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Abstract 

 

In this paper we establish correlation theorem for the two-sided quaternion Fourier 

transform (QFT). A consequence of the theorem is also investigated.   
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I.   Introduction 
 

The quaternion Fourier transform (QFT) is a nontrivial generalization of the classical 

Fourier transform (FT) using quaternion algebra. A number of already known and 

useful properties of this extended transform are generalizations of the corresponding 

properties of the FT with some modifications (see, for example, [1, 2, 3, 4, 5]). One of 

the most powerful properties of the QFT is the convolution theorem. Recently, in [6] 

authors proposed the convolution theorem for the two-sided QFT, which describes the 

relationship between the two-sided QFT and convolution of two quaternion function. 

 

Therefore, the main objective of the present paper is to establish the correlation for the 

two-sided QFT, which is a generalization of correlation theorem of the classical FT. 

We find that the correlation theorem does not work well for the right-sided quaternion 

Fourier transform and left-sided quaternion Fourier transform. 
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The quaternion algebra over  , denoted by  

   {                }                                     (1)   

is an associative non-commutative four-dimensional algebra, which the quaternion 

units           obey the following multiplication rules:                    

                                                    (2) 

The quaternion conjugate is defined by 

 ̅                                               (3) 

which is an anti-involution, that is,   

 

 ̿                ̅̅ ̅̅ ̅̅ ̅   ̅   ̅   ̅̅ ̅   ̅ ̅                   (4) 

The norm of a quaternion is defined as 

| |  √  ̅   √                               (5) 

It is not difficult to check that 

|  |  | || |             .                  (6) 

We further get the inverse 

                                                                     
 ̅

| | 
                                                    

This fact shows that   is a skew field, that means, every nonzero element has a 

multiplicative inverse.  
 

For the sake of further simplicity, we will use the real vector notations 

  (     )     
       ( )   (     )   ( )   (     )                     

and so on when there is confusion. 

 

 

2.  Main Results 

In this section we introduce the definition of the two-sided QFT and establish the 

correlation of two quaternion-valued functions associated with the two-sided QFT.  

Definition 2.1 (Two-sided QFT) Let   be in     (    )   The two-sided QFT of the 

quaternion function   is the transform given by the integral 

  { }( )    ∫  
       ( )       

   

                                           ( ) 

 

Theorem 2.1 (Inverse two-sided QFT) Suppose that       (    ) and   { }  

  (    )  Then the two-sided QFT is an invertible transform and its inverse is given 

by 

 ( )    
 

(  ) 
∫         { }( ) 

     

   

                                  ( ) 
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Definition 2.2 (Quaternion Correlation) Suppose   and   are quaternion functions 

in   (    )  The quaternion correlation of the functions is given by   

(   )( )  ∫  (   ) ( )̅̅ ̅̅ ̅̅      

  

                                       ( ) 

The following theorem is the main result of this paper, which describes how the 

two-sided QFT behaves under correlations. 

 

Theorem 2.2 Let       (     )  be two quaternion-valued functions. The 

two-sided QFT of correlation of   and   takes the form 

  {   }( ) 

 (  {  }( )     {  }( )) (  {  }(  )    {  }(      )) 

 (  {  }(       )     {  }(      )) (    {  }(  )    {  }(      )) 

  (   {  }(       )     {  }(      )) (  {  }(      )    {  }(  )) 

  (   {  }(   )     {  }(  )) (    {  }(      )    {  }(  ))      

 

Proof. Applying the two-sided QFT definition gives  

  {   }( ) 

 ∫         (∫  (   )  ( )̅̅ ̅̅ ̅̅
  

   )            

  

 

By inserting the change of variables        to the above expression we 

immediately obtain 
 

  {   }( ) 

 ∫      (     )  (∫  ( )  ( )̅̅ ̅̅ ̅̅
  

   )     (     )    

  

 

  ∫ ∫      (     )  ((  ( )     ( ))  (   ( )     ( ))) 

    

 

( (  ( )     ( ))  (    ( )     ( )))  
    (     )          

  ∫ ∫      (     )

    

(  ( )     ( ))(   ( )     ( )) 
    (     )         

 ∫ ∫      (     )(  ( )     ( ))(    ( )     ( )) 
    (     )          

    

 

 ∫ ∫      (     )

    

(   ( )     ( ))(   ( )     ( ))  
    (     )        
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 ∫ ∫      (     ) ((   ( )     ( ))(    ( )     ( )))  
    (     )         

    

 

  ∫        

  

(  ( )     ( )) 

( ∫          ( ) 
           ∫          ( ) 

         

    

)           

(  ∫       )  ( ) 
           ∫        )  ( ) 

         

    

)             

 ∫        

  

(   ( )     ( )) 

( ∫        )   ( ) 
           ∫         ( ) 

         

    

)             

 ∫        (   ( )     ( ))

  

 

(  ∫        )  ( ) 
           ∫       )  ( ) 

         

    

)             

  ∫        

  

(  ( )     ( )) (  {  }(  )     {  }(      ))  
          

  ∫        (  ( )     ( )) 

  

(    {  }(  )     {  }(      ))   
          

 ∫        

  

(   ( )     ( )) (  {  }(      )     {  }(  ))   
          

 ∫        (   ( )     ( ))

  

(    {  }(      )     {  }(  ))   
          

  ∫        

  

(  ( )     ( )) 
         (  {  }(  )     {  }(      )) 
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  ∫        (  ( )     ( ))   
        

  

(    {  }(  )     {  }(      )) 

 ∫        

  

(   ( )     ( ))  
         (  {  }(      )     {  }(  )) 

 ∫        (   ( )     ( ))

  

           (    {  }(      )     {  }(  )) 

 (  {  }( )     {  }( )) (  {  }(  )    {  }(      )) 

 (  {  }(       )     {  }(      )) (    {  }(  )    {  }(      )) 

  (   {  }(       )     {  }(      )) (  {  }(      )    {  }(  )) 

  (   {  }(   )     {  }(  )) (    {  }(      )    {  }(  )). 

 

As a consequence of the above theorem, we immediately obtain 

 

Lemma 2.3 Given any two quaternion-valued functions       (     )    If we 

assume that     { }( )   
 (     ), then 

  {   }( )     {  }(      ) (   {  }(  )      {  }(  )) 

    { }(      ) (   {  }(      )     {  }(      ))   

Proof. Straightforward computations show that 
  {   }( )  

 ∫        

  

( ∫  (   ) ( )̅̅ ̅̅ ̅̅

  

    )           

 ∫ ∫      (     )

    

( ( )(  ( )     ( ))   ( )(   ( )     ( )))  
    (     )        

 ∫      (     ) ( ) ∫(  ( )     ( )) 
        

  

            

  

 

 ∫      (     ) ( ) ∫(   ( )      ) 
        

  

            

  

 

    {  }(      ) ∫  
      (  ( )     ( )) 
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    {  }(      ) ∫  
      (   ( )     ( )) 

  

             

 

We further obtain 

 

  {   }( ) 

    {  }(      ) ∫  
     (  ( )     ( ))  

          

  

 

    {  }(      ) ∫  
     (   ( )     ( )) 

           

  

 

    {  }(      )( ∫  
       ( ) 

          ∫          ( ) 
          

  

 

  

) 

    {  }(      )( ∫  
        ( ) 

          ∫          ( ) 
          

    

)  

    {  }(      ) (   {  }(  )       {  }(  )) 

    { }(      ) (   {  }(      )     {  }(      ))   

which was to be proved. 
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