruction.

3.  Results

3.1.  Simulations
Figure 5 summarizes the results of applying our 4D iterative reconstruction algorithm to the projection data 
created from the MOBY phantom (A) using the fast PG (B) and uncorrelated RG (C) strategies. The noise in the 
simulated 1000-projection reconstructions, as measured by the standard deviation in water, was about 52 HU 
for PG and 43 HU for RG. The red box around the heart in (A) denotes a ROI around the heart that is used for 
computing image quality metrics. Only systole and end-diastole images are shown, but 10 phases in the cardiac 
cycle were reconstructed for each type of gating. We display the reconstructions performed using 1000, 500, 
and 250 projections. Note that the 4D iterative reconstruction results are visually very robust with respect to 
undersampling and enable higher image quality compared to FBP. This is particularly true of RG gating which 
inherently produces an irregular angular distribution of projections (see figure 1). Residual images are the 
absolute difference between the reference MOBY phantom and the iterative reconstruction results. The residual 
images show higher errors around the heart with undersampling, particularly in areas which experience the most 
change over time (marked by yellow arrows).

Figure 6 presents the RMSE as a function of the number of simulation reconstruction iterations for both fast 
PG and RG sampling. We used a volume of interest around the heart (see figure 5(A)) and averaged the RMSE 
for all ten reconstructed cardiac phases. The RMSE values plateau after 3 iterations; thus, the 3rd iteration results 
were used in all quality measurements and analysis. As expected, the RMSE values are lowest when using the 
highest number of projections, and are highest for the initial algebraic reconstructions for all numbers of projec-
tions (iteration 0; figure 4, step 1). Both gating methods show similar RMSE values for 1000 projection recon-

Phys. Med. Biol. 63 (2018) 025009 (17pp)



11

M Holbrook et al

structions. As the number of projections decreases to 500, fast PG provides slightly lower overall RMSE values 
than uncorrelated RG.

Figure 7 compares results of fast PG with and without continuous rotation (figure 7(A)) and of conventional 
and uncorrelated RG (figure 7(B)). All sets were reconstructed with our 4D iterative reconstruction algorithm 
using 3 iterations. The resultant noise levels are reduced by the new fast PG method by 9%, on average, over all 
phases and numbers of projections. RMSE values are similar for both PG methods, as the cardiac phases are well 
sampled. Uncorrelated RG performs better than conventional RG in terms of temporal resolution due to cardiac 
phases being randomly sampled. This is evidenced by that method’s lower RMSE values and a better delineation 
of the blood-myocardium boundary (see rectangular ROI in figure 7). As measured in water, noise in the RG 
reconstructions are similar.

Figure 8 presents the SSIM for quantitative assessment of image quality in these simulations. SSIM was cal-
culated in a ROI for a single representative slice through the heart (figure 5(A)). Instead of averaging this metric 
over all 10 cardiac phases, as was done when calculating RMSE, two specific phases, systole and end-diastole, 
are shown. This allows for the examination of temporal resolution in the specific cardiac phases often used to 
measure cardiac functional metrics. When both reconstructions are well sampled, they have similar SSIM values. 
Note that for 500 projections, fast PG provides higher SSIM compared to RG; however, at 250 projections fast PG 
performs worse than RG. Systole in general shows higher SSIM values than end-diastole.

In figure 9 we show the error in LV volume in simulations. The segmented LV volumes for systole and end-
diastole were compared with the LV volume of the reference phantom to quantify errors in the reconstruction. 
Note that the errors for fast PG are less than for RG. In the case of 250 projections, the results are intriguing— for 
fast PG, combinations of artifacts create a situation in which LV volumetric measurement error in systole is 
unexpectedly low (figure 9(A)). Segmentations of reconstructions with 1000 and 250 projections illustrate how 
undersampling artifacts affect segmentation results. This anomaly does not appear in RG, perhaps due to larger 
Gaussian weights associated with less phase-specific projections.

3.2.  In vivo experiments
One of the main goals of fast PG and uncorrelated RG is to create sets of projections which evenly sample each 
cardiac phase. For our in vivo experiment, the percent of projections acquired within each cardiac phase was 
10  ±  0.1% for fast PG and 10  ±  0.7% for uncorrelated RG, indicating success in distributing projection evenly 
across phases. Respiration was monitored and recorded for both sampling methods, and was used retrospectively 
for gating. It was found from comparing the recorded ECG and trigger data that the fast PG VI was able to trigger 
projections within 2% of the preset cardiac phase with an accuracy of 99.8%. The percent of projections per 
phase that were captured with minimal respiratory motion, i.e. outside of inhalation and start-expiration, was 
roughly 80% for both fast PG and uncorrelated RG. Respiratory gating was applied to reconstruct using only 
these projections with minimal respiratory motion.

Reconstruction times for FBP and iterative reconstruction for each of our experimental reconstructions are 
given by table 1. Retrospective sets took an average of 31% longer to reconstruct than prospective sets using itera-
tive reconstruction. This is due to the way in which temporal cardiac weights are applied. The application of tem-
poral cardiac weights allows for individual projections to be used in more than one cardiac phase, with smaller 

Figure 6.  RMSE as a function of the number of reconstruction iterations for (A) fast PG and (B) uncorrelated RG. Calculations were 
performed in a volume of interest (figure 5(A)) around the heart and averaged for all ten reconstructed cardiac phases. The RMSE 
values plateau after three iterations; this iteration was used in all quality measurements and analysis.
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weights associated with less phase-specific projections. Including respiratory and Gaussian cardiac weights 
(truncated at 3 standard deviations), 20  ±  0.6% of the total number of projections (e.g. 20% of 1000 projec-
tions) had non-zero weights when reconstructing each cardiac phase from RG data. Iterative reconstructions are 
more time consuming than FBP, taking, on average, 190 times longer to complete with the previously described 
computer hardware.

Figure 10 presents experimental reconstructions with FBP and our iterative algorithm for fast PG (figure 
10(A)) and RG (figure 10(B)). We show single 2D slices in axial and coronal orientations corresponding to sys-
tole and end-diastole for 1000-, 500-, and 250-projection reconstructions. Animations showing iterative recon-
structions of all 10 cardiac phases can be found in the supplementary materials (stacks.iop.org/PMB/63/025009/
mmedia). Noise in the 1000-projection, iteratively reconstructed volumes was quantified from the standard 
deviation of pixel values in water and was measured to be around 56 HU for fast PG and 60 HU for RG. The noise 
measured in the iterative reconstructions was 5.4 times less than that in the FBP reconstructions for fast PG (305 
HU) and 4.6 times less for uncorrelated RG (277 HU). Streaking artifacts from projection undersampling, which 
are prevalent in the FBP reconstructions, are barely noticeable in the iterative reconstructions, even when using 

Figure 7.  Reconstructions showing systole for our previous gating methods and our newly proposed methods. (A) Comparison of 
iterative reconstructions using projections acquired with our previous fast PG method and with the newly proposed version with 
continuous rotation. Noise is given in white. RMSE was computed in the ROI and is shown in yellow. Note the reduction in noise 
for the proposed method. (B) Comparison of conventional and uncorrelated RG. Noise is similar for both methods. The temporal 
resolution of uncorrelated RG is visibly better, however, as evidenced by features in the heart (red arrows) and by lower RMSE values 
across all numbers of projections.
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only 250 projections. While the iterative reconstructions are less encumbered by artifacts than FBP, it can be seen 
that features present in the 1000 projection case still become less defined in cases of undersampling. Features of 
the heart such as papillary muscles (marked by yellow arrows) and the thin heart wall of the right ventricle (red 
arrows) become poorly defined or even lost, which can lead to errors in segmentation.

Figure 11 presents the errors in LV segmentations for the 500 and 250 projection cases relative to the 1000 
projection reconstructions for the experimental study. In experimental acquisitions, the absolute truth is not 
known, so undersampled reconstructions are compared to the 1000 projection reconstructions. We note that 

Figure 8.  SSIM measured in a ROI around the heart (figure 5(A)) for systole and end-diastole. (A) Fast PG and (B) RG have similar 
SSIM at 1000 projections; however, with 500 projections RG SSIM values decrease more with decreasing projections. When the 
number of projections decreases to 250, or approximately 25 per cardiac phase, the performance of fast PG drops faster than that of 
RG, according to SSIM.

Figure 9.  Errors in LV volume for systole and diastole in the phantom simulations. For both (A) fast PG and (B) uncorrelated 
RG reconstructions, segmented LV volumes for systole and diastole were compared with the LV volume of the reference phantom 
to quantify errors in the segmentations. Positive and negative errors correspond to overestimated and underestimated volumes, 
respectively. LV volumes are regularly overestimated in systole and underestimated in diastole. These errors get progressively worse 
with undersampling. Note that the PG segmentations consistently have less error than the RG segmentations. The small error in 
systole shown for the PG, 250-projection reconstruction is an anomaly explained by the irregular boundary of the left ventricle 
at this high level of undersampling. Coronal cross-sections of the heart show the systole segmentations for PG with 1000 and 250 
projections, respectively.

Table 1.  Time for reconstruction of 10 cardiac phases.

Prospective Retrospective

Projections FBP (min) Iterative Recon (min) FBP (min) Iterative recon (min)

1000 2.0 361.5 4.1 813.4

500 1.4 250.4 2.4 485.5

250 1.6 190.7 1.6 290.3
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Figure 10.  (A) Fast PG and (B) RG reconstructions for two of the 10 phases reconstructed, systole and end-diastole, in axial and 
coronal orientations. Reconstructions were created from 1000, 500, and 250 projections using both FBP and iterative reconstruction. 
Artifacts present in FBP reconstructions are greatly reduced in the iterative reconstructions. Projection undersampling causes a 
predictable loss in temporal and spatial fidelity. Small features such as papillary muscles (yellow arrows) and the heart wall (red 
arrows) lose detail or altogether disappear.

Figure 11.  Error in segmented LV for undersampled reconstructions relative to the 1000 projection reconstruction. Errors appear to 
be highest for fast PG, particularly for systole, having close to 22% error for the 250 projections reconstruction.
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systole has generally higher errors than diastole. Systole always shows positive error (the LV volume is overesti-
mated) and diastole always shows negative error (the LV volume is underestimated).

The cardiac functional metrics stroke volume, cardiac output, and ejection fraction are summarized in 
table 2. Heart rate was measured based on the ECG signals recorded during data acquisition and was used in the 
computation of cardiac output. We note that although the same animal was scanned for our tests of fast PG and 
RG, its heart rate increased 13.7% in the time between scans, and its stroke volume decreased by around 16%. The 
cardiac output and the ejection fraction decreased by about 14% and 7% between fast PG and uncorrelated RG 

scans.

4.  Discussion and conclusions

These results demonstrate our ability to perform dynamic cardiac imaging in the mouse and the effectiveness 
of our reconstruction approach for 4D micro-CT using either fast PG or uncorrelated RG gating strategies. 
Both gating strategies can be performed quickly and with relatively low preclinical dose. For 10 cardiac phases 
our reconstructions from 1000 projections represent a dose of 17 mGy per phase, which is significantly lower 
than our previously published methods for fast PG (25.6 mGy per phase) and RG (28.8 mGy per phase) (Guo 
et al 2012). Simulating undersampled acquisitions by using only 500 and 250 projections further reduced 
dose to half and a quarter of this value. The total dose achieved in this work is lower than many published 
values of dose for cardiorespiratory micro-CT scans; common doses for these scans range from 280 to 500 
mGy (Drangova et al 2007, Graham et al 2008, Armitage et al 2012, Maier et al 2014, Brehm et al 2015). The 
total dose associated with fully sampled fast PG and uncorrelated RG, 170 mGy, represents between 38 to 
52 times less than the lethal dose of 6.5–9 Gy, known as LD50/30, for C57BL/6 mice (Williams et al 2010). 
Such doses enable longitudinal imaging. In addition, each strategy can capture a full cardiac cycle in one 
rotation. Both strategies result in projections which are angularly interleaved between phases (figure 2), which 
allows for the creation of a well-sampled temporal average. A well-sampled, temporally-averaged prior image 
is essential to the success of our 4D iterative reconstruction algorithm. The effects of using a well-sampled 
prior image in iterative reconstruction can be observed by comparing FBP to our 4D iterative reconstructions 
(figures 5 and 10). This is also confirmed by figure 7, where the new sampling strategies compare favorably to 
previous methods (i.e. fast PG without continuous rotation and conventional RG) when the same 4D iterative 
reconstruction algorithm is used.

As shown by simulations, with an equal number of projections and equal dose, the improved fast PG strat-
egy involving continuous rotation during sampling generally outperforms uncorrelated RG in terms of RMSE 
(figure 6), the SSIM image quality metric (figure 8), and the LV volume segmentation accuracy (figure 9). This 
result is expected as projections acquired with PG are more cardiac phase-specific than RG projections and 
comparisons are made between methods using the same total number of projections. To provide sufficient tem-
poral data, RG acquisitions are typically performed with a larger number of projections than PG (Guo et al 2012). 
We used the same number of projections for each method to compare image quality at similar radiation doses.

A strength of our fast PG strategy is that acquisitions can be done relatively quickly compared to our previous 
prospective methods (2 min versus 5 min), with fewer projections (1000 versus 1600), and less dose per phase 
(Guo et al 2012). The cardiac phases to be sampled and reconstructed are selected prior to scanning. For example, 
in some studies only data for diastole and systole are needed (Badea et al 2011b). By contrast, the power of the 
uncorrelated RG strategy is in its ability to randomly sample all cardiac phases. This serves to avoid correlation 
artifacts (see figure 3(C) versus 5(C)) in the reconstructions.

Table 2.  Cardiac functional metrics.

Fast PG

Projections Heart rate (BPM)

Systole volume 

(µl)

End-diastolic  

volume (µl)

Stroke volume 

(µl)

Cardiac output  

(ml min−1) Ejection fraction (%)

1000 303 13.13 39.07 25.95 7.86 66.40

500 303 14.87 37.77 22.90 6.94 60.62

250 303 15.96 30.52 14.56 4.41 47.70

Uncorrelated RG

Projections Heart rate (BPM)
Systole volume 

(µl)

End-diastolic  

volume (µl)

Stroke volume 

(µl)

Cardiac output  

(ml min−1)
Ejection fraction (%)

1000 351 12.40 31.62 19.22 6.75 60.78

500 351 12.78 30.98 18.20 6.39 58.75

250 351 14.17 27.75 13.58 4.77 48.95
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A primary aim of this work was to explore the dependency of LV volume segmentation accuracy on the gat-
ing strategy and number of projections acquired in cardiac micro-CT. It has been proposed for human cardiac 
CT that volume measurement errors of approximately 5% are acceptable (Haraokawa et al 2004, Detombe et al 
2008). If we use this error criterion at the preclinical level, our simulations show that only the reconstructions 
from 1000 projections acquired with fast PG meet this criterion (figure 9). Changes in system noise or improved 
sampling distributions could make uncorrelated RG with 1000 projections a viable strategy for reliably measur-
ing cardiac functional metrics in 4D micro-CT.

The fast PG strategy provides more robustness to undersampling compared to the RG strategy at 500 pro-
jections as is seen with the RMSE (figure 6) and SSIM (figure 8) metrics. The errors in segmented LV volume in 
both simulations (figure 9) and experimental (figure 11) data are quite high with 250 projections. Thus, depend-
ing on the study, these low numbers of projections might not ensure adequate separation of cardiac functional 
metrics between experimental groups during preclinical studies. However, in studies where the expected differ-
ences between the control and the disease groups are larger (e.g. myocardial infarction studies (Nahrendorf et al 
2007)), 500 projections may be sufficient. We note that estimates of stroke volumes are more affected by errors 
in EDV and ESV. For example, an error of 5% in EDV and ESV could compound to result in more than doubling 
error in SV. This effect on EF is less prominent due to the normalization to the EDV.

Surprisingly, the experimental data showed that uncorrelated RG performed somewhat better than fast PG 
with 500 and 250 projections (figure 11). The 500 projection RG case provided relative errors of less than 5% 
from the 1000 projection case. These experimental results differ from those found in simulations (figure 9) where 
PG showed lower errors. There are several factors that could explain the differences between simulations and 
real experimental data. The comparison of undersampled reconstructions to the 1000 projection case may com-
pound errors present in both reconstructions. Nonlinear effects such as scattering or beam hardening present 
in the experimental data could affect image quality and segmentations in ways not modeled in the simulations. 
These effects have a greater impact on the reconstructions when fewer projections are used for each phase. PG is 
particularly susceptible to introduced variations because each cardiac phase is represented by fewer phase-spe-
cific projections, while in RG more projections are given non-zero temporal weights. We note that in simulations 
uncorrelated RG outperforms fast PG in reconstructions from 250 projections (figures 6 and 7).

Reconstructions performed with fewer projections generally appear noisier than well-sampled reconstruc-
tions. The data-adaptive regularization in our algorithm scales to compensate for this increase in noise (noise 
standard deviation σ in equations (6) and (9)), applying proportionally stronger regularization for highly under-
sampled reconstruction problems. While strong regularization is effective in reducing the noise in the recon-
struction, it over-regularizes fine details, resulting in a patchy and overly smooth appearance. This is clearly seen 
in the experimental reconstructions performed with 250 projections for fast PG and RG (figure 10). The low dose 
and sampling time for both methods comes at the cost of long reconstruction times. The most time intensive fast 
PG reconstruction, using all 1000 projections, took close to 6 h to complete 3 iterations, while the same size RG 
set required more than 13 h. These time constraints currently limit the number of projections we can efficiently 
use for reconstruction. Time and computational resources prevented the exploration of iterative reconstructions 
using significantly more than 1000 projections. Access to more powerful hardware or parallel GPU computing 
resources will certainly make it feasible to collect and reconstruct larger datasets in the future.

In conclusion, we have developed novel, 4D micro-CT imaging methods using fast PG and uncorrelated RG 
gating strategies. Both strategies demonstrate promise for low-dose, high-throughput, longitudinal imaging, 
with immediate applications in a wide range of preclinical studies such as in cardiopulmonary safety and cancer 
research (Lee et al 2014).
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