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Introduction

Philadelphia (Ph) chromosome-negative myelo-
proliferative neoplasms (MPN), which include poly-
cythemia vera (PV), essential thrombocythemia 
(ET), and primary myelofibrosis (PMF), are charac-
terized by clonal proliferative hematopoiesis with at 
least one lineage of increase in blood cell count1).  
MPN are slowly progressive, but sometimes compli-
cated by secondary myelodysplastic syndromes 
(MDS)/acute myeloid leukemia (AML) or myelofi-
brosis (MF) with poor outcome2).

In 1951, the entity of myeloproliferative disor-
ders, which include PV, ET, PMF, and chronic 
myelogenous leukemia (CML), was described on the 
basis of clinical similarities3).  For CML, Ph chro-
mosome was discovered in 19604) and identified as a 
translocation in 19735), the ABL gene was shown in 
19836), and BCR-ABL tyrosine-kinase inhibitor was 
developed in early 1990’s7).  In contrast, a mutation 
in the Janus kinase 2 (JAK2) gene, namely 
JAK2V617F, was reported in majority of PV, PMF, 
and ET in 20058-11), more than 50 years after the 
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Abstract : Philadelphia chromosome-negative myeloproliferative neoplasms (MPN), which include 
polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are characterized by 
clonal proliferative hematopoiesis with increased blood cell count. Clonal expansion mechanisms 
in MPN and related disorders such as myelodysplastic syndromes (MDS) remain to be 
elucidated. Although mutations in the JAK2 gene lead to a proliferative hematopoiesis in majority 
of MPN and some MDS, the mutation alone does not cause a clonal expansion. In addition to JAK2 
mutations, several genetic abnormalities, including TET2 and polycomb group genes involving 
epigenetic regulation have been reported in patients with MPN. Moreover, overexpression of 
HMGA2 due to removal of specific sites in its 3́ untranslated region for regulatory let-7 micro 
RNAs may contribute to the proliferative hematopoiesis with conferring a growth advantage at the 
level of a hematopoietic stem cell in some cases with MPN.

description of this disease entity.
Discovery of JAK2V617F provided the novel 

insight that the mutation causes constitutive activa-
tion of JAK-STAT signaling pathway, which leads to 
a proliferation of blood cells.  However, it turned 
out that the JAK2V617F does not necessarily confer 
a clonal growth advantage.  In fact, both 
JAK2V617F+ and JAK2V617F− cells similarly have 
clonality in X-linked clonality assay and chromo-
somal analysis in blood cells from MPN patients12,13).  
In addition, secondary AML following MPN often 
derive from JAK2V617F− cells rather than 
JAK2V617F+ cells13-15).  Furthermore, although 
JAK2V617F mutation is sufficient to cause MPN, 
JAK2V617F mutant cells failed to repopulate in bone 
marrow transplantations (BMT)16,17). 

Based on these findings, additional molecular 
pathogenesis other than JAK2V617F have been 
explored in MPN, bringing a variety of new insights, 
such as mutations and/or expression changes of 
genes involving cytokine signaling cascade, tran-
scription, and epigenetic regulation18-20).  In addi-
tion, overexpression of the high mobility group 
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AT-hook 2 (HMGA2), which plays important roles 
in cell proliferation and differentiation, has been 
reported in MPN21-26).  Overexpression of HMGA2 
is often a consequence of the chromosomal rear-
rangement that removes 3´ untranslated region 
(UTR) of HMGA2, containing specific sites for let-7 
micro RNAs, which negatively regulate expression 
of HMGA227,28).  In our recent study, transgenic 
mice overexpressing Hmga2mRNA without its 
3´UTR, indeed revealed a proliferative hematopoie-
sis mimicking MPN and expansion of a hematopoi-
etic cell at the level of a hematopoietic stem cell 
(HSC), suggesting that HMGA2 expression possibly 
contributes to some etiology of MPN29).  Here, we 
review the molecular pathogenesis and the role of 
HMGA2 in MPN.

Mutations in cytokine signaling-related genes

Proliferative hematopoietic features in MPN 
such as increased blood cell counts and cytokine-

independent hematopoietic colony formation are 
caused by a constitutive activation of a certain sig-
naling pathway20).  Mutations in JAK2, including 
JAK2V617F, which are the most common genetic 
abnormality in MPN, lead to phosphorylation of 
JAK2 tyrosine kinase in hematopoietic cells even in 
the absence of cytokines8-11).  Following phosphory-
lation of JAK2, downstream signaling is activated via 
transcription factors STAT3 and STAT5, MAP 
kinases, PI3K and AKT30).

JAK2 kinase has seven homology domains, from 
JH1 to JH7 and plays a important role in the prolifer-
ation of myeloid cells by hematopoietic growth fac-
tor cytokines.  JAK2 mutations in MPN occur 
around the JH2 pseudokinase domain, which nega-
tively regulates the kinase activity induced by JH1 
domein31).  The JAK2V617F derives from a substi-
tution of thymine for guanine in exon 14 where JH2 
domain locates.  On the other hand, mutations in 
exon 12 of JAK2 span a linker between the JH2 and 
SH2 domeins32,33).  Both the JAK2V617F and muta-
tions in exon 12 of JAK2 modify the structure of 
JAK2 JH2 pseudokinase domain in a similar man-
ner.  However, whereas JAK2V617F mutation is 
found in more than 95% of PV, 50-70% of ET, 
40-50% of PMF, and also up to 10% of MDS, muta-
tions in JAK2 exon 12 is detected only in the PV.

Mutations in MPL encoding the thrombopoietin 
receptor also cause a constitutive activation of JAK2 
kinase and downstream signaling pathway34-37).  
The hot spot of the MPL mutations, amino acid 515 
locates on next to the transmembrane domain in 
cytoplasm, around where 5 amino acids play a key 

role to prevent spontaneous activity of MPL as a 
receptor38).  MPL515 mutations (W515K/L/A) have 
been observed in up to 15% of JAK2V617F-negative 
ET or PMF.

Although these “gain-of-function” mutations 
explain proliferation of blood cells, it remains uncer-
tain how an MPN clone, such as a JAK2V617F+ cell 
acquire a clonal growth advantage.  JAK2V617F+ 
hematopoietic cells fail to repopulate in competitive 
repopulation assays using some JAK2V617F knock-

in model animals16,17) and in a coincidental human 
hematopoietic stem cell transplantation from 
JAK2V617F+ idiopathic portal hypertension patient 
to a patient with MDS39).  Moreover, even without a 
mutation in JAK2, MPL, or other signaling-related 
genes, a signaling involving JAK-STAT pathway are 
generally activated in MPN hematopoiesis, in which 
the cause of signaling activation is largely 
unknown30,40,41).  Indeed, erythropoietin-indepen-
dent erythroid colony formation from progenitor 
cells with only wild-type JAK2 has been 
shown42).  These findings suggest that an unknown 
additional event might be required for an MPN cell 
to acquire a clonal growth advantage over a wild-

type cell or lead to activation of JAK-STAT signaling 
pathway independent on JAK2 mutations.

Mutations in epigenetic regulators

Significant advances in whole genome assays 
after the discovery of the JAK2V617F led to an 
increasing numbers of discoveries in mutations of 
MPNs.  Many of these genes such as Ten-Eleven-

Translocation 2 (TET2)43), Additional sex combs like 1 
(ASXL1)44), and Enhancer of zeste homolog 2 
(EZH2)45-47) involve in epigenetic regulations.

By hydroxylation of 5-methylcytosine (5-mC), 
TET2 generates 5-hydroxymethylcytosine (5hmC)48), 
which may contribute to cytosine demethylation.  
Loss-of-function mutations in TET2 have been 
reported in wide range of myeloid malignancies, 
including MPN.  Interestingly, DNA-methyl
transferase 3 (DNMT3), of which mutations was 
recently found in patients with AML49,50), generates 
5-mC by methylating cytosine51), indicating a direct 
interaction between TET2 and DNMT3, both of 
which may be important for the differentiation of 
HSCs52,53).  More recently, mutations in DNMT3 
has been also reported in MPN54,55).

ASXL1 and EZH2 belong to polycomb group 
genes (PcG), involving in histone methylation and 
chromatin modification.  ASXL1 protein is a part of 
polycomb repressive deubiquitinase complex that 
regulates expressions of HOX-related genes and 
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deubiquitination of histone H256).  EZH2 protein is 
a member of the polycomb repressive complex 2, 
which play roles in proliferation, differentiation, 
identity maintenance, and plasticity of cells, and 
modifies chromatin structure57).  EZH2 also meth-
ylates histone H3 at lysine 2758).  Mutations in 
ASXL1 or EZH2 in MPN and other myeloid disor-
ders generally result in a function loss, which raise 
another interesting aspect that these may be repre-
sentative genes in the deletions of chromosomes 
20q or 7q, respectively44,45).

Overexpression and truncation of HMGA2

HMGA2 protein is a member of the HMGA 
family of nonhistone chromatin proteins, which also 
contains HMGA1a, HMGA1b, and HMGA1c59).  
DNA-binding AT-hook domains of HMGA2, which 
are encoded by first three exons of the HMGA2 
gene, can modulate transcription by affecting the 
DNA conformation of specific AT-rich regulatory 
elements promoting transcriptional activity60,61).  
The HMGA2 protein is important in a wide spec-
trum of biological processes, including cell prolifera-
tion, cell-cycle progression, apoptosis, and senes-
cence62,63).  HMGA2 is also thought to play a crucial 
role in self-renewal and control of differentiation of a 
variety of stem cells such as embryonic stem cells64), 
neural stem cells65), and cancer stem cells66).  In 

particular, proliferation, cell-cycle progression, and 
differentiation control of tumor cells due to overex-
pression of HMGA2 may lead to a growth advantage 
in several benign tumors and cancers 63,66).

HMGA2 exon 5 encodes the acidic C-terminal 
domain of the protein and contains the 3´UTR of the 
mRNA.  The 3´UTR of HMGA2 contains specific 
sequences complementary to the let-7-family of 
miRNAs.  Binding of the complementary sequences 
by let-7 miRNAs post-transcriptionally and nega-
tively regulates HMGA2 mRNA and protein expres-
sion27,28).  The Expression of HMGA2 protein is 
abundant during embryogenesis but very low in nor-
mal adult tissues, inversely correlating with that of 
let-7 miRNAs67).  Overexpression of HMGA2, how-
ever, are found in various benign and malignant 
tumors in adults and are thought to contribute to 
transformation in these tumors62,63).  In most cases 
these tumors harbor a rearrangement of chromo-
some 12q13-15, the location of the HMGA2 gene, 
causing a truncation or deletion of the HMGA2 
3´UTR, while sequences encoding the HMGA2 
DNA binding domains are intact.  Thus, chromo-
somal rearrangements within the HMGA2 locus 
deleting the let-7 binding sites may cause overex-
pression of HMGA2 protein with a preserved DNA 
binding capacity.

Overexpression and/or truncation of 3´UTR of 

26 

 

Fig. 1.  HMGA2 overexpression due to truncation of its 3´UTR in hematologic disorders.  HMGA2 is overex-
pressed due to chromosomal rearrangement, which removes its 3´UTR containing specific sites for let-7 micro 
RNAs in MPN, MDS, and PNH, because let-7 negatively regulates expression of HMGA2.  HMGA2 overex-
pression may lead to both proliferation and clonal advantage of hematopoietic cells.
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HMGA2 have been found in patients with MPN, 
MDS and MDS/MPN21-26).  Interestingly, it has been 
reported that HMGA2 mRNA expression was signif-
icantly higher in PMF patients with JAK2V617F 
mutation than patients without the muta-
tion25).  Moreover, in two patients with paroxysmal 
nocturnal hemoglobinuria (PNH), a chromosomal 
rearrangement causing a truncation of the 3´UTR of 
the HMGA2 gene have been also found particularly 
in abnormal clone without cell surface glycosyl 
phosphatidylinositol proteins (PNH clone), leading 
to the overexpression of HMGA2 in PNH clones68).  
These findings suggested the hypothesis that over-
expression of HMGA2 may confer a clonal growth 
advantage to an abnormal progenitor cell, thus con-
tributing to pathogenesis in MPN or other clonal 
hematologic disorders (Fig. 1).

Recently, to study the consequence of overex-
pression of HMGA2 in hematopoiesis, we generated 
a transgenic mouse line expressing a murine Hmga2 
cDNA with a truncation of its 3´UTR (∆Hmga2 
mouse)29), mimicking the truncation of HMGA2 seen 
in the patients with MPN or PNH21-26,68).  Hemato
poiesis of ∆Hmga2 transgenic mice resembled MPN, 
characterized by increased peripheral blood cell 
counts in all blood cell lineages, hypercellular bone 
marrow, splenomegaly, increased colony formations 
and erythropoietin-independent erythroid colony 
growth.  When we explored cause of the prolifera-
tive hematopoiesis of ∆Hmga2 mice, increased 
expression of Jak2 mRNA and cytokine-independent 
phosphorylations of STAT3 and AKT were observed 
in hematopoietic cells of ∆Hmga2 mice.  Therefore, 
activation of a pathway involving JAK-STAT and 
AKT may play a role in proliferative hematopoiesis 
due to overexpression of HMGA2.  In addition, 
hematopoietic cells of ∆Hmga2 mice showed an 
extreme growth advantage over wild-type cells in 
competitive repopulation assays and in serial BMT, 
indicating that overexpression of HMGA2 leads to a 
proliferative growth advantage in hematopoietic 
cells at the level of HSC.  Therefore, HMGA2 
overexpression may explain both the proliferative 
hematopoiesis and clonal growth advantage of 
abnormal hematopoietic cells in some patients with 
MPN or PNH (Fig. 1), although the frequency of 
HMGA2 dysregulation in these disorders, by gene 
rearrangement or other means, has yet to be deter-
mined.

Discussion

An acquired somatic point mutation, JAK2V617F 
has been identified in majority of patients with 
MPN, but the precise etiology of MPN has not been 
determined.  Mutations in other genes, notably a 
variety of epigenetic regulators including TET2, 
ASXL1, and EZH2 have been found in some patients 
with MPN.  In some cases more than one mutation 
is found in the same clone and in others leukemic 
transformation takes place in a cell not harboring the 
mutation15), suggesting a more constitutive unknown 
condition may underlie in MPN.  Our study of 
∆Hmga2 mice indicated that the HMGA2 overex-
pression in the MPNs might be such an additional 
factor in MPN etiology (Fig. 2)29).

Hematopoietic cells of ∆Hmga2 mice also 
showed high expressions of Jak2 mRNA and phos-
phorylated Stat3 or Akt29), suggesting that constitu-
tive JAK2-STAT3 and AKT activations induced by 
overexpression of HMGA2 may play a role in prolif-
erative hematopoiesis.  Although it should be 
investigated in the future how the expression of 
HMGA2 correlates with these pathways, it might 
contribute to activation of some signaling pathways 
shown in hematopoietic cells even without JAK2 
mutation of some MPN patients30).  Interestingly, it 
has been reported that HMGA2 upregulation was 
more apparent in JAK2V617F+ than JAK2V617F− 
cases in PMF25).  On the other hand, HMGA2 con-
tributes to chromatin extension and histone modifi-
cation by directly binding to the DNA in various 
types of cells, suggesting that HMGA2 may also 
play some roles in epigenetic regulation in hemato-
poietic cells.  Recently, Oguro et al. clarified that 
deletion of PcG-related Bmi1 causes MF after pro-
liferation of megakaryocytes in part by derepression 
of Hmga269).  Strikingly, they showed an evidence 
that Bmi1 directly repress expression of Hmga2 
using chromatin immunoprecipitation assay for pro-
moter area of Hmga2.

Serial BMT of ∆Hmga2 mice indicated that 
robust expression of HMGA2 may contribute to 
clonal growth advantage of an MPN clone by 
enhancing self-renewal capacity and function of 
HSCs29), as well as other types of stem cells64-66).  
Interestingly, enhancement of HSC due to HMGA2 
expression is observed not only in hematologic dis-
orders but also in several human gene therapy trials 
using lenti- or retro-viral transduction of human 
genes70,71).  In these studies, the virus was rela-
tively often inserted into the HMGA2 locus, leading 
to removal of binding sites for let-7 miRNA and 
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clonal outgrowth of hematopoietic cells, which 
brought a long-term effect including continuous 
independence of blood transfusion in severe thalas-
semia70).

Overexpression and/or truncation of HMGA2 
has also been found in patients with PNH and MDS, 
in which bone marrow failure rather than prolifera-
tive hematopoiesis is a common feature26,68,72).  
Bone marrow failure in these disorders is partly due 
to immunologic HSC injury by autoreactive cyto-
toxic T lymphocytes (CTLs) that produce tumor 
necrosis factor (TNF)-α and interferon (IFN)-γ73-75).  
It has been also suggested that an abnormal hemato-
poietic clone may preferentially survive the attack of 
IFN-γ-producing CTLs in these disorders76), leading 
to the hypothesis that a second-hit genetic event 
beside the disease-initiating event involving HSC 
injury is necessary for an abnormal hematopoietic 
cell to acquire a clonal growth advantage and actu-
ally expand (two-hit-hypothesis)77).  As well as 
PNH and MDS, it has been recently shown that 
TNF-α may lead to a clonal selection of JAK2V617F+ 
cells in MPN possibly due to a survival advantage 
against the TNF-α78).  This finding indicates that 
not only genetic abnormalities but also some sort of 
immunologic mechanisms or humoral factors may 

contribute to pathogenesis of MPN.  In fact, high 
cytokine concentrations are significantly correlated 
with the poor prognosis of PMF, and recent JAK2 
inhibitors benefit PMF patients in spleen size reduc-
tion and improving quality of life in part by reducing 
cytokine concentrations41).  It remains unknown if 
HMGA2 involve in such cytokine production, 
although immune response-related pathways were 
activated in HSCs of ∆Hmga2 mice in microarray 
analysis29).

Unlike CML in which the BCR-ABL has been 
already targeted, pathogenesis of MPN is likely 
more complicated.  In fact, in striking contrast of 
BCR-ABL tyrosine kinase inhibitors for CML, JAK2 
inhibitors are facing the limitation in the effect on 
MPN79-81), suggesting that further studies should 
focus on identifying a crucial therapeutic target 
among various factors in MPN.  HMGA2 would be 
such a candidate therapeutic target because it may 
involve the pathogenesis of MPN in several ways 
including regulations of gene expressions, prolifera-
tive hematopoiesis, and clonal expansion.27 

 

Fig. 2.  Possible role of HMGA2 in disease progression of MPN.  Detailed mechanism of disease progression 
remains unknown in MPN because JAK2V617F mutation may not provide a clonal growth advan-
tage.  JAK2V617F− cells as well as JAK2V617F+ cells have clonality in blood cells from MPN patients, and sec-
ondary AML often arises from MPN JAK2V617F− cells, suggesting an underlying etiology in MPN such as 
HMGA2 overexpression, which may contribute to both cell proliferation and clonal growth advantage, in addition 
to mutations in TET2, ASXL1, and EZH2.
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