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University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA
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Abstract—Starting from Newton, the main equations of physics
are differential equations – which implicitly implies that all the
corresponding processes are differentiable – and thus, continuous.
However, in practice, we often encounter processes or objects
that change abruptly in time or in space. In physics, we
have phase transitions when the properties change abruptly. In
geosciences, we have sharp boundaries between different layers
and discontinuing representing faults. In many such situations,
it is important to detect these discontinuities. In some cases, we
know the equations, but in many other cases, we do not know
the equations, we only know that the corresponding process is
discontinuous. In this paper, we show that by applying the soft
computing techniques to translate this imprecise knowledge into
a precise strategy, we can get an efficient algorithm for detecting
discontinuities; its efficiency is shown on the example of detecting
a fault based on the seismic signals.

I. FORMULATION OF THE PROBLEM

Most physical processes are continuous. Starting from New-
ton, the main equations of physics are differential equations;
see, e.g., [4].

This fact implicitly implies that all the corresponding pro-
cesses are differentiable – and thus, continuous.

Some processes are discontinuous. While most processes are
indeed continuous, in practice, we often encounter processes
or objects that change abruptly in time or in space. Let us give
two simple examples:

• In physics, we have phase transitions when the properties
change abruptly.

• In geosciences, we have sharp boundaries between dif-
ferent layers and discontinuing representing faults.

It is often important to detect discontinuities. In many such
situations, it is important to detect these discontinuities:

• In civil engineering, discontinuities may indicate crack or
faults. Finding them can help us check structural integrity
of the corresponding structure – e.g., of the airplane or a
spaceship.

• In geosciences, faults are places where most earthquakes
originate, so finding the exact locations of faults may help
predict where earthquakes can happen in the future.

• In fracking – a method of oil extraction when a liquid is
pumped into the oil-containing areas – it is important
to detect possible cracks, since through these cracks,
chemicals in the pumped liquid can penetrate into the

environment (such as aquifers contributing to the drinking
waver) where their presence is unwelcome.

Detecting discontinuities is often not easy. In some cases,
we know the corresponding equations. In such situations, we
can use these equations to develop techniques for detecting
discontinuities.

In many other situations, however, we do not know the exact
equations describing the process. For example, while we may
know that there is a fault, we do not know the exact shape of
this fault, and we do not have a good understanding of how
this fault interacts, e.g., with seismic waves.

In such situations, all we know is the corresponding pro-
cesses are discontinuous – but we do not know the equations
describing this discontinuity. How can we use this information
to detect the discontinuities?

What we do in this paper. At first glance, it looks like
the word “discontinuity” has a precise meaning – after all,
continuity is a mathematical term, with a precise definition.
However, in reality, this mathematical definition is not what
the geophysicists have in mind when they say that a fault
is discontinuous. What they mean is rather a commonsense,
informal meaning of this word. What they mean is that at
nearby locations, we have similar properties.

Our objective is thus to translate this imprecise meaning into
a precise algorithm. In this translation, it is reasonable to use
the technique of fuzzy logic, techniques specifically designed
to transform imprecise (“fuzzy”) expert knowledge, knowledge
formulated by using words from natural language, into precise
computer-understandable terms; see, e.g., [6], [7], [8].

In this paper, we show that by applying these techniques,
we can get an efficient algorithm for detecting discontinuities;
its efficiency is shown on the example of detecting a fault
based on the seismic signals.

II. SOFT COMPUTING APPROACH TO DETECTING
DISCONTINUITIES

What does (informally understood) continuity means?
From the informal viewpoint, a function a(t) is continuous if
small changes in t leads to small changes in a. In other words,
if the difference ∆t

def
= t′ − t is small, then the difference

∆a
def
= a(t′)− a(t) should also be small.

This description is indeed informal. The above description
is informal, since it uses an imprecise term “small”.



Let use soft computing techniques to describe “small”. The
main idea of a fuzzy translation of imprecise terms like “small”
comes from the fact that for precisely defined properties –
e.g., property “less than 10.0” – for each possible value x, the
corresponding property is either true or false. In the computer,
“true” is usually represented as 1, while “false” is represented
by 0. Thus, for a precisely known property, to every possible
value x, we assign a value 0 or 1, depending on whether the
corresponding property holds or not.

For imprecise properties like “small”, the situation is more
complicated:

• For small values x, we are absolutely sure that x is small,
so it is reasonable to assign 1.

• For large values x, we are sure that these values are not
small, so we assign the value 0.

• However, for intermediate values, our understanding is
that they are “to some extent” small – something inter-
mediate between “absolutely small” and “absolutely not
small”.

It is therefore reasonable to describe these intermediate de-
grees of confidence by using numbers intermediate between
the number 1 (corresponding to true) and the number 0
(corresponding to “false”).

This, in a nutshell, is the main idea of fuzzy logic: to
describe an imprecise property like “small”, we assign, to each
possible value x of the corresponding property, a number the
interval [0, 1] that describes the degree to which, according to
the expert, the expert believes that x satisfies this property.
This number is usually denoted by µ(x); the corresponding
function is known as the membership function.

How can we determine the corresponding degree µ(x)?
Well, one way is to explicitly ask the expert to mark his/her
degree of confidence that x has a given property (e.g., is small)
on a scale from 0 to 1.

What is a reasonable function for small? The larger the
positive value x, the less we believe that x is small. Thus, for
x > 0, the function µ(x) should be strictly decreasing – until
it reaches 0.

Also, intuitively, a negative value −x is small if and only
if the corresponding positive value x is small. Thus, we have
µ(−x) = µ(x), i.e., in other words, µ(x) = µ(|x|) for all x.

Different quantities may have different scales. The numer-
ical value of a quantity depends on the measuring unit. For
example, if we replace meters with centimeters, all the nu-
merical values of lengths are multiplied by 100: 2 m becomes
200 cm. In general, if we replace the original measuring unit
with a new unit which is λ times smaller, then each original
value x changes to a new value x′ = λ · x.

In the new units, the mathematical form of the membership
function describing the notion “small” will change: for each
numerical value x′ in the new unit, the corresponding value
in the old units is

x =
x′

λ

and thus, the corresponding degree of confidence that this
value is small is equal to

µ′(x′) = µ(x) = µ

(
x′

λ

)
. (1)

Resulting relation between the properties “small” corre-
sponding to different quantities. To describe the informal
notion of continuity, we need to use the notion “small” for
two different quantities:
• the quantity ∆t and
• the quantity ∆a.
In both cases, the notion of smallness is the same, but

the scale may be different. Thus, if we denote by µ(∆t)
the membership function corresponding to smallness of ∆t,
the smallness of ∆a can be, in general, be described by the
formula (1) for some appropriate re-scaling factor λ:

µ′(∆a) = µ

(
∆a

λ

)
. (2)

In these terms, what does continuity mean? We have started
with describing continuity as an if-then statement: if ∆t is
small, then ∆a is also small. A statement of the type

“if A then B”

is easy to understand in the case of the traditional 2-valued
logic: is simply means that:
• if A is true,
• then B should also be true.
In fuzzy logic, we can add that:
• if A is true with some degree d,
• then B should also be true at least with this degree.

In other words, it means that our degree of belief in B should
always be greater than or equal to our degree of belief in A.

In particular, for the if-then statement describing continuity,
we conclude that for every ∆t, we must have

µ′(∆a) ≥ µ(∆t).

Substituting the expression (2) into this inequality, we con-
clude that

µ

(
∆a

λ

)
≥ µ(∆t). (3)

Let us simplify this condition. At first glance, the above
property sounds rather complicated – and, what is worse,
depending on the what exactly membership function we use to
describe “small”. We will show, however, that the property (3)
can be drastically simplified.

First, since µ(x) = µ(|x|), we conclude that

µ

(
|∆a|
λ

)
≥ µ(|∆t|). (4)

Now, the membership function is applied only to non-negative
values, and we know that for non-negative values, this function



is strictly decreasing – until it reaches 0. Thus, for sufficiently
small ∆t – until we reach 0 – the inequality (4) implies that

|∆a|
λ
≤ |∆t|,

or, equivalently, that ∣∣∣∣∆a∆t

∣∣∣∣ ≤ λ. (5)

Conclusion. Thus, we can detect discontinuities by comparing
the ratio ∣∣∣∣∆a∆t

∣∣∣∣ =

∣∣∣∣a(t′)− a(t)

t′ − t

∣∣∣∣ (6)

with some threshold λ:
• as long as the ratio is below the threshold, we are

continuous,
• once the ratio is above the threshold, this is an indication

of discontinuity.

Sometimes, this criterion can be simplified even further.
In some cases, the values t are equally paced:

t1, t2 = t1 + δt, . . . , tk = tk−1 + δt, . . .

In such case, the desired ratio (6) is simply proportional to
the absolute value of the difference |a(tk) − a(tk−1)|. Thus,
in this case, we get an even simpler criterion for detecting
discontinuity:
• if the difference |a(tk) − a(tk−1)| does not exceed a

certain threshold (which is equal to λ · δt), this means
that at the location tk, the process is continuous;

• on the other hand, if the difference

|a(tk)− a(tk−1)|

exceeds this threshold, this means that at this location,
there is a discontinuity.

Comment. In this simplified sense, the conclusion seems to be
consistent with common sense – which is one more reason to
trust it.

III. APPLICATION TO SEISMIC ANALYSIS

Description of the experimental data. In this paper, we used
the experimental results from the 2014 Southern California
study described in [3]. In this study, more than 1000 seismic
sensors were placed on a dense 600 m × 600 m grid on top
of one of the known faults – San Jacinto fault; see Fig. 1.

These sensors were in place for a 5-week period. As a result,
we have the values v(s, t) measured by different sensors s at
different moments of time t.

During this period, the sensors recorded many earthquakes,
both:
• weak earthquakes originating in the vicinity of the fault

and
• stronger earthquake that occurred outside the fault.

What we did. For each of the stronger outside earthquakes E,
for each sensor s, we identified the moment of time tr(s, E)

 

Fig. 1. Sensors placed in the vicinity of San Jacinto fault [3]

 

 

Fig. 2. Wave field for P-wave across the fault

when the signal from this earthquake reached this sensor. For
each of the sensors s, we then took the recording v(s, t) for a
10-second period period following the arrival of the first (P-
wave) signal from the earthquake tr(s, E) ≤ t ≤ tr(s, E)+10;
see Fig. 2.

Due to the interaction of the signal with the fault and
other inhomogeneities, the shape of the signal at different
sensors was somewhat different. As a measure of how the
earthquake influenced the given sensor, we took the largest



possible amplitude m(s, E) of the seismic signal at this sensor
during the selected time interval:

m(s, E) = max
rr(s,E)≤t≤tr(s,E)+10

|v(s, t)|.

Then, for each straight line of sensors ` in the direction
of wave propagation, we take all the sensors s1(`), s2(`),
. . . along this line. For each of these sensors sensor sk(`),
we computed the maximum-amplitude m(sk(`), E) corre-
sponding to this sensor, and we computed the differences
|m(sk(`), E) − m(sk−1(`), E)| between the values corre-
sponding to the neighborhood sensors.

Results. Interestingly, in almost all cases when we selected a
line crossing the fault, the difference

|m(sk(`), E)−m(sk−1(`), E)|

spiked when the line of sensor crossed the fault – i.e., when the
fault was between the (k − 1)-st and the k-th sensors. Thus,
for each of these lines, we could indeed easily identify the
fault as the location at which the difference exceeds a certain
threshold λ:

|m(sk(`), E)−m(sk−1(`), E)| ≥ λ,

in perfect accordance with the above soft-computing-based
formula for a(tk)

def
= m(sk(`), E).

Discussion. This accordance with theory was even more
amazing to us when we saw that the actual dependence of
the amplitude m(sk(`), E) on k was drastically different for
different earthquakes:
• For earthquake waves whose direction was almost orthog-

onal to the fault, we saw a drastic increase in m(sk(`), E)
as the signal crosses the fault.

• In contrast, for earthquake waves whose direction was
almost parallel to the fault (and we had an earth-
quake whose wave direction differed from the fault by
only 18◦), we saw, vice versa, a sharp decrease in the
amplitude m(sk(`), E) followed by sharp increase back
to the original amplitude level.

(Our attempts to explain this difference are placed in the
appendix.)

In all the cases, however, what was common was the fact
that there was a drastic change around the fault – and we can
therefore use this change to detect the discontinuities.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, on the example of detecting faults from
seismic waves, we have shown that methods based on soft-
computing interpretation of discontinuity are very helpful.

We tested this method on the example of detecting the
location of the San Jacinto fault, whose location is well known.
We hope that this success will enable us also to also detect
difficult-to-detect cracks and other faults caused by fracking –
and thus, prevent possible ecological disasters.
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APPENDIX: WHY DIFFERENT SEISMIC WAVES BEHAVE
DIFFERENTLY?

What we observed: reminder. In our analysis, we observed
that when a seismic wave approaches the fault straight ahead
– i.e., when its direction is orthogonal to the fault – the
amplitude measured by the sensors increases. In contrast, when
the earthquake wave approaches the fault at an angle closer to
0, the amplitude measured by the sensor decreases.

Our interpretation. In both cases, when the seismic wave hits
the fault, part of its energy is diverted to directions close to
orthogonal to the fault. As a result:
• for waves whose direction is almost orthogonal to the

fault, we measure a larger amplitude, while
• for waves at a small angle to the fault, the energy

decreases.
Such a phenomenon is well known in wave propagation as
scattering:
• when a wave approaches a point-wise obstacle, the scat-

tered wave goes in all directions around the obstacle;
• when a wave approaches a planar obstacle, we get scat-

tered waves mostly in the directions closed to orthogonal
to this obstacle.

Our hope. We hope that the known formulas of scattering
seismic waves (see, e.g., [1], [2]) – as well as a similar process
of scattering X-rays (see, e.g., [5]) – can help us go from the
current idea of detecting the location of the fault to a more
detailed description of this fault.
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