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Abstract

The cost of implementing syntactically distinct Domain Specific Languages (DSLs) can

be reduced by homogeneously embedding them in a host language in cooperation with its

compiler. Current homogeneous embedding approaches either restrict the embedding of

multiple DSLs in order to provide safety guarantees, or allow multiple DSLs to be embed-

ded but force the user to deal with the interoperability burden. In this paper we present the

µ-calculus which allows parameterisable language embeddings to be specified and anal-

ysed. By reducing the problem to its core essentials we are able to show how multiple,

expressive, language embeddings can be defined in a homogeneous embedding context.

We further show how variant calculi with user-defined safety criteria can be defined.

1 Introduction

Domain Specific Languages (DSLs) are mini languages used to aid the implemen-

tation of recurring problems. What identifies a particular language as being a ‘DSL’

is partly subjective; intuitively, it is a language with its own syntax and semantics,

but which is smaller and less generic than a typical GPL such as Java. The DSL

premise is simple: a one off, up front, cost allows classes of systems to be created

at low cost and in a reliable and maintainable fashion [16].

DSLs have a long history, although they have often gone by different names [1].

Traditional, widely used, DSLs such as the UNIX ♠❛❦❡ program and the ②❛❝❝ pars-

ing system have been implemented as stand-alone systems, which are effectively

cut-down programming language compilers and virtual machines rolled into one;

the associated implementation costs and lack of practical reusability have hampered

the creation of DSLs [10]. An alternative approach to stand-alone implementation

is embedding, where a DSL is ‘hosted’ within a host programming language; in

other words, the host languages’ syntax is extended with the DSLs syntax. A sim-

ple example of such embedding is an SQL DSL; by using a DSL instead of an
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external database library one gains several advantages such as the static detection

of SQL syntax errors and the safe insertion of external values into SQL statements.

Language extension has been a goal of language researchers for several decades

(see e.g. [12]) but most early efforts were unable to prevent unintended and un-

wanted interactions between languages and their extensions [5]. Later approaches,

though largely theoretical, did show that certain forms of language extension could

avoid such problems [3,4]. More recently, DSL embedding approaches such as

Stratego [2], XMF [6,7], Converge [17], Metalua [9], and others (e.g. [14,8,13])

have shown that this is a viable approach.

DSL embedding techniques can be classified as either heterogeneous or homo-

geneous [17]. Put simply, heterogeneous embedding (e.g. Stratego) is when the

system used to compile the host language, and the system used to implement the

embedding are different (note that this does not imply that the host language must

be different than the language used to implement the embedding). In contrast, ho-

mogeneous embedding (e.g. Converge, Metalua, XMF) uses the language’s com-

piler to compile the host language and to facilitate DSL embedding. Heterogeneous

embedding has the advantage that it can be applied to any host language and any

embedded language. However this means that heterogeneous embedding systems

generally have little or no idea of the semantics of the languages they are embed-

ding into, meaning that such techniques are hard to scale up [17]. Furthermore

heterogeneous techniques typically assume that a single DSL is embedded into a

single host language: multiple distinct DSLs must be manually welded together in

order to create a single heterogeneous embedding which does not suffer from syn-

tax errors. Homogeneous embedding, however, is inherently limited to a specific

host language, but is typically able to offer greater guarantees about the safety of

the resulting embedding, allowing larger and more complex DSLs to be embed-

ded. Homogeneous embedding also places no conceptual restrictions on embed-

ding multiple DSLs in one host language, or having DSLs interleaved within each

other.

In practice, current homogeneous embedding technologies limit the extent to

which multiple DSLs can be embedded without resorting to unwieldy hacks [9].

For example, Metalua allows multiple DSLs to be embedded within it, but requires

manipulation of the global parser; no guarantees are made that different extensions

will co-exist peacefully, or even that individual extensions are well-formed. Con-

verge, on the other hand, allows multiple DSLs to co-exist and enforces reasonable

safety guarantees, but does so by making DSLs unpleasantly syntactically distinct,

and making embedding DSLs within each other extremely difficult.

We believe that the distance between the conceptual promise and current prac-

tical realities of homogeneous embedding are in large part because of a lack of

understanding of the underlying theory of language embedding in a homogeneous

setting. In this paper we present the µ-calculus for specifying and analysing homo-

geneous language embedding. The calculus extends the λ -calculus with facilities

for defining and using language embeddings, allowing parameterisable language

definitions to be scoped to portions of a source file, and to be nested arbitrarily
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within each other.

This paper is structured as follows: Section 2 defines the syntax and seman-

tics of the µ-calculus and shows how to precisely define an embedded language;

Section 3 describes different categories of language embedding and how they are

encoded in the calculus; Section 4 shows a how a language with more than one em-

bedding can be defined using the calculus and how safety criteria are represented;

finally, Section 5 concludes the paper with an analysis and discussion of further

work.

2 µ: A Language Embedding Calculus

The µ-calculus is an extension of the λ -calculus that supports embedded languages.

New languages can be added to µ in terms of a precise definition of their syntax,

semantics and how they relate to the execution context of the host language.

The definition and subsequent use of an embedded language takes the form of

a standard structure within the µ-calculus. This section defines the calculus and

defines how languages are embedded within it. It is structured as follows: Section

2.1 defines the syntax of the calculus and provides an example of its use; languages

are embedded in trms of their abstract syntax, Section 2.2 defines a data type that

represents µ-calculus abstract syntax; Section 2.3 defines the semantics of the µ-

calculus by embedding it within itself.

2.1 Overview

The syntax of the µ-calculus is:

E ::= expressions

V variables

| fun(V )E functions

| EE applications

| if E then E else E conditionals

| (E,E,E) language definition

| lang E : T [C] language embedding

T ::= . . . syntax types

C ::= . . . raw text

µ contains the conventional λ -calculus, plus language definition and language em-

bedding components. A language definition defines a language’s semantics as an

interpreter and how to embed it in the context of a host.

A language embedding allows the use of a language within the host calculus.

In essence, language definitions define interpreters and how to move from a host

interpreter to the embedded language’s interpreter. A language embedding is a use

of the definition in a context provided by the host language.

More specifically, the language definition triple (eval, load,unload) defines: an

evaluator, eval, which evaluates the language in terms of its state; a loader, load,
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that maps from the host language state to the embedded language state; and an

unloader, unload, that translates the embedded state back into a host state. The

following is an overview of how the calculus might be used:

✴✴ ❉❡❢✐♥❡ ❛♥ ❡♠❜❡❞❞❡❞ ❙◗▲✲❧✐❦❡ ❧❛♥❣✉❛❣❡✳✳✳
t②♣❡ ❙◗▲ ❂ ✳✳✳ ✴✴ t②♣❡ ❞❡❢✐♥✐t✐♦♥ ❢♦r ❙◗▲✳
❧❡t sq❧ ❂ ✭❡✈❛❧❙◗▲✱❧♦❛❞❙◗▲✱✉♥❧♦❛❞❙◗▲✮

✇❤❡r❡
❡✈❛❧❙◗▲ ❂ ✳✳✳
❧♦❛❞❙◗▲ ❂ ✳✳✳
✉♥❧♦❛❞❙◗▲ ❂ ✳✳✳

✴✴ ❉❡❢✐♥❡ ❛♥ ❡♠❜❡❞❞❡❞ ❍❚▼▲✲❧✐❦❡ ❧❛♥❣✉❛❣❡✳✳✳
t②♣❡ ❍❚▼▲ ❂ ✳✳✳ ✴✴ t②♣❡ ❞❡❢✐♥✐t✐♦♥ ❢♦r ❍❚▼▲✳
❧❡t ❤t♠❧ ❂ ✭❡✈❛❧❍❚▼▲✱❧♦❛❞❍❚▼▲✱✉♥❧♦❛❞❍❚▼▲✮

✇❤❡r❡ ✳✳✳
✴✴ ❯s❡ t❤❡ t✇♦ ❡♠❜❡❞❞❡❞ ❧❛♥❣✉❛❣❡ ❞❡❢✐♥✐t✐♦♥s✳
✴✴ P❡r❢♦r♠ ❞❛t❛❜❛s❡ q✉❡r✐❡s t♦ ♣r♦❞✉❝❡ ❛❧❧ t❤❡
✴✴ ✭♥❛♠❡✱❛❣❡✮ ♣❛✐rs ❢♦r ❛❞✉❧ts✳✳✳
❧❡t r❡s✉❧ts ❂

❧❛♥❣ sq❧✿❙◗▲❬❙❊▲❊❈❚ ♥❛♠❡✱❛❣❡ ❢r♦♠ ❈✉st♦♠❡r ❲❍❊❘❊ ❛❣❡ ❃ ✶✽❪
✐♥ ✴✴ Pr♦❞✉❝❡ t❤❡ ❍❚▼▲ t❛❜❧❡ s❤♦✇✐♥❣ t❤❡ r❡s✉❧ts✳✳✳

❧❛♥❣ ❤t♠❧✿❍❚▼▲❬
❁❚❆❇▲❊❃
❢♦r ♥❛♠❡✱❛❣❡ ✐♥ r❡s✉❧ts ❞♦
❁❚❘❃
❁❚❉❃ ♥❛♠❡ ❁✴❚❉❃
❁❚❉❃ ❛❣❡ ❁✴❚❉❃

❁✴❚❘❃
❁✴❚❆❇▲❊❃

❪

2.2 Abstract Syntax Types

The type definition for the µ-calculus is as follows:

t②♣❡ ❊①♣✭❚✮ ❂
❱❛r✭❙tr✐♥❣✮

⑤ ▲❛♠❜❞❛✭❙tr✐♥❣✱❊①♣✭❚✮✮
⑤ ❆♣♣❧②✭❊①♣✭❚✮✱❊①♣✭❚✮✮
⑤ ■❢✭❊①♣✭❚✮✱❊①♣✭❚✮✱❊①♣✭❚✮✮
⑤ ▲❛♥❣✭❚✮

The type definition is parameterized with respect to the type of embedded lan-

guages: ❚. If a single language L is embedded then the resulting type is ❊①♣✭▲✮.

If more then one language, L and M, are embedded, then we use a disjoint type

combinator to express the type of the resulting language: ❊①♣✭▲ ✰ ▼✮. Finally, a

fix-point operator can be used to construct a type: ❨✭❊①♣✮ is the type of languages

constructed by embedding the µ-calculus in itself.

2.3 Semantics

The semantics of the µ-calculus is defined as a language embedding as follows.

The evaluator for the calculus can be any suitable definition. To maximise the

potential for future extension we implement the evaluator as a state machine. This
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ensures that any embedded language has access to all data and control structures of

the language. The canonical state machine for a λ -calculus is the SECD machine

[11]. The type definition is as follows:

t②♣❡ ❙t❛t❡ ❂ ✭❬❱❛❧✉❡❪✱❊♥✈✱❬■♥str❪✱❙t❛t❡✮ ⑤ ❊♠♣t②
t②♣❡ ❊♥✈ ❂ ❙tr✐♥❣✲❃❱❛❧✉❡
t②♣❡ ■♥str ❂ ❊①♣✭❚✮ ⑤ ❆♣♣ ⑤ ■❢✭❊①♣✭❚✮✱❊①♣✭❚✮✮
t②♣❡ ❱❛❧✉❡ ❂ ❇❛s✐❝ ⑤ ❈❧♦s✉r❡ ⑤ ❙t❛t❡
t②♣❡ ❈❧♦s✉r❡ ❂ ✭❙tr✐♥❣✱❊♥✈✱❊①♣✭❚✮✮

The evaluator is a state transition function. It is supplied with a current machine

state, performs a single transition, producing a new state. It is also supplied with

another state transition function ❡✈❛❧ to which it supplies the new state. By sup-

plying ❡✈❛❧, the basic µ-calculus evaluator can be extended:

❡✈❛❧❊①♣✭❡✈❛❧✮✭s✮ ❂
❝❛s❡ s ♦❢
✭❬✈❪✱❴✱❬❪✱❊♠♣t②✮ ✲❃ s
✭s✱❡✱❱❛r✭♥✮✿s✱❞✮ ✲❃ ❡✈❛❧✭❡✭♥✮✿s✱❡✱❝✱❞✮
✭s✱❡✱▲❛♠❜❞❛✭♥✱❜✮✿❝✱❞✮ ✲❃ ❡✈❛❧✭✭♥✱❡✱❜✮✿s✱❡✱❝✱❞✮
✭s✱❡✱❆♣♣❧②✭♦✱❛✮✿❝✱s✮ ✲❃ ❡✈❛❧✭s✱❡✱❛✿♦✿❆♣♣✿❝✱❞✮
✭s✱❡✱■❢✭❢✱❣✱❤✮✿❝✱s✮ ✲❃ ❡✈❛❧✭s✱❢✿■❢✭❣✱❤✮✿❝✱❞✮
✭tr✉❡✿s✱❡✱■❢✭❣✱❤✮✿❝✱❞✮ ✲❃ ❡✈❛❧✭s✱❡✱❣✿❝✱❞✮
✭❢❛❧s❡✿s✱❡✱■❢✭❣✱❤✮✿❝✱❞✮ ✲❃ ❡✈❛❧✭s✱❡✱❤✿❝✱❞✮
✭✭♥✱❡✬✱❜✮✿✈✿s✱❡✱❆♣♣✿❝✱❞✮ ✲❃ ❡✈❛❧✭❬❪✱❡✬❬♥✲❃✈❪✱❬❜❪✱✭s✱❡✱❝✱❞✮✮
✭❘✿✭✮✿s✱❡✱❆♣♣✿❝✱❞✮ ✲❃ ❡✈❛❧✭✭s✱❡✱❝✱❞✮✿s✱❡✱❝✱❞✮
✭■✿✈✿s✱❡✱❆♣♣✿❝✱❞✮ ✲❃ ❡✈❛❧✭✈✮
✭❬✈❪✱❴✱❬❪✱✭s✱❡✱❝✱❞✮✮ ✲❃ ❡✈❛❧✭✈✿s✱❡✱❝✱❞✮

❡♥❞

The semantics of the calculus defined above is standard except for the builtin op-

erators: ❘ and ■ which are used to reify and intern machine states. Assuming the

existence of a parsing mechanism that indexes on the type of a language definition,

the expression ❧❛♥❣✭❡✱❧✱✉✮✿t❬❝❪ is equivalent to the following expression:

■✭♥❡✇❙t❛t❡✮
✇❤❡r❡ ♥❡✇❙t❛t❡ ❂ ✉✭t❡r♠❙t❛t❡✱✐♥✐t✐❛❧❙t❛t❡✮
✇❤❡r❡ t❡r♠❙t❛t❡ ❂ ❡✭st❛rt❙t❛t❡✮
✇❤❡r❡ st❛rt❙t❛t❡ ❂ ❧✭✐♥✐t✐❛❧❙t❛t❡✱♣❛rs❡✭t✮✭❝✮✮
✇❤❡r❡ ✐♥✐t✐❛❧❙t❛t❡ ❂ ❘✭✮

The expression above uses a parser that is indexed on the type of the embedded

language. It is ouside the scope of this paper to analyse how parsing mechanisms

can be supported by the µ-calculus; however, the parser produces values of the

appropriate abstract syntax type.

The initial state is created by reifying the current µ-context. The initial state is

supplied to the loader ❧ together with the abstract syntax to produce a starting state

for the embedded language evaluator. The starting state is supplied to the evaluator

❡ to produce a terminal state. The terminal state along with the original initial state

is supplied to the unloader to produce a new host language state. The new state is

then interned by supplying it to the host language interpreter.

If we embed µ in itself then the load and unload operations are identity. There-

fore the definition of µ is:
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❧❡t ▼✉ ❂ ❨✭❊①♣✮
❧❡t ❡✈❛❧▼✉ ❂ ❨✭❡✈❛❧❊①♣✮
❧❡t ❧♦❛❞▼✉✭✭s✱❡✱❝✱❞✮✱①✮ ❂ ✭s✱❡✱①✿s✱❞✮
❧❡t ✉♥❧♦❛❞▼✉✭s✱❴✮ ❂ s
❧❡t ♠✉▲ ❂ ✭❡✈❛❧▼✉✱❧♦❛❞▼✉✱✉♥❧♦❛❞▼✉✮

Now we can write programs that arbitrarily nest the calculus in itself (given suitable

sugarings for infix operators):

❢✉♥✭①✮ ❧❛♥❣ ♠✉▲✿▼✉❬❢✉♥✭②✮ ❧❛♥❣ ♠✉▲✿▼✉❬① ✰ ②❪❪

In conclusion a language definition consists of: a parser for the language (which is

not considered further by this paper); a data type for the language abstract syntax; a

context data type for the language evaluator; an evaluator that processes the context;

a loader that maps from host contexts to embedded contexts; an unloader that maps

from embedded contexts to host contexts.

3 Categories and Styles of Language Embedding

The µ-calculus can be used to embed any language l within a host h. The intended

usage is that h is defined as a language within µ and then l is defined within h. The

approach supported by µ forces a precise definition of how l is embedded within

h including any safety criteria. µ allows the embedding to be analysed prior to

implementation.

There are a number of different types of language embedding. Some embed-

dings are functional because uses of the language denote values; some are non-

functional because they modify the host language context; many language embed-

dings require that the bindings from the host language are transferred to the em-

bedded language; some embedded languages require private state and some require

that the state can be communicated to other embedded languages.

The µ-calculus can be used to define what we term uniform or ad-hoc lan-

guages. Uniform languages are those that extend the µ-calculus interpreter, and

thus allow languages to be embedded inside them using the standard µ-calculus

techniques. Ad-hoc languages are those that define an arbitrary interpreter; while it

is still possible to embed other languages within them, this must be done manually

on a case-by-case basis. This section provides examples of different categories of

language embedding using the µ-calculus.

3.1 A Simple Extension

One of the simple programming language-like features not found in µ is a let-

binding. In this section we show how this can be added as a language embedding

to µ . The type for expressions in the language ▲❡t is defined by extending the basic

expression language:

t②♣❡ ▲❡t❊①♣✭❚✮ ❂ ▲❡t✭❙tr✐♥❣✱▲❡t✭❚✮✱▲❡t✭❚✮✮ ⑤ ❊①♣✭❚✮
t②♣❡ ▲❡t ❂ ❨✭▲❡t❊①♣✮

An evaluator for ▲❡t is defined by extending the evaluator for the basic calculus:

6
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❧❡t ❡✈❛❧▲❡t❊①♣✭❡✈❛❧✮✭s✮ ❂
❝❛s❡ s ♦❢
✭s✱❡✱▲❡t✭♥✱①✱❜✮✿❝✱❞✮ ✲❃ ❡✈❛❧✭s✱❡✱①✿▲❡t✭♥✱❜✮✿❝✱❞✮
✭✈✿s✱❡✱▲❡t✭♥✱❜✮✿❝✱❞✮ ✲❃ ❡✈❛❧✭❬❪✱❡❬♥✲❃✈❪✱❬❜❪✱✭s✱❡✱❝✱❞✮✮
❡❧s❡ ❡✈❛❧❊①♣✭❡✈❛❧✮✭s✮

❡♥❞

The ▲❡t language definition follows the same structure as the ▼✉ language defini-

tion: the load and unload operations are essentially identity mappings:

t②♣❡ ▲❡t ❂ ❨✭▲❡t❊①♣✮
❧❡t ❡✈❛❧▲❡t ❂ ❨✭❡✈❛❧▲❡t❊①♣✮
❧❡t ❧♦❛❞▲❡t✭✭s✱❡✱❝✱❞✮✱①✮ ❂ ✭s✱❡✱①✿❝✱❞✮
❧❡t ✉♥♦❛❞▲❡t✭s✱❴✮ ❂ s
❧❡t ❧❡t▲ ❂ ✭❡✈❛❧▲❡t✱❧♦❛❞▲❡t✱✉♥❧♦❛❞▲❡t✮

Now, the let language can be used when it is embedded in the basic calculus which

is now of type ❊①♣✭▲❡t✮:

❢✉♥✭①✮ ❧❛♥❣ ❧❡t▲✿▲❡t❬❧❡t ② ❂ ① ✰ ✶ ✐♥ ② ❪

Note also that because the ▲❡t language is uniform, it can be used as the basis for

further language embeddings. This is shown in the following section.

3.2 Localized Data

A language extension is often useful when creating data structures. If the applica-

tion domain is specialized then the language extension can provide abstractions that

make the construction of the data declarative in the sense that low-level language

features that are necessary to create the structure are hidden away.

The definition of a new feature for data is an example of a functional language

embedding. Such a language is not necessarily uniform, however it does not modify

the state of the host language and is used exclusively for its value.

This section provides an example of a functional embedding for implementing

arrays. An array can be encoded in the µ-calculus using functions:

❧❡t ♠❦❆rr❛②✭✐✮ ❂ ♥✉❧❧
❧❡t s❡t✭✐✱✈✱❛✮ ❂ ✐❢ ✐ ❂ ❥ t❤❡♥ ✈ ❡❧s❡ ❛✭❥✮

There may be many initial values when an array is created. Without a declarative

language feature to achieve this, the creation will involve many nested calls to s❡t.

The language ❆rr❛② is used to create arrays:

❧❛♥❣ ❧❡t▲✿▲❡t❬
❧❡t ♠❦❆rr❛② ❂ ❢✉♥✭❧✐♠✐t✮ ❧❛♥❣ ❛rr❛②▲✿❆rr❛② ❬ ✵ ✳✳ ❧✐♠✐t ❪
✐♥ ♠❦❆rr❛②✭✶✵✵✮❪

The abstract syntax of the array language is not an extension to ❊①♣:

t②♣❡ ❆rr❛②❊①♣ ❂ ✭❆rr❛②❱❛❧✱❆rr❛②❱❛❧✮
t②♣❡ ❆rr❛②❱❛❧ ❂ ❱❛r✭❙tr✐♥❣✮ ⑤ ■♥t

The evaluator for the array language only requires information about the binding

context from the host language. The evaluator creates a value of type ❬❱❛❧✉❡❪:

❧❡t ❡✈❛❧❆rr❛②✭✭❧♦✇❡r✱✉♣♣❡r✮✱❡♥✈✮ ❂

7
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❧❡tr❡❝ ♠❦▲✐st✭❧✱✉✮ ❂ ✐❢ ❧ ❂ ✉ t❤❡♥ ❬❧❪ ❡❧s❡ ❧♦✇❡r✿♠❦▲✐st✭❧✰✶✱✉✮
❞❡r❡❢✭❱❛r✭♥✮✮ ❂ ❡♥✈✭♥✮
❞❡r❡❢✭✐✮ ❂ ✐

✐♥ ♠❦▲✐st✭❞❡r❡❢✭❧♦✇❡r✮✱❞❡r❡❢✭✉♣♣❡r✮✮

The host language cannot manipulate values of type ❬❱❛❧✉❡❪ (and in general for

an embedded language there may be a wide variety of ‘foreign’ values). Therefore

the array unloader must translate between the array representation and the calculus

representation:

❧❡t tr❛♥s❆rr❛② ✿ ❬❱❛❧✉❡❪ ✲❃ ❈❧♦s✉r❡
❧❡t tr❛♥s❆rr❛②✭❬❪✱✐✮ ❂ ✭❥✱❬❪✱❬⑤ ♥✉❧❧ ⑤❪✮
❧❡t tr❛♥s❆rr❛②✭✈✿❛✱✐✮ ❂
✭❥✱❛✲❃tr❛♥s❆rr❛②✭❛✱✐✰✐✮✱❬⑤ ✐❢ ❥ ❂ ❁✐❃ t❤❡♥ ❁✈❃ ❡❧s❡ ❛✭❥✮ ⑤❪✮

The operation tr❛♥s❆rr❛② defined above uses quasi-quotes to construct and ma-

nipulate abstract syntax in terms of concrete syntax. We will assume that this lan-

guage feature is available in the µ-calculus since it is simply sugar for the equiv-

alent expression in terms of AST constructors. Quasi-quotes have been imple-

mented in a number of languages to support syntax manipulation including Tem-

plate Haskell [15], Converge and XMF.

Given the translation from arrays (lists of values) to a closure-based represen-

tation, it is possible to define the array loader and unloader:

❧❡t ❧♦❛❞❆rr❛②✭✭s✱❡✱❝✱❞✮✱✭❧✱✉✮✮ ❂ ✭✭❧✱✉✮✱❡✮
❧❡t ✉♥❧♦❛❞❆rr❛②✭❛✱✭s✱❡✱❝✱❞✮✮ ❂ ✭tr❛♥s❆rr❛②✭❛✱✵✮✿s✱❡✱❝✱❞✮

We can now define a language that embeds both the µ-calculus and arrays into ▲❡t

t②♣❡ ▲❛♥❣✭❚✮ ❂ ❊①♣✭▲❡t✭❊①♣✭❚✮ ✰ ❆rr❛②❊①♣✮
t②♣❡ ❆rr❛② ❂ ❨✭▲❛♥❣✮
❧❡t ❛rr❛②▲ ❂ ✭❡✈❛❧❆rr❛②✱❧♦❛❞❆rr❛②✱✉♥❧♦❛❞❆rr❛②✮

The language used in the example above is defined by ❊①♣✭❆rr❛②✮

3.3 State Modification

Not all languages are functional. A non-functional language can affect the state of

the host language in some way. The impact of the language can be on the data, on

the control flow or both. This section provides a simple ad-hoc language embedding

that affects the state of data in the host language.

Consider the case where we want to print out a message each time a µ-calculus

function is called. The calculus does not provide any features that allow us to

toggle function tracing on and off. A new language feature is required that allows

the following:

❧❛♥❣ tr❛❝❡▲✿❚r❛❝❡❬ tr❛❝❡❖♥ ❪
✳✳✳ ✴✴ ❚r❛❝✐♥❣ ✐s ♥♦✇ ♦♥✳✳✳
❧❛♥❣ tr❛❝❡▲✿❚r❛❝❡❬ tr❛❝❡❖❢❢ ❪
✳✳✳ ✴✴ ◆♦ ♠♦r❡ tr❛❝✐♥❣

We will assume that there are builtin functions called ❡♥t❡r and ❡①✐t in the µ-

calculus that allow functions to be traced. So a function ❢✉♥✭①✮ ❜ can be traced

8
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by changing the function body to:

❢✉♥✭①✮ ❡①✐t✭❜✱❡♥t❡r✭①✮✮

The language for tracing is very simple:

t②♣❡ ❚r❛❝❡ ❂ tr❛❝❡❖♥ ⑤ tr❛❝❡❖❢❢

When tracing is switched on, the embedded language makes a global change to the

host state. Each closure and function expression must be modified to insert calls to

the tracing functions:

❧❡t tr❛❝❡✭s✱❡✱❝✱❞✮ ❂ ✭tr❛❝❡✭s✮✱tr❛❝❡✭❡✮✱tr❛❝❡✭❝✮✱tr❛❝❡✭❞✮✮
❧❡t tr❛❝❡✭❊♠♣t②✮ ❂ ❊♠♣t②
❧❡t tr❛❝❡✭❬❪✮ ❂ ❬❪
❧❡t tr❛❝❡✭①✿s✮ ❂ t❛❝❡✭①✮✿tr❛❝❡✭s✮
❧❡t tr❛❝❡✭♥✲❃✈✮ ❂ ♥✲❃tr❛❝❡✭✈✮
❧❡t tr❛❝❡✭♥✱❡✱❜✮ ❂ ✭♥✱tr❛❝❡✭❡✮✱❬⑤ ❡①✐t✭❁tr❛❝❡✭❜✮❃✱❡♥t❡r✭❁♥❃✮✮ ⑤❪✮
❧❡t tr❛❝❡✭❱❛r✭♥✮✮ ❂ ❱❛r✭♥✮
❧❡t tr❛❝❡✭▲❛♠❜❞❛✭♥✱❜✮ ❂ ▲❛♠❜❞❛✭♥✱❬⑤ ❡①✐t✭❁tr❛❝❡✭❜✮❃✱❡♥t❡r✭❁♥❃✮✮ ⑤❪✮
❧❡t tr❛❝❡✭❆♣♣❧②✭♠✱♥✮✮ ❂ ❆♣♣❧②✭tr❛❝❡✭♠✮✱tr❛❝❡✭♥✮✮
❧❡t tr❛❝❡✭❆♣♣✮ ❂ ❆♣♣

The ✉♥tr❛❝❡ operator performs the changes in reverse. Now the tracing language

can be defined in terms of the global modifier to the host language state:

❧❡t ❡✈❛❧❚r❛❝❡✭s✱tr❛❝❡❖♥✮ ❂ tr❛❝❡✭s✮
❧❡t ❡✈❛❧❚r❛❝❡✭s✱tr❛❝❡❖❢❢✮ ❂ ✉♥tr❛❝❡✭s✮
❧❡t ❧♦❛❞❚r❛❝❡✭s✱t✮ ❂ ✭s✱t✮
❧❡t ✉♥❧♦❛❞❚r❛❝❡✭s✱s✬✮ ❂ s
❧❡t tr❛❝❡▲ ❂ ✭❡✈❛❧❚r❛❝❡✱❧♦❛❞❚r❛❝❡✱✉♥❧♦❛❞❚r❛❝❡✮

The calculus with tracing in is defined by ❨✭▲❛♥❣✮ where:

t②♣❡ ▲❛♥❣✭❚✮ ❂ ❊①♣✭❊①♣✭❚✮ ✰ ❚r❛❝❡✮

3.4 Control Flow

The previous section defines a non-functional embedding that influences the struc-

ture of data in the host language. Another form of non-functional embedding af-

fects the control flow of the host language. This is only possible if the embedded

language has access to the complete state of the host language. It can be achieved

by passing continuations to the embedded language, however this makes it difficult

to define transformations on the state. Instead, if evaluators are defined in terms of

transition machines then embedded languages have access to the required informa-

tion in an appropriate format.

Suppose that we want a new language construct that aborts the program under

a given condition:

❧❛♥❣ ❧❡t▲✿▲❡t❬
❧❡t ① ❂ ❢✭✶✵✵✮
✐♥ ❧❛♥❣ ❛❜♦rt▲✿❆❜♦rt❬ st♦♣ ✐❢✭① ❃ ✶✵✵✮ ❪❪

The condition under which the program aborts is written in the µ-calculus, there-

fore the language is defined as:

t②♣❡ ❆❜♦rt✭❚✮ ❂ ❊①♣✭❚✮

9
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t②♣❡ ▲❛♥❣✭❚✮ ❂ ❊①♣✭▲❡t✭❊①♣✭❚✮ ✰ ❆❜♦rt✭❊①♣✭❚✮✮✮✮

Note that in the example above the type ❆❜♦rt is a synonym for ❊①♣, however the

parser will use a different constructor to tag the result of parsing the embedded

language.

The evaluator for the embedded language must extend that of the µ-calculus:

❧❡t ❡✈❛❧❆❜♦rt✭❡✈❛❧✮✭❡①♣❙t❛t❡✱tr✉❡❙t❛t❡✱❢❛❧s❡❙t❛t❡✮ ❂
tr✉❡❙t❛t❡ ✇❤❡♥ ❡✈❛❧✭❡①♣❙t❛t❡✮ ❂ ✭❬tr✉❡❪✱❴✱❴✱❴✮
❢❛❧s❡❙t❛t❡ ♦t❤❡r✇✐s❡

The loader and unloader for the ❆❜♦rt language are defined as follows:

❧❡t ❧♦❛❞❆❜♦rt✭✭s✱❡✱❝✱❞✮✱①✮ ❂ ✭✭❬❪✱❡✱❬①❪✱❊♠♣t②✮✱✭s✱❡✱❝✱❞✮✱✭❬❡rr♦r❪✱❬❪✱❬❪✱❊♠♣t②✮
❧❡t ✉♥❧♦❛❞❆❜♦rt✭s✱❴✮ ❂ s

The language for ❆❜♦rt is defined:

❧❡t ❛❜♦rt▲ ❂ ✭❡✈❛❧❆❜♦rt✭❨✭❡✈❛❧❊①♣✮✮✱❧♦❛❞❆❜♦rt✱✉♥❧♦❛❞❆❜♦rt✮

3.5 Private State

Previous examples have shown how the identifiers that are in scope within the host

language can be passed down to an embedded language. In general, this is achieved

by the loader for the language passing the current environment to the evaluator for

the embedded language.

Multiple occurrences of the same embedded language may require access to

shared data. This can be achieved through binding in the host language and making

the variables in scope available to the embedded language. However, this is not

always desirable since the embedded language must know the names of the vari-

ables that hold the values of its state. In general, it is unsafe to rely on the use of

particular variable names to pass information from one language to another.

Another option is to encode the state required by the embedded language as part

of the evaluation state of the host language. This requires that the host language

state is extended. This section shows how the state is extended.

Consider a language ❙❡❝r❡t that has a single boolean flag. Each occurrence of

the embedded language may choose to toggle the flag or print it out:

t②♣❡ ❙❡❝r❡t ❂ ❚♦❣❣❧❡ ⑤ Pr✐♥t

There are two new elements of state required by the secret language: the flag; the

stream of outputs. Therefore, the state of the host calculus becomes: ✭s✱❡✱❝✱❞✱❢✱♦✮

where ❢ is a boolean flag and ♦ is a sequence of boolean representing the output of

the program.

t②♣❡ ❙❡❝r❡t❙t❛t❡ ❂ ✭❬❱❛❧✉❡❪✱❊♥✈✱❬■♥str❪✱❙❡❝r❡t❙t❛t❡✱❇♦♦❧✱❬❇♦♦❧❪✮

We have already defined ❡✈❛❧❊①♣ and do not want to change it to reflect the ex-

tended state. The solution is to wrap the definition of ❡✈❛❧❊①♣ with a new definition

that lifts the signature from ❙t❛t❡ ✲❃ ❙t❛t❡ to ❙❡❝r❡t❙t❛t❡ ✲❃ ❙❡❝r❡t❙t❛t❡.

This is defined as follows:

❧❡t ❡✈❛❧❊①♣✬✭❡✈❛❧✮✭s✱❡✱❝✱❞✱❢✱♦✮ ❂ ❡✈❛❧❊①♣✭❡✈❛❧✬✮✭s✱❡✱❝✱❞✮
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✇❤❡r❡ ❡✈❛❧✬✭s✱❡✱❝✱❞✮ ❂ ❡✈❛❧✭s✱❡✱❝✱❞✱❢✱♦✮

The evaluator for ❙❡❝r❡t is simple:

❧❡t ❡✈❛❧❙❡❝r❡t✭✭❢✱♦✮✱❚♦❣❣❧❡✮ ❂ ✭✦❢✱♦✮
❧❡t ❡✈❛❧❙❡❝r❡t✭✭❢✱♦✱Pr✐♥t✮ ❂ ✭❢✱❢✿♦✮

The language definition for ❙❡❝r❡t is:

❧❡t ❧♦❛❞❙❡❝r❡t✭✭s✱❡✱❝✱❞✱❢✱♦✮✱①✮ ❂ ✭✭❢✱♦✮✱①✮
❧❡t ✉♥❧♦❛❞❙❡❝r❡t✭✭❢✱♦✮✱✭s✱❡✱❝✱❞✱❴✱❴✮✮ ❂ ✭s✱❡✱❝✱❞✱❢✱♦✮
❧❡t s❡❝r❡t▲ ❂ ✭❡✈❛❧❙❡❝r❡t✱❧♦❛❞❙❡❝r❡t✱✉♥❧♦❛❞❙❡❝r❡t✮

The calculus with ❙❡❝r❡t embedded within ▲❡t can be defined as ❨✭▲❛♥❣✮:

t②♣❡ ▲❛♥❣✭❚✮ ❂ ❊①♣✭▲❡t✭❊①♣✭❚✮ ✰ ❙❡❝r❡t✮✮

3.6 New Binding Schemes

The µ-calculus is statically scoped. Dynamic scoping allows variables to be bound

to values such that they are available anywhere in the program during the evaluation

of a given expression. Dynamic scoping is useful to capture the situation where a

variable would need to be passed to many operations as an argument. Common

Lisp is an example of a language that provides both static and dynamic scoping.

The following example shows how a dynamic binding scheme works:

❧❛♥❣ ❧❡t▲✿▲❡t❬
❧❡t ❛❞❞ ❂ ❢✉♥✭①✮ ① ✰ ②
✐♥ ❧❛♥❣ ❞②♥▲✿❉②♥❬❞②♥ ② ❂ ✶✵✵ ✐♥ ❛❞❞✭✷✵✮❪❪

The function ❛❞❞ takes a formal parameter ① and adds it to ② which is currently not

in scope. The embedded language ❉②♥ binds ② and then calls ❛❞❞ supplying it with

✷✵. The result of the program is ✶✷✵.

The dynamic binding language requires a new type of environment for dynamic

variables. Just as ▲❡t extends and contracts the static environment, ❉②♥ extends

and contracts the dynamic environment. However, the evaluator for the basic ❊①♣

language cannot reference a new type of environment since the state is fixed.

The solution is to introduce a new state element for a dynamic environment

and to merge the static and dynamic environments when the ❉②♥ interpreter passes

control to the ❊①♣ interpreter. When the state is returned by the ❊①♣ interpreter, the

dynamic environment is extracted and replaced into the ❉②♥ state. The type ❉②♥ is

defined:

t②♣❡ ❉②♥✭❚✮ ❂ ❉▲❡t✭❙tr✐♥❣✱❉②♥✭❚✮✱❉②♥✭❚✮✮ ⑤ ❊①♣✭❚✮

The evaluator for ❉②♥ is:

❧❡t ❡✈❛❧❉②♥✭❡✈❛❧✮✭s✮ ❂
❝❛s❡ s ♦❢
✭s✱❡✱②✱❉▲❡t✭♥✱①✱❜✮✿❝✱❞✮ ✲❃ ❡✈❛❧✭s✱❡✱②✱①✿❉▲❡t✭♥✱❜✮✿❝✱❞✮
✭✈✿s✱❡✱②✱❉▲❡t✭♥✱❜✮✿❝✱❞✮ ✲❃ ❡✈❛❧✭❬❪✱❡✱②❬♥✲❃✈❪✱❬❜❪✱✭s✱❡✱②✱❝✱❞✮✮
✭❬✈❪✱❴✱❴✱❬❪✱✭s✱❡✱②✱❝✱❞✮✮ ✲❃ ❡✈❛❧✭✈✿s✱❡✱②✱❝✱❞✮
❡❧s❡ ❡✈❛❧❊①♣✬✭❡✈❛❧✮✭s✮

❡♥❞
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When the evaluator ❡✈❛❧❉②♥ is called it checks for dynamic binding expressions at

the head of the control. The dynamic binding expression evaluates the value-part

and extends the dynamic environment in the machine state.

The evaluator ❡✈❛❧❊①♣ must be lifted to take account of the extra state compo-

nent:

❧❡t ❡✈❛❧❊①♣✬✭❡✈❛❧✮✭s✱❡✱✱②✱❝✱❞✮ ❂ ❡✈❛❧❊①♣✭❡✈❛❧✬✮✭s✱② ✰ ❡✱❝✱❞✮
✇❤❡r❡ ❡✈❛❧✬✭s✱❡✱❝✱❞✮ ❂ ❡✈❛❧✭s✬✱❡✬✱②✱❝✱❞✬✮
✇❤❡r❡ ✭s✬✱❡✬✱❝✱❞✬✮ ❂ ✭s✱❡✱❝✱❞✮✴②

The definition of ❡✈❛❧❊①♣✬ given above merges the dynamic and lexical environ-

ments when it calls ❡✈❛❧❊①♣. When the environments are merged. the lexical en-

vironment always takes precedence allowing lexically bound variables to shadow

the dynamic variables. Since the lexical environment always shadows the dynamic

environment, it is possible to remove the dynamic environment from the resulting

state. The ✴ operator removes the ’base’ environment wherever it occurs in the

supplied state.

3.7 Summary

This section has described categories of language embedding using the µ-calculus.

The calculus can be used to design embedded language in terms of the semantics

both of the language and its embedding within the host and each language defi-

nition takes the form of a triple: evaluator, loader and unloader. The design of

an embedding must answer questions relative to the host and sibling languages:

syntax; semantics; load and unload; safety criteria.

4 Example Application

This section provides an example of multiple embedded languages that can work

together. When designing multiple embeddings we must consider the interaction

of the languages and any safety criteria that prevent the languages interacting in

undesirable ways. The µ-calculus approach explicitly represents components of

the embeddings that make it easy to ensure safety criteria are achieved.

Consider writing web-applications that use relational database tables to store

data and uses HTML to provide the user-interface. We will use the basic µ-calculus

as the host language; it is representative of a general purpose host. Two languages

are embedded within the host: SQL is used to process the database tables; HTML is

used to produce the user-interface. An example of the use of this is given in section

2.1.

4.1 Database Queries

The first step is to define an SQL-like language. We limit this to selecting fields

from a named database table where the field values satisfy a given predicate ex-

pression:

t②♣❡ ❙◗▲❊①♣✭❚✮ ❂ ✭❬❙tr✐♥❣❪✱❙tr✐♥❣✱❊①♣✭❚✮✮

12
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The evaluator for ❙◗▲ requires an extra state component that maps table names to

tables. We represent tables as sequences of table rows:

t②♣❡ ❙◗▲❙t❛t❡ ❂ ✭❬❱❛❧✉❡❪✱❊♥✈✱❬■♥str❪✱❙◗▲❙t❛t❡✱❚❛❜❧❡s✮ ⑤ ❊♠♣t②
t②♣❡ ❚❛❜❧❡s ❂ ❙tr✐♥❣✲❃❉❇❚❛❜❧❡
t②♣❡ ❉❇❚❛❜❧❡ ❂ ❬❉❇❘♦✇❪
t②♣❡ ❉❇❘♦✇ ❂ ❙tr✐♥❣✲❃❱❛❧✉❡

The evaluator must handle the extra ❙◗▲ constructs:

❧❡t ❡✈❛❧❙◗▲✭❡✈❛❧✮✭s✮ ❂
❝❛s❡ s ♦❢
✭s✱❡✱✭♥s✱♥✱❜✮✿❝✱❞✱t✮ ✲❃ ❡✈❛❧✭t✭♥✮✴♥s✿❬❪✿s✱❡✱s❡❧✭❜✮✿❝✱❞✱t✮
✭✭✈s✿✈ss✮✿s✱❡✱s❡❧✭❜✮✿❝✱❞✱t✮ ✲❃
❡✈❛❧✭❬❪✱❡❬♥s✲❃✈s❪✱❬❜❪✱✭✈ss✿s✱❡✱❝✐❢✭✈s✮✿s❡❧✭❜✮✿❝✱❞✱t✮✱t✮

✭tr✉❡✿rs✿✈ss✿s✱❡✱❝✐❢✭✈s✮✿❝✱❞✱t✮ ✲❃ ❡✈❛❧✭✈ss✿✭✈s✿rs✮✿s✱❡✱❝✱❞✱t✮
✭❢❛❧s❡✿rs✿✈ss✿s✱❡✱❝✐❢✭✈s✮✿❝✱❞✱t✮ ✲❃ ❡✈❛❧✭✈ss✿rs✿s✱❡✱❝✱❞✱t✮
❡❧s❡ ❡✈❛❧❊①♣✭❡✈❛❧✬✮✭s✱❡✱❝✱❞✮

✇❤❡r❡ ✭s✱❡✱❝✱❞✱t✮ ❂ s
❡✈❛❧✬✭s✱❡✱❝✱❞✮ ❂ ❡✈❛❧✭s✱❡✱❝✱❞✱t✮

❡♥❞

The ❙◗▲ evaluator defined above detects ❙❊▲❊❈❚ expressions at the head of the

control, lookup the table in the environment t✭♥✮ and restruct the values to the

named fields t✭♥✮✴♥s. The machine then uses the new instructions s❡❧ and ❝✐❢ to

process each value-tuple in turn and build up a sequence of values that satisfy the

predicate expression ❜.

4.2 Web Page Generation

The ❍❚▼▲ language is defined as follows:

t②♣❡ ❍❚▼▲✭❚✮ ❂ ❬❘♦✇✭❚✮❪
t②♣❡ ❘♦✇✭❚✮ ❂ ❘♦✇❬❈♦❧✭❚✮❪ ⑤ ❋♦r❘♦✇✭❬❙tr✐♥❣❪✱❙tr✐♥❣✱❘♦✇✭❚✮✮
t②♣❡ ❈♦❧✭❚✮ ❂ ❈♦❧✭❊①♣✭❚✮✮ ⑤ ❋♦r❈♦❧✭❬❙tr✐♥❣❪✱❙tr✐♥❣✱❊①♣✭❚✮✮

The state for the ❍❚▼▲ language uses a new state component that models the output:

t②♣❡ ❍❚▼▲❙t❛t❡ ❂ ✭❬❱❛❧✉❡❪✱❊♥✈✱❬■♥str❪✱❍❚▼▲❙t❛t❡✱❬❙tr✐♥❣❪✮ ⑤ ❊♠♣t②

The evaluator is defined as follows:

❧❡t ❡✈❛❧❍❚▼▲✭❡✈❛❧✮✭s✮ ❂
❝❛s❡ s ♦❢
✭s✱❡✱❬rs❪✿❝✱❞✱♦✮ ✲❃ ❡✈❛❧✭s✱❡✱✿rs✿t❡♥❞✿❝✱❞✱✧❁❚❆❇▲❊❃✧✿♦✮
✭s✱❡✱t❡♥❞✿❝✱❞✱♦✮ ✲❃ ❡✈❛❧✭s✱❡✱❝✱❞✱✧❁✴❚❆❇▲❊❃✧✿♦✮
✭s✱❡✱❘♦✇✭❝s✮✿❝✱❞✱♦✮ ✲❃ ❡✈❛❧✭s✱❡✱❝s✿r❡♥❞✿❝✱❞✱✧❁❚❘❃✧✿♦✮
✭s✱❡✱r❡♥❞✿❝✱❞✱♦✮ ✲❃ ❡✈❛❧✭s✱❡✱❝✱❞✱✧❁✴❚❘❃✧✿♦✮
✭s✱❡✱❈♦❧✭❜✮✿❝✱❞✱♦✮ ✲❃ ❡✈❛❧✭s✱❡✱❜✿❝❡♥❞✿❝✱❞✱✧❁❚❉❃✧✿♦✮
✭✈✿s✱❡✱❝❡♥❞✿❝✱❞✱♦✮ ✲❃ ❡✈❛❧✭s✱❡✱❝✱❞✱✧❁✴❚❉❃✧✿✈✿♦✮
✭s✱❡✱❢♦r✭♥s✱♥✱r✮✿❝✱❞✱♦✮ ✲❃ ❡✈❛❧✭❡✭♥✮✿s✱❡✱♥❡①t✭♥s✱r✮✿❝✱❞✱♦✮
✭✈s✿✈ss✿s✱❡✱♥❡①t✭♥s✱r✮✿❝✱❞✱♦✮ ✲❃ ❡✈❛❧✭✈ss✿s✱❡❬♥s✲❃✈s❪✱r✿❝✱❞✱♦✮
✭❬❪✿s✱❡✱♥❡①t✭♥s✱r✮✿❝✱❞✱♦✮ ✲❃ ❡✈❛❧✭s✱❡✱❝✱❞✱♦✮
❡❧s❡ ❡✈❛❧❊①♣✭❡✈❛❧✬✮✭s✱❡✱❝✱❞✮

✇❤❡r❡ ✭s✱❡✱❝✱❞✱♦✮ ❂ s
❡✈❛❧✬✭s✱❡✱❝✱❞✮ ❂ ❡✈❛❧✭s✱❡✱❝✱❞✱♦✮

❡♥❞
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The ❍❚▼▲ evaluator defined above detects table declarations at the head of the con-

trol. HTML output is built up as each element of the table declaration is processed.

The evaluator uses the new instructions t❡♥❞, r❡♥❞ and ❝❡♥❞ to produce the ter-

minating tags. The for-loops within rows and columns are processed using the new

instructions ❢♦r and ♥❡①t.

4.3 Language Collaboration and Safety Criteria

The state of the host language must merge the requirements of the two embedded

languages. Therefore:

❧❡t ❡✈❛❧❊①♣✬✭❡✈❛❧✮✭s✱❡✱❝✱❞✱t✱♦✮ ❂ ❡✈❛❧❊①♣✭❡✈❛❧✬✮✭s✱❡✱❝✱❞✮
✇❤❡r❡ ❡✈❛❧✬✭s✱❡✱❝✱❞✮ ❂ ❡✈❛❧✭s✱❡✱❝✱❞✱t✱♦✮

The load and unload mappings for the language definitions can then peform the

appropriate state projections:

❧❡t ❧♦❛❞❙◗▲✭✭s✱❡✱❝✱❞✱t✱♦✮✱sq❧✮ ❂ ✭s✱❡✱sq❧✿❝✱❞✱t✮
❧❡t ✉♥❧♦❛❞❙◗▲✭✭s✱❡✱❝✱❞✱t✮✱✭❴✱❴✱❴✱❴✱❴✱♦✮✮ ❂ ✭s✱❡✱❝✱❞✱t✱♦✮
❧❡t ❧♦❛❞❍❚▼▲✭✭s✱❡✱❝✱❞✱t✱♦✮✱❤t♠❧✮ ❂ ✭s✱❡✱❤t♠❧✿❝✱❞✱♦✮
❧❡t ✉♥❧♦❛❞❍❚▼▲✭✭s✱❡✱❝✱❞✱♦✮✱✭❴✱❴✱❴✱❴✱t✱❴✮✮ ❂ ✭s✱❡✱❝✱❞✱t✱♦✮

The definition given above describes an idealized engine that processes a host lan-

guage and two embedded languages: ❙◗▲ and ❍❚▼▲. The information required by

each language is maintained separately: t for database tables and ♦ for the HTML

output. The information from database tables can be made available to the web-

output through the host language because bindings in µ are scoped over ❍❚▼▲ loops.

Any implementation of µ , ❙◗▲ and ❍❚▼▲ is required to maintain the separation

of concerns that define the safety criteria. Any language that supports language

embedding must provide a mechanism that implements the state separation and

must show that tables and HTML output can be processed in ways that are not

consistent with their semantics as defined by the evaluators, loaders and unloaders.

5 Conclusions

In this paper we defined the µ-calculus which allows languages and language em-

beddings to be specified. We showed that the µ-calculus is sufficiently expressive

that it can be used to add new language features to itself in a coherent fashion. We

finally showed how the µ-calculus can be used to specify how DSLs such as an

HTML generation lanaguge and SQL can be embedded within each other.
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