
Noname manuscript No.
(will be inserted by the editor)

SOC: Satisfaction-oriented Virtual Machine
Consolidation in Enterprise Data Centers

Xi Li · Anthony Ventresque · John
Murphy · James Thorburn

Received: date / Accepted: date

Abstract Server sprawl is a problem faced by data centers, which causes un-
necessary waste of hardware resources, collateral costs of space, power and
cooling systems, and administration. This is usually combated by virtualiza-
tion based consolidation, and both industry and academia have put many
efforts into solving the underlying virtual machine (VM) placement problem.
However, IT managers’ preferences are seldom considered when making VM
placement decisions. This paper proposes a satisfaction-oriented VM consoli-
dation mechanism (SOC) to plan VM consolidation while taking IT managers’
preferences into consideration. In the mechanism, we propose: i) an XML-based
description language to express managers’ preferences and metrics to evalu-
ate the satisfaction degree; ii) to apply matchmaking to locate entities (i.e.,
VMs and physical machines (PMs)) that best match each other’s preferences;
iii) to employ the VM placement algorithm proposed in our previous work to
minimize the number of hosts required and the resource wastage on allocated
hosts. SOC is compared with two baselines: placement-only and matchmaking-
only. The simulation results show that most of the VM-to-PM mappings out-
put from placement-only violate given preferences, while SOC has a satisfac-
tion degree close to matchmaking-only, without requiring too many PMs as
matchmaking-only does, but only an amount close to placement-only. In brief,

Xi Li · John Murphy
Lero@UCD, School of Computer Science and Informatics, University College Dublin, Dublin,
Ireland
E-mail: xi.li@ucdconnect.ie; j.murphy@ucd.ie

Anthony Ventresque
Lero@UCD, School of Computer Science and Informatics, University College Dublin, and
IBM Research, Smarter Cities Technology Centre, Damastown Industrial Estate, Dublin,
Ireland
E-mail: anthony.ventresque@ucd.ie

James Thorburn
IBM Software Group, Toronto, Canada
E-mail: jthorbur@ca.ibm.com

2 Xi Li et al.

SOC is effective in minimizing the number of hosts required to support a cer-
tain set of VMs, while maximizing the satisfaction degree of both managers
from the provider and requester side.

Keywords VM Placement · Server Consolidation · Matchmaking · Satisfac-
tion · Preference

1 Introduction

Enterprise data centers possess massive IT infrastructures. As corporations
grow, new computing resources are purchased regularly to meet the increasing
demand, but the pace of the retirement of the old machines rarely keeps pace.
Merging and acquiring new companies also brings additional servers that can
be difficult and time-consuming to integrate efficiently. Moreover, the practice
of dedicating one or more physical machines (PMs) to one application to realize
application isolation before virtualization technologies were widely adopted
results in increased number of servers and server underutilization. All these
factors contribute to the problem which is often referred to as server sprawl.
It causes not only unnecessary waste of hardware resources, but also collateral
costs (e.g., space, power, cooling, administration). The virtualization-based
consolidation technology [25] is a common solution adopted in data centers to
solve this.

Consolidation is to place multiple virtual machines (VMs) on fewer, pow-
erful PMs to enable the decommissioning of the unneeded PMs. However, it
is challenging to decide which VM should be placed on which PM in large-
scale heterogeneous environments. This underlying VM placement problem is
usually formulated as the NP-hard bin-packing problem (BPP). Due to the
significance of this problem and the potential savings that could be obtained,
both industry and academia have put many research efforts into solving it.
However, the preferences of the managers (i.e., a person in charge of the ad-
ministration of a group of VMs or PMs) are seldom considered when making
VM placement decisions. We claim that they are important and propose to
address this problem in this paper.

Managers are to some extent autonomous, especially in multi-national,
multi-divisional, and multi-geographic enterprises. In such cases, they have
specific permissions, obligations and special preferences that they want to see
fulfilled in placements. For instance: i) in the case that physical servers spread
across data centers at multiple sites, the manager could have preferences on
site/city/building for the following reasons:

– interested in reducing costs related to electricity, human labour or physical
space, which may vary with locations;

– interested in performing site consolidation;
– has high availability requirement.

ii) the manager may also have preferences about the configuration of hardware
and system. For example, some legacy applications must continue to run on

Title Suppressed Due to Excessive Length 3

the platforms for which they were developed due to the lack of cross-platform
ability. As any new placement plan is subject to various local IT managers’
approval, placement recommendations made without taking managers’ prefer-
ences into account may be inefficient due to managers’ non-cooperation. More-
over, satisfying managers’ preferences as much as possible can give them more
incentive to migrate or take more workload, which helps the enterprise achieve
optimal resource utilization state. Therefore, the objectives of consolidations in
such enterprise environments are not only to minimize the number of physical
servers required to operate, but also to maximize the managers’ satisfaction of
their preferences. In this paper, we propose a satisfaction-oriented VM consol-
idation mechanism (SOC) to achieve these objectives. In this mechanism, we
call the party who wants to find capacity or workload the requester, and the
other party that supplies capacity or workload the provider. The SOC system
performs two key tasks. The first one is to allow managers to express their pref-
erences and use matchmaking to find entities (VMs or PMs) that satisfy both
parties (providers and requesters) the most. To the best of our knowledge, this
is the first application of matchmaking in VM consolidation. Different from the
conventional matchmaking, the input of SOC ’s matchmaking process is the
manager’s preferences instead of demand or job descriptions. The second task
is to apply Resource Balancing Placement (RBP), a VM placement algorithm
proposed in our previous work [14], to allocate VMs to PMs.

The main contributions of this paper are:

– An XML-based description language to specify IT managers’ preferences,
applying matchmaking to find entities that match the given preferences,
and metrics to evaluate the satisfaction degree of a VM placement solution;

– A satisfaction-oriented VM consolidation mechanism that maximizes the
managers’ satisfaction while providing good placement of VMs on PMs;

– The implementation of a prototype of the proposed SOC system. Because
there is no existing consolidation approach which considers managers’ pref-
erences, SOC is compared with two baseline strategies: matchmaking-only
(MM), which plans placement based on preferences but does not try to
consolidate, and placement-only (PL), which consolidates VMs but does
not consider preferences. We demonstrate through experiments that SOC
has similar satisfaction degree as MM, while not requiring too many hosts
as MM does, but only an amount close to PL; most of the mappings (up
to 97.6%) output from PL, however, violate given preferences.

The rest of the paper is organized as follows: Section 2 presents some related
work, followed by an architectural description of the SOC system in Section 3.
Section 4 discusses the matchmaking process of SOC and the definition of
the satisfaction degree metrics. Section 5 presents the evaluation of SOC, and
analysis of the impact of integrating preferences. Section 6 concludes this paper
and discusses some possible future work.

4 Xi Li et al.

2 Related Work

Research on workload management focuses on different aspects. In particular,
the energy consumption aspect has received much attention. Verma et al. pro-
posed an architecture, pMapper, and application placement algorithms [23]
that minimize the power and migration costs while meeting a fixed perfor-
mance Service Level Agreement (SLA). The authors later created a power
model and studied the virtualization issues due to consolidation, and used
the insights from those studies to design a power-aware application placement
controller [24] built on pMapper. Feller et al. [10] proposed an energy-aware
workload consolidation algorithm based on the Ant Colony Optimization. Be-
loglazov and Buyya proposed a technique for dynamic consolidation of VMs
that can reduce energy consumption and maintain SLAs violation at a certain
level [4], and developed algorithms for energy-efficient resource provisioning to
VMs without violating the negotiated SLAs [3]. Apart from energy consump-
tion, the data traffic between VMs (i.e., network) is another aspect being
considered. An algorithm [17] was proposed to address the scalability issue
of data center networks using network-aware VM placement. Algorithms that
minimize communication costs and latency were also proposed for resource al-
location in distributed clouds [2]. Biran et al. [5] formulated the network-aware
VM placement problem as a Min Cut Ratio-aware VM Placement problem that
considers not only local physical resources but also network resources, and in-
troduced heuristics to solve it. In addition to these, there are also studies
focusing on the SLA aspect [6,8,22], the contention between VMs [11,13], and
the temperature in the data center [18]. However, the IT managers’ preferences
are not considered in the literature.

On the other hand, matchmaking has a long history in the area of de-
mands and supplies, jobs and resources matching. Raman et al. [19] proposed
the ClassAd matchmaking framework for the high throughput computing sys-
tem Condor in 1998. The authors later proposed Gangmatch [20], a multi-
lateral extension to ClassAd. Liu et al. [16] also extended ClassAd to sup-
port both single-resource and multiple-resource selection. Matchmaking was
reinterpreted as a constraint problem in [15] where constraint-solving tech-
nologies were exploited to implement matching operations. Sycara et al. [21]
defined a language and used it in a matchmaking process among software
agents on the Internet. However, consolidation is not one of the objectives
of these approaches, and matchmaking has not been applied in the area of
VM placement to the best of our knowledge. Moreover, these conventional
matchmaking approaches focus on request and resources matching, and are
not applied to matching users’ preferences. Recently, a study [7] proposed to
extend the matchmaking process to consider users’ preferences by using Condi-
tional Preference Networks (CP-Nets) to describe, structure and reason users’
preferences. However, this work focuses only on the impact of introducing CP-
Nets to matchmaking, but not the schedule process of grid resources. This
research is orthogonal to our approach, and can be leveraged to enhance the
preference description to handle more complicated preferences.

Title Suppressed Due to Excessive Length 5

3 SOC System Architecture

In this section, we describe the SOC system from a high level view as shown
in Figure 1. The input of the system is the description of a manager’s request.
The final output is the mapping between VMs and PMs (placement solution)
indicating which VM should be placed on which PM. There are two types
of requests: VM requests, which seek capacity provided by PMs, and PM
requests, which seek more workloads (VMs). As the processing of these two
types of requests are similar, we describe only VM requests as examples in
this paper. Each request contains three main elements: a list of VM identities,
common characteristics of the listed VMs (e.g., site, city, hardware model),
and the manager’s preferences.

Translator

Associated

VM Set

Matchmaker

Allocator

(VM Placement

Algorithm)

Candidate

PM Set

DB

Placement

Solution

Request

· VM identities

· Common

characteristics

· Preferences

Request Description

First Filter

Second Filter

Selector

Satisfaction

Calculator

Expander

Matchmaker
Read

Output

Read

Output

Input

InputInput

Fig. 1 Satisfaction-oriented VM Consolidation System Architecture

The system is composed of four components, namely the database (DB),
the Translator, the Matchmaker, and the Allocator. The DB contains infor-
mation associated with all VMs and PMs in all data centers of an enterprise.
In our prototype, DB includes hardware configurations and resource capaci-
ties of PMs, resource requirements of VMs, and locations and organizations
of VMs and PMs. Managers’ preferences are also recorded and linked to in-
dividual VM or PM in the DB once they are expressed. There are existing
tools for monitoring and collecting hardware configuration information, and
VM resources usage traces, such as IBM Tivoli Monitoring (ITM) [1], which is
currently used by our industrial partner. VMs’ resource demands can also be
forecasted by several techniques such as the ones presented in [9, 12]. Filling
the DB is, however, out of the scope of this paper.

Once a request is submitted, the Translator translates it from human lan-
guage description to a request object in memory. The VMs specified in the

6 Xi Li et al.

request are obtained from the DB. Then, the Matchmaker takes the request
and the information in DB as inputs, and makes bidirectional matches be-
tween VMs and PMs considering both parties’ preferences (VMs’ preferences
are specified in the request, PMs’ preferences are specified in DB if there are
any). A set of candidate PMs, which is the output of the Matchmaker, to-
gether with the VM set associated with the request, are then given to the
Allocator which finds the mappings between VMs and PMs that optimize the
PMs’ resource utilization.

The Allocator focuses on the VM placement problem. It employs a VM
placement algorithm to place the VMs specified in a request on PMs in the
candidate PM set output from the Matchmaker. SOC is flexible to integrate
any VM placement algorithm that takes a set of PMs and a set of VMs as
inputs. In this paper, we employ an effective algorithm RBP [14], which mini-
mizes the number of PMs required, and the resource wastage on each allocated
PM by placing VMs that are complementary to PMs’ residual capacity.

After the placement solution is approved by the managers of both parties,
the actual migrations can be executed.

4 Matchmaking and Satisfaction Computation

The matchmaking process identifies the entities that satisfy both parties’ pref-
erences the most. In this section, we first show how requests and preferences
are expressed, then we explain how the Matchmaker works, and how the sat-
isfaction degree is computed. For simplicity, we consider only 2 dimensions
(i.e., CPU and RAM) in the demonstration and the experiments. However,
our approach is able to deal with multiple dimensions of resources.

4.1 Request and Preferences

4.1.1 Request

A manager triggers the system by submitting a request expressing its prefer-
ences. As shown in Figure 2, a request has a type and consists of three main
elements: a list of VM identities, common characteristics of the listed VMs,
and managers’ preferences. In the example given in Figure 2, we use attributes
such as site, city, hardware model that are common in data centers. However,
the quantity and definition of the attributes is just a matter of agreement in
the enterprise where the system is used, and our approach is general enough
to accept any attributes as long as they are included in the DB.

The matchmaker in SOC performs bidirectional matching between re-
questers and providers (i.e., matches both parties’ preferences). A request’s
preferences are matched with individual providers’ characteristics. However,
providers’ preferences are matched with the request as a whole (instead of indi-
vidual entities listed in the request) using the common characteristics specified
in the request.

Title Suppressed Due to Excessive Length 7

<?xml version="1.0" encoding="UTF -8"?>

<Request >

<Type>VM</Type>

<IDs>

<id>26</id>

<id>75</id>

</IDs>

<Common_Characteristics >

<site>S1</site>

<city>C2</city>

<min_cpu unit="MHz">627</min_cpu >

<max_cpu unit="MHz">29549 </max_cpu >

<min_ram unit="MB">873</min_ram >

<max_ram unit="MB">31442</max_ram >

</Common_Characteristics >

<Preferences >

<Inflexible_Prefs >

<site>S1</site>

<cpu_qty >>=4</cpu_qty >

</Inflexible_Prefs >

<Flexible_Prefs >

<city weight="0.4">C3</city>

<building weight="0.3">B2</building >

<organization weight="0.2">Org5</organization >

<hardware_model weight="0.1">Model10 </hardware_model >

</Flexible_Prefs >

</Preferences >

</Request >

Fig. 2 Example of A Request in XML

4.1.2 Preferences

We define two types of preferences: inflexible and flexible. Inflexible preferences
are those that must be satisfied, while flexible preferences are those that are
preferred but acceptable if not matched. As exact match does not exist in
many cases, the use of flexible preferences gives both parties more chances
to find a close to ideal match. Each flexible preference is assigned a weight,
so that one violation will only lower the satisfaction degree but not reject a
match immediately. The higher the weight, the more important satisfying this
preference is.

Flexible preferences have two types of attributes, normal and categorized.
We discuss in Section 4.4 the different ways of computing their satisfaction
degrees. Normal attributes are matched simply based on syntactic match-
ing. For example, value “Org3” for organization name will match preference
<organization> Org3 </organization>, and value “2” for quantity of CPUs
will match preference <cpu_qty> >=2 </cpu_qty> (> stands for the
greater than symbol “>”). Categorized attributes are categorized based on
certain rules applied to their values. For instance, site can be a categorized
attribute based on its expense level (e.g., power rate, cooling rate, salary rate
and raised floor rate). Similarly, buildings can be categorized based on the

8 Xi Li et al.

facilities they provide or their energy efficiency such as building energy rating.
The matching of this type of attributes is to check if two values belong to the
same category or how close their categories are.

4.2 Syntax and rules

We define a set of operators in Table 1 to express preferences and common char-
acteristics more easily and comprehensively depending on managers’ needs.
Note that attributes can be of two types: textual (e.g., S1) and numerical.
The last four operators in Table 1 are applicable to numerical values only.
Numerical common characteristics can only be specific values or ranges (e.g.,
>2&<=8). Textual common characteristics can only be specific values (i.e.,
no operators), otherwise, their categories can not be identified and matched
with providers’ categorized preferences. Rules for using the operators are as
follows:

– “|” can only be used alone (e.g., S1 | S2);
– “!” can be used alone or with “&” (e.g., !S1, !S1&!S2);
– “&” must be used with “!” or “ > ”, “ >= ”, “ < ”, “ <= ”.

Table 1 Operators for Expressing Preferences and Common Characteristics

Operators Description
Preferences Common Characteristics

Textual Numerical Textual Numerical

| or 4 4
& and 4 4 4
! not 4 4
> greater than 4 4

>=
greater than
or equal to

4 4

< less than 4 4

<=
less than
or equal to

4 4

In a request, managers are free to choose the attributes to specify, and
decide if they are inflexible or flexible preferences. However, they must provide
the minimum and maximum resources requirement or capacity (i.e., min cpu,
max cpu, min ram, max ram).

Furthermore, we set the following rule to clarify ambiguities and deal with
missing information:

– a preference is considered as not satisfied if the attribute is not included
in a request’s common characteristics or an entity’s characteristics.

If the dissatisfied preference is inflexible, the corresponding entities are consid-
ered as not matched. Therefore, the more specific the common characteristics
are, the more candidate entities the request may find. Managers also need to

Title Suppressed Due to Excessive Length 9

decide how firm they should insist on their preferences, as for a set of prefer-
ences, the more preferences specified as flexible, the bigger the chance to find
a close to ideal match.

4.3 Matchmaker

The Matchmaker (see Figure 1) consists of two Filters and one Selector. It
processes all VMs specified in one request as a whole as they share the request’s
preferences and common characteristics. Thus, the matching is between the
request and each individual PM. The First Filter filters PMs that violate the
request’s inflexible preferences. The Second Filter filters PMs with inflexible
preferences not satisfied by the request’s common characteristics. The Second
Filter also filters out PMs with a capacity smaller than the minimum resource
requirement stated in the request, as no VM in the current request can be
placed on them. The Selector then computes the satisfaction degree of each
request-to-PM mapping (RPM), and selects the set of PMs with satisfaction
degrees within a certain range. This is discussed in more details in Section 4.4
and Section 4.5 respectively.

4.4 Satisfaction Computation

Table 2 Key Notations and Description

Symbol Description

K Number of provider’s preferences, p = 1..K
K′ Number of requester’s preferences, p′ = 1..K′

C Number of possible categories of a categorized attribute
pc Category of a provider’s characteristic c
rc′ Category of a requester’s characteristic c′

pp Category of a provider’s flexible preference p
rp′ Category of a requester’s flexible preference p′

wp Weight of provider’s flexible preference p,
∑

wp = 1

wp′ Weight of requester’s flexible preference p′,
∑

wp′ = 1
P (p, c′) A provider’s satisfaction degree of flexible preference p
R(p′, c) A requester’s satisfaction degree of flexible preference p′

Sp A provider’s total satisfaction degree of all preferences
Sr A requester’s total satisfaction degree of all preferences
S Satisfaction degree of a RPM

As inflexible preferences are either satisfied or violated, the satisfaction
computation applies only to flexible preferences. Table 2 shows the notations
used in this paper. The satisfaction degree of one single preference is computed
as presented in Equation (1) and (2), where c′ is a requester’s characteristic
corresponding to preference p, and c corresponds to p′. If the corresponding
c/c′ does not exist, the satisfaction degree of preference p′/p is 0 according

10 Xi Li et al.

to our rule in Section 4.2. For normal attributes, the satisfaction degree is a
binary variable indicating matched or mismatched (1 or 0). For categorized
attributes, it measures how far two categories are from each other. The closer
they are, the higher the satisfaction degree of this preference is. For instance, if
site is a categorized attribute based on its expense level and a manager prefers
a site with the lowest expense, the second lowest site will be the best choice if
the exact match does not exist. When the characteristic belongs to the same
category the preference belongs to, the satisfaction degree is 1.

P (p, c′) =

1 if p is normal and satisfied
1− (|pp − rc′ |/C) if p is categorized
0 other

(1)

R(p′, c) =

1 if p′ is normal and satisfied
1− (|rp′ − pc|/C) if p′ is categorized
0 other

(2)

The satisfaction degree of a provider (Sp) or a requester (Sr) is computed
as the weighted sum of all of its flexible preferences’ satisfaction degrees. How-
ever, some PMs or VMs may not have flexible preferences or any preferences
assigned at all. In that case, considering the satisfaction degree as 0 is unfair as
there is no violation. On the other hand, it should not be 1 as exactly matched
entities should have priority over entities with no preference specified. There-
fore, if there is no flexible preference specified, Sp and Sr are defined to be
less than an exact match (value 1) and greater than the closest categorized
preference match. Sp and Sr are expressed as below:

Sp =

{∑K
p=1 wpP (p, c′) if flexible preference p exists

(1− 1/C) + ε if no flexible preference is specified
(3)

Sr =

{∑K′

p′=1 wp′R(p′, c) if flexible preference p′ exists

(1− 1/C) + ε if no flexible preference is specified
(4)

The satisfaction degree for the closest categorized preference match is (1−1/C)
computed using Equation 1 or 2 (with |pp − rc′ | = 1 or |rp′ − pc| = 1). ε is a
small positive value that keeps Sp or Sr greater than the closest match but
less than 1. We define ε as:

ε =
(1− (1− 1/C))

2
=

1

2C
(5)

Finally, the satisfaction degree of a RPM (S) is the sum of the satisfaction
degrees of the provider and the requester:

S = Sp+ Sr (6)

Title Suppressed Due to Excessive Length 11

4.5 Expander and Further Placement

After computing the satisfaction degree S for all PMs, they are grouped into
different levels (Sp, Sr ∈ [0, 1], hence S ∈ [0, 2]): level 1 contains PMs having
satisfaction degrees within range [2, 1.6), level 2 is [1.6, 1.2), level 3 is [1.2, 0.8),
level 4 is [0.8, 0.4) and level 5 is [0.4, 0]. Section 5.5.2 presents further discus-
sion on the separation of satisfaction levels. The Expander examines the total
resource demands of all the VMs in the request, and the total capacity of all
the PMs in level 1. If the total capacity is not enough to support all VMs, it
expands to the next level and repeats the examination and expansion if neces-
sary until the total capacity is larger than or equal to the total demands. The
PM set output from the Matchmaker then satisfies all inflexible preferences of
the request and satisfies the flexible preferences the most.

As the expansion depends only on the total capacity and total require-
ments, it may happen, though not often, that the PMs selected by the Ex-
pander can not accommodate all VMs eventually. Because it is very unlikely
that the VMs can fit each PM perfectly, so that a small amount of resources
on each PM might be wasted. To handle this situation, SOC examines the
solution output from the Allocator whether all VMs have been placed. If not,
SOC repeats all processes, from the Matchmaker to the Allocator, using the
remaining PMs and VMs.

5 Experimental Results

In this section, we first introduce the evaluation metrics and experimental
setup, and then present two sets of experiments to evaluate the performance
of SOC and analyze the impact of varying managers’ preferences.

5.1 Metrics

Because there is no existing consolidation approach considering managers’
preferences, we compare SOC with two baseline strategies: placement-only
(PL) and matchmaking-only (MM). PL does not consider preferences but use
RBP to place VMs. MM selects for each VM the PM that maximizes the
satisfaction degree (S′) of a VM-to-PM mapping (VPM), which is computed
similarly as the satisfaction degree (S) of a RPM. The difference is that S
considers a request’s common characteristics, and S′ considers an individual
VM’s characteristics. MM uses S′ instead of S because it checks each VM-
PM pair, hence the individual VM’s characteristics are available. SOC uses
S as it considers all VMs in a request as a whole. However, S′ is applicable
in measuring SOC’s solution, since the mappings between VMs and PMs are
already determined in the solution. Therefore, we use:

– the execution time, to measure SOC’s efficiency,
– the number of hosts required, to measure the quality of the placements,

12 Xi Li et al.

– and the average satisfaction degree (S′avg) of all VPMs in a solution, to
measure the satisfaction degree of a solution, which is expressed as follows:

S′avg =

∑N−1
i=0 S′i
N − 1

N being the number of VMs in the solution, which is equal to the number
of VMs specified in the request.

5.2 Dataset and Parameters

In our previous work [14], we defined and generated a benchmark which covers
a wide range of possible data centers with different demographics. In that
benchmark, we use shape and size to represent VMs or PMs, and identified 5
distributions (i.e., normal, u-shaped, uniform, j-shaped and reverse j-shaped)
for shape and size respectively. Based on these distributions, we generated
25 VM sets and 25 PM sets. In this paper, we generated a mixed VM set
(2, 000 VMs) by randomly selecting 80 VMs from each of the 25 VM sets in
the benchmark, and a mixed PM set (1, 000 PMs) by randomly selecting 40
PMs from each of the 25 PM sets in the benchmark, in order to simulate the
heterogeneity of VMs and PMs.

The request used in the experiments is similar to the example shown in
Figure 2. The difference lies in the number of VMs listed, and the minimum
and maximum values of CPU and RAM of them. There are only two <id>

elements between tag <IDs> and <\IDs> in the example, however, the request
used in the experiments lists 500 VMs (i.e., 500 <id> elements with randomly
selected ids) to be consolidated, which have common site (i.e., S1) and city
(i.e., C2) as the example request. The minimum and maximum values of CPU
and RAM in the common characteristics are also different and accordingly
correspond to the 500 listed VMs.

Table 3 Attributes Used in the Experiment

Attribute Value Type

site S1, . . . , S7 Categorized
city C1, . . . , C9 Categorized
building B1, . . . , B10 Categorized
organization Org1, . . . , Org8 Normal
hardware model M1, . . . ,M9 Normal (PM only)
cpu qty 2, 4, 8 Normal (PM only)

Table 3 shows the attributes used in the characteristics and preferences in
the experiments. We set the number of categories to 5, hence C = 5, ε = 0.1.
PMs in the mixed PM set have all listed attributes with values randomly
assigned. VMs in the mixed VM set have the first four attributes. As the
request lists 500 VMs having common site and city to be consolidated, 500

Title Suppressed Due to Excessive Length 13

VMs of the mixed VM set (selected according to the ids listed in the request)
have site = S1 and city = C2, and values randomly assigned to the other
attributes; the remaining 1, 500 VMs have values randomly assigned to all
attributes.

5.3 Experimental Setup

We conducted two sets of experiments: i) simulating real-world scenarios to
evaluate the performance of the proposed SOC system in terms of the number
of PMs required, the satisfaction degree, and the execution time (see Sec-
tion 5.4); ii) varying the number of preference sets and the number of PMs
with preferences assigned to analyze their impacts on the solutions (see Sec-
tion 5.5). In these experiments, the VM set, the PM set and the request are
fixed as described above. However, the preferences of PMs are alterable to
simulate scenarios with different preferences. We created five preference sets
for PMs to simulate the preferences of five managers, each managing a subset
of the PM set. Each preference set consists of a group of attributes, which are
fixed, but with randomly assigned values.

We ran ten experiments for the performance evaluation with the five pref-
erence sets randomly assigned to 800 PMs in each run. One group of values
from Table 4 are used for each experiment. We did not assign preference sets
to all PMs because in the real world it happens that some PMs have no pref-
erence specified. In the second set of experiments, we use the first group of
values in Table 4, and change the number of preference sets (i.e., the number
of managers who specify preferences) assigned (Cps) (e.g., assign pref 1; assign
pref 1 and 2; assign pref 1, 2 and 3 etc.), and the number of PMs to which
those preference sets are assigned (Cpm) (i.e., 200, 400, 600, 800, 1, 000). The
PMs with preferences assigned were picked randomly and differentiated five
times for each combination of Cps and Cpm to compute the average results.
All experiments are carried out on a laptop with 8GB RAM and an Intel Core
i7-2760QM 2.4GHz CPU running Windows 7.

5.4 Performance Evaluation

5.4.1 Quality

Figure 3a shows the quality of placement (i.e., number of hosts required) of
the three approaches. The x-axis indicates the indexes of the ten experiments
with different preference sets and values assigned. As PL does not consider
preferences, the number of hosts required in each experiment is the same (i.e.,
15). SOC requires 54.1% fewer hosts than MM on average, while being very
close to PL except for the last experiment (i.e., using preference values of group
10). In that experiment, MM also requires much more PMs. As the PMs are
heterogeneous in terms of capacity and are assigned different preferences, one

14 Xi Li et al.

Table 4 Preference Sets for PMs Used in The Experiments with Ten Groups of Values

Prefs Types/Attributes Weights
Values

1 2 3 4 5

Pref 1 Inflexible: Site !S4 S7 S6 S7 S3
Flexible: City 0.5 C8 C2 C8 C3 C6
Flexible: Building 0.3 B10 B2 B5 B9 B10
Flexible: Organization 0.2 Org1 Org2 Org3 Org7 Org3

Pref 2 Inflexible: Site S6 !S3&!S4 !S1&!S2 S2 S7
Inflexible: Organization Org8|Org5 Org5 Org4 Org3 Org6
Flexible: City 0.7 C1 C8 C4 C4 C5
Flexible: Building 0.3 B5 B1 B8 B7 B1

Pref 3 Flexible: Site 0.4 S1 S1|S4 S1 S6 S5
Flexible: City 0.3 C4 C4 C2 C3 C3
Flexible: Building 0.2 B2 B6 B5 B6 B4
Flexible: Organization 0.1 Org5 Org7 Org4 Org6 Org3

Pref 4 Inflexible: Organization Org6 Org2 Org1 Org1 Org2
Flexible: Site 0.8 S1 S4 S1 S2 S1
Flexible: City 0.2 C2 C8 C1 C1 C6

Pref 5 Flexible: Site 0.6 S2 S4 S6 S1 S1
Flexible: City 0.1 C9 C5 C4 C8 C2
Flexible: Organization 0.3 Org4|Org1 Org3 Org7 Org7 Org5

Prefs Types/Attributes Weights
Values

6 7 8 9 10

Pref 1 Inflexible: Site S7 S1 S2 S2 S1
Flexible: City 0.5 C3 C4 C3 C1 C5
Flexible: Building 0.3 B10 B4 B6 B10 B2
Flexible: Organization 0.2 Org2 Org2 Org5 Org1 Org8

Pref 2 Inflexible: Site S3 S6 S3 S7 S1
Inflexible: Organization Org2 Org3 Org6 Org8 Org5
Flexible: City 0.7 C9 C9 C9 C9 C6
Flexible: Building 0.3 B2 B8 B2 B2 B3

Pref 3 Flexible: Site 0.4 S7 S4 S2 S2 S4
Flexible: City 0.3 C5 C5 C1 C1 C2
Flexible: Building 0.2 B6 B1 B9 B8 B5
Flexible: Organization 0.1 Org5 Org2 Org4 Org1 Org4

Pref 4 Inflexible: Organization Org8 Org4 Org5 Org1 Org7
Flexible: Site 0.8 S4 S5 S3 S7 S3
Flexible: City 0.2 C2 C2 C9 C8 C8

Pref 5 Flexible: Site 0.6 S2 S5 S5 S3 S6
Flexible: City 0.1 C2 C9 C7 C2 C3
Flexible: Organization 0.3 Org8 Org8 Org8 Org3 Org4

possible reason for this higher number of PMs required is that the qualified
candidate PMs have small capacity. In order to investigate if this is the reason
causing more hosts required, we performed an experiment using preference
values of group 10 and homogeneous PMs, which have CPU and RAM set to
the average value of the original PM set. The result (see Figure 4) validates
our assumption that SOC requires the same amount of PMs as PL when the
PMs are homogeneous, while the other experimental parameters remain the
same. Therefore, the big amount of hosts required in the 10th experiment is

Title Suppressed Due to Excessive Length 15

inevitable due to the constraint of the inflexible preferences, which filtered out
PMs with big capacity. Moreover, it is worth noting that the 10th experiment is
the only one that needs a second round of placement (described in Section 4.5).
In this experiment, SOC first selects the PMs in the first two satisfaction levels
(i.e., 3 PMs in Level 1 and 24 PMs in Level 2) as candidate PMs, because the
total capacity of them is enough for the VMs’ total demands. However, it
turns out that 3 of the selected PMs have too small CPU capacity, though big
enough RAM capacity, thus, no VM can fit into them. It results in 461 VMs
placed on 24 PMs after the first round of placement. Consequently, the system
performs the second round of placement, taking the remaining VMs and PMs
as inputs. The second round of placement uses 2 PMs for the remaining 39
VMs, and leads to 26 PMs in total as presented in Figure 3a. It is noteworthy
that the number of hosts required by SOC can even be fewer than PL in a few
cases. The VM placement algorithm employed in SOC and PL is a heuristic
algorithm. It has been proven [14] to be able to produce near optimal solutions
much faster than an optimization solver, however, it does not guarantee to find
the optimal solution. Therefore, there is a chance that a solution using fewer
hosts can be found, especially when the hosts are heterogeneous.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 H

os
ts

Experiments with Different PM Preferences

SOC

MM

PL

2nd Round:
24+2 Hosts

(a) Number of Hosts (The lower the better)

406 400
454

408
367

413 413

488

413
443

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10

S
at

is
fa

ct
io

n
D

eg
re

e
(S

’ a
vg

)

Experiments with Different PM Preferences

SOC

MM

PL

(b) Satisfaction Degree (The higher the better; numbers above PL bars are the number
of mapping violations)

Fig. 3 Performance Evaluation Results of SOC, MM and PL

16 Xi Li et al.

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

SOC MM PL

N
um

be
r

of
 P

M
s

(a) Number of PMs

475

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SOC MM PL

S
at

is
fa

ct
io

n
D

eg
re

e
(S

’ a
vg

)

(b) Satisfaction Degree (Numbers above
PL bars are the number of mapping vio-
lations)

Fig. 4 Experimental Results with Homogeneous PMs (using preference values of group 10)

Figure 3b shows how well the preferences of both the requester and the
providers are satisfied. The numbers above the PL bars are the number of
mapping violations. We count a mapping violation if at least one of the given
inflexible preferences of the request or the PM in a mapping is violated. The
satisfaction degrees of SOC are very close to that of MM. As Sp, Sr ∈ [0, 1],
hence S, S′ ∈ [0, 2], and S′avg ∈ [0, 2]. Given the diversity of the attributes and
the requirement of meeting both parties’ preferences instead of only one’s, it is
very unlikely for S′avg to reach the maximum value. The results also reveal that
planning VM consolidation without considering the managers’ preferences has
a big chance to violate the managers’ preferences. Within the ten experiments
we ran, the lowest mapping violation is as high as 400 (80%), and the highest
one reaches 488 (97.6%).

5.4.2 Efficiency

We present the execution time of SOC, PL and MM in Figure 5, which shows
that the execution time of SOC for a problem size of 2, 000 VMs and 1, 000
PMs is slightly more than 1 second. The 10th experiment takes a bit extra
time of about 0.1 second as it performs a second round of placement. There is
an overhead of approximately 0.2 second for the matchmaking process in SOC
compared to PL. However, this overhead is much less than the time taken by
MM, which performs pure matchmaking. Although SOC takes more time than
PL and MM, 1 second is very short time, thereby we consider SOC efficient.

5.5 Analysis of the Impact of Preferences

In this section, we demonstrate further why it is important to consider man-
agers’ preferences, and how it affects the results when the number of preference
sets and the number of PMs that have preferences assigned changes.

Title Suppressed Due to Excessive Length 17

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Experiments with Different PM Preferences

SOC

PL

MM

Match-
making
overhead

2nddroundd
overhead

Fig. 5 Execution Time of SOC, MM and PL

5.5.1 Impact on Satisfaction Degree and Violation

We present in Figure 6 the average satisfaction degree for the five runs of
each experiment. The results are grouped by the number of preference sets
assigned. As shown in Figure 6a, the number of mapping violations of PL
reaches 367 even when only one preference set is assigned to 200 PMs. As this
specific number of violations appears multiple times in the results and does
not change in Figure 6a, we believe that these violations are caused by PMs
violating the VM request’s inflexible preferences, and any increment comes
from VMs violating PMs’ inflexible preferences. As the placement solutions of
PL are the same in every experiment since it does not consider preferences,
changing the preferences of those PMs that are not selected as target PMs
in PL, or adding preferences that are not violated by the VMs will not cause
changes in the number of mapping violations. For example, the VMs in the
request have site = S1 which never violate the inflexible preference of Pref
1 with value in group 1(i.e., !S4), thus, the number of mapping violations in
Figure 6a remain the same when the number of PMs with preferences assigned
increases. However, when any of the selected PMs are assigned preferences that
the VMs violate, the count of violations increases.

The results in Figure 6 also show that: i) increasing the number of prefer-
ence sets has only a slight impact on the satisfaction degree of SOC and MM;
ii) increasing the number of PMs with preferences assigned decreases the S′avg
of MM, which implies that it is more difficult to find a mapping satisfying both
parties’ interests perfectly; iii) increasing the number of PMs with preferences
assigned does not always decrease the S′avg of SOC, which implies that SOC is
not very vulnerable to the change of the number of PMs with preferences as-
signed. However, SOC’s S′avg is inevitably reduced when all PMs are assigned
preferences.

Although MM selects for each VM the PM that maximizes the satisfac-
tion, it focuses on one VM at a time without seeing the satisfaction degree
of other VPM. Thus, SOC can have higher S′avg than MM as in Figure 6a
(S′avg(SOC) = 1.156, S′avg(MM) = 1.136 for 1, 000 PMs). Figure 7 uses two
hosts (H1, H2) and two VMs (VM1, VM2) to illustrate the case in which SOC
has higher S′avg than MM. As shown in Figure 7a and 7b, the satisfaction

18 Xi Li et al.

367 367 367 367 367

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

200 400 600 800 1000

S
at

is
fa

ct
io

n
D

eg
re

e
(S

’ a
vg

)

Number of PMs with Preferences Assigned

SOC

MM

PL

(a) Assign One Preference Set (Pref 1)

394.2 385 402.2 420
437.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

200 400 600 800 1000

S
at

is
fa

ct
io

n
D

eg
re

e
(S

’ a
vg

)

Number of PMs with Preferences Assigned

SOC

MM

PL

(b) Assign Two Preference Sets (Pref 1,2)

367
393.2 384.8

402.2 411.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

200 400 600 800 1000

S
at

is
fa

ct
io

n
D

eg
re

e
(S

’ a
vg

)

Number of PMs with Preferences Assigned

SOC

MM

PL

(c) Assign Three Preference Sets (Pref 1,2,3)

367
410.4

391.4
424.8

451.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

200 400 600 800 1000

S
at

is
fa

ct
io

n
D

eg
re

e
(S

’ a
vg

)

Number of PMs with Preferences Assigned

SOC

MM

PL

(d) Assign Four Preference Sets (Pref 1,2,3,4)

367
393.2 383.6 384.6

417.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

200 400 600 800 1000

S
at

is
fa

ct
io

n
D

eg
re

e
(S

’ a
vg

)

Number of PMs with Preferences Assigned

SOC

MM

PL

(e) Assign Five Preference Sets (Pref
1,2,3,4,5)

Fig. 6 Impact of Preferences on PMs’ Satisfaction Degree (Numbers above PL bars are the
average number of mapping violations)

H1

VM1 VM2

1 1.5

(a)

H2

VM1 VM2

0.8 1

(b)

H1
VM1

1

H1VM2
1

H1

H2

(c) MM

H1
VM1

0.8

H1VM2
1.5

H2

H1

(d) SOC

Fig. 7 Example of SOC Having Higher S′
avg Than MM

degree of VPM between VM1 and H1 S′VM1−to−H1 = 1, and the satisfaction
degree of VPM between VM1 and H2 S′VM1−to−H2 = 0.8. MM processes one
VM at a time. When processing VM1, it determines that H1 is a better host

Title Suppressed Due to Excessive Length 19

than H2 for VM1. After VM1 is placed, there is no space on H1 for VM2. Thus,
VM2 is placed on H2 as shown in Figure 7c, generating S′avg = 1. However,
if VM2 is placed on H1 and VM1 is placed on H2 (Figure 7d), the average
satisfaction degree S′avg would be 1.15.

5.5.2 Discussion on Satisfaction Levels

We also investigate the impact on satisfaction levels and discover that as the
number of PMs with preferences assigned increases, the number of PMs having
high satisfaction degree (i.e., Level 1 and 2) drops and those with low satis-
faction degree (i.e., Level 3 and 4) grows as shown in Figure 8. However, the
proportion of the number of PMs in each satisfaction level follows a similar
trend when the number of preference sets increases.

From the results, we can see that it is tricky to define a fixed border
and number of satisfaction levels for all cases. Because this depends not only
on the PMs’ capacity and VMs’ demands, which determines how many PMs
are enough to support a certain set of VMs, but also the number of PMs
with preferences assigned, which affects the distribution of satisfaction degrees.
Having too many levels may result in too many expansions and lower the
efficiency of the system to some extent. More important, each level has fewer
PMs when there are more levels, meaning smaller expansion steps. Thus, the
expansion is more likely to stop when the PMs have the exact amount of
capacity the VMs require, with no spare capacity. In this case, it is more likely
to require a second round of placement as discussed in Section 5.4.1. On the
other hand, too few levels will increase the search space and will not help in
focusing on PMs with high satisfaction degrees.

We explore this one possible separation of the levels in our prototype as
described in Section 4.5. Among the first set of experiments we ran, 77.8% of
them need to expand to Level 2, and 22.2% need Level 3. In the second set of
experiments 76% of them need Level 2, and 20% need Level 3. These results
show that this separation is reasonable, though there is space for improving
it. However, as implied by the results, the levels do not need to be adjusted
when new managers add preference sets into the system.

6 Conclusion and Future Work

This paper proposes SOC, a satisfaction-oriented VM consolidation system,
which uses matchmaking and a VM placement algorithm (RBP) to provide
consolidation solutions that satisfy IT managers’ preferences and optimize re-
source utilization in enterprises. To the best of our knowledge, this is the
first application of matchmaking techniques to the VM placement problem
to match managers’ preferences. SOC is a flexible mechanism which allows
a wide range of expression of references, as long as the corresponding infor-
mation is available in the DB. Our experiments show two important findings:
i) a placement solution not taking into account preferences risk hampering

20 Xi Li et al.

0

20

40

60

80

100

120

200 400 600 800 1000

N
um

be
r

of
 P

M
s

in
 E

ac
h

S
at

is
fa

ct
io

n
Le

ve
ls

Number of PMs with Preferences Assigned

Level 4

Level 3

Level 2

Level 1

(a) Assign One Preference Set (Pref 1)

0

10

20

30

40

50

60

70

80

90

100

200 400 600 800 1000

N
um

be
r

of
 P

M
s

in
 E

ac
h

S
at

is
fa

ct
io

n
Le

ve
l

Number of PMs with Preferences Assigned

Level 4

Level 3

Level 2

Level 1

(b) Assign Two Preferences Sets (Pref 1,2)

0

10

20

30

40

50

60

70

80

90

100

200 400 600 800 1000

N
um

be
r

of
 P

M
s

in
 E

ac
h

S
at

is
fa

ct
io

n
Le

ve
ls

Number of PMs with Preferences Assigned

Level 4

Level 3

Level 2

Level 1

(c) Assign Three Preference Sets (Pref 1,2,3)

0

10

20

30

40

50

60

70

80

90

100

200 400 600 800 1000

N
um

be
r

of
 P

M
s

in
 E

ac
h

S
at

is
fa

ct
io

n
Le

ve
ls

Number of PMs with Preferences Assigned

Level 4

Level 3

Level 2

Level 1

(d) Assign Four Preferences Sets (Pref 1,2,3,4)

0

10

20

30

40

50

60

70

80

90

100

200 400 600 800 1000

N
um

be
r

of
 P

M
s

in
 E

ac
h

S
at

is
fa

ct
io

n
Le

ve
ls

Number of PMs with Preferences Assigned

Level 4

Level 3

Level 2

Level 1

(e) Assign Five Preferences Sets (Pref
1,2,3,4,5)

Fig. 8 Impact of Preferences on The Number of PMs in Each Satisfaction Level (the number
of PMs in Level 5 is 0)

managers’ satisfaction, which is a big issue in decentralized organizations such
as enterprises; ii) SOC produces near optimal placements that also give the
most satisfaction to the managers.

It would be interesting to investigate in the future the separation of the
satisfaction levels further and define an adaptive separation of the levels. More-
over, the proposed mechanism can be extended by considering more real world
constraints such as the interference between co-located VMs (e.g., performance
degradation).

Acknowledgements This work was supported, in part, by Science Foundation Ireland
grant 10/CE/I1855 to Lero - the Irish Software Engineering Research Centre (www.lero.ie)
and by Enterprise Ireland Innovation Partnership in cooperation with IBM and University

Title Suppressed Due to Excessive Length 21

College Dublin under grant IP/2010/0061. Anthony Ventresque was supported, in part, by
Science Foundation Ireland Industry Fellowship grant 12/IF/12789.

References

1. Best practices for identifying and resolving infrastructure problems. URL http:

//www-03.ibm.com/software/products/us/en/tivomoni/. Accessed: 2014-03-16
2. Alicherry, M., Lakshman, T.: Network aware resource allocation in distributed clouds.

In: Proceedings of the 31st International Conference on Computer Communications,
INFOCOM ’12, pp. 963–971. IEEE (2012)

3. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future Gener. Comput. Syst.
28(5), 755–768 (2012)

4. Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient con-
solidation of virtual machines in cloud data centers. In: Proceedings of the International
Workshop on Middleware for Grids, Clouds and e-Science, MGC ’10, pp. 4:1–4:6. ACM
(2010)

5. Biran, O., Corradi, A., Fanelli, M., Foschini, L., Nus, A., Raz, D., Silvera, E.: A stable
network-aware vm placement for cloud systems. In: Proceedings of the International
Symposium on Cluster, Cloud and Grid Computing, CCGRID ’12, pp. 498–506. IEEE
(2012)

6. Breitgand, D., Epstein, A.: Sla-aware placement of multi-virtual machine elastic services
in compute clouds. In: Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management, IM ’11, pp. 161–168. IEEE (2011)

7. Cafaro, M., Mirto, M., Aloisio, G.: Preference-based matchmaking of grid resources with
cp–nets. J. Grid Comput. 11(2), 211–237 (2013)

8. Cardellini, V., Casalicchio, E., Lo Presti, F., Silvestri, L.: Sla-aware resource manage-
ment for application service providers in the cloud. In: Proceedings of the International
Symposium on Network Cloud Computing and Applications, NCCA ’11, pp. 20–27
(2011)

9. Chen, M., Zhang, H., Su, Y.Y., Wang, X., Jiang, G., Yoshihira, K.: Effective vm sizing
in virtualized data centers. In: Proceedings of the IFIP/IEEE International Symposium
on Integrated Network Management, IM ’11, pp. 594–601. IEEE (2011)

10. Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement
in clouds. In: Proceedings of the IEEE/ACM 12th International Conference on Grid
Computing, GRID ’11, pp. 26–33 (2011)

11. Govindan, S., Liu, J., Kansal, A., Sivasubramaniam, A.: Cuanta: Quantifying effects of
shared on-chip resource interference for consolidated virtual machines. In: Proceedings
of the 2nd ACM Symposium on Cloud Computing, SOCC ’11, pp. 22:1–22:14 (2011)

12. Isci, C., Hanson, J., Whalley, I., Steinder, M., O.Kephart, J.: Runtime demand estima-
tion for effective dynamic resource management. In: Proceeding of the IEEE Network
Operations and Management Symposium, NOMS ’10, pp. 381–388

13. Jin, H., Qin, H., Wu, S., Guo, X.: Ccap: A cache contention-aware virtual machine
placement approach for hpc cloud. International Journal of Parallel Programming pp.
1–18 (2013)

14. Li, X., Ventresque, A., Murphy, J., Thorburn, J.: A fair comparison of vm placement
heuristics and a more effective solution. In: Proceedings of the 13th International Sym-
posium on Parallel and Distributed Computing, ISPDC ’14. IEEE (2014)

15. Liu, C., Foster, I.: A constraint language approach to matchmaking. In: Proceedings of
the 14th International Workshop on Research Issues on Data Engineering: Web Services
for E-Commerce and E-Government Applications, RIDE ’04, pp. 7–14. IEEE (2004)

16. Liu, C., Yang, L., Foster, I., Angulo, D.: Design and evaluation of a resource selection
framework for grid applications. In: Proceedings of the 11th International Symposium
on High Performance Distributed Computing, HPDC ’02, pp. 63–72. IEEE (2002)

17. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks
with traffic-aware virtual machine placement. In: Proceedings of the 29th Conference
on Information Communications, INFOCOM ’10, pp. 1154–1162 (2010)

22 Xi Li et al.

18. Moore, J., Chase, J., Ranganathan, P., Sharma, R.: Making scheduling ”cool”:
Temperature-aware workload placement in data centers. In: Proceedings of the An-
nual Conference on USENIX Annual Technical Conference, ATEC ’05, pp. 5–5 (2005)

19. Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource management
for high throughput computing. In: Proceedings of the 7th International Symposium
on High Performance Distributed Computing, HPDC ’98, pp. 140–146. IEEE (1998)

20. Raman, R., Livny, M., Solomon, M.: Policy driven heterogeneous resource co-allocation
with gangmatching. In: Proceedings of the 12th International Symposium on High
Performance Distributed Computing, HPDC ’03, pp. 80–89. IEEE (2003)

21. Sycara, K., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among hetero-
geneous software agents in cyberspace. Autonomous Agents and Multi-Agent Systems
5(2), 173–203 (2002)

22. Van, H.N., Tran, F.D., Menaud, J.M.: Sla-aware virtual resource management for cloud
infrastructures. In: Proceedings of the 9th International Conference on Computer and
Information Technology - Volume 02, CIT ’09, pp. 357–362. IEEE (2009)

23. Verma, A., Ahuja, P., Neogi, A.: pmapper: Power and migration cost aware applica-
tion placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware, Middleware ’08, pp. 243–264 (2008)

24. Verma, A., Ahuja, P., Neogi, A.: Power-aware dynamic placement of hpc applications.
In: Proceedings of the 22nd Annual International Conference on Supercomputing, ICS
’08, pp. 175–184. ACM (2008)

25. Vogels, W.: Beyond server consolidation. Queue 6(1), 20–26 (2008)

